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The Apache™ Hadoop® project develops open-source software for reliable, scalable,
distributed computing.

The Apache Hadoop software library is a framework that allows for the distributed processing
of large data sets across clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of machines, each offering local
computation and storage. Rather than rely on hardware to deliver high-availability, the
library itself is designed to detect and handle failures at the application layer, so delivering
a highly-available service on top of a cluster of computers, each of which may be prone to
failures.

The project includes these modules:
« Hadoop Common: The common utilities that support the other Hadoop modules.

 Hadoop Distributed File System (HDFS™): A distributed file system that provides high-
throughput access to application data.

« Hadoop YARN: A framework for job scheduling and cluster resource management.
« Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

http://hadoop.apache.org
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: A web-based tool for provisioning, managing, and monitoring Hadoop
clusters.lt also provides a dashboard for viewing cluster health and ability to view
MapReduce, Pig and Hive applications visually.

. A data serialization system.
. A scalable multi-master database with no single points of failure.
: A data collection system for managing large distributed systems.

. A scalable, distributed database that supports structured data storage for
large tables.

: A data warehouse infrastructure that provides data summarization and ad hoc
querying.
: A Scalable machine learning and data mining library.

: A high-level data-flow language and execution framework for parallel
computation.

: A fast and general compute engine for Hadoop data. Spark provides a simple
and expressive programming model that supports a wide range of applications,
including ETL, machine learning, stream processing, and graph computation.

: A generalized data-flow programming framework, built on Hadoop YARN, which
provides a powerful and flexible engine to execute an arbitrary DAG of tasks to
process data for both batch and interactive use-cases.

: A high-performance coordination service for distributed applications.
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http://incubator.apache.org/ambari/
http://incubator.apache.org/ambari/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/

Four distinctive layers of Hadoop 2,

UNIVERSITY

Distributed Storage { HDFS ]

Distributed storage: The Hadoop Distributed File System (HDFS) is the storage layer where the data,
interim results, and final result sets are stored.

Resource management: In addition to disk space, all slave nodes in the Hadoop cluster have CPU
cycles, RAM, and network bandwidth. A system such as Hadoop needs to be able to parcel out these
resources so that multiple applications and users can share the cluster in predictable and tunable ways. This
job is done by the JobTracker daemon.

Processing framework: The MapReduce process flow defines the execution of all applications in
Hadoop 1. As we saw in Chapter 6, this begins with the map phase; continues with aggregation with shuffle,
sort, or merge; and ends with the reduce phase. In Hadoop 1, this is also managed by the JobTracker
daemon, with local execution being managed by TaskTracker daemons running on the slave nodes.

Application Programming Interface (API): Applications developed for Hadoop 1 needed to be coded
using the MapReduce API. In Hadoop 1, the Hive and Pig projects provide programmers with easier
interfaces for writing Hadoop applications, and underneath the hood, their code compiles down to
MapReduce.
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Log Data Analysis

— most common, fits perfectly for HDFS scenario: Write once & Read
often.

Data Warehouse Modernization
Fraud Detection

Risk Modeling

Social Sentiment Analysis
Image Classification

Graph Analysis

Beyond

D. deRoos et al, Hadoop for Dummies, John Wiley & Sons, 2014
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Example: Business Value of Log Analysis — “Struggle Detection” L2,
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D. deRoos et al, Hadoop for Dummies, John Wiley & Sons, 2014
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Remind -- MapReduce example e

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

http://www.alex-hanna.com
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MapReduce Process on User Behavior via Log Analysis Cotvmmin
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D. deRoos et al, Hadoop for Dummies, John Wiley & Sons, 2014
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Setting Up the Hadoop Environment L2
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« Local (standalone) mode
« Pseudo-distributed mode
« Fully-distributed mode
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Hadoop is designed to work best with a modest number of extremely large files.
Average file sizes & larger than 500MB.

Write Once, Read Often model.

Content of individual files cannot be modified, other than appending new data at
the end of the file.

What we can do:

Create a new file

Append content to the end of a file
Delete a file

Rename a file

Modify file attributes like owner
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Remind -- Hadoop Distributed File System (HDFS)

HDFS Architecture
Metadata (Name, replicas, ...):

Metadata,ops"[ Namenode /home/foo/data, 3, ...

Block ops
Read Datanodes Datanodes
B E ol Replication H = L
L] Blocks
- y
N \
Rack 1 Rack 2

http://hortonworks.com/hadoop/hdfs/
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» File is divided into blocks (default: 64MB) and duplicated in multiple places (default: 3)

2013-dec.log
513MB

128 MB 128 MB 128 MB 128 MB 1 MB

« Dividing into blocks is normal for a file system. E.g., the default block size in Linux is 4KB.
The difference of HDFS is the scale.

« Hadoop was designed to operate at the petabyte scale.

« Every data block stored in HDFS has its own metadata and needs to be tracked by a
central server.
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HDFS blocks

* Replication patterns of data blocks in HDFS.

------------------------------------------------------

e B 4 e L 4 R
I a a* 1 a' b’ I
\ b? b? % c? ¢? :
| [ ] || [@ 7] |
| a | ] |
é KData Node 1 ) \Data Node 2 / ' é \Data Node 3 33 \Data Node 4 j é
E Rack 1 ' E Rack 2 E

 When HDFS stores the replicas of the original blocks across the Hadoop cluster, it tries to
ensure that the block replicas are stored in different failure points.
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HDFS is a User-Space-Level file system Counema
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Interaction between HDFS components X,
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Before Hadoop 2.0, NameNode was a single point of failure and operation

limitation.

Before Hadoop 2, Hadoop clusters usually have fewer clusters that were able to
scale beyond 3,000 or 4,000 nodes.

Multiple NameNodes can be used in Hadoop 2.x. (HDFS High Availability
feature — one is in an Active state, the other one is in a Standby state).

______________________

€

Block locavions
Block metadata

rarcry

__Moster Node1 !

Ced i G
el (] Cel
H
Ce] |

\D#taNode 1 ) | Data Node 2 | | Dota Node3 | | Data

Block metadata

Favory

Block locaboosJ

Master Node 2

....................................................

http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html
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High Availability of the NameNodes 60,
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« Active NameNode

« Standby NameNode — keeping the state of the block locations and block metadata in memory ->
HDFS checkpointing responsibilities.

[Active NameNode J [Standby NameNode]

| : | : |

: ZookeeperFC P ZookeeperFC

; 4 el 1 [ Y&l ' [ )
JournalNode JournalNode JournalNode
Zookeeper Zookeeper Zookeeper

FEN 7 1 ESN, 7 | P N\ J/
Master Node 1 Master Node 2 Master Node 3

« JournalNode - if a failure occurs, the Standby Node reads all completed journal entries to
ensure the new Active NameNode is fully consistent with the state of cluster.

« Zookeeper — provides coordination and configuration services for distributed systems.
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All hadoop commands are invoked by the bin/hadoop script.

hadoop [--config confdir] [COMMAND]
[GENERIC OPTIONS] [COMMAND OPTIONS]
% hadoop fsck / -files —blocks:

- list the blocks that make up each file in HDFS.

18

For HDFS, the schema name is hdfs, and for the local file system, the schema name is
file.

A file or director in HDFS can be specified in a fully qualified way, such as:
hdfs://namenodehost/parent/child or hdfs://namenodehost

The HDFS file system shell command is similar to Linux file commands, with the following
general syntax: hadoop hdfs —file_cmd

For instance mkdir runs as:
$hadoop hdfs dfs —mkdir /user/directory_name
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Several useful commands for HDFS -- 1l c@
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For example, to create a directory named “joanna”, run this mkdir
command:

$ hadoop hdfs dfs -mkdir /user/joanna

Use the Hadoop put command to copy a file from your local file
system to HDFS:

$ hadoop hdfs dfs -put file name /user/login_user name

For example, to copy a file named data.txt to this new directory,
run the following put command:

$ hadoop hdfs dfs -put data.txt /user/joanna

Run the Is command to get an HDFS file listing:
$ hadoop hdfs dfs -Is .
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*  YARN - Yet Another Resource Negotiator:
— ATool that enables the other processing frameworks to run on Hadoop.

— A general-purpose resource management facility that can schedule and
assign CPU cycles and memory (and in the future, other resources, such as
network bandwidth) from the Hadoop cluster to waiting applications.

=>YARN has converted Hadoop from simply a batch

processing engine into a platform for many different modes
of data processing, from traditional batch to interactive
gueries to streaming analysis.
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Four distinctive layers of Hadoop 2,
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Distributed Storage { HDFS ]

Distributed storage: The Hadoop Distributed File System (HDFS) is the storage layer where the data,
interim results, and final result sets are stored.

Resource management: In addition to disk space, all slave nodes in the Hadoop cluster have CPU
cycles, RAM, and network bandwidth. A system such as Hadoop needs to be able to parcel out these
resources so that multiple applications and users can share the cluster in predictable and tunable ways. This
job is done by the JobTracker daemon.

Processing framework: The MapReduce process flow defines the execution of all applications in
Hadoop 1. As we saw in Chapter 6, this begins with the map phase; continues with aggregation with shuffle,
sort, or merge; and ends with the reduce phase. In Hadoop 1, this is also managed by the JobTracker
daemon, with local execution being managed by TaskTracker daemons running on the slave nodes.

Application Programming Interface (API): Applications developed for Hadoop 1 needed to be coded
using the MapReduce API. In Hadoop 1, the Hive and Pig projects provide programmers with easier
interfaces for writing Hadoop applications, and underneath the hood, their code compiles down to
MapReduce.
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4 JobTracker )

[ Client }= -
[ scheddng |
L_progress tracking |
|  fsuktolerance | .
‘ | [‘resource management |
[TaskTracker] b [ Tasthacker] [ TaskTracker] \ -
: Master Node
E—m‘%—i E—%m—i
Wap Task 3 Wap Yask
Slave Node 1 ' Slave Node 2

1. The client application submits an application request to the JobTracker.

2. The JobTracker determines how many processing resources are needed to execute the entire
application.

3. The JobTracker looks at the state of the slave nodes and queues all the map tasks and reduce tasks
for execution.

4. As processing slots become available on the slave nodes, map tasks are deployed to the slave nodes.
Map tasks are assigned to nodes where the same data is stored.

5. The JobTracker monitors task progress. If failure, the task is restarted on the next available slot.
After the map tasks are finished, reduce tasks process the interim results sets from the map tasks.
7. The result set is returned to the client application.

o
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« MapReduce is a successful batch-oriented programming model.

« Aglass ceiling in terms of wider use:
— Exclusive tie to MapReduce, which means it could be used only for batch-
style workloads and for general-purpose analysis.

« Triggered demands for additional processing modes:
— Graph Analysis
— Stream data processing
— Message passing
= Demand is growing for real-time and ad-hoc analysis
= Analysts ask many smaller questions against subsets of data
and need a near-instant response.
=> Some analysts are more used to SQL & Relational databases

YARN was created to move beyond the limitation
of a Hadoop 1 / MapReduce world.
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Hadoop Data Processing Architecture

L An MapReduce | |MapReduce || Pig || ve | | WBase Y
R e As s e e s - Gaaph MP Swoem | __
LT T T T T T T T T T e y — —— — ———— — . (messape (streaming dotal|
| Processing Framewerk | MapReduce v2 Tez Hoys i ] !
S AL LSRR s S S ' . i A—— S —— L ——— s A—— U d|
E Resource Management YARN E
E Dastridbeted Storage HOFS E
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YARN,S application execution UNIVERSITY
—— g 3.
[ Client 3 o Resource Manager
) [ oo Ang ]
'] | resosrce masagement | ‘
\. i
- ; < [ Job History Server : |
(Nodo Managerj { [Node ManagerJ [Node ManagerJ ‘
Rppkcaton master }——ip{_ Contamer | Contaner ] Master Node
L Contaner <: Contaner | Contaner ]
Contamer L Appiicetion master Containes
AP a0 Sy 5te¢
Container ] Contaner
Slave Node 1 Slave Node2 @ - Slave Node n

+  Client submits an application to Resource Manager.

+ Resource Manager asks a Node Manager to create an Application Master instance and starts up.
* Application Manager initializes itself and register with the Resource Manager

»  Application manager figures out how many resources are needed to execute the application.

« The Application Master then requests the necessary resources from the Resource Manager. It sens
heartbeat message to the Resource Manager throughout its lifetime.

+ The Resource Manager accepts the request and queue up.

* As the requested resources become available on the slave nodes, the Resource Manager grants the
Application Master leases for containers on specific slave nodes.

* .... 2 only need to decide on how much memory tasks can have.
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Remind -- MapReduce Data Flow Corumia
Client
program Submit job > | J°b| .
Assign task trackers
Task Coordinate map and reduce phases
map() tracker Provide job progress info
InputFormat| ﬁ
/; R1 DFS
DFS : partition() Task
Split1 Output
Split2 combine0 tracker [ | e 1
' L | Splita
el T
file -
SpHt M2
Task
Task
tracker tracker/‘ Sort
& Y DFS
M3 Read| [reduce()| oy
¥ | e 2
Task Output W
tracker comect

Map phase Reduce phase

http://www.ibm.com/developerworks/cloud/library/cl-openstack-deployhadoop/
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« Data Source: Airline On-time Performance data set (flight data set).
— All the logs of domestic flights from the period of October 1987 to April 2008.

— Each record represents an individual flight where various details are
captured:

« Time and date of arrival and departure
 Originating and destination airports
« Amount of time taken to taxi from the runway to the gate.

— Download it from Statistical Computing:
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http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/

Other datasets available from Statistical Computing L

UNIVERSITY

Bi-Annual Data Exposition

Every other year, at the Joint Statistical Meetings, the Graphics Section and the Computing
Section join in sponsoring a special Poster Session called The Data Exposition , but more
commonly known as The Data Expo. All of the papers presented in this Poster Session are
reports of analyses of a common data set provided for the occasion. In addition, all papers
presented in the session are encouraged to report the use of graphical methods employed
during the development of their analysis and to use graphics to convey their findings.

Data sets
e 2013: Soul of the Community
e 2011: Deepwater horizon oil spill
e 2009: Airline on time data
e 2006: NASA meteorological data. Electronic copy of entries
e 1997: Hospital Report Cards
e 1995: U.S. Colleges and Universities

e 1993: Oscillator time series & Breakfast Cereals
1991: Disease Data for Public Health Surveillance
¢ 1990: King Crab Data
e 1988
1986

: Baseball

- Geometric Features of Pollen Grains http: //stat-computing. org /dataexpo /
e 1983: Automobiles
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Flight Data Schema e
Name Description
1 Year 1987-2008
2 Month 1-12
3 DayofMonth 1-31 o o )
4 DavOfWeek 1 (Monday) - 7 (Sunday) 17 Origin origin |IATA airport code
a ee onday) - unda L ,
Y y ] y 18 Dest destination |ATA airport code
5 DepTime actual departure time (local, hhmm) . .
) 19 Distance in miles
6 CRSDepTime scheduled departure time (local, hhmm) ) o o
o 20 Taxiln taxi in time, in minutes
7 ArrTime actual arrival time (local, hhmm) ] ] L
S 21 TaxiOut taxi out time in minutes
8 CRSArTime scheduled arrival time (local, hhmm) )
) ] _ _ 22 Cancelled was the flight cancelled?
9 UniqueCarrier unique carrier code ) )
_ _ 23 CancellationCode reason for cancellation
10 FlightNum flight number .
) ) 24 Diverted 1=yes,0=no
11 TailNum plane tail number ) T
o 25 CarrierDelay in minutes
12 ActualElapsedTime in minutes o
o 26 WeatherDelay in minutes
13 CRSElapsedTime in minutes o
o o 27 NASDelay in minutes
14 AirTime in minutes . o
_ o 28 SecurityDelay in minutes
15 ArrDelay arrival delay, in minutes ) o
o 29 LateAircraftDelay in minutes
16 DepDelay departure delay, in minutes
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MapReduce Use Case Example - flight data &,
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« Count the number of flights for each carrier

» Serial way (not MapReduce):

Listing 6-1: Pseudocode for Calculating The Number of Flights By
Carrier Serially

create a two-dimensional array

create a row for every airline carrier
populate the first column with the carrier code
populate the second column with the integer zero

for each line of flight data
read the airline carrier code
find the row in the array that matches the carrier code
increment the counter in the second column by one

print the totals for each row in the two-dimensional array
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MapReduce Use Case Example - flight data &,
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Count the number of flights for each carrier

Parallel way:

Listing 6-2: Pesudocode for Calculating The Number of Flights By
Carrier in Parallel

Map Phase:
for each line of flight data
read the current record and extract the airline carrier code
output the airline carrier code and the number one as a key/value pair

Shuffle and Sort Phase:
read the list of key/value pairs from the map phase
group all the values for each key together
each key has a corresponding array of values
sort the data by key
output each key and its array of values

Reduce Phase:
read the list of carriers and arrays of values from the shuffle and sort phase
for each carrier code

add the total number of ones in the carrier code's array of values together

print the totals for each row in the two-dimensional array
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MapReduce application flow L2,
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Determine the exact data sets to process from the data blocks. This involves
calculating where the records to be processed are located within the data blocks.

Run the specified algorithm against each record in the data set until all the records
are processed. The individual instance of the application running against a block of
data in a data set is known as a mapper task. (This is the mapping part of

MapReduce.)

Locally perform an interim reduction of the output of each mapper. (The outputs
are provisionally combined, in other words.) This phase is optional because, in
some common cases, it isn't desirable.

Based on partitioning requirements, group the applicable partitions of data from
each mapper’s result sets.

Boil down the result sets from the mappers into a single result set — the Reduce
part of MapReduce. An individual instance of the application running against
mapper output data is known as a reducer task.
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MapReduce
steps for flight
data
computation

33

Input file

WM ATTRII0I0N MRS 1S NASE TINA M- 1 SAN SO M

UMD TRATI0NET B4 PS IR NA T PANA, -2, 1 SANSFO 68T
FOTI2,00.7, 100, 1400 104, 12,00 ASUNA, MO KANA, 40,000 £WR._

flight-data.csv

Input splits l
calculated

O 2011009, L7700 500 S0P, 181 NASE PO NA L - SANSFO 6T, )
L ATRNTAICLTIOIE AP 15 NASY PINA 1 SAN 10400, )

X

[nu. UL AN TILIT AP, 1650 NAS PUNA TS, 11 SAN S90,44, JE
14%0

<

= Y

Mapper function (K1, V1)
Map Phase —<
S—
Shuffle and Sort =<
Reducer function (K2, list{V2))
Reduce Phase =< v
(AA, 165121)
list(K3, V3) ‘f’*"‘“’
(WA, 5197%)

- Y

A, 168121
Final output | AS- 2148
WA, 61975

E6893 Big Data Analytics — Lecture 2: Big Data Platform

Mapper output is
sorted and partitioned

map: (K1, V1) — list(K2, V2)
reduce: (K2, listiV2)) — list(K3, V3)

© 2024 CY Lin, Columbia University
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HBase is modeled after Google’s BigTable and written in Java. It is developed on top of
HDFS.

It provides a fault-tolerant way of storing large quantities of sparse data (small amounts of
information caught within a large collection of empty or unimportant data, such as finding
the 50 largest items in a group of 2 billion records, or finding the non-zero items
representing less than 0.1% of a huge collection).

HBase features compression, in-memory operation, and Bloom filters on a per-column basis

An HBase system comprises a set of tables. Each table contains rows and columns, much
like a traditional database. Each table must have an element defined as a Primary Key,
and all access attempts to HBase tables must use this Primary Key. An HBase column
represents an attribute of an object

A P ACHE

HBEBRSE
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Characteristics of data in HBase c@
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Sparse data

Table 12-1 Traditional Customer Contact Information Table

Customer Last First Middle E-mail Street
1D Name Name Name Address Address
00001 Smith John Timothy John. 1 Hadoop
Smith@ Lane, NY
Xyz.com mn
00002 Doe Jane NULL NULL 7 HBase
Ave, CA
22222

Row Key Column Family: {Column Qualifier:Version:Value}

CustomerName: {'FN’: 1383850182496:'John’, ‘LN’: 1383859182858:‘Smith’, ‘MN’: 1383859183001:" Timothy’, ‘MN’:
1383850182915:"T"}

ContactInfo: {'EA’: 1383850183030:'John.Smith@xyz.com’, 'SA’: 1383859183073:’1 Hadoop Lane, NY 11111’}

00001

00002 CustomerName: {'FN’: 1383859183103:'Jane’, ‘LN’: 1383859183163:'Doe’,
ContactInfo: { 'SA’: 1383859185577:7 HBase Ave, CA 22222’}

HDFS lacks random read and write access. This is where HBase comes into picture. It's a
distributed, scalable, big data store, modeled after Google's BigTable. It stores data as
key/value pairs.
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HBase Architecture oo

Logical Architecture

. MasterServer
Clients [Masto:SewerJ[ (Backup) ] Automatic

I S Scalability!

[RegionScmrJ [RegiooSemrJ [RegionSomr] R
rZookeepor Sem;
| Leader
Zookeeper Server, HBase Regions in Detail
| Follower )
- ~ ﬂogion \
Zookeeper Server @& Column Family 1Store . Columa Family n Store
| Follower )
MemStore MemStore
: (Cache for Writes) (Cache for Writes)
- e 1< BlockCache BlockCache
Zookeeper Ensemble for Kepsi1 5 do S o
HBase Coordination it o i e i
Services and Fault
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Creating a table

hbase(main):002:0> create 'CustomerContactInfo’, 'CustomerName', 'ContactInfo’
0 row(s) in 1.2080 seconds

37 E6893 Big Data Analytics — Lecture 2: Big Data Platform © 2024 CY Lin, Columbia University



HBase Example -- I 2,

UNIVERSITY

Entering Records

hbase(main):008:0> put 'CustomerContactInfo’, '00001', 'CustomerName:FN', 'John'
0 row(s) in 0.2870 seconds

hbase(main):009:0> put 'CustomerContactInfo’, '00001', 'CustomerName:LN', 'Smith'
0 row(s) in 0.0170 seconds

hbase(main):010:0> put 'CustomerContactInfo’, '00001', 'CustomerName:MN', "T'
0 row(s) in 0.0070 seconds

hbase(main):011:0> put 'CustomerContactInfo’, '00001’, 'CustomerName:MN', 'Timothy'
0 row(s) in 0.0050 seconds

hbase(main):012:0> put 'CustomerContactInfo’, '00001', 'ContactInfo:EA’, 'John.Smith@xyz.com'
0 row(s) in 0.0170 seconds

hbase(main):013:0> put 'CustomerContactInfo’, '00001', 'ContactInfo:SA’, '1 Hadoop Lane, NY 11111
0 row(s) in 0.0030 seconds

hbase(main):014:0> put 'CustomerContactInfo’, '00002', 'CustomerName:FN’, 'Jane'
0 row(s) in 0.0290 seconds

hbase(main):015:0> put 'CustomerContactInfo’, '00002', 'CustomerName:LN', 'Doe'
0 row(s) in 0.0090 seconds

hbase(main):016:0> put 'CustomerContactInfo’, '00002', 'ContactInfo:SA', '7 HBase Ave, CA 22222’

38 0 row(s) in 0.0240 seconds
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Scan Results

hbase(main):020:0> scan 'CustomerContactInfo’, {VERSIONS => 2}

ROW COLUMN+CELL

00001 column=ContactInfo:EA, timestamp=1383859183030, value=John.Smith@xyz.com
00001 column=ContactInfo:SA, timestamp=1383859183073, value=1 Hadoop Lane, NY 11111
00001 column=CustomerName:FN, timestamp=1383859182496, value=John

00001 column=CustomerName:LN, timestamp=1383859182858, value=Smith

00001 column=CustomerName:MN, timestamp=1383859183001, value=Timothy

00001 column=CustomerName:MN, timestamp=1383859182915, value=T

00002 column=ContactInfo:SA, timestamp=1383859185577, value=7 HBase Ave, CA 22222
00002 column=CustomerName:FN, timestamp=1383859183103, value=Jane

00002 column=CustomerName:LN, timestamp=1383859183163, value=Doe

2 row(s) in 0.0520 seconds
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Using the get Command to Retrieve Entire Rows and Individual Values

(1) hbase(main):037:0> get 'CustomerContactInfo’, '00001’

COLUMN CELL

ContactInfo:EA timestamp=1383859183030, value=John.Smith@xyz.com
ContactInfo:SA timestamp=1383859183073, value=1 Hadoop Lane, NY 11111
CustomerName:FN timestamp=1383859182496, value=John
CustomerName:LN timestamp=1383859182858, value=Smith
CustomerName:MN timestamp=1383859183001, value=Timothy

5 row(s) in 0.0150 seconds

(2) hbase(main):038:0> get 'CustomerContactInfo’, ‘00001,
{COLUMN => '"CustomerName:MN'}

COLUMN CELL

CustomerName:MN timestamp=1383859183001, value=Timothy

1 row(s) in 0.0090 seconds

(3) hbase(main):039:0> get 'CustomerContactInfo’, '00001’,
{COLUMN => 'CustomerName:MN',
TIMESTAMP => 1383859182015}
COLUMN CELL
CustomerName:MN timestamp=1383859182015, value=T
1 row(s) in 0.0290 seconds
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Creating, Dropping, and Alternating DB in Hive

(1) $ $HIVE_HOME/bin hive --service cli
(2) hive> set hive.cli.print.current.db=true;
(3) hive (default)> USE ourfirstdatabase;
(4) hive (ourfirstdatabase)> ALTER DATABASE
ourfirstdatabase SET DBPROPERTIES
(‘creator'="Bruce Brown', 'created_ for'="Learning Hive
DDL");
OK
Time taken: 0.138 seconds
(5) hive (ourfirstdatabase)> DESCRIBE DATABASE
EXTENDED ourfirstdatabase;
OK
ourfirstdatabase file: /home/biad
min/Hive/warehouse/ourfirstdatabase.db {created_f
or=Learning Hive DDL, creator=Bruce Brown}
Time taken: 0.084 seconds, Fetched: 1 row(s)CREATE
(DATABASE|SCHEMA) [IF NOT EXISTS]
database_name
(6) hive (ourfirstdatabase)> DROP DATABASE
ourfirstdatabase CASCADE;
OK
Time taken: 0.132 seconds
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(A) CREATE TABLE IF NOT EXISTS FlightInfo2007 (
Year SMALLINT, Month TINYINT, DayofMonth TINYINT, DayOfWeek TINYINT,
DepTime SMALLINT, CRSDepTime SMALLINT, ArrTime SMALLINT, CRSArrTime SMALLINT,
UniqueCarrier STRING, FlightNum STRING, TailNum STRING,
ActualElapsedTime SMALLINT, CRSElapsedTime SMALLINT,
AirTime SMALLINT, ArrDelay SMALLINT, DepDelay SMALLINT,
Origin STRING, Dest STRING,Distance INT,
Taxiln SMALLINT, TaxiOut SMALLINT, Cancelled SMALLINT,
CancellationCode STRING, Diverted SMALLINT,
CarrierDelay SMALLINT, WeatherDelay SMALLINT,
NASDelay SMALLINT, SecurityDelay SMALLINT, LateAircraftDelay SMALLINT)
COMMENT 'Flight InfoTable'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ')’
LINES TERMINATED BY '\n'
STORED AS TEXTFILE
TBLPROPERTIES (‘creator'='Bruce Brown', 'created_at'="Thu Sep 19 10:58:00 EDT 2013');
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Hive’s operation modes

44

; Linux Terminal
. Client hive>
) !
Hive CLI |
Hive Y —iceEERTE— §
Hive Driver Metastore Apache | |
Fl Derby DB | |
| Web Browser
- Client | httpy/madoop:998/mwi
Y '
Hiv Web Inerface Hive CLI
Hive \/ — g
Hive Driver > Metastore Apache !
DOI’bY DB !
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Reference OREILLY’

Learning~

Spark

LIGHTNING-FAST DATA ANALYSIS

Holden Karau, Andy Konwinski,
Patrick Wendell & Matei Zaharia
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Spark Stack
Spark SQL Spark Streaming mgdcli:::,e (;rraazl;lx
structured data real-time learning processing

Standalone Scheduler YARN
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Basic functionality of Spark, including components for:
» Task Scheduling
 Memory Management
* Fault Recovery
* Interacting with Storage Systems
« and more

Home to the API that defines resilient distributed datasets (RDDs) - Spark’s main
programming abstraction.

RDD represents a collection of items distributed across many compute nodes that can be
manipulated in parallel.
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First language to use — Python

Downloads Documentation Community Success Stories News Events

Compound Data T

Python is a programming language that lets you work quickly
and integrate systems more effectively. 2> Learn More

48 E6893 Big Data Analytics — Lecture 2: Big Data Platform © 2024 CY Lin, Columbia University



o

CoOLUMBIA
UNIVERSITY

bin/pyspark

holden@hmbp2:~/Downloads/spark-1.1.0-bin-hadoopl$ ./bin/pyspark
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2) on linux2
Type "help”, "copyright”, “"credits” or "license" for more information.
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Using Spark's default logd4) profile: org/apache/spark/logd)-defaults.properties
14/11/19 14:33:49 WARN Utils: Your hostname, hmbp2 resolves to a loopback address: 127.0.1.1; using 172.17.42.1 instead (on interface docker®)
14/11/19 14:33:49 WARN Utils: Set SPARK LOCAL IP if you need to bind to another address
14/11/19 14:33:49 INFO SecurityManager: Changing view acls to: holden
14/11/19 14:33:49 INFO SecurityManager: Changing modify acls to: holden,
14/11/19 14:33:49 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(holden, )
users with modify permissions: Set(holden, )
/11/19 14:33:49 INFO S1f4jlLogger: Slf4jLogger started
/11/19 14:33:49 INFO Remoting: Starting remoting
/11719 14:33:49 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@172.17.42.1:35021)
/11/19 14:33: INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@l72.17.42.1:35021)
/11/19 14:33: INFO Utils: Successfully started service ‘sparkDriver' on port 35021.
4/11/19 14:33:49 INFO SparkEnv: Registering MapOutputTracker
/11/19 14:33: INFO SparkEnv: Registering BlockManagerMaster
/11/19 14:33: INFO DiskBlockManager: Created local directory at /tmp/spark-local-20141119143349-5776
/11/19 14:33: INFO Utils: Successfully started service 'Connection manager for block manager' on port 57218,
/11/19 14:33:49 INFO ConnectionManager: Bound socket to port 57218 with id ConnectionManagerId(172.17.42.1,57218)
/11/19 14:33: INFO MemoryStore: MemoryStore started with capacity 265.4 MB
/11/19 14:33: INFO BlockManagerMaster: Trying to register BlockManager
/11/19 14:33:49 INFO BlockManagerMasterActor: Registering block manager 172.17.42.1:57218 with 265.4 MB RAM
/11/19 14:33: INFO BlockManagerMaster: Registered BlockManager
/11/19 14:33: INFO HttpFileServer: HTTP File server directory 1is /tmp/spark-399c53ec-0be8-4043-9a7d-9345e970576d
/11/19 14:33: INFO HttpServer: Starting HTTP Server
/11/19 14:33:49 INFO Utils: Successfully started service 'HTTP file server' on port 49008.
/11/19 14:33: INFO Utils: Successfully started service 'SparkUI' on port 4040.
/11/19 14:33: INFO SparkUI: Started SparkUI at http://172.17.42.1:40646
/11/19 14:33: INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@l72.17.42.1:35021/user/HeartbeatReceiver
Welcome to

//
\V} / /]
IN o S T T I\ \ version 1.1.0

Using Python version 2.7.6 (default, Mar 22 2014 22:59:56)
SparkContext available as sc.

>>> l
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Test installation

Example 2-1. Python line count

>>> lines = sc.textFile("README.md") # Create an RDD called lines
>>> lines.count() # Count the number of items in this RDD

127

>>> lines.first() # First item in this RDD, i.e. first line of README.nmd
u'# Apache Spark'
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» At a high level, every Spark application consists of a driver program that launches various
parallel operations on a cluster.

The driver program contains your application’s main function and defines distributed
databases on the cluster, then applies operations to them.

In the preceding example, the driver program was the Spark shell itself.

Driver programs access Spark through a SparkContext object, which represents a
connection to a computing cluster.

In the shell, a SparkContext is automatically created as the variable called sc.
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Driver Programs

Driver programs typically manage a number of nodes called executors.

If we run the count() operation on a cluster, different machines might count lines in different
ranges of the file.

Worker Node

Executor

Task | | Task

Driver Program e

SparkContext

Worker Node'

Executor

Task | | Task
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Example filtering

>>> lines = sc.textFile("README.md")

>>> pythonLines = lines.filter(lambda 1line: "Python" in line)

>>> pythonLines.first()
u'## Interactive Python Shell’

lambda —> define functions inline in Python.

def hasPython(line):
return "Python" in line

pythonLines = lines.filter(hasPython)
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Example — word count

import sys
from operator import add

from pyspark import SparkContext

if __name__ == "__main__":
if len(sys.argv) != 2:
print >> sys.stderr, "Usage: wordcount <file>"
exit(-1)
sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[1], 1)
counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, 1)) \
. reduceByKey(add)
output = counts.collect()
for (word, count) in output:
print "%s: %i" % (word, count)

sc.stop()
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Resilient Distributed Dataset (RDD) Basics

« An RDD in Spark is an immutable distributed collection of objects.

« Each RDD is split into multiple partitions, which may be computed on different nodes of the
cluster.

» Users create RDDs in two ways: by loading an external dataset, or by distributing a
collection of objects in their driver program.

» Once created, RDDs offer two types of operations: transformations and actions.

<==
>>> lines = sc.textFile("README.nd") create RDD

>>> pythonLines = lines.filter(lambda line: "Python" in line) <== transformation

>>> pythonLines.first() <== gction
u'## Interactive Python Shell'

Transformations and actions are different because of the way Spark computes RDDs.
==> Only computes when something is, the first time, in an action.
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Persistance in Spark

By default, RDDs are computed each time you run an action on them.

If you like to reuse an RDD in multiple actions, you can ask Spark to persist it using
RDD.persist().

RDD.persist() will then store the RDD contents in memory and reuse them in future actions.
Persisting RDDs on disk instead of memory is also possible.

The behavior of not persisting by default seems to be unusual, but it makes sense for big
data.

Example 3-4. Persisting an RDD in memory
>>> pythonLines.persist

>>> pythonLines.count()
2

>>> pythonLines.first()
u'## Interactive Python Shell'

To summarize, every Spark program and shell session will work as follows:

1. Create some input RDDs from external data.

2. Transform them to define new RDDs using transformations like filter().
3. Ask Spark to persist() any intermediate RDDs that will need to be reused.
4.

Launch actions such as count() and first() to kick off a parallel computation,
which is then optimized and executed by Spark.

56 E6893 Big Data Analytics — Lecture 2: Big Data Platform © 2024 CY Lin, Columbia University



Spark SQL

JDBC/ODBC | |YourAppIication| | Spark SQL shell |

| Hive | | JSON l | Parquet | | |
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Spark SQL

Spark SQL can be built with or without Apache Hive, the Hadoop SQL engine. Spark
SQL with Hive support allows us to access Hive tables, UDFs (user-defined func-
tions), SerDes (serialization and deserialization formats), and the Hive query lan-
guage (HiveQL). Hive query language (HQL) It is important to note that including
the Hive libraries does not require an existing Hive installation. In general, it is best
to build Spark SQL with Hive support to access these features. If you download Spark
in binary form, it should already be built with Hive support. If you are building Spark

from source, you should run sbt/sbt -Phive assembly.
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Using Spark SQL — Steps and Example

Example 9-5. Python SQL imports
# Import Spark SQL
from pyspark.sql import HiveContext, Row

Example 9-8. Constructing a SQL context in Python

hiveCtx = HiveContext(sc)

Example 9-11. Loading and quering tweets in Python

input = hiveCtx.jsonFile(inputFile)

# Register the input schema RDD

input.registerTempTable("tweets")

# Select tweets based on the retweetCount

topTweets = hiveCtx.sql("""SELECT text, retweetCount FROM
tweets ORDER BY retweetCount LIMIT 10""")
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Query testtweet.json

Get it from Learning Spark Github ==> https://github.com/databricks/learning-spark/tree/master/files

{"createdAt":"Nov 4, 2014 4:56:59 PM","id":529799371026485248,"text":"Adventures With
Coffee, Code, and Writing.","source":"\u@0@3ca href\u@@3d\"http://twitter.com\"
rel\u@@3d\"nofollow\"\u@0@3eTwitter Web

Client\u@03c/a\u003e","isTruncated": false,"inReplyToStatusId":-1,"inReplyToUserId":-1,"
isFavorited":false,"retweetCount":0,"isPossiblySensitive":false,"contributorsIDs":[],"
userMentionEntities": [],"urlEntities": [],"hashtagEntities": [],"mediaEntities": [],"
currentUserRetweetId":-1,"user":{"id":15594928, "name":"Holden
Karau","screenName":"holdenkarau","location":"","description":"","descriptionURLEntities":
[1,"isContributorsEnabled":false,"profileImageUrl":"http://pbs.twimg.com/profile_images/
3005696115/2036374bbadbed85249cdd50aac6el70_normal. jpeg","profileImageUrlHttps":"https://
pbs.twimg.com/profile_images/3005696115/2036374bbadbed85249cdd50aac6el70_normal. jpeg","
isProtected":false,"followersCount":1231,"profileBackgroundColor":"CODEED","
profileTextColor":"333333","profileLinkColor":"0084B4","profileSidebarFillColor":"DDEEF6",
"profileSidebarBorderColor":"FFFFFF","profileUseBackgroundImage":true,"showAllInlineMedia"
:false,"friendsCount":600,"createdAt":"Aug 5, 2011 9:42:44
AM"™,"favouritesCount":1095,"utcOffset":-3,"profileBackgroundImageUri":"",k"
profileBackgroundImageUrlHttps":"","profileBannerImageUrl":"","profileBackgroundTiled":
true,"lang":"en","statusesCount":6234,"isGeoEnabled":true,"isVerified": false,"translator":
false,"listedCount":0,"isFollowRequestSent":false}}

>>> print topTweets.collect()
[Row(text=u'Adventures With Coffee, Code, and Writing.', retweetCount=0)]
...

60 E6893 Big Data Analytics — Lecture 2: Big Data Platform © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Machine Learning Library in Spark — MLIib

An example of using MLIib for text classification task, e.g., identifying spammy emails.

61

1. Start with an RDD of strings representing your messages.

2. Run one of MLIib’s feature extraction algorithms to convert text into numerical
features (suitable for learning algorithms); this will give back an RDD of vectors.

3. Call a classification algorithm (e.g., logistic regression) on the RDD of vectors;
this will give back a model object that can be used to classify new points.

4. Evaluate the model on a test dataset using one of MLIib’s evaluation functions.

Model
spam: Featurization Training Evaluation )
free money now! - - - - - - - )
buy this money - - - — _
free savings 95 - -

non-spam -7
howareyou? -~ . -~
that Spark job
that Spark job - ~

Training Data

-

Feature Vectors

Model Best Model
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Spark ML Clustering Cowma
e K-means
MLlIib: Main o Input Columns
. o QOutput Columns
Guide e Latent Dirichlet allocation (LDA)
e Basic statistics * Bisecting k-means
e Pipelines e Gaussian Mixture Model (GMM)

o Input Columns
o Output Columns

e Extracting, transforming
and selecting features

e Classification and
Regression

e Clustering

e Collaborative filtering

e Frequent Pattern Mining

¢ Model selection and tuning

e Advanced topics
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Example: clustering

Feature
Space
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Clustering a collection involves three things:

» An algorithm—This is the method used to group the books together.

= A notion of both similarity and dissimilarity—In the previous discussion, we relied
on your assessment of which books belonged in an existing stack and which
should start a new one.

= A stopping condition—In the library example, this might be the point beyond
which books can’t be stacked anymore, or when the stacks are already quite
dissimilar.
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Generate Vectors from input
data

Write Vectors to input

directory

Write initial cluster centers
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K-means clustering in action. Starting with three random points as centroids (top left), the
map stage (top right) assigns each point to the cluster nearest to it. In the reduce stage (bottom left),
the associated points are averaged out to produce the new location of the centroid, leaving you with the
final configuration (bottom right). After each iteration, the final configuration is fed back into the same

loop until the centroids come to rest at their final positions.
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HelloWorld clustering scenario result Coumna
1.0: [1.000, 1.000] belongs to cluster 0
1.0: [2.000, 1.000] belongs to cluster 0
1.0 [1.000, 2.000] belongs to cluster 0
1.0 [2.000, 2.000] belongs to cluster 0
1.0 [3.000, 3.000] belongs to cluster 0
1.0: [8.000, 8.000] belongs to cluster 1
1.0: [9.000, 8.000] belongs to cluster 1
1.0: [8.000, 9.000] belongs to cluster 1
1.0: [9.000, 9.000] belongs to cluster 1
'3
@ 8,9)(9,9)
i .(8,8)‘9,8)
Cluster 1
(3,3)
‘1 '2)42'2) Cluster 0
Jen
>
(0,0) X-axis
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Testing difference distance measures

Euclidean distance measure

d = A/(al —b1)2 +(ay _b2)2 toet(a, - bn)2

Squared Euclidean distance measure
d=(aj—by)*+ (ag —by)* + ... + (a, — by)*

Manhattan distance measure

d= |a1—b1| . |a2—b2| T sas T |an—bn|
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y-axis

Manhattan distance measure

6,6)
d = |al — bll + |a2 — b2| 4+ ...+ |an —- bnl 8(Manhattandistanﬂ|_‘

5.65 (Euclidean distance)

A 4

N

QL

Cosine distance measure i

de1_ (a;b; taghy +... +a,b )
2 2 2 2 2 2 (2.3)
(A/(a1 tag +...ta, )A/(b1 +by +...+Db."))
? 1)

(0,0) X-axis >
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Tanimoto distance measure

d=1_ (a;b; +aghy+ ... +a b )

A/(al2 + a22 +... 4+ an2) + A/(bf’ + b22 +...+ bn2) —(a;b; +aghy+...+a b )

Weighted distance measure

Mahout also provides a WeightedDistanceMeasure class, and implementations of
Euclidean and Manhattan distance measures that use it. A weighted distance measure
is an advanced feature in Mahout that allows you to give weights to different dimen-
sions in order to either increase or decrease the effect of a dimension
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Distance measure ':It:':'att’lec:nf Vectors?® in cluster O Vectors in cluster 1
EuclideanDistanceMeasure 3 0,1,2,3,4 56,7,8
SquaredEuclideanDistanceMeasure 5 0,1,2,3,4 56,7,8
ManhattanDistanceMeasure 3 0,1,2,3,4 56,7,8
CosineDistanceMeasure 1 1 0,2,3,45,6,7,8
TanimotoDistanceMeasure 3 0,1,2,3,4 56,7,8

(1,1) N
(2,1)

0 (8,9)(9,9)
( 1 ’ 2 ) i .(s,e).(g,s)
(2,2)
(3,3)
( 8 ’ 8 ) (3,3)

(12)(2.2)
( 8 ’ 9 ) (1.1)(2,1) N
( 9 8 ® @ € Initial centre of cluster 1
' ) (O*g) \ X-axis >

( 9 p 9 ) Initial centre of cluster 0
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Sample code of K-mean clustering in Spark L

UNIVERSITY

from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator

# Loads data.
dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt")

# Trains a k—-means model.
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(dataset)

# Make predictions
predictions = model.transform(dataset)

# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()

silhouette = evaluator.evaluate(predictions)
print("Silhouette with squared euclidean distance = " + str(silhouette))

# Shows the result.

centers = model.clusterCenters()

print("Cluster Centers: ")

for center in centers:
print(center)
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Canopy clustering to estimate the number of clusters Corwmnia

Tell what size clusters to look for. The algorithm will find the number of clusters that have
approximately that size. The algorithm uses two distance thresholds. This method prevents all
points close to an already existing canopy from being the center of a new canopy.

76

Canopy clustering: if you start with a point (top left) and mark it as part of a canopy, all the
points within distance T, (top right) are removed from the data set and prevented from becoming new
canopies. The points within the outer circle (bottom-right) are also put in the same canopy, but they're
allowed to be part of other canopies. This assignment process is done in a single pass on a mapper. The
reducer computes the average of the centroid (bottom right) and merges close canopies.
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Other clustering algorithms Corwmnia
Exclusive clustering Overlapping clustering
» A
R] )
& 3
> >
[ > & >
(0,0) X-axis (0,0) X-axis

Hierarchical clustering
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Different clustering approaches

FIXED NUMBER OF CENTERS
BOTTOM-UP APPROACH: FROM POINTS TO CLUSTERS VIA GROUPING

Initial datapoints Clusters formed after 1% iteration
A A
O
2 | N 2 O
8 A 3 A
g m * L,
e g
e > ® >
(0,0) X-axis (0,0) x-axis

TOP-DOWN APPROACH: SPLITTING THE GIANT CLUSTER __

1on
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y-axis
y-axis

® > ®
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Questions?
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