E6893 Big Data Analytics Lecture 6:

Graph Database and Analytics Use Case

Ching-Yung Lin, Ph.D.
Adjunct Professor, Dept. of Electrical Engineering and Computer Science

October 11, 2019
Network / Graph is the way we remember, we associate, and we understand.
Example: Graph Technology for Financial Service Sectors

- How does FINRA analyze ~50B events per day TODAY? - Build a graph of market order events from multiple sources [ref]

- How did journalists uncover the Swiss Leak scandal in 2014 and also Panama Papers in 2016? -- Using graph database to uncover information thousands of accounts in more than 20 countries with links through millions of files [ref]
RDF and SPARQL
WHAT DO RDF AND SPARQL BRING TO BIG DATA PROJECTS?

Bob DuCharme
TopQuadrant, Charlottesville, Virginia

Resource Description Format (RDF)

- A W3C standard since 1999
- Triples
 - Example: A company has nine of part p1234 in stock, then a simplified triple representing this might be \{p1234 inStock 9\}.
 - Instance Identifier, Property Name, Property Value.
 - In a proper RDF version of this triple, the representation will be more formal. They require uniform resource identifiers (URIs).

```xml
@prefix fbd: <http://foobarco.net/data/>.
@prefix fbv: <http://foobarco.net/vocab/>.

fbd:p1234 fbv:inStock "9".
fbd:p1234 fbv:supplier "Joe’s Part Company".
```
An example complete description

@prefix fbd:<http://foobarco.net/data/>.
@prefix fbv:<http://foobarco.net/vocab/>.
fbd:p1234 fbv:inStock "9".
fbd:p1234 fbv:name "Blue reverse flange".
fbd:p1234 fbv:supplier fbd:s9483.
fbd:s9483 fbv:name "Joe's Part Company".
fbd:s9483 fbv:homePage "http://www.joespartco.com".
fbd:s9483 fbv:contactName "Gina Smith".
fbd:s9483 fbv:contactEmail "gina.smith@joespartco.com".
Advantages of RDF

- Virtually any RDF software can parse the lines shown above as self-contained, working data file.
 - You can declare properties if you want.
 - The RDF Schema standard lets you declare classes and relationships between properties and classes.
 - The flexibility that the lack of dependence on schemas is the first key to RDF's value.

- Split trips into several lines that won't affect their collective meaning, which makes sharding of data collections easy.
 - Multiple datasets can be combined into a usable whole with simple concatenation.

- For the inventory dataset's property name URIs, sharing of vocabulary makes easy to aggregate.
The following SPQRL query asks for all property names and values associated with the fbd:s9483 resource:

```
PREFIX fbd: <http://foobarco.net/data/>

SELECT ?property ?value
WHERE { fbd:s9483 ?property ?value.}
```

The heart of any SPARQL query is the WHERE clause, which specifies the triples to pull out of the dataset. Various options for the rest of the query tell the SPARQL processor what to do with those triples, such as sorting, creating, or deleting triples. The above query’s WHERE clause has a single triple pattern, which resembles a triple but may have variables substituted for any or all of the triple’s three parts. The triple pattern above says that we’re interested in triples that have fbd:s9483 as the subject and—because variables function as wildcards—anything at all in the triple’s second and third parts.
The SPAQRL Query Result from the previous example

<table>
<thead>
<tr>
<th>property</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://foobarco.net/vocab/contactEmail</td>
<td>"gina.smith@joespartco.com"</td>
</tr>
<tr>
<td>http://foobarco.net/vocab/contactName</td>
<td>"Gina Smith"</td>
</tr>
<tr>
<td>http://foobarco.net/vocab/name</td>
<td>"Joe's Part Company"</td>
</tr>
</tbody>
</table>
Another SPARQL Example

What is this query for?

```sparql
PREFIX fbd: <http://foobarco.net/data/>  
PREFIX fbv: <http://foobarco.net/vocab/>  

SELECT ?flangeContactEmail  
WHERE  
{  
  ?part fbv:name "Blue reverse flange".  
  ?supplier fbv:contactEmail ?flangeContactEmail.  
}
```

Data

```data
@prefix fbd: <http://foobarco.net/data/>.
@prefix fbv: <http://foobarco.net/vocab/>.
fbd:p1234 fbv:inStock "9".
fbd:p1234 fbv:name "Blue reverse flange".
fbd:p1234 fbv:supplier fbd:s9483.
fbd:s9483 fbv:name "Joe’s Part Company".
fbd:s9483 fbv:homePage "http://www.joespartco.com".
fbd:s9483 fbv:contactName "Gina Smith".
fbd:s9483 fbv:contactEmail "gina.smith@joespartco.com".
```
Apache Jena

A free and open source Java framework for building Semantic Web and Linked Data applications.

- **Get started now!**
- **Download**

RDF

RDF API

Interact with the core API to create and read Resource Description Framework (RDF) graphs. Sanitise your triples using popular formats such as RDF/XML or Turtle.

ARQ (SPARQL)

Query your RDF data using ARQ, a SPARQL 1.1 compliant engine. ARQ supports remote federated

Triple store

TDB

Persist your data using TDB, a native high performance triple store. TDB supports the full range of Jena APIs.

Fuseki

Expose your triples as a SPARQL end-point accessible over HTTP. Fuseki provides REST-style interaction with your RDF data.

OWL

Ontology API

Work with models, RDFS and the Web Ontology Language (OWL) to add extra semantics to your RDF data.

Inference API

Reason over your data to expand and check the content of your triple store. Configure your own inference rules or
Property Graphs
Reference

Duplicate Slide

Graph Databases

Ian Robinson, Jim Webber & Emil Eifrem

© 2019 CY Lin, Columbia University
A usual example

```
<table>
<thead>
<tr>
<th>UserID</th>
<th>User</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>123 Foo St.</td>
<td>12345678</td>
<td><a href="mailto:alice@example.org">alice@example.org</a></td>
<td><a href="mailto:alice@neo4j.org">alice@neo4j.org</a></td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>456 Bar Ave.</td>
<td></td>
<td><a href="mailto:bob@example.org">bob@example.org</a></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>99</td>
<td>Zach</td>
<td>99 South St.</td>
<td></td>
<td><a href="mailto:zach@example.org">zach@example.org</a></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>OrderID</th>
<th>UserID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>1</td>
</tr>
<tr>
<td>5678</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5588</td>
<td>99</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>OrderID</th>
<th>ProductID</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>765</td>
<td>2</td>
</tr>
<tr>
<td>1234</td>
<td>987</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5588</td>
<td>765</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>ProductID</th>
<th>Description</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>321</td>
<td>strawberry ice cream</td>
<td>freezer</td>
</tr>
<tr>
<td>765</td>
<td>potatoes</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>987</td>
<td>dried spaghetti</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 2-1. Semantic relationships are hidden in a relational database
Query Example – I

Figure 2-2. Modeling friends and friends-of-friends in a relational database

Asking “who are Bob’s friends?” is easy, as shown in Example 2-1.

Example 2-1. Bob’s friends

```
SELECT p1.Person
FROM Person p1 JOIN PersonFriend
    ON PersonFriend.FriendID = p1.ID
JOIN Person p2
    ON PersonFriend.PersonID = p2.ID
WHERE p2.Person = 'Bob'
```
Example 2-2. Who is friends with Bob?

```sql
SELECT p1.Person
FROM Person p1 JOIN PersonFriend
    ON PersonFriend.PersonID = p1.ID
JOIN Person p2
    ON PersonFriend.FriendID = p2.ID
WHERE p2.Person = 'Bob'
```

Example 2-3. Alice’s friends-of-friends

```sql
SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND
FROM PersonFriend pf1 JOIN Person p1
    ON pf1.PersonID = p1.ID
JOIN PersonFriend pf2
    ON pf2.PersonID = pf1.FriendID
JOIN Person p2
    ON pf2.FriendID = p2.ID
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID
```

Computational intensive
Graph Database Example

Figure 2-5. Easily modeling friends, colleagues, workers, and (unrequited) lovers in a graph
Execution Time in the example of finding extended friends (by Neo4j)

Partner and Vukotic’s experiment seeks to find friends-of-friends in a social network, to a maximum depth of five. Given any two persons chosen at random, is there a path that connects them that is at most five relationships long? For a social network containing 1,000,000 people, each with approximately 50 friends, the results strongly suggest that graph databases are the best choice for connected data, as we see in Table 2-1.

Table 2-1. Finding extended friends in a relational database versus efficient finding in Neo4j

<table>
<thead>
<tr>
<th>Depth</th>
<th>RDBMS execution time (s)</th>
<th>Neo4j execution time (s)</th>
<th>Records returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.016</td>
<td>0.01</td>
<td>~2500</td>
</tr>
<tr>
<td>3</td>
<td>30.267</td>
<td>0.168</td>
<td>~110,000</td>
</tr>
<tr>
<td>4</td>
<td>1543.505</td>
<td>1.359</td>
<td>~600,000</td>
</tr>
<tr>
<td>5</td>
<td>Unfinished</td>
<td>2.132</td>
<td>~800,000</td>
</tr>
</tbody>
</table>
Modeling Order History as a Graph

Figure 2-6. Modeling a user’s order history in a graph
Figure 3-1. A simple graph pattern, expressed using a diagram

This pattern describes three mutual friends. Here’s the equivalent ASCII art representation in Cypher:

(a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
Cypher Example

Like most query languages, Cypher is composed of clauses. The simplest queries consist of a START clause followed by a MATCH and a RETURN clause (we’ll describe the other clauses you can use in a Cypher query later in this chapter). Here’s an example of a Cypher query that uses these three clauses to find the mutual friends of user named Michael:

```
START a=node:user(name='Michael')
MATCH (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
RETURN b, c
```
WHERE
 Provides criteria for filtering pattern matching results.

CREATE and CREATE UNIQUE
 Create nodes and relationships.

DELETE
 Removes nodes, relationships, and properties.

SET
 Sets property values.

FOREACH
 Performs an updating action for each element in a list.

UNION
 Merges results from two or more queries (introduced in Neo4j 2.0).

WITH
 Chains subsequent query parts and forward results from one to the next. Similar to piping commands in Unix.
Property Graph Example – Shakespeare

Figure 3-6. Three domains in one graph
CREATE (shakespeare { firstname: 'William', lastname: 'Shakespeare'}),
 (juliusCaesar { title: 'Julius Caesar'}),
 (shakespeare)-[:WROTE_PLAY { year: 1599 }]->(juliusCaesar),
 (theTempest { title: 'The Tempest'}),
 (shakespeare)-[:WROTE_PLAY { year: 1610}]->(theTempest),
 (rsc { name: 'RSC' }),
 (production1 { name: 'Julius Caesar' }),
 (rsc)-[:PRODUCED]->(production1),
 (production1)-[:PRODUCTION_OF]->(juliusCaesar),
 (performance1 { date: 20120729 }),
 (performance1)-[:PERFORMANCE_OF]->(production1),
 (production2 { name: 'The Tempest' }),
 (rsc)-[:PRODUCED]->(production2),
 (production2)-[:PRODUCTION_OF]->(theTempest),
 (performance2 { date: 20061121 }),
 (performance2)-[:PERFORMANCE_OF]->(production2),
 (performance3 { date: 20120730 },
 (performance3)-[:PERFORMANCE_OF]->(production1),
 (billy { name: 'Billy' }),
 (review { rating: 5, review: 'This was awesome!'}),
 (billy)-[:WROTE_REVIEW]->(review),
 (review)-[:RATED]->(performance1),
 (theatreRoyal { name: 'Theatre Royal' }),
 (performance1)-[:VENUE]->(theatreRoyal),
 (performance2)-[:VENUE]->(theatreRoyal),
 (performance3)-[:VENUE]->(theatreRoyal),
 (greyStreet { name: 'Grey Street' }),
 (theatreRoyal)-[:STREET]->(greyStreet),
 (newcastle { name: 'Newcastle' }),
 (greyStreet)-[:CITY]->(newcastle),
 (tyneAndWear { name: 'Tyne and Wear' }),
 (newcastle)-[:COUNTY]->(tyneAndWear),
 (england { name: 'England' }),
 (tyneAndWear)-[:COUNTRY]->(england),
 (stratford { name: 'Stratford upon Avon' }),
 (stratford)-[:COUNTRY]->(england),
 (rsc)-[:BASED_IN]->(stratford),
 (shakespeare)-[:BORN_IN]->stratford
Query on the Shakespeare Graph

```
START theater=node:venue(name='Theatre Royal'),
    newcastle=node:city(name='Newcastle'),
    bard=node:author(lastname='Shakespeare')
MATCH (newcastle)<-[[:STREET|CITY*1..2]]-(theater)
    <-[[:VENUE]-()]<-[[:PERFORMANCE_OF]-->()-[[:PRODUCTION_OF]]->
    (play)<-[w:WROTE_PLAY]-(bard)
WHERE w.year > 1608
RETURN DISTINCT play.title AS play
```

Adding this WHERE clause means that for each successful match, the Cypher execution engine checks that the WROTE_PLAY relationship between the Shakespeare node and the matched play has a year property with a value greater than 1608. Matches with a WROTE_PLAY relationship whose year value is greater than 1608 will pass the test; these plays will then be included in the results. Matches that fail the test will not be included in the results. By adding this clause, we ensure that only plays from Shakespeare’s late period are returned:

```
+--------------+
| play         |
+--------------+
| "The Tempest" |
+--------------+
1 row
```
Another Query on the Shakespeare Graph

```
START theater=node:venue(name='Theatre Royal'),
    newcastle=node:city(name='Newcastle'),
    bard=node:author(lastname='Shakespeare')
MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)
    <-[:VENUE]-()-[p:PERFORMANCE_OF]->()-[p:PRODUCTION_OF]->
    (play)<-[:WROTE_PLAY]-(bard)
RETURN play.title AS play, count(p) AS performance_count
ORDER BY performance_count DESC
```

The RETURN clause here counts the number of PERFORMANCE_OF relationships using the identifier p (which is bound to the PERFORMANCE_OF relationships in the MATCH clause) and aliases the result as performance_count. It then orders the results based on performance_count, with the most frequently performed play listed first:

```
+---------------------+---------------------+
| play                | performance_count   |
+---------------------+---------------------+
| "Julius Caesar"     | 2                   |
| "The Tempest"       | 1                   |
+---------------------+---------------------+
2 rows
```
Figure 4-1. Data model for the book reviews user story

Because this data model directly encodes the question presented by the user story, it lends itself to being queried in a way that similarly reflects the structure of the question we want to ask of the data:

```
START reader=node:users(name={readerName})
MATCH reader-[LIKE]->book<-[LIKE]-other_readers-[LIKE]->books
RETURN books.title
```
Chaining on the Query

START bard=node:author(lastname='Shakespeare')
MATCH (bard)-[w:WROTE_PLAY]->(play)
WITH play
ORDER BY w.year DESC
RETURN collect(play.title) AS plays

Executing this query against our sample graph produces the following result:

<table>
<thead>
<tr>
<th>plays</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
<tr>
<td>["The Tempest","Julius Caesar"]</td>
</tr>
</tbody>
</table>

1 row
Example – Email Interaction Graph

What's this query for?

START bob=node:user(username='Bob')
MATCH (bob)-[:SENT]->(email)-[:CC]->(alias),
 (alias)-[:ALIAS_OF]->(bob)
RETURN email

Figure 3-10. A graph of email interactions
How to make graph database fast?

Figure 6-1. Nonnative graph processing engines use indexing to traverse between nodes
Use Relationships, not indexes, for fast traversal
Storage Structure Example

Figure 6-4. Neo4j node and relationship store file record structure
An experiment

Dataset: 12.2 million edges, 2.2 million vertices
Goal: Find paths in a property graph. One of the vertex property is call TYPE. In this scenario, the user provides either a particular vertex, or a set of particular vertices of the same TYPE (say, "DRUG"). In addition, the user also provides another TYPE (say, "TARGET"). Then, we need find all the paths from the starting vertex to a vertex of TYPE “TARGET”. Therefore, we need to 1) find the paths using graph traversal; 2) keep trace of the paths, so that we can list them after the traversal. Even for the shortest paths, it can be multiple between two nodes, such as: drug->assay->target, drug->MOA->target

<table>
<thead>
<tr>
<th></th>
<th>Avg time (100 tests)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First test (cold-start)</td>
</tr>
<tr>
<td>NativeStore C++</td>
<td>39 sec</td>
</tr>
<tr>
<td>NativeStore JNI</td>
<td>57 sec</td>
</tr>
<tr>
<td>Neo4j (Blueprints 2.4)</td>
<td>105 sec</td>
</tr>
<tr>
<td>Titan (Berkeley DB)</td>
<td>3861 sec</td>
</tr>
<tr>
<td>Titan (HBase)</td>
<td>3046 sec</td>
</tr>
</tbody>
</table>

First full test - full depth 23. All data pulled from disk. Nothing initially cached.
Modes - All tests in default modes of each graph implementation. Titan can only be run in transactional mode. Other implementations do not default to transactional mode.
Native Store Overview

- **Native store represents graphs in-memory and on-disk**
 - Organizing graph data for representing a graph that stores both graph structure and vertex properties and edge properties
 - Caching graph data in memory in either batch-mode or on-demand from the on-disk streaming graph data
 - Accepting graph updates and modifying graph structure and/or property data accordingly and incorporating time stamps
 - Add edge, remove vertex, update property, etc.
 - Persisting graph updates along with the time stamps from in-memory graph to on-disk graph
 - Performing graph queries by loading graph structure and/or property data
 - Find neighbors of a vertex, retrieve property of an edge, traverse a graph, etc.

![Diagram of graph store](image)
On-Disk Graph Organization

- Native store organizes graph data for representing a graph with both structure and the vertex properties and edge properties using multiple files in Linux file system
 - Creating a list called ID → Offset where each element translates a vertex (edge) ID into two offsets, pointing to the earliest and latest data of the vertex/edge, respectively
 - Creating a list called Time_stamp → Offset where each element has a time stamp, an offset to the previous time stamp of the vertex/edge, and a set of indices to the adjacent edge list and properties
 - Create a list of chained block list to store adjacent list and properties

![On-disk persistent graph diagram](image-url)
Impact from Storage Hardware

- Convert csv file (adams.csv 20G) to datastore
 - Similar performance: 7432 sec versus 7806 sec
 - CPU intensive
 - Average CPU util.: 97.4 versus 97.2
 - I/O pattern
 - Maximum read rate: 5.0 vs. 5.3
 - Maximum write rate: 97.7 vs. 85.3

<table>
<thead>
<tr>
<th>Ratio HDD/SDD</th>
<th>TYPE1</th>
<th>TYPE2</th>
<th>TYPE3</th>
<th>TYPE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.79</td>
<td>6.36</td>
<td>19.93</td>
<td>2.44</td>
<td></td>
</tr>
</tbody>
</table>

SSD offers consistently higher performance for both read and write.

Queries
- Type 1: find the most recent URL and PCID of a user
- Type 2: find all the URLs and PCIDs
- Type 3: find all the most recent properties
- Type 4: find all the historic properties
Impact from Storage Hardware — 2

- Dataset: Knowledge Repository
 - 138614 Nodes, 1617898 Edges
 - OS buffer is flushed before test
 - Processing 320 queries in parallel
 - In memory graph cache size: 4GB (default value)

![SSD Performance Chart]

![HDD Performance Chart]
Big Data Analytics Use Case:

Company Network and Value Analysis
Are we able to find out answers for these questions?

Finding answers of,

- Is it possible to **predict** a company’s profit or revenue changes based on dynamic company networks?
- How can we **infer** evolutionary company networks from public news?
- How **accurate** can network characteristics help predicting profit/revenue changes?
- What are the most important – positive or negative – **feature** measures of networks to predict profit/revenue?
Social Network Analysis

- **An Analytics research field since 1920s.**
- **Social Networks (SNs)**
 - **Nodes**: Actors (persons, companies, organizations etc.)
 - **Ties**: Relations (friendship, collaboration, alliance etc.)

- **Network properties**
 - Degree, distance, centrality, and various kinds of positional and equivalence

- **Application of SNs**
 - **Social psychology**: analyzing social phenomena
 - **Economics**: consulting business strategy
 - **Information science**: Information sharing and recommendation, trust calculation, ontology construction
Example of Company Value Analysis

Accounting-based financial statement information

Fundamental values:
ROE (Return On Equity), ROA (Return On Asset), PER (Price Earnings Ratio), PBR (Price Book-value Ratio), Employee Number, Dividend Yield, Capital Ratio, Capital, etc.

E.g. “Fundamental Analysis, Future Earnings and Stock Prices”, [Abarbane & Bushee 97]

Applying historical trends to predict stock market index (Heng Seng Index in Hong Kong)

E.g. “Support Vector Machine Regression for Volatile Stock Market Prediction” [H. Yang 02]

\[\hat{I}_t = f(I_{t-w} + \ldots + I_{t-1}) \]
Example of Analytical Tools

- **Network topological analysis** tools
 - Centralities (degree, closeness, betweenness)
 - PageRank
 - Communities (connected component, K-core, triangle count, clustering coefficient)
 - Neighborhood (egonet, K-neighborhood)

- **Graph matching and search** tools
 - Graph search/filter by label, vertex/edge properties (including geo locations)
 - Graph matching
 - Collaborative filtering

- **Graph path and flow** tools
 - Shortest paths
 - Top K-shortest paths

- **Probabilistic graphical model** tools
 - Bayesian network inference
 - Deep learning
Are Social Networks of Companies related to Companies’ Value?
Outline

▪ Background and Study goal
▪ **Infer Company Networks from Public News**
▪ Network Feature Generation & Selection
▪ Predict Company Value
▪ Conclusion and Future work
Company Relationship Detection

- **Specific Relation**
 Cooperation, competition, acquisition, incorporation, supply chain, stock share…
 “Extracting Inter-business Relationship from World Wide Web” [Jin08]
 “Temporal Company Relation Extraction” [Changjian09]
 – Focus on details, deeper NLP
 – Rare events, sparse, ad-hoc

- **Generic Relation**
 – Who give me more impact [in a period]? (maybe positive or negative)
 – Comprehensive, dynamic relations (like Google rank)
 – Shallow NLP, easy to get weighted and directed networks, much more events.

➔ THIS WORK!
Generic Relation Extraction

Article (document)
I.B.M. Will Buy a Maker of Data Analysis Software

Software. In the last couple of years, I.B.M., Oracle, SAP
and Microsoft have collectively spent more than $15 billion
buying makers of such software.

Basic Idea:
- For each company x, we extract companies who
 • Frequently co-appear with x in x’s important financial articles
 • Frequently mentioned together with x in important sentences

In a period of time (e.g. one year)
Example (from NYT 2009 articles about I.B.M)

About 300 articles mentioned I.B.M.
International Business Machines (84 articles), *I.B.M.* (277 articles)

- **I.B.M. -- Microsoft** (55 articles, 264 sentences, weight=85.85455)

 http://www.nytimes.com/2009/03/06/business/06 layoffs.html
 Two days after I.B.M.'s report, Microsoft said that its quarterly profits were disappointing.
 http://www.nytimes.com/2009/05/07/technology/07hl-telecoms.html
 ... the world's largest software makers, including Microsoft, SAP and I.B.M., which...
 Caterpillar, Kodak, Home Depot, I.B.M., even mighty Microsoft they are all cutting jobs.
 More recently, Sun Microsystems, Hewlett-Packard and Microsoft have made mostly unsuccessful
 attempts to have made mostly unsuccessful attempts to pull mainframe customers away from I.B.M.
 by ...

- **I.B.M. -- SPSS** (1 articles, 9 sentences, weight=13.675)

 I.B.M. to Buy SPSS, a Maker of Business Software
 I.B.M.'s $50-a-share cash offer is a premium of more than 40 percent over SPSS's closing stock price
 on Monday.
 I.B.M. took a big step to expand its fast-growing stable of data analysis offerings by agreeing on
 Tuesday to pay $1.2 billion to buy SPSS Inc., ...

- **I.B.M. -- Nike.** (4 articles, 9 sentences, weight=8.212)

 ... companies that have taken steps to reduce carbon emissions includes I.B.M., Nike, Coca-Cola and
 BP, the oil giant.
 Others are water-based shoe adhesives from Nike and a packing insert from I.B.M.
Generic Relation Extraction

For target company “x”, first download NYT articles for a year, and select candidate companies $Y=\{y_1, y_2, \ldots\}$ appeared on the articles, then calculate each candidate company’s relation strength with “x”.

Choose articles in a period

Download articles

Document Weight

Title: $x \ldots$

$x \ldots y_1 \ldots$

$\ldots y_3 \ldots \ldots$

$\ldots y_4 \ldots$

• $|Y|$: How many companies on the article?
• Σtf_{XY}: How many times companies appeared?
• tf_x: How many times “x” company appear?
• w: Does names appeared on the title?

Sentence Weight

$S1$: $x \ldots y_1 \ldots$
$S2$: $x \ldots y_3 \ldots y_5$
$S3$: $y_3 \ldots x \ldots, y_4 \ldots y_1 \ldots$

$w_d = \log(1 + \frac{1}{|Y|}) \times \sum_{y \in Y} w^* tf_{x,y}$

$w_s = \log(1 + \frac{1}{|Y_1|} + \frac{1}{|Y_2|})$

$w = a \cdot \sum df \times w_d + b \cdot \sum sf \times w_s$
Data and Network

- Data Source:
 - Relationships among companies from public articles
 - Company Values: profit, revenue, etc.
 - Fortune 500: 1955-2009

- Target companies:
 - 308 companies (from NYT & Fortune500)
 - 656,115 articles about target companies:

![Bootstrap approach](image)

Target company

Bootstrap approach
Network size (all)

<table>
<thead>
<tr>
<th>year</th>
<th>#nodes</th>
<th>#edges</th>
<th>year</th>
<th>#nodes</th>
<th>#edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>463</td>
<td>4030</td>
<td>1996</td>
<td>1202</td>
<td>46265</td>
</tr>
<tr>
<td>1982</td>
<td>478</td>
<td>4457</td>
<td>1997</td>
<td>1266</td>
<td>45650</td>
</tr>
<tr>
<td>1983</td>
<td>477</td>
<td>4546</td>
<td>1998</td>
<td>1312</td>
<td>51362</td>
</tr>
<tr>
<td>1984</td>
<td>484</td>
<td>4606</td>
<td>1999</td>
<td>1379</td>
<td>53653</td>
</tr>
<tr>
<td>1985</td>
<td>546</td>
<td>6606</td>
<td>2000</td>
<td>1534</td>
<td>59079</td>
</tr>
<tr>
<td>1986</td>
<td>565</td>
<td>6680</td>
<td>2001</td>
<td>1496</td>
<td>55801</td>
</tr>
<tr>
<td>1987</td>
<td>941</td>
<td>124326</td>
<td>2002</td>
<td>1487</td>
<td>54713</td>
</tr>
<tr>
<td>1988</td>
<td>1015</td>
<td>108075</td>
<td>2003</td>
<td>1504</td>
<td>54173</td>
</tr>
<tr>
<td>1989</td>
<td>1066</td>
<td>132906</td>
<td>2004</td>
<td>1461</td>
<td>51801</td>
</tr>
<tr>
<td>1990</td>
<td>1070</td>
<td>177022</td>
<td>2005</td>
<td>1193</td>
<td>43944</td>
</tr>
<tr>
<td>1991</td>
<td>1080</td>
<td>107973</td>
<td>2006</td>
<td>1355</td>
<td>51896</td>
</tr>
<tr>
<td>1992</td>
<td>1125</td>
<td>53625</td>
<td>2007</td>
<td>1280</td>
<td>44501</td>
</tr>
<tr>
<td>1993</td>
<td>1133</td>
<td>136807</td>
<td>2008</td>
<td>1260</td>
<td>43340</td>
</tr>
<tr>
<td>1994</td>
<td>1147</td>
<td>130975</td>
<td>2009</td>
<td>1203</td>
<td>37921</td>
</tr>
<tr>
<td>1995</td>
<td>1134</td>
<td>52855</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Financial Crisis 1987
Thresholding of Networks

Different Threshold Network

- **Feature Effect**
- **T1_T2**

Graph shows different networks with thresholds T1=20 and T2=10. The graph includes lines for revenue, profit, delta-revenue, and MEAN.
Comparison of Naïve co-occurrence and the proposed method

- IBM 1995 (doc cooccurrence)

- IBM 1995 (new algorithm – doc weights + sentence weights)

Dominated by big/general companies. Better balance between different company sizes.
Example of Network Evolution (IBM)

- IBM 2003

- IBM 2009
Example of Network Evolution (Microsoft)

- **Microsoft 1995**
 - Microsoft Corporation
 - Delphi Corporation
 - Novell Inc.
 - Cisco Systems Inc.
 - Oracle Corporation
 - Intel Corporation
 - Motorola Inc.
 - Sony Corporation
 - Hewlett-Packard Corporation
 - CBS Corporation
 - Intuit Inc.

- **Microsoft 2003**
 - Microsoft Corporation
 - Motorola Inc.
 - Oracle Corporation
 - Sun Microsystems Inc.
 - Format Inc.
 - Time Warner Inc.
 - Sony Corporation
 - RealNetworks Inc.
 - Hewlett-Packard
 - *International Business Machines* (marked)
 - Apple Inc.
 - Dell Inc.
 - Google Inc.
 - Novell Inc.

- **Microsoft 2009**
 - Microsoft Corporation
 - Google Inc.
 - International Business Machines
 - Apple Inc.
 - Dell Inc.
 - Sony
 - I.B.M.
 - Time Warner

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>2003</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intuit</td>
<td>I.B.M.</td>
<td>Google</td>
</tr>
<tr>
<td>2</td>
<td>I.B.M.</td>
<td>Apple</td>
<td>Apple</td>
</tr>
<tr>
<td>3</td>
<td>Intel</td>
<td>Intel</td>
<td>Intel</td>
</tr>
<tr>
<td>4</td>
<td>Apple</td>
<td>Time Warner</td>
<td>Sony</td>
</tr>
<tr>
<td>5</td>
<td>Novell</td>
<td>Sony</td>
<td>I.B.M.</td>
</tr>
</tbody>
</table>
Outline

- Background and Study goal
- Infer Company Networks from Public News
- Network Feature Generation & Selection
- Predict Company Value
- Conclusion and Future work
Network Type

Weighted-Directed Network

\[W_{ij} = W_{i \rightarrow j} + W_{j \rightarrow i} \]

Weighted-Undirected Network

Binary -Directed Network

Binary -Undirected Network
Network Feature Generation (1/3)

Who give company \(x \) impact?
- Neighbor companies on the network
- Reachable companies on the network

Network Features:
- number of neighbors (In-degree, Out-degree)
- number of reachable nodes
- number of connections among neighbors
- number of connections among reachable nodes
- neighbors’ degree (In-degree, Out-degree)
- distance of \(x \) to all reachable nodes
- distances among neighbors
- ratio of above values between neighbors and reachable nodes ...
- etc.
(Normalize by network size)

Generate 57 Network features from weighted/binary, directional/undirectional networks
Network Feature Generation (2/3)

Temporal Network Features:
- number of neighbors (In-degree, Out-degree) last year (or w years ago)
- number of connections among neighbors last year (or w years ago)
- number of connections among reachable nodes last year (or w years ago)
- number of neighbors degree last year (or w years ago)
- distance of x to all reachable nodes last year (or w years ago)
- … etc.

57×Window temporal network features

Similar to,
- What’s last year’s (or w years ago) revenue?
- What’s last year’s (or w years ago) profit?
Network Feature Generation (3/3)

Delta Change of Network Features:

- *Delta change of* the number of neighbors (In-degree, Out-degree) *from last year (or d years ago)*
- *Delta change of* the number of connections among neighbors *from last year (or d years ago)*
- *Delta change of* the number of connections among reachable nodes *from last year (or d years ago)*
- *Delta change of* the number of neighbors degree *from last year (or d years ago)*
- *Delta change of* the distance of *x* to all reachable nodes *from last year (or d years ago)*
- … etc.

\[57 \times \text{Delta Network features} \]
Network Features

- Network Features for each company
 1. Current Network features: 57
 2. Temporal Network features: 57 × Window
 3. Delta change of Network features: 57 × Delta

+ Financial statements of companies
 - previous year’s profit/revenue
 - delta-change of profit/revenue
 - … etc.
Steps to Learn for Network Feature Selection

- correlations between ranking of each individual feature and ranking of revenue/profit
- Stability of feature values which should be consistent with different network thresholding
- Selecting Independent Features sets (orthogonal with each other)
Feature Selection

- Feature Selection
 - Filter out some un-useful features from leaning samples.
 - Positive features VS negative features
 - Company-specific selections or General selections
Positive and Negative Features (example)

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Positively related features</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.421</td>
<td>difference of the ratio of x's neighbors and reachable nodes in binary-undirected network in 3 years</td>
</tr>
<tr>
<td>0.421</td>
<td>delta value with 3 years ago of x's degree in binary-undirected network</td>
</tr>
<tr>
<td>0.420</td>
<td>2 year ago x's degree in binary-undirected network</td>
</tr>
<tr>
<td>0.413</td>
<td>x's degree in binary-undirected network</td>
</tr>
<tr>
<td>0.413</td>
<td>ratio number of x's neighbors and reachable nodes in binary-undirected network</td>
</tr>
<tr>
<td>0.353</td>
<td>2 year ago x's in-degree in weighted-undirected network</td>
</tr>
<tr>
<td>0.344</td>
<td>delta value with 3 years ago of x's out-degree in weighted-directed network</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Negatively related features</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.487</td>
<td>previous year's connections among neighbors in binary-undirected network</td>
</tr>
<tr>
<td>-0.477</td>
<td>delta value with 2 year's ago of sum of degrees among neighbors in binary-undirected network</td>
</tr>
<tr>
<td>-0.462</td>
<td>previous year's connection among neighbors in weighted-undirected network</td>
</tr>
<tr>
<td>-0.462</td>
<td>previous year's connection among neighbors in binary-undirected network</td>
</tr>
<tr>
<td>-0.381</td>
<td>ratio of connection among neighbors and reachable nodes in weighted-undirected network</td>
</tr>
<tr>
<td>-0.379</td>
<td>previous year's ratio of connection among neighbors and reachable nodes in weighted-undirected network</td>
</tr>
</tbody>
</table>
Positive Feature Example

“difference of the ratio of x's neighbors and reachable nodes in binary-undirected network in 3 years”

x’s network in 2010

N1= {a,b,c,d,i}
N2={a,b,c,d,e,f,g,h,i}

2010: \(|N1| = 5, \ |N2| = 8, \ \text{ratio}(|N1|,|N2|) = 5/8 = 0.625\)
2007: \(|N1| = 4, \ |N2| = 7, \ \text{ratio'}(|N1|,|N2|) = 4/7= 0.57\)

\[\rightarrow \ \text{Delta (ratio – ratio')} = 5/8 − 4/7 = 0.054\]
Negative Feature Example

“previous year's connections among neighbors in binary-undirected network”

x’s network in 2010
N1= \{a,b,c,d,i\}
N2=\{a,b,c,d,e,f,g,h,i\}

x’s network in 2009
N1= \{a,b,c,d\}
N2=\{a,b,c,d,e,f,g\}
Connection_N1= \{b-c, a-d\}

\(\rightarrow\) Connection_t-1 = 2
Feature Set Selection

From learning samples, move out features which $|\text{correlation}|<0.2$, $\#\text{sample}<50$.

- $fs=0$: No feature selection
- $fs=1$: Feature selection (positive features only)
- $fs=2$: Feature selection (positive and negative features)

Using positive features are enough for our prediction model.
Feature Variances

\[
\text{var}_{F_i} = \frac{\sum_{k \in K} (\text{corr}_k(F_i, T_i) - \overline{\text{corr}})^2}{|K|}
\]

- \(k \): various networks in different threshold
- \(i \): different features

Too sensitive with different threshold of networks (remove)
Feature Selection based on Stability of values with different network thresholding
Outline

- Background and Study goal
- Infer Company Networks from Public News
- Network Feature Generation & Selection
- Predict Company Value
- Conclusion and Future work
System Outline

News Articles

Relation Extraction
(Bootstrap approach)

Network Construction

Network Feature Extraction

Learn and Prediction

Company Names
1. I.B.M., (International Business Machines)
2. Microsoft Corp. ...

Company values
e.g. profit and revenue
Experiments

- **Tasks:**
 - For individual companies, learn from last 10 years, and predict next year’s company value.
 - For 20 fortune companies, learn from past 5 years, and predict next year’s Companies Value.
 - Company Value: revenue, profit

- **Prediction Model**
 - **Linear Regression**
 \[
 value = a + \sum_{i} \beta_i \text{feature}_i + \varepsilon.
 \]
 - **SVM Regression (using RBF kernel)**
 \[
 \begin{align*}
 &\min_{w,b,\xi,\xi^*} \frac{1}{2} w^T w + C \sum_{i=1}^l \xi_i + C \sum_{i=1}^l \xi_i^*, \\
 &\text{subject to} \quad w^T \phi(x_i) + b - z_i \leq \varepsilon + \xi_i, \\
 &\quad z_i - w^T \phi(x_i) - b \leq \varepsilon + \xi_i^*, \\
 &\quad \xi_i, \xi_i^* \geq 0, \quad i = 1, \ldots, l.
 \end{align*}
 \]
 \[
 K(x_i, x_j) = \exp(-\gamma \| x_i - x_j \|^2), \gamma > 0.
 \]
Performance Measures

- **R^2** (squared Correlation Coefficient)

 $$R^2 = \frac{\left(\bar{y} \sum_{i=1}^{l} f(x_i) y_i - \sum_{i=1}^{l} f(x_i) \sum_{i=1}^{l} y_i\right)^2}{\left(\bar{y} \sum_{i=1}^{l} f(x_i)^2 - \left(\sum_{i=1}^{l} f(x_i)\right)^2\right)\left(\bar{y} \sum_{i=1}^{l} y_i^2 - \left(\sum_{i=1}^{l} y_i\right)^2\right)}$$

- **MSE** (Mean Squared Error)

 $$\text{MSE} = \frac{1}{l} \sum_{i=1}^{l} \left(f(x_i) - y_i \right)^2$$

 Testing data: $x_1, \ldots, x_{\bar{l}}$

 Target values: $y_i, \ldots, y_{\bar{l}}$

 Predicted values: $f(x_1), \ldots, f(x_{\bar{l}})$
Profit Prediction for Fortune Companies

- Predict 20 companies’ mean value of profits
Profit Prediction using different feature sets (SVR)

Targets: 20 Fortune companies’ normalized Profits

Goal: Learn from previous 5 years, and predict next year

Model: Support Vector Regression (RBF kernel)

Profit prediction by joint network and financial analysis outperforms network-only by 130% and financial-only by 33%.

Network feature:
- s (current year network feature),
- t (temporal network feature),
- d (delta value of network feature)

Financial feature:
- p (historical profits and revenues)
Revenue Prediction using different feature sets (SVR)

Targets: 20 Fortune companies’ normalized Profits

Goal: Learn from previous 5 years, and predict next year

Model: Support Vector Regression (RBF kernel)

Network feature not contribute to revenue prediction.
Profit Prediction (Linear Regression)

Targets: 20 Fortune companies’ normalized Profits

Goal: Learn from previous 5 years, and predict next year

Model: linear regression

Network feature:
- \(s \) (current year network feature),
- \(t \) (temporal network feature),
- \(d \) (delta value of network feature)

Financial feature:
- \(p \) (historical profits and revenues)

Obtained similar results using different prediction model.

- Profit prediction by joint network and financial analysis outperforms network-only by 150% and financial-only by 37%.
Revenue Prediction (Linear Regression)

Targets: 20 Fortune companies’ normalized Profits

Goal: Learn from previous 5 years, and predict next year

Model: linear regression

Network feature:
- s (current year network feature),
- t (temporal network feature),
- d (delta value of network feature)

Financial feature:
- p (historical profits and revenues)

--

Network feature not contribute to revenue prediction.
Temporal Window and Delta for Profit Prediction

- Window

- Delta

Both Window and Delta size as 1 is enough.
Profit Prediction for IBM and Intel

IBM Profit Prediction

-25000 -20000 -15000 -10000 -5000 0 5000 10000 15000 20000 25000

year

profit

tp

R^2 = 0.583

Intel Profit Prediction

-4000 -2000 0 2000 4000 6000 8000 10000 12000

year

profit

Profit Value

Predicted Value

R^2 = 0.237
Questions?