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Molecules
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Molecules & Machine Learning
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• Modern Materials Science and Chemistry is driven by the need to design new molecules that have desired properties.

• The dream of molecular machine learning is to replace the random experimentation with guided search, where 
machine-learned predictors can propose which new molecules might have desired properties.

• Such accurate predictors could enable the creation of radically new martials an chemicals with useful properties.

• The first step is to construct technical methods for transforming molecules into vectors of numbers that can then be 
passed to learning algorithms.

• These representations include chemical descriptor vectors, 2D graph representations, 3D electrostatic grid 
representations, orbital basis function representations, and more.

• We will review some algorithms for learning functions on molecules, including simple fully connected networks as well 
as more sophisticated techniques like graph convolutions. 

• We’ll also describe some of the limitations of graph convolutional techniques, and what we should and should not 
expect from them. 

• We’ll end the chapter with a molecular machine learning case study on an interesting dataset.



What Is a Molecule?
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Mass Spectrometer

A caffeine molecule as a “ball-and-stick” 
diagram.

Atoms are presented as color balls. 
==> Black: carbon. Red: oxygen. Blue: nitrogen. 
White: hydrogen.

Sticks: chemical bonds



Molecules are dynamic, quantum entities
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• Molecules are dynamic entities ➔ all the atoms within a given molecule are in rapid motion.

• The bonds themselves are stretching back and forth and perhaps oscillating in length rapidly.

• It’s common for atoms to rapidly break off from and rejoin molecules.

• Molecules are quantum. 



Covalent bonds
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• Covalent bonds involve sharing electrons between two atoms.

• The same electrons spend time around both atoms.

• In general, covalent bonds are the strongest type of chemical bond.

• The are formed and broken in chemical reactions.

• Covalent bonds tend to be very stable: once they form, it takes a lot of energy to break them.

• Covalent bonds are what define molecules.

• A molecule is a set of atoms joined by covalent bonds.

Two atomic nuclei
Two atoms with 
covalent bond



Noncovalent bonds
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• Noncovalent bonds don’t involve the direct sharing of electrons 
between atoms.

• They do involve weaker electromagnetic interactions.

• These bounds are more ephemeral, constantly breaking and reforming.

• Noncovalent bonds do not “define” molecules in the same sense that 
covalent bonds do.

• But they have a huge effect on determining the shapes molecules take 
on ,

• “Noncovalent bonds” is a generic term covering several different types 
of interactions, including hydrogen bonds, salt bridges, pi-stacking, and 
more. 

• These types of interactions often play crucial role in drug design.  ➔ 
most drugs interact with biological molecules in the human body 
through noncovalent interactions.

Water molecules have strong hydrogen 
bounding interactions between gen and 
oxygen on adjacent molecules

➔ A strong network of hydrogen bonds 
contributes to water’s power as a solvent.



Molecular Graphs
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Example of mathematical graph
Example of converting a benzene 
molecule into a molecular graph.



Molecular Conformations
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• A molecular graph describes the set of atoms in a molecule and how they are bonded together.

• But how are the atoms positioned relative to each other in 3D space? This is called the 
molecule’s conformation.

• Atoms, bonds, and conformation are related to each other.

• If two atoms are covalently bonded, that tends to fix the distance between them, strongly 
restricting the possible conformations.

• The angles formed by sets of three or four bonded atoms are also often restricted.

• Sometimes there will be whole  clusters of atoms that are completely rigid, all moving together 
as a single unit.

• But other pieces of molecules are flexible, allowing atoms to move relative to each other.

• For example, many covalent bonds allow the groups of atoms they connect to freely rotate 
around the axis of the bond.

• This lets the molecule take on many different conformations.

Sucrose (table sugar) 
represented as a 3D 
conformation and 2D chemical 
structure.



Molecular Conformations
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• Rings are fairly rigid. Linker connecting them is much more flexible.

• Allowing rings to move relative to each other.

• As molecules get larger, the number of feasible conformations they 
can take grow enormously.

• For large macromolecules such as proteins, computationally exploring 
the set of possible conformations is a challenge of decades.

A conformation of bacteriorhodopsin(used to capture light energy) 
rendered in 3D. Protein conformations are particularly complex with 
multiple 3D geometric motifs.



Chirality of Molecules
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• Some molecules (including many drugs) come in two forms that are mirror 
images of each other. ➔ this is called Chirality.

• Chirality is very important, and also a source of frustration both for lab 
chemists and computational chemists.

• The chemical reactions that produce chiral molecules often don’t distinguish 
between the forms, producing both chiralities in equal amounts. ➔ Racemic 
mixtures.

• If you want to end up with just one form, your manufacturing process 
immediately becomes more complicated. 

• Many physical properties are identical for both chiralities, so many 
experiments can’t distinguish between chiral versions. 

• Both chiralities have identical molecular graphs  => many ML model that 
depends only on the molecular graph will be unable to distinguish.

• The two enantiomers have the same chemical properties, except when 
reacting with other chiral compounds.

Axial chirality of a spiro compound (a 
compound made up of two or more rings 
joined together).

Two enantiomers of a generic amino 

acidthat are chiral

https://en.wikipedia.org/wiki/Enantiomer
https://en.wikipedia.org/wiki/Amino_acid


Chirality of Molecules
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• It is possible for the two chiral forms of a drug to bind to totally different 
proteins. ➔ to have very different effects in the body.

• In many cases, only one form of a drug has the desired therapeutic effect.

• The other form just products extra side effects without having any benefit.

• Example: Thalidomide → a drug prescribed as a sedative in the 1950s and 
1960s.

• Treatment for nausea and morning sickness associated with pregnancy.
• The R form of Thalidomide is an effective sedative.
• The S form of of Thalidomide is teratogenic and shown to cause severe 

birth defects.
• Further compounded by the fact that Thalidomide interconverts or 

racemizes between the two different forms in the body.

(S)-Alanine (left) and (R)-alanine (right) in 
zwitterionic form at neutral pH



Encoding → Featuring a Molecule
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• In order to perform traditional ML on molecules, we need to transform them 
into feature vectors.

• DeepChem featuring submodule: dc.feat.

https://deepchem.io

https://deepchem.io/


SMILES
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• SMILES is a popular method for specifying 
molecules with text strings.

• It stands for “Simplified Molecular-Input 
Line-Entry System”.

• A SMILES string describes the atoms and 
bonds of a molecule in a way that is both 
concise and reasonably intuitive for 
chemists.

• For instance, 
CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO 
describes Thiamine, known as vitamin B1.

• While some DL models accept SMILES as 
input, sometimes we need to convert to a 
different representation, such as using RDKit 
in DeepChem.

C12H17N4OS+

C4H10O => solvent



SMILES example
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SMILES generation algorithm for ciprofloxacin, an antibiotic: break cycles, 
then write as branches off a main backbone.

C17H18FN3O3



Extended-Connectivity Fingerprints
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• Chemical fingerprints are vectors of 1s and 0s that represent the presence or absence of specific features in a molecule.

• Extended-connectivity fingerprints (ECFPs) are a class of featurization that combine several useful features.

• They take molecules of arbitrary size and convert them into fixed-length vectors.

• ECFPs let you take molecules of many different sizes and use them all with the same model.

• Easy to compare. The more elements that match, the more similar the molecules are.



Molecular Descriptors
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• Describe molecules with a set of physiochemical descriptors.

• Usually correspond to various computed quantities that describe the molecule’s structure.

• These quantities, such as the log partition coefficient or the polar surface area, are often derived from 
classical physics or chemistry.



Graph Convolutions
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• The featurizations were designed by human. An expert through carefully about how to represent molecules in a way 
that could be used as input to machine learning models.

• Deep Learning does not rely on such featurization.

• Graph Convolutional Networks begins with a vector of numbers for each node and edge.

• When the graph represents a molecule, those numbers could be high-level chemical properties of each atom, such 
as its element, charge, and hybridization state.

• Just as a regular convolutional layer computes a new vector for each pixel based on local region of its input, a graph 
convolutional layer computes a new vector for each node and/or edge.

• DeepChem includes implementations of lots of those architectures, including Graphen Convolutions, Weave models, 
message passing neural networks, deep tensor neural networks, etc.

• Graph convolutional networks are a powerful tool for analyzing molecules, but they have one important limitation: 
the calculation is based solely on the molecular graph. No information about the molecule’s conformation. => 
cannot predict anting that is conformation –dependent.



Graph representation of molecule
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Caffeine molecule

Citronella molecule



Graph Convolutional Network
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https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Training a Model to Predict Solubility
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Example Task => Train a model on a real chemical dataset to predict an important molecular property.

Load Delaney dataset

The data is related to solubility, a measure of how easily a molecule dissolves in water.

Construct and Train the model

==> correlation coefficient of solubility prediction: 0.91 for the training data; 0.7 on the testing data.



Testing a Model to Predict Solubility
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Test on a new molecule:

First -> using RDKit to parse SMILES strings, and use featurizer to convert them to the 
format expected by the graph convolution. 



MoleculeNet
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• MoleculeNet is a large collection of datasets useful for molecular machine learning.

• Scientists found it useful to predict quantum, physical chemistry, biophysical, and physiological 
characteristics of molecules.



SMART Strings
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• We encounter situations where we want to determine whether atoms in a molecule match a 
particular pattern.

• Examples:
• Searching a database of molecules to identify molecules containing a particular substructure.
• Aligning a set of molecules on a common substructure to improve visualization
• Highlighting a substructure in a plot.
• Constraining a substructure during a calculation.



SMART Strings
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• SMARTS is an extension of 
SMILES that can be used 
to create queries.



SMART Strings
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Proteins



Importance of Protein
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• Proteins are tiny machines that do most of the work in a cell.

• Despite their small size, they can be very complicated.

• A typical protein is made of thousands of atoms arranged in precise ways.

• To understand any machine, you must know what parts it is made of and how they are put together.

• You need to know how it interacts with other molecules.

• They act on molecules, are acted upon by others, and draw energy from others.

• All these interactions depend on the specific positioning of atoms in the two molecules.

• To understand them, you must know how the atoms are arranged in 3D space.

• Unfortunately, you can’t just look at a protein under a microscope. Far too small for that. Right now, there are three 
major methods: X-ray crystallography, Nuclear Magnetic Resonance (NMR), and Cryo-Electron Microscopy (cryo-
EM).



Protein Database (PDB)
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• PDB is the primary repository for known protein structures.

• It contained over 142,000 structures by 2019.

• For any protein you really want to study, there is good chance that its 
structure was still unknown.

• You also want to know many structures of each protein.

• Many proteins can exist in multiple functionally different states (e.g., 
“active” and “inactive” states0.

• If a protein binds to other molecules, you want a separate structure 
with the protein bound to each one so you can see exactly how they 
bind.

• (2019) PDB was still in a “low data” stage. Had far less data than we 
wanted. That might be true for decades. ➔ AI changed it…



Central Dogma of (Molecular) Biology
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Forming 
Protein A Protein == A Biological Machine Part

Protein is the Foundation of All Life



Amino Acid Sequences
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Chain of Amino Acids
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• A protein is a chain of amino acids linked one to the next to the next. 

• The start of the amino acid chain is typically referred to as the N-terminus.

• The end of the chain is called the C-terminus.

• Small chains of amino acids are commonly called peptides, while longer chains are called proteins.

• Peptides are too small to have complex 3D structures, but the structure of proteins can be very complicated. 



Snapshot of a disordered protein
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• Most proteins take a rigid shape.

• But, there are also intrinsically disordered proteins which have regions that refuse to take right shapes.

SUMO-1 protein. The central core of the protein has structure, while the N-terminal and C-
terminal regions are disordered. Intrinsically disordered proteins such as SUMO-1 are 
challenging to handle computationally.
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RNA of COVID-19 Virus

guucucuaaacgaacuuuaaaaucuguguggcugucacucggcugcaugcuuagugcacu
cacgcaguauaauuaauaacuaauuacugucguugacaggacacgaguaacucgucuauc
uucugcaggcugcuuacgguuucguccguguugcagccgaucaucagcacaucuagguuu
cguccgggugugaccgaaagguaagauggagagccuugucccugguuucaacgagaaaac
acacguccaacucaguuugccuguuuuacagguucgcgacgugcucguacguggcuuugg
agacuccguggaggaggucuuaucagaggcacgucaacaucuuaaagauggcacuugugg
cuuaguagaaguugaaaaaggcguuuugccucaacuugaacagcccuauguguucaucaa
acguucggaugcucgaacugcaccucauggucauguuaugguugagcugguagcagaacu
cgaaggcauucaguacggucguaguggugagacacuugguguccuugucccucauguggg
cgaaauaccaguggcuuaccgcaagguucuucuucguaagaacgguaauaaaggagcugg
uggccauaguuacggcgccgaucuaaagucauuugacuuaggcgacgagcuuggcacuga
uccuuaugaagauuuucaagaaaacuggaacacuaaacauagcagugguguuacccguga

ARTIFICIAL INTELLIGENCE OUTLOOK @ GRAPHEN 2021
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Genome is the Parts of Machine

Genome is the Software. Genome is the Hardware.

COVID-19 genome has 26 proteins

ARTIFICIAL INTELLIGENCE OUTLOOK @ GRAPHEN 2021
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Human ACE2

Each Spike is a 
combination of 3 
Spike Proteins

RBD Area
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S protein Structure

Colored areas are 6 
significant different 
sections comparing the 
standard Wuhan HU-1 
with two prior 
coronaviruses found in 
bats (ZC45 and ZXC21)

COVID-19 Live Monitoring (c) Graphen 2020
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On average, SARS-CoV-2 adds a 
stable mutated point per 1-2 weeks

By 12/24/2019, there 
were 3-5 variants in 
various genomes ➔
Scientific evidence can 
almost certain the 
most widely spread 
COVID-19 started at 
late Nov or early Dec.

COVID-19 Live Monitoring (c) Graphen 2020
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12-31-2019



42

1-31-2020
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2-29-2020
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Live COVID-
19 Mutation 
Monitoring

44

By 1/27/2021:  The full genome 
mutations of 408989 SARS-CoV-
2 viruses were analyzed by 
Graphen

ARTIFICIAL INTELLIGENCE OUTLOOK @ GRAPHEN 2021



45

Eight Major Families

ARTIFICIAL INTELLIGENCE OUTLOOK @ GRAPHEN 2021
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Distribution and Start of Eight Major Families

COVID-19 Live Monitoring (c) Graphen 2020



Folding from Amino Acids sequence to 
Protein
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A Protein == A Biological Machine Part

Protein is the Foundation of All Life



Predicting 3D Protein Structure
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• There were two main approaches to predict protein structures.

• Homology Modeling:
• protein sequences and structures are the product of billions of years of evolution.

• If two proteins are near relatives (“homologs”) that only recently diverged from each other, they probably 
have similar structures.

• You first look for a homolog whose structure is already known, then try to adjust it based on differences 
between the sequences of the two proteins.

• Homology modeling works reasonably well for determining the overall shape of a protein.

• But, it often gets details wrong. 

• Physical Modeling:
• Using knowledge of the laws of physics, you try to explore many different conformations that protein night 

take on and predict which one will be most stable.

• This method required enormous amounts of computing time.

• It was considered too difficult to do.

• But, now it works, such as Graphen ATOM platform.



Short Primer on Protein Binding
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Proteins often bind to small molecules.

Sometimes, the binding behavior is central to the protein’s function: the main role for a given protein can involve 
binding to particular molecules.

For example, signaling transduction in cells often passes messages via the mechanism of a protein binding to 
another molecule.

Other times, the molecule binding to the protein is foreign: possibly a drg we’ve created to manipulate the 
protein, possibly a toxin that interferes with its function. 
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Models Pearson’s r

Graphen-Atom 0.914

TopNetTree 0.850

BindProfX 0.738

Profile-score + FoldX 0.738

Profile-score 0.675

SAAMBE44 0.624

FoldX 0.457

BeAtMuSic 0.272

Dcomplex 0.056

Predicted ΔΔG (kcal mol–1)
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Example: Graphen binding energy prediction model is 
better than the current state-of-the-art in predicting ΔΔG

COVID-19 
Beta 
variant
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# of Mutated Strains in RBD area 

Graphen’s early warning on the Intl. 
Symposium on COVID  was about 2.5 
months ahead of UK government’s 
warning

Graphen AI provided early warning of Alpha variants in 
September 2020, about 2.5 months ahead of first warning 
issued by the UK government 
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Graphen Prediction Affinity (Spike-Ab)

correlation coefficient 0.94

Graphen’s prediction of variants’ functions 
(perfectively) matched real-world wet-lab data
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(Nov 26, 2021) Graphen predicted 
Omicron’s immunity escape is 

16.38x. (Dec 15, 2021) Columbia 
Univ Med School presented the 
vaccine efficacy is down 20x by 

Pfizer and 9x by Moderna. 



Spike N501Y increase the binding ability to ACE2 (by Graphen ATOM)
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N501

K353
Y41

ACE2 Spike VDW HB

Y41 N501 -3.82 -2.46

K353 N501 -5.64 -3.5

ACE2 Spike VDW HB

Y41 Y501 -7.33 0

K353 Y501 -14.15 -3.5

D38 Y501 -0.32 0

N501Y

Y501

Y41

D38

K353

➢ Stabilize interface 
by increasing 
binding energy (1.6-
fold) and number of 
contacting residues

Hydrogen bond
Van der Waals

Energy
Spike

ACE2

Total energy: -15.42

Total energy: -25.3

ARTIFICIAL INTELLIGENCE OUTLOOK @ GRAPHEN 2021



Vaccine binding strength decreased on the ‘South African’ variants (by Graphen ATOM)
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H R

2.5A
➢ In-stabilize interface by 

electrostatic repulsion
➢ Binding strength ↓ 51%

Spike
Anti-
body

VDW HB Elec.

E484 H -4.44 -4.20 -2.92

E484 R -8.98 -8.31 -2.90

Spike
Anti-
body

VDW HB Elec.

K484 H -6.68 -1.36 4.15

K484 R -10.03 0 0.71

E484H R

2.7A

2.7A

Electrostatic attraction

Electrostatic repulsion

Spike

Heavy 
chain

Antibody Fab
Light  
chain

E484K

45o

K484

5.9A

Total energy: -25.79

Total energy: -13.21



Drug targets
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Graphen solved many of such issues.



Example: Graphen’s High Selective and effective drug candidate
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Target 

Name

Graphen

Drug
Sunitinib

CK1ɑ1 inactive active

VEGFR2 inactive active

LCK inactive active

PHKG1 inactive active

PDGFRB active active

RET active active

Cardiovascular 
side effects

Hepatotoxicity &

Oxidative Stress

Hypothyroidism

Graphen Drug

 Inhibitor efficacy

Selectivity

Si
d

e
 E

ff
e

ct

CK1α1

High Efficacy. Low Side-Effect. No Toxicity



Biophysical Featurizations
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• If applying traditional machine learning methods, the first step is to transform (or 
featurize) training data to a format suitable for learning algorithms.

• The behaviors of biophysical systems are critically constrained by their 3D structures, so 
the 2D techniques miss crucial information.

• The alternative featurization technique is the atomic featurization, which simply provides a 
processed representation of the 3D positions and identities of all atoms in the system.

• This makes the challenge for the learning algorithm considerably harder. 

• But it also makes it feasible for learning algorithms to detect new patterns of interesting 
behavior.



Grid Featurization
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• By converting biophysical structures into vectors, we can use ML algorithms to make predictions 
about them.

• Ideally, a featurization technique would need to have significant knowledge about the chemistry of 
such systems.

• Those features might include, e.g., counts of noncovalent bonds between the protein and ligand, such 
as hydrogen bonds or other interactions. (Most protein-ligand systems don’t have covalent bonds 
between the protein and ligand.

• The grid featurizer searches for the presence of chemical interactions within a given structure and 
constructs a feature vector that contains counts of these interactions.



Hydrogen bonds
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• When a hydrogen atom is covalently bonded to a more electronegative atom such as oxygen or 
nitrogen, the sharded electrons spend most of their time closer to the more electronegative atom.

• This leaves the hydrogen with a net positive charge.

• If that positively charged hydrogen then gets close to another atom with a net negative change, they 
are attracted to each other. 

• This forms a hydrogen bond.

• Hydrogen atoms are so small, they can get very close to other atoms, leading to a strong electrostatic 
attraction.



Salt bridges
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• A salt bridge is a noncovalent attraction between two amino acids, where one has a positive charge 
and the other has a negative change.

• It combines both ionic bonding and hydrogen bonding.

• Although these bonds are relatively weak, they can help stabilize the structure of a protein by 
providing an interaction between distant amino acids in the proteins sequence.



Pi-stacking interactions
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• Pi-stacking interactions are a form of noncovalent interaction between aromatic rings.

• These are flat, ring-shaped structures that appear in many biological molecules, inclyding DNA and 
RNA.

• They also appear in the side chains of some amino acids, including phenylalanine, tyrosine, and 
tryptophan.

An aromatic ring in the benzene molecule. Various noncovalent aromatic ring interactions.



PDBBind Case Study
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• The PDBBind dataset contains a large number of biomolecular srystal structures and their binding affinities.

• A biomolecule is any molecule of biological interest.

• That includes not just proteins, but also nucleic acids (such as DNA and RNA), lipids, and smaller drug-like molecules.

• Much of the richness of biomolecular systems results from the ineractions of various biomolecules with one another.

• A binding affinity is the experimentally measure affinity of two molecules to form a complex, with the two molecules interact

• The PDBBind dataset has gathered structures of a number of biomolecular complexes.

• They include protein-ligand complexes, protein-protein, protein-nuclelic acid, and nucleic acid-ligan complexes.

• For instance, the protein-ligand dataset includes 15000 such complexes.

• The learning challenge for the PDBBind dataset is to predict the binding affinity for a complex given the protein-ligand structure.



PDBBind
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A visualization of the 2D3U protein-ligand complex from the PDBBind dataset. The protein is 
represented in cartoon format for ease of visualization, and that the ligand (near the top-
right corner) is represented in ball-and-stick format for full detail.



Featuring PDBBind Dataset
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PDBBind Model
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PDBBind Model Evaluation
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Ongoing Protein Modeling & Structure Prediction tasks
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• Protein-protein and protein-DNA systems follow 
the same basic physics as protein-ligand systems at 
a high level.

• Many of the physical interactions that drive 
protein-ligand interactions are driven by charged 
dynamics.

• Protein-protein dynamics, may be driven more by 
bulk hydrophobic interactions.



CASPs : Critical Assessment of protein Structure Prediction
o CASP is a community-wide, worldwide experiment for protein structure prediction taking 

place every two years since 1994, the primary goal of CASP is to help advance the 

methods of identifying protein three-dimensional structure from its amino acid sequence.

o Google AlphaFold 2 scored above 90 for around 2/3 of the proteins in CASP14's global 

distance test (GDT). Since this, applying predicted protein structure to precise analysis of 

target research, mechanism revealing, and even drug developments became convincingly 

possible.
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Final Project – Advanced AI in Bio Science



CASP16 and Beyond : Next stage of structural prediction

o For the outstanding records that Google Alphafold2 has achieved in CASP14 in single 

protein structural prediction, this year the competition goes into the new stage: more 

complex conformation prediction. Majorly including:

◦ Multi-chain protein structures

◦ Protein-Ligand complexes 

◦ RNA structures and complexes

◦ Protein conformational ensembles
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Protein-Ligand Interaction Protein-Nucleotide complexing



Drug-Target Interactions and complexes

o In small molecular drug development, to reach viable drug efficacy, it’s crucial to clarify 

how the drug molecule interacts with designed targets, as well as the 

consequences induced by the conjugation of drug-target pairs .

o Drug-target interaction can be predicted with majorly two ways in traditional: ligand 

docking and quantum-physic simulation. These methods are limited with lacking 

flexibility to know the induced conformational change and extremely high cost of time 

and computational resources, respectively. 
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>Protein A

SGFRKMAFPSGKVEGCMVQVTCG
TTTLNGLWLDDVVYCPRHVICTSE

DMLNPNYEDLLIRKSNHNFLVQAG

NVQLRVIGHSMQNCVLKLKVDTA
NPKTPKYKFVRIQPGQTFSVLACY

NGSPSGVYQCAMRPNFTIKGSFLN
GSCGSVGFNIDYDCVSFCYMH….

Ligand Protein sequence

+ +

Protein structure Protein-ligand interaction



RNA structures and complexes predictions

o RNA molecules play fundamental roles in cellular processes. Their function and 

interactions with other biomolecules are dependent on the ability to form complex 

three-dimensional (3D) structures

o Experimental determination of RNA atomic 3D structures is laborious and challenging

◦ Only 3% of known RNA 3D structures in public database
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UGCUCCUAGUACGAGAGGACCGGAGUG…
Primary Sequence

3D structure

How RNA folds?

RNA basic unit:
Nucleotide

3% RNA

92% protein
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