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Molecules & Machine Learning 22,

UNIVERSITY

Modern Materials Science and Chemistry is driven by the need to design new molecules that have desired properties.

The dream of molecular machine learning is to replace the random experimentation with guided search, where
machine-learned predictors can propose which new molecules might have desired properties.

Such accurate predictors could enable the creation of radically new martials an chemicals with useful properties.

The first step is to construct technical methods for transforming molecules into vectors of numbers that can then be
passed to learning algorithms.

These representations include chemical descriptor vectors, 2D graph representations, 3D electrostatic grid
representations, orbital basis function representations, and more.

We will review some algorithms for learning functions on molecules, including simple fully connected networks as well
as more sophisticated techniques like graph convolutions.

We'll also describe some of the limitations of graph convolutional techniques, and what we should and should not
expect from them.

We’'ll end the chapter with a molecular machine learning case study on an interesting dataset.
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What Is a Molecule? =2

COLUMBIA
UNIVERSITY

Detection
Faraday
E)glectors
m/q} = 46—
{m/q} =45 —
m/q} = 44—, |
c
o
=1
amplifiers V'V
lon source OLatg?Jt A caffeine molecule as a “ball-and-stick”
- diagram.
_ _/beam focussing 8
«~—— ion acelerator
">~ electron trap Atoms are presented as color balls.
ion repeller egend: ==> Black: carbon. Red: oxygen. Blue: nitrogen.
gas inflow (from behind) m io.n — Whrte hyd rogen.

ionizing filament g ... ion charge

Sticks: chemical bonds
Mass Spectrometer

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.




Molecules are dynamic, guantum entities 42

UNIVERSITY

* Molecules are dynamic entities = all the atoms within a given molecule are in rapid motion.
* The bonds themselves are stretching back and forth and perhaps oscillating in length rapidly.
* |t’'s common for atoms to rapidly break off from and rejoin molecules.

* Molecules are guantum.
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Covalent bonds N

e Covalent bonds involve sharing electrons between two atoms.

* The same electrons spend time around both atoms.

* In general, covalent bonds are the strongest type of chemical bond.

* The are formed and broken in chemical reactions.

e Covalent bonds tend to be very stable: once they form, it takes a lot of energy to break them.
* Covalent bonds are what define molecules.

* A molecule is a set of atoms joined by covalent bonds. .

Two atomic nuclei

Two atoms with
covalent bond
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Noncovalent bonds
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Noncovalent bonds don’t involve the direct sharing of electrons
between atoms.

They do involve weaker electromagnetic interactions.
These bounds are more ephemeral, constantly breaking and reforming.

Noncovalent bonds do not “define” molecules in the same sense that
covalent bonds do.

But they have a huge effect on determining the shapes molecules take
on,

“Noncovalent bonds” is a generic term covering several different types
of interactions, including hydrogen bonds, salt bridges, pi-stacking, and
more.

These types of interactions often play crucial role in drug design. =»
most drugs interact with biological molecules in the human body
through noncovalent interactions.

Water molecules have strong hydrogen
bounding interactions between gen and
oxygen on adjacent molecules

=» A strong network of hydrogen bonds
contributes to water’s power as a solvent.
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Molecular Graphs 2,
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Example of converting a benzene
Example of mathematical graph molecule into a molecular graph.
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Molecular Conformations o
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A molecular graph describes the set of atoms in a molecule and how they are bonded together.

* But how are the atoms positioned relative to each otherin 3D space? This is called the
molecule’s conformation.

* Atoms, bonds, and conformation are related to each other.

* If two atoms are covalently bonded, that tends to fix the distance between them, strongly
restricting the possible conformations.

CH,0OH
* The angles formed by sets of three or four bonded atoms are also often restricted. o CH,0OH
@)
. . . . OH HO
* Sometimes there will be whole clusters of atoms that are completely rigid, all moving together o G /.
as a single unit. 2
OH OH

* But other pieces of molecules are flexible, allowing atoms to move relative to each other.
Sucrose (table sugar)

* For example, many covalent bonds allow the groups of atoms they connect to freely rotate represented as a 3D
around the axis of the bond. conformation and 2D chemical
structure.

This lets the molecule take on many different conformations.
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Molecular Conformations Az
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Rings are fairly rigid. Linker connecting them is much more flexible. ‘ CH,OH
CH,0OH
O 0
Allowing rings to move relative to each other. 9 OH HO
( OH O CH,OH
As molecules get larger, the number of feasible conformations they OH OH

can take grow enormously.

For large macromolecules such as proteins, computationally exploring
the set of possible conformations is a challenge of decades.

A conformation of bacteriorhodopsin(used to capture light energy)
rendered in 3D. Protein conformations are particularly complex with
multiple 3D geometric motifs.
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Chlrallty of Molecules N

Some molecules (including many drugs) come in two forms that are mirror
images of each other. = this is called Chirality.

e Chirality is very important, and also a source of frustration both for lab
chemists and computational chemists.

* The chemical reactions that produce chiral molecules often don’t distinguish aS

between the forms, producing both chiralities in equal amounts. = Racemic
mixtures Axial chirality of a spiro compound (a

compound made up of two or more rings
joined together).

o,

* The two enantiomers have the same chemical properties, except when TV‘{S Enantiomﬁ_rslof a generic amino
reacting with other chiral compounds. acidthat are chira

aR

* If you want to end up with just one form, your manufacturing process
immediately becomes more complicated.

* Many physical properties are identical for both chiralities, so many
experiments can’t distinguish between chiral versions.

* Both chiralities have identical molecular graphs =>many ML model that
depends only on the molecular graph will be unable to distinguish.
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Chirality of Molecules e,

|
* Itis possible for the two chiral forms of a drug to bind to totally different O : 0
proteins. =» to have very different effects in the body. O : O
I
. . NHz™ | "HgN
* In many cases, only one form of a drug has the desired therapeutic effect. :
|
|

* The other form just products extra side effects without having any benefit.

* Example: Thalidomide = a drug prescribed as a sedative in the 1950s and
1960s.

* Treatment for nausea and morning sickness associated with pregnancy.

 The R form of Thalidomide is an effective sedative.

 The S form of of Thalidomide is teratogenic and shown to cause severe
birth defects.

as

S L-alanine D-alanine
. Furthgr compounded by the f..act that Thalldpmlde interconverts or (S)-alanine (R)-alanine
racemizes between the two different forms in the body.
O O g
N—(R) b 0 (S)-Alanine (left) and (R)-alanine (right) in
zwitterionic form at neutral pH
o}
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Encoding = Featuring a Molecule g2
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* In orderto perform traditional ML on molecules, we need to transform them
into feature vectors.

 DeepChem featuring submodule: dc.feat.

DeepChem About Tutorials Forums Discuss Docs Book GitHub

DemOCTQUSIng Deep Leqrnlng for ‘Chemistry itself knows altogether too well that - given

SC ience S the real fear that the scarcity of global resources and
energy might threaten the unity of mankind - chemistry
is in a position to make a contribution towards securing

a true peace on earth.”
A Dee pChem ~ Kenichi Fukui

https://deepchem.io
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SMILES o
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e SMILES is a popular method for specifying

molecules with text strings. HD
e It stands for “Simplified Molecular-Input
Line-Entry System”.
A SMILES string describes the atoms and \
bonds of a molecule in a way that is both gﬂ
concise and reasonably intuitive for N
chemists.
=" N
* For instance, /|k YOH
CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CCO H N H‘"“N
describes Thiamine, known as vitamin B1. H
*  While some DL models accept SMILES as C,,H,;N,OS* Skeletal formuila of
input, sometimes we need to convert to a '(j;’:::g:"CHZOH

different representation, such as using RDKit

in DeepChem. C,H;,0 => solvent
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SMILES example 42
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N OH
HN N 0] C
| - 0

D

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)0O
=== @ — == =

C:17H18|:N3C)3

SMILES generation algorithm for ciprofloxacin, an antibiotic: break cycles,
then write as branches off a main backbone.
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Extended-Connectivity Fingerprints o
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* Chemical fingerprints are vectors of 1s and Os that represent the presence or absence of specific features in a molecul
* Extended-connectivity fingerprints (ECFPs) are a class of featurization that combine several useful features.

* They take molecules of arbitrary size and convert them into fixed-length vectors.

* ECFPs let you take molecules of many different sizes and use them all with the same model.

* Easy to compare. The more elements that match, the more similar the molecules are.

smiles = ['C1CCCCC1', '01CCOCC1'] # cyclohexane and dioxane
mols = [Chem.MolFromSmiles(smile) for smile in smiles]

feat = dc.feat.CircularFingerprint(size=1024)

arr = feat.featurize(mols)

# arr 1s a 2-by-1024 array containing the fingerprints for
# the two molecules
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Molecular Descriptors g2
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e Describe molecules with a set of physiochemical descriptors.
* Usually correspond to various computed quantities that describe the molecule’s structure.

* These quantities, such as the log partition coefficient or the polar surface area, are often derived from
classical physics or chemistry.

feat = dc.feat.RDKitDescriptors()

arr = feat.featurize(mols)

# arr 1s a 2-by-200 array containing properties of the
# two molecules
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% 7,

Graph Convolutions Gotmmania

* The featurizations were designed by human. An expert through carefully about how to represent molecules in a way
that could be used as input to machine learning models.

 Deep Learning does not rely on such featurization.
* Graph Convolutional Networks begins with a vector of numbers for each node and edge.

* When the graph represents a molecule, those numbers could be high-level chemical properties of each atom, such
as its element, charge, and hybridization state.

* Just as a regular convolutional layer computes a new vector for each pixel based on local region of its input, a graph
convolutional layer computes a new vector for each node and/or edge.

 DeepChem includes implementations of lots of those architectures, including Graphen Convolutions, Weave models,
message passing neural networks, deep tensor neural networks, etc.

e Graph convolutional networks are a powerful tool for analyzing molecules, but they have one important limitation:
the calculation is based solely on the molecular graph. No information about the molecule’s conformation. =>
cannot predict anting that is conformation —dependent.
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Graph representation of molecule
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gt

Citronella molecule

Caffeine molecule
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Graph Convolutional Network of

UNIVERSITY

Layer 0 Layer 1 Layer 2 Layer 3

-

https://distill.pub/2021/gnn-intro/
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Training a Model to Predict Solubility o,

Example Task => Train a model on a real chemical dataset to predict an important molecular property.

Load Delaney dataset

tasks, datasets, transformers = dc.molnet.load delaney(featurizer='GraphConv')
train_dataset, valid _dataset, test_dataset = datasets

The data is related to solubility, a measure of how easily a molecule dissolves in water.

Construct and Train the model

model = GraphConvModel(n_tasks=1, mode='regression', dropout=0.2)
model.fit(train_dataset, nb_epoch=100)

metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)
print(model.evaluate(train_dataset, [metric], transformers))
print(model.evaluate(test_dataset, [metric], transformers))

==> correlation coefficient of solubility prediction: 0.91 for the training data; 0.7 on the testing data.
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Testing a Model to Predict Solubility
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Test on a new molecule:

smiles = ['COC(C)(C)CCCC(C)CC=CC(C)=CC(=0)0C(C)C",
'ccoc(=0)cc',
'"CScinc(NC(C)C)nc(NC(C)C)n1',
"CC(C#C)IN(C)C(=0)Nciccc(Cl)ccl',
'"Cclcc2ccccc2ceciC']

First -> using RDKit to parse SMILES strings, and use featurizer to convert them to the
format expected by the graph convolution.

from rdkit import Chem

mols = [Chem.MolFromSmiles(s) for s in smiles]
featurizer = dc.feat.ConvMolFeaturizer()

x = featurizer.featurize(mols)

predicted_solubility = model.predict_on_batch(x)
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MoleculeNet

* MoleculeNet is a large collection of datasets useful for molecular machine learning.

Scientists found it useful to predict quantum, physical chemistry, biophysical, and physiological
characteristics of molecules.

[ Physiology

- BBEP

. «  Joxdl

7| e ToxCast

Quantum Physical o SIDER

Mechanics Chemistry Ll ® il
« QM7 - (M8 . BSOL + Lipophiliciy L i Ml

« QM7 - QM9 » FreeSolv .« BACE
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SMART Strings 2,
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* \We encounter situations where we want to determine whether atoms in a molecule match a
particular pattern.

* Examples:
* Searching a database of molecules to identify molecules containing a particular substructure.
e Aligning a set of molecules on a common substructure to improve visualization
e Highlighting a substructure in a plot.
e Constraining a substructure during a calculation.

from rdkit import Chem
from rdicit.Chem.Draw import MolsToGridImage

smiles_list = ["CCCCC","CCoCC","CCONCC","CCscC"]
mol_list = [Chem.MolFromSmiles(x) for x in smiles_list]

e N N N W N N
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SMART Strings 2,
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query = Chem.MolFromSmarts("CCC")
match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]
MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

 SMARTS is an extension of

SMILES that can be used
to create queries.

query = Chem.MolFromSmarts("C*C")

match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]

MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

e A AN AN
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SMART Strings 2,
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query = Chem.MolFromSmarts("C*C")

match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]

MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)

g A A N

query = Chem.MolFromSmarts("C[C,N,0]C")

match_list = [mol.GetSubstructMatch(query) for mol in
mol_list]

MolsToGridImage(mols=mol_list, molsPerRow=4,
highlightAtomLists=match_list)
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Importance of Protein 2,

UNIVERSITY

* Proteins are tiny machines that do most of the work in a cell.

e Despite their small size, they can be very complicated.

* Atypical protein is made of thousands of atoms arranged in precise ways.

* To understand any machine, you must know what parts it is made of and how they are put together.
* You need to know how it interacts with other molecules.

* They act on molecules, are acted upon by others, and draw energy from others.

* All these interactions depend on the specific positioning of atoms in the two molecules.

e To understand them, you must know how the atoms are arranged in 3D space.

* Unfortunately, you can’t just look at a protein under a microscope. Far too small for that. Right now, there are three
major methods: X-ray crystallography, Nuclear Magnetic Resonance (NMR), and Cryo-Electron Microscopy (cryo-
EM).
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Protein Database (PDB) 2,
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PDB is the primary repository for known protein structures.
* It contained over 142,000 structures by 20109.

e For any protein you really want to study, there is good chance that its
structure was still unknown.

* You also want to know many structures of each protein.

* Many proteins can exist in multiple functionally different states (e.g.,
“active” and “inactive” statesO.

* If a protein binds to other molecules, you want a separate structure
with the protein bound to each one so you can see exactly how they
bind.

e (2019) PDB was still in a “low data” stage. Had far less data than we
wanted. That might be true for decades. = Al changed it...

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV. 30




Central Dogma of (Molecular) Biology 2,
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Amino Acid Sequences i,

nonpolar/hydrophobic 0 CHS o basic o
H,C H,N
3 \])L OH 2 OH
NH, NH,
Alanine Lysine
o e} NH (o}
S H.C )L
- 3
HSC \/YU\ OH OH H2N H/\/W)J\ OH
NH, CH;  NH, NH,
Methionine Leucine Isoleucine Arginine
0] o] o} 0]
N
OH OH OH </ | OH
NH N NH, NH,, N NH,
Proline H Tryptophan Phenylalanine H Histidine
polar/neutral 0 OH 0 0 0 acidic 0 0
OH HSC)\(LLOH HQNWOH HO OH
Ho NH, NH, NH, NH,
Tyrosine Threonine Glutamine Glutamic Acid
0 0] o] 0} o]
H,N HO
OH HO OH HS OH OH OH
NH, NH, NH,, o] NH, o] NH,
Glycine Serine Cysteine Asparagine Aspartic Acid
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Chain of Amino Acids N

 Aproteinisa chain of amino acids linked one to the next to the next.

e The start of the amino acid chain is typically referred to as the N-terminus.

* The end of the chain is called the C-terminus.

* Small chains of amino acids are commonly called peptides, while longer chains are called proteins.

* Peptides are too small to have complex 3D structures, but the structure of proteins can be very complicated.

0O O  CHs
H | H ]

N C
H H [
HsC” “CHj OH

.
IIII:,

O
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Snapshot of a disordered protein g2
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* Most proteins take a rigid shape.

* But, there are also intrinsically disordered proteins which have regions that refuse to take right shapes.

SUMO-1 protein. The central core of the protein has structure, while the N-terminal and C-
terminal regions are disordered. Intrinsically disordered proteins such as SUMO-1 are
challenging to handle computationally.
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RNA of COVID-19 Virus N

guucucuaaacgaacuuuaaaaucuguguggcugucacucggecugcaugcuuagugeacu
cacgcaguauaauuaauaacuaauuacugucguugacaggacacgaguaacucgucuauc
uucugcaggcugcuuacgguuucguccguguugcagecgaucaucageacaucuagguuu
cguccgggugugaccgaaagguaagauggagagecuugucccugguuucaacgagaaaac

acacguccaacucaguuugccuguuuuacagguucgcgacgugecucguacguggeuuugg
agacuccguggaggaggucuuaucagaggcacgucaacaucuuaaagauggecacuugugg

cuuaguagaaguugaaaaaggcguuuugccucaacuugaacagcccuauguguucaucaa
acguucggaugcucgaacugcaccucauggucauguuaugguugageugguagcagaacu
cgaaggcauucaguacggucguaguggugagacacuugguguccuugucccucauguggg
Cgaaauaccaguggcuuaccgcaagguucuucuucguaagaacgguaauaaaggageugg
uggccauaguuacggcgecgaucuaaagucauuugacuuaggegacgagecuuggeacuga

uccuuaugaagauuuucaagaaaacuggaacacuaaacauagcagugguguuacccguga
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Genome is the Parts of Machine Somommia

Genome is the Software. Genome is the Hardware.

COVID-19 genome has 26 proteins
<« Start of genome 30,000 RNA letters » |

THE SARS-CoV-2 GENOME

ORF1ab PROTEIN STRUCTURAL PROTEINS
5 Spike E M
NON-STRUCTURAL ACCESSORY
PROTEINS (NSPs) PROTEINS
il 3 5 7911 13 15 3a 67b9b
i _-.l | ”[V[IUU 10
2 4 6 810 12 14 16 3b 7a 8 9c
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S protein Structure

COVID-19 Live Monitoring (c) Graphen 2020
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Colored areas are 6
significant different
sections comparing the
standard Wuhan HU-1
with two prior
coronaviruses found in
bats (ZC45 and ZXC21)
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sk By 12/24/2019, there
'K R“m/ﬁﬁr&?jﬁ?}ﬁ ¢ were 3-5 variants in
i o various genomes =»
Scientific evidence can
almost certain the
most widely spread
COVID-19 started at
late Nov or early Dec.

COVID-19 Live Monitoring (c) Graphen 2020



Virus #: 18
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Live COVID-
19 Mutation
Monitoring

By 1/27/2021: The full genome
mutations of 408989 SARS-CoV-
2 viruses were analyzed by
Graphen
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Distribution and Start of Eight Major Families o,

Cluster Cluster Properties
ID Distribution region First Appearance Date Features
All COVID-19 viruses may have evolved from here,
A China 12/30/2019 among which the A2 virus is the closest to the virus
genes on bats and pangolins.
. . : Various virus strains evolved from the Al virus in
B China and other Asian countries 12/24/2019 the A family.
C Europe 1/28/2020 S protein variation.
D United Kingdom, the Netherlands, | /> 5090 NSP2, NSP3 and ORF3a protein variants.
Hong Kong
United states of America West Most of the ORF8 protein variants have two NSP13
E 1/19/2020 . .
Coast, Canada protein variants.
F glﬁ;‘; Australia, - South  Korea, | ;4,70 All are viruses that have evolved directly from A2.
G Europe, South America 2/16/2020 Vanatlops of three consecutive sites on S protein and
N protein.
H France, United States of America 2/21/2020 S protein variation and ORF3a protein variation.

East Coast

COVID-19 Live Monitoring (c) Graphen 2020




Proteln X2

UNIVERSITY

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with

of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing

acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA

Alpha Pleated Pleated Alpha
helix sheet sheet helix

FIGURE 1: COMPLEX 3D SHAPES EMERGE FROM A STRING OF AMINO ACIDS.

/ \}\_/\, A

Protein is the Foundation of All Life
A Protein == A Biological Machine Part

An animation of the gradient descent method
predicting a structure for CASP13 target T1008
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Predicting 3D Protein Structure X2,

UNIVERSITY

 There were two main approaches to predict protein structures.

 Homology Modeling:
e protein sequences and structures are the product of billions of years of evolution.

» If two proteins are near relatives (“homologs”) that only recently diverged from each other, they probably
have similar structures.

* You first look for a homolog whose structure is already known, then try to adjust it based on differences
between the sequences of the two proteins.

* Homology modeling works reasonably well for determining the overall shape of a protein.

e But, it often gets details wrong.

e Physical Modeling:
* Using knowledge of the laws of physics, you try to explore many different conformations that protein night
take on and predict which one will be most stable.

* This method required enormous amounts of computing time.
* It was considered too difficult to do.

e But, now it works, such as Graphen ATOM platform.
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Short Primer on Protein Binding X2,

Proteins often bind to small molecules.

Sometimes, the binding behavior is central to the protein’s function: the main role for a given protein can involve
binding to particular molecules.

For example, signaling transduction in cells often passes messages via the mechanism of a protein binding to
another molecule.

Other times, the molecule binding to the protein is foreign: possibly a drg we’ve created to manipulate the
protein, possibly a toxin that interferes with its function.

Ligand bind to a membrane receptor ligand-receptor complex triggers intracellular response

Excellular fluid / /

Cell Membrane

Intracellular fluid

[ Intracellular Response]
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Example: Graphen binding energy prediction model is sto

COLUMBIA
UNIVERSITY

0= - o ' = o - - - 0 -0 : ‘ ‘
18 -
U 16 -
c
S 14 -
Models Pearson’s r € 12 -
15 - S 10 1
Graphen-Atom 0.914 9 81
10 4 6
TopNetTree 0.850 4 - I
5 4 7
BindProfX 0.738 0 m

Profile-score + FoldX 0.738

&
1

Experimental AAG (kcal mol)

Profile-score 0.675
SAAMBE44 0.624 10
FoldX 0.457 15 - - - . . .
-15 -10 -5 0 5 10 15
BeAtMuSic 0.272 Predicted AAG (kcal moll) S
Dcomplex 0.056 >L’:;i?;2!;2iiz‘:'::;?;2‘:°‘“ reet covipas
ERMBR =) EEHF vaeriznt
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Graphen Al provided early warning of Alpha variants in X2,
eptember 2020, about 2.5 montt [ '

issued by the UK government

Graphic: Nik Spencer/Nature

5P Protein structure reveals that N501Y mutation

enhances the binding ability to ACE21!

o N501Y has been shown experimentally to result in

one of the highest increases in ACE2 affinity conferred

by a single RBD mutation?

—

N
cdU U
[ J [ J

H# of Mutated Strains in RBD area

Graphen’s early warning on the Intl.
Symposium on COVID was about 2.5
months ahead of UK government’s
warning
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Graphen’s prediction of variants’ functions i,
(perfectively) matched real-world wet-lab data

w107 17.42x 104 16.38x 101
&
& 109 107 103
e
O
) 2 10 107 107
+— =
© bram
O 12 1 : - -<c§ 100 wr HRV 10° 100 wr Bet
o) correlation coefficient 0.94 Beta (B.1.351) I3 e
Lluc 10 A Delta ‘ % o 105 ] o
o (B.1.617.2) &
= 8 ° 0 107 103 103 \
(- Gamma (P.1) _qc" , 3y i
O 6 A ./_ % 102 10 102
@ \ G]
v Kappa i 101 : 101
g 4 4 " Eps"{. (B.1.617.1) 10 WT Delta WT Epsilon WT Alpha
A B.1.1.7) ..~
5 5 P a(. ) (B.1.427/9) BNT162b2 mRNA-1273
o) ' (Nov 26, 2021) Graphen predicted N v i
> ) . . . . 4669 <222 7201 <848
=20 ' ! ' ' ' Omicron’s immunity escape is g | 8
c 0 50 100 150 200 250 : s
S 16.38x. (Dec 15, 2021) Columbia g 1
2 " :
. . . niv Med School presented the &
£ Graphen Prediction Affinity (Spike-Ab) -

vaccine efficacy is down 20x by
Pfizer and 9x by Moderna.
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Spike N501Y increase the binding ability to ACE2 (by Graphen ATOM) X2

UNIVERSITY

Energy

Splke ACE2 VDW HB
Y41 -3.82 -2.46
K353 -5.64 -3.5

Total energy: -15.42

Spike

=== Hydrogen bond
=== Van der Waals

ACE2 Spike VDW HB

e val Y501 -7.33 0
ACE2 &y K353 Y501  -14.15  -3.5
4 D38 Y501 -0.32 0

Total energy: -25.3

» Stabilize interface
by increasing
binding energy (1.6-
fold) and number of
contacting residues

id

Ino aci

transpoiteréS(O)ATl

Am




6 7

Vaccine binding strength decreased on the ‘South African’ variants (by Graphen ATOM }eivmoin

74
OF

A
i3 N o
Y ¢ > el
S S0 e
2%

~

<--> Electrostatic repulsion

Anti-

ks VDW HB Elec.

H -4.44 -420 -2.92

R -8.98 -8.31 -2.90

Total energy: -25.79

Anti-

ks VDW HB Elec.

H -6.68 -1.36 4.15

R -10.03 0 0.71

Total energy: -13.21

» In-stabilize interface by
electrostatic repulsion
» Binding strength {, 51%




Drug targets 2,

UNIVERSITY

Drugs Don’t Just Target a Single Protein

As we've discussed, it can be extraordinarily useful to reduce the
problem of designing a drug for a disease to the problem of design-
ing a drug that interacts tightly with a given protein. But its
extremely important to realize that in reality, any given drug is
going to interact with many different subsystems in the body. The
study of such multifaceted interactions is broadly called polyphar-
macology.

At present, computational methods for dealing with polypharma-
cology are still relatively undeveloped, so the gold standard for test-
ing for polypharmacological effects remains animal and human
experimentation. As computational techniques mature, this state of

affairs may shift over the next few years.

Graphen solved many of such issues.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV. 55




Example: Graphen’s High Selective and effective drug candidate 22,

UNIVERSITY

Graphen Drug
Inhibitor efficacy

Target IC50 (nM)

FLT3 ¥ 199

CSF1R (FMS) ¥ 589

KIT 27.39
PDGFRA 23.44
PDGFRB 36.49
RET 27.27
KDR (VEGFR2)  159.94
PHKG1 >100
PHKG2 >100
CKlal >30000

High Efficacy. Low Side-Effect. No Toxicity

~ _ & Graphen Drug - — & sunitinib (2011)
. . ,—-:—-::.‘ _f:‘-' o A -::.,. ‘ "’--“.-:_
Selectivity =N - % , —
M B 3 " sl N "=
Target ®Graphen Sunitinib e — N
Name Drug o o -y :_’ ’?‘ g
M M H ==';"_ :—‘- - =_:— . Pt = .:—.
CKlal Inactive active el | - = s | é -
VEGFR2 inactive | active TrTs -
= & e
LCK inactive  active il o
ok, ' e £ mees
. . . ol g ICsp <= nl - ICsp <= 100 nM,
PRKGL Inactive ol e I ¥ eI
PDG F RB aCti ve aCti ve Graphen‘s‘experimemal results Data fr;m ChEMBL database
RET active  active ~ _ & Graphen Drug ~_ _[E gilteritinib (2018 approved)
) TN Z—T—:.: J;"- P s ;;."' : st e
- ‘ Cardiovascular = = i -—%
o side effects - NN - == -y
(=4 = - % z - _‘=-.
b ? Hypothyroidism R - = - =
()] -—_ i = i '? - = =
-U .. —.-.‘"" ST & - = = : = ?
A * Hepatotoxicity & . G T
Oxidative Stress I R
-:_:; ‘ @ High potency @ High potency
el (ICs0 <= 100 nM) (ICsp <= 100 nM)
- No effect No effect
(ICs0 > 100 nM) (ICs0 > 100 nM)

Graphen’s;xperimemal results Data from ChEMBL database
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Biophysical Featurizations X2,

UNIVERSITY

* If applying traditional machine learning methods, the first step is to transform (or
featurize) training data to a format suitable for learning algorithm:s.

* The behaviors of biophysical systems are critically constrained by their 3D structures, so
the 2D techniques miss crucial information.

* The alternative featurization technique is the atomic featurization, which simply provides a
processed representation of the 3D positions and identities of all atoms in the system.

* This makes the challenge for the learning algorithm considerably harder.

e Butitalso makes it feasible for learning algorithms to detect new patterns of interesting
behavior.
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Grid Featurization X2

* By converting biophysical structures into vectors, we can use ML algorithms to make predictions
about them.

» Ideally, a featurization technique would need to have significant knowledge about the chemistry of
such systems.

* Those features mightinclude, e.g., counts of noncovalent bonds between the protein and ligand, such
as hydrogen bonds or other interactions. (Most protein-ligand systems don’t have covalent bonds
between the protein and ligand.

* The grid featurizer searches for the presence of chemical interactions within a given structure and
constructs a feature vector that contains counts of these interactions.
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Hydrogen bonds 22,

UNIVERSITY

* When a hydrogen atom is covalently bonded to a more electronegative atom such as oxygen or
nitrogen, the sharded electrons spend most of their time closer to the more electronegative atom.

* This leaves the hydrogen with a net positive charge.

* If that positively charged hydrogen then gets close to another atom with a net negative change, they
are attracted to each other.

* This forms a hydrogen bond.

* Hydrogen atoms are so small, they can get very close to other atoms, leading to a strong electrostatic
attraction.

H o+ Ho+

\ /
/(5)_”“””|H OS—

8+

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV. 59




Salt bridges 22,

UNIVERSITY

* Asalt bridge is a noncovalent attraction between two amino acids, where one has a positive charge
and the other has a negative change.

* It combines both ionic bonding and hydrogen bonding.

e Although these bonds are relatively weak, they can help stabilize the structure of a protein by
providing an interaction between distant amino acids in the proteins sequence.

Lysine Lysine
Electrostatic g Hydrogen E
Interactions N\H Bonding NH
o N
eb """" GJo ----- H.®
“}q,b H3N V\?" ) ‘H
HN 0 HN o H
O O
,f e
Glutamic Acid Glutamic Acid
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Pi-stacking interactions 22,

UNIVERSITY

* Pi-stacking interactions are a form of noncovalent interaction between aromatic rings.

* These are flat, ring-shaped structures that appear in many biological molecules, inclyding DNA and
RNA.

* They also appear in the side chains of some amino acids, including phenylalanine, tyrosine, and
tryptophan.

] *ﬁ*
P e e  a

H C H
‘ Sandwich Edge to Face  Displaced
H
An aromatic ring in the benzene molecule. Various noncovalent aromatic ring interactions.
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PDBBInd Case Study 2,

UNIVERSITY

 The PDBBind dataset contains a large number of biomolecular srystal structures and their binding affinities.

* Abiomolecule is any molecule of biological interest.

* Thatincludes not just proteins, but also nucleic acids (such as DNA and RNA), lipids, and smaller drug-like molecule:
* Much of the richness of biomolecular systems results from the ineractions of various biomolecules with one anothe
* Abinding affinity is the experimentally measure affinity of two molecules to form a complex, with the two molecule
 The PDBBind dataset has gathered structures of a number of biomolecular complexes.

* They include protein-ligand complexes, protein-protein, protein-nuclelic acid, and nucleic acid-ligan complexes.

* For instance, the protein-ligand dataset includes 15000 such complexes.

* The learning challenge for the PDBBind dataset is to predict the binding affinity for a complex given the protein-liga
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PDBBInd - o

UNIVERSITY

A visualization of the 2D3U protein-ligand complex from the PDBBind dataset. The protein is
represented in cartoon format for ease of visualization, and that the ligand (near the top-
right corner) is represented in ball-and-stick format for full detail.
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Featuring PDBBInd Dataset 22,

UNIVERSITY

import deepchem as dc
featurizer = dc.feat.RdkitGridFeaturizer(
voxel width=2.0, sanitize=True, flatten=True,
feature_types=[ 'hbond', 'salt_bridge', 'pi_stack',
'cation_pi', 'ecfp', 'splif'])

tasks, datasets, transformers = dc.molnet.load_pdbbind(
featurizer=featurizer, splitter="random", subset="core")
train_dataset, valid_dataset, test_dataset = datasets
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PDBBind Model N

from skliearn.ensemble import RandomForestRegressor
sklearn_model = RandomForestRegressor(n_estimators=100)
model = dc.models.SklearnModel(sklearn_model)
model.fit(train_dataset)

n_features = train_dataset.X.shape[1]

model = dc.models.MultitaskRegressor(
n_tasks=1len(tasks),
n_features=n_features,
layer_sizes=[2000, 1000],
dropouts=0.5,
learning_rate=0.0003)

model.fit(train_dataset, nb_epoch=50)

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.




PDBBind Model Evaluation

6 7

COLUMBIA
UNIVERSITY

metric = dc.metrics.Metric(dc.metrics.pearson_r2_score)

print("Evaluating model")

train_scores = model.evaluate(train_dataset, [metric], transformers)

test_scores = model.evaluate(test_dataset, [metric], transformers)

print("Train scores")
print(train_scores)

print("Test scores")
print(test_scores)

Random Forest

7.5 1

7.0 -

6.5 -

6.0 1

5.5 1

Predicted pIC50

5.0 1

4.5 A
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6 8
True pIC50

10

Predicted pIC50

Neural Network

7.5
o
7.0 -
6.5 A [
o
® o
6.0 - o °
® ® PY
554 @ °
[
° %%
5.0 -
®
4'5 i 1 I. ) I I
2 4 6 8 10
True pIC50
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Ongoing Protein Modeling & Structure Prediction tasks 2.

UNIVERSITY

* Protein-protein and protein-DNA systems follow Antigens

the same basic physics as protein-ligand systems at ' ' -

a high level.

* Many of the physical interactions that drive
protein-ligand interactions are driven by charged

dyna mics 27Antigen-binding site

* Protein-protein dynamics, may be driven more by
bulk hydrophobic interactions.

Antigen

Antibody
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Final Project — Advanced Al in Bio Science A

CASPs : Critical Assessment of protein Structure Prediction
o CASP is a community-wide, worldwide experiment for protein structure prediction taking
place every two years since 1994, the primary goal of CASP is to help advance the

methods of identifying protein three-dimensional structure from its amino acid sequence.

o Google AlphaFold 2 scored above 90 for around 2/3 of the proteins in CASP14's global
distance test (GDT). Since this, applying predicted protein structure to precise analysis of

target research, mechanism revealing, and even drug developments became convincingly

100 o

.I 1 11 21 . 41 51 CASP7: T0283-D1 CASP12: T0866-D1
Particinate groups ardered by deereasing precision model 321_1: GDT_TS=75 model 325_5: GDT_TS=81
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CASP16 and Beyond : Next stage of structural prediction :::.

o For the outstanding records that Google Alphafold2 has achieved in CASP14 in single
protein structural prediction, this year the competition goes into the new stage: more

complex conformation prediction. Majorly including:
> Multi-chain protein structures

> Protein-Ligand complexes

> RNA structures and complexes

o Protein conformational ensembles

Protein-Ligand Interaction Protein-Nucleotide complexing
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Drug-Target Interactions and complexes ol

UNIVERSITY

o In small molecular drug development, to reach viable drug efficacy, it's crucial to clarify
how the drug molecule interacts with designed targets, as well as the
consequences induced by the conjugation of drug-target pairs .

o Drug-target interaction can be predicted with majorly two ways in traditional: ligand
docking and quantum-physic simulation. These methods are limited with lacking
flexibility to know the induced conformational change and extremely high cost of time
and computational resources, respectively.

>Protein A
SGFRKMAFPSGKVEGCMVQVTCG
TTTLNGLWLDDVVYCPRHVICTSE
DMLNPNYEDLLIRKSNHNFLVQAG

+ NVQLRVIGHSMQNCVLKLKVDTA _
NPKTPKYKFVRIQPGQTFSVLACY
NGSPSGVYQCAMRPNFTIKGSFLN
GSCGSVGFNIDYDCVSFCYMH....

Ligand Protein sequence Protein structure Protein-ligand interaction
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RNA structures and complexes predictions i,

o RNA molecules play fundamental roles in cellular processes. Their function and
Interactions with other biomolecules are dependent on the ability to form complex

three-dimensional (3D) structures

o Experimental determination of RNA atomic 3D structures is laborious and challenging

> Only 3% of known RNA 3D structures in public database

3% RNA o RNA basic_unit: 3D structure
® r ooty Nucleotide

Baze

Ly How RNA folds?

Phosphate | Ribose

H ':|:3' 2-! H {sugar)
OH
92% protein ¥ »

Primary Sequence
UGCUCCUAGUACGAGAGGACCGGAGUG...
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