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The Design of a QoS-Controlled ATM-Based
Communications System in Chorus

Geoff Coulson, Andrew Campbell, Philippe Robin, Gordon Blair, Michael Papathomas, and Doug Shepherd

Abstract— We describe the design of an application platform
able to run distributed real-time and multimedia applications
alongside conventional UNIX programs. The platform is em-
bedded in a microkernel/PC environment and supported by an
ATM-based, QoS-driven communications stack. In particular, we
focus on resource-management aspects of the design and deal with
CPU scheduling, network resource-management and memory-
management issues. An architecture is presented that guarantees

QoS levels of both communications and processing with varying'

degrees of commitment as specified by user-level QoS parameters.
The architecture uses admission tests to determine whether or not
new activities can be accepted and includes modules to translate
user-level QoS parameters into representations usable by the
scheduling, network, and memory-management subsystems.

I. INTRODUCTION

N the recent past, significant research has been carried out

on high-speed communications systems for distributed real-
time and multimedia applications. A surprisingly small amount
of this work, however, has considered the issues that arise
when ATM and other high-speed networks are interfaced to
conventional workstations running standard multiprogrammed
operating systems such as UNIX. Rather, the research has
tended to focus on network issues [5], [22] or has made
specific assumptions about the end points of multimedia and
real-time communication. Some researchers, for example, have
assumed specialized end-systems such as CODEC’s or multi-
media enhancement units [18], [25]. Others (e.g., [21]) have
considered specialized real-time operating systems unable to
support conventional applications or conventional modes of
operation such as dynamic process creation.

The research reported in this paper is aimed at providing
UNIX-compatible system software support for distributed real-
time and multimedia applications in an environment of con-
ventional workstations and high-speed networks. Our specific
aims are:

+ (o support a heterogeneous system consisting of PC and
workstation end-systems connected by ATM, Ethernet,
and proprietary high-speed networks,

« to enable real-time and multimedia applications to enjoy
predictable performance in both communications and
processing according to user-provided QoS parameters,
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« to retain the ability to run standard UNIX applications

alongside real-time applications.

Our approach is to use a microkernel operating system,
specifically Chorus [7], to underpin both UNIX and real-time
applications. A standard UNIX SVR4 “personality” included
with Chorus is used to support UNIX applications. Our ex-
tensions to Chorus described in this paper are used to support
real-time applications.

Our previous work in the field of distributed real-time and
multimedia-application support has concentrated on API issues
[14], CPU scheduling issues [13], transport issues [9], and
network architecture [11]. Complementary to these areas, the
present paper focuses on the resource management strategies
used in our Chorus extensions. The three major resource
classes considered are CPU cycles, network resources and
physical memory. In this paper we focus on end-system-
related communications issues rather than Internet or network
resource-management issues (although we do cover resource
allocatior®in the ATM network environment). Broader network
and internetworking issues are discussed more fully in [11].

The paper begins by providing, in Section II, some nec-
essary background material on Chorus. Next we present, in
Section III, an overview of the architecture of our real-time
support infrastructure. This consists of:

« an application programmer’s interface (API) at which

QoS requirements can be stated,

o a CPU scheduling framework that minimizes kernel con-

text switches in both application and protocol processing,

« an ATM-based communications stack, which features an

enhanced IP layer for internetworking,

« a framework for QoS-driven memory management, and

« a framework for flow' management, which integrates the

management of resources in both end-systems and the
network.

We then, in Section IV, investigate the management of CPU,
communications, and memory resources in this architecture.
The various resource management functions are categorized
as either static or dynamic as defined in [11]. In essence,
static QoS management deals with connect-time issues such as
QoS translation (i.e., deriving resource quantities from QoS
parameters) and admission testing (i.e., determining whether
new sessions can be created given their specific resource
requirement and current resource availability).

1The term flow is used to refer to the end-to-end passage of data from
a source application, down through the source protocol stack, across the
network, up through the sink protocol stack, and eventually to the sink
application.
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Dynamic resource management, on the other hand, deals
with data-transfer time issues. In its full generality, dynamic
resource management subsumes maintenance, monitoring,
policing, and renegotiation of QoS levels [10]. The role of
the maintenance function, which is the only dynamic aspect
treated in this paper, is to actually achieve the requested levels
of QoS given the resources statically dedicated at resource-
allocation time—e.g., by providing suitable scheduling
mechanisms and arranging for time-constrained memory
access and protocol operation.

In the concluding sections of the paper, we discuss related
work in Section V and offer concluding remarks in Section V1.

II. BACKGROUND ON CHORUS

Chorus is a commercial microkernel technology that sup-
ports the implementation of conventional operating system
environments through the provision of “personalities” (for
example, a personality is available for UNIX SVR4 as men-
tioned above). The microkernel is implemented using modern
techniques such as multithreaded address spaces and integrated
message-based communications. The basic Chorus abstrac-
tions are actors, threads, and ports, all of which are named
by globally unique identifiers. Actors are address spaces and
containers of resources, which may exist in either user or
supervisor space. Threads are units of execution that run code
in the context of an actor. They are scheduled according to
either a preemptive priority-based or round-robin timeslicing
scheme. Ports are message queues used to hold incoming and
outgoing messages. The interprocess communication subsys-
tem supports both request/reply messages and asynchronous
messages.

Chorus has several desirable real-time features and has
been fairly widely used for embedded real-time applications.
Its real-time features include preemptive scheduling, page
locking, timeouts on system calls, and deferred interrupt
handling. Unfortunately, Chorus’ real-time support is not
fully adequate for the requirements of distributed real-time
and multimedia applications, principally because there is no
support for QoS specification and resource reservation:

* Although it is possible to specify thread scheduling con-
straints relative to other threads, absolute statements of
requirement for individual threads cannot be made.

* In the communications subsystem, the exclusive use of
connectionless datagrams makes it impossible to prespec-
ify communications resource allocation.

* Due to the use of a paged virtual-memory system, it is
not possible to place bounds on memory-access latency
except by the extreme measure of wiring pages.

Note, however, that such limitations are not unique to

Chorus: they are shared by most of the other microkemels
in current use (e.g., [2], [26]).

IIl. ARCHITECTURE

A. Application Programmer’s Interface

To remedy its current deficiencies for QoS specification and
real-time application support, we have extended the Chorus

Fig. 1. Devices, rtports, and handlers.

system call API with new low-level calls and abstractions. The
new abstractions, provided in both the kernel and a user-level
library, are illustrated in Fig. 1 and described below.

* riports: these are extensions of standard Chorus ports,

serving as access points for real-time communications.
Rtports have an associated QoS that defines timeliness
constraints on communication. They also provide direct
application access to buffers thus minimizing copy oper-
ations.
devices: these are producers, consumers, and filters of
real-time data that support the creation of rtports and
provide the memory for their buffers. One special type
of device is the null device implemented in a user-level
library and permits user code to produce/consume real-
time data through the use of rthandlers.
* rthandlers: these are user-supplied C routines that provide
the facility to embed application code in the real-time
infrastructure. They are attached to rtports at run-time and
upcalled on real-time threads by the infrastructure when
data are available/required. They encourage an event-
driven style of programming appropriate for real-time
applications and also avoid the context-switch overhead
associated with a traditional send()/recv()-based interface.
QoS-controlled connections. these are communication
channels with a specific QoS.2 A connection is established
between a source and a sink rtport according to a given
QoS specification. There are two types of connections:
stream connections for periodic- and continuous-media
data and message connections for time-constrained
messages. Stream connections are active in the sense that
they initiate the transfer of data by upcalling a source
rthandler (if attached). Message connections differ in that
they passively wait for a source thread to pass them data
via an ipcSend() call.

* QoS handlers: these are upcalled by the infrastructure in

a similar way to rthandlers but are used to notify the
application layer when QoS commitments provided by
connections have been violated.

In addition to these features, the API includes calls for
dynamically renegotiating the QoS of open connections and

2QoS-controlled connections are abstractions and are uniformly used
for both remote and local communications. In the remote case, they are
implemented in terms of the communications architecture described in Section
III-C. In the local case, they are implemented in terms of optimized memory-
mapping mechanisms described in Section IV-E.
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Fig. 2. Split-level scheduling architecture.

for building pipelines of “software signal processing” modules
for local continuous-media processing. It also has synchroniza-
tion primitives based on eventcounters and sequencers that
incorporate the notion of deadline inheritance {15], whereby
a “worker” thread carrying out a task on behalf of a calling
thread inherits the deadline of the caller. Full details of the
continuous media API are specified in [14] and [15].

B. Scheduling Architecture

The scheduling architecture exploits the concept of light-
weight threads, which are supported in a user-level library
and multiplexed on top a single Chorus kernel thread per
actor. In this context, we refer to Chorus kernel threads as
virtual processors (VP’s). The scheduling architecture is a
split-level configuration [17] consisting of a single kernel
scheduler (KLS) to schedule VP’s, and per-actor user-level
schedulers (ULS’s) to schedule lightweight threads on those
VP’s (see Fig. 2).

The advantage of lightweight threads and user-level sched-
uling is that context-switch overhead is minimal. On the
other hand, the drawback of user-level scheduling is that,
by definition, it cannot ensure that CPU resources are fairly
shared across multiple actors. This is the role of kernel-level
scheduling. The split-level architecture combines the benefits
of both user-level and kernel-level scheduling by maintaining
the following invariants:

1) each ULS always runs its most urgent’ lightweight
thread, and

2) the KLS always runs the VP supporting the globally
most urgent lightweight thread.

The scheduling invariants are maintained via a KLS/ULS
information exchange realized in terms of shared KLS/ULS
memory areas and software interrupts [17]. The shared mem-
ory area is divided into per-VP areas, each of which contains
the urgency of the most urgent runnable lightweight thread
known to its associated VP (along with some other information
as described below). These urgency values are read by the
KLS on each kernel-level rescheduling operation to determine
the next VP to schedule. Software interrupts are used by the
KLS to inform VP’s of the occurrence of real-time events
in a timely fashion. Such events include timer expirations
(used to implement preemption in user-level scheduling), and

3The notion of “urgency” is dependent on the scheduling policy used (e.g.,

it would be deadline for EDF scheduling and priority for rate monotonic
scheduling). The issue of scheduling policies is deferred until Section IV-C.

data arrivals from local kernel devices or from the network.
Software interrupts are always targeted at VP’s but can be
initiated either by kernel components (e.g., the KLS) or by
library code in other application actors (see Section IV-E).

The scheduling scheme also embodies the notion of condi-
tional urgency. This allows not only the urgency of the most
urgent runnable lightweight thread to be taken into account
by the KLS (as above), but also the urgency of currently
blocked threads. The implementation, which again exploits
the shared memory area, uses per-VP conditional urgency sets
that contain {thread.id, event, urgency} triples. In each triple,
urgency represents the urgency that thread thread_id would
have if only event was available to unblock it. The urgency
values must all be greater than the urgency of that VP’s most
urgent runnable lightweight thread and the event values must
all refer to events expected from an external source. Thus,
when the KLS has an event to deliver, it will run the VP
to which event is addressed iff there is a matching triple in
that VP’s conditional urgency set and the indicated urgency
value is globally more urgent than that of any other lightweight
thread.

To avoid potential violations of the scheduling invariants,
we implement the system call interface seen by lightweight
threads in terms of nonblocking system calls [24]. If light-
weight threads performing system calls were permitted to
block their underlying VP, they would also necessarily block
all other lightweight threads multiplexed on that VP. Then the
scheduling invariants would be violated if one of these other
threads happened to be the globally most urgent. Nonblocking
system calls avoid this problem by returning immediately
from system calls, thus allowing ULS’s to block the cailing
lightweight thread at the library level while continuing to run
other lightweight threads on the actor’s VP. The results of calls
are eventually notified to the ULS via software interrupts. On
receipt of such an interrupt the ULS stores the result in the
data structures of the original lightweight thread and then lets
it “return” from its system call. Thus application code sees
only blocking system calls (as per standard Chorus), and the
complexities of nonblocking calls are masked by library code.

The implementations of software interrupts and nonblocking
system calls also exploit the shared kernel/user memory area.
To deliver a software interrupt, the kernel places an event iden-
tifier and parameters in the shared-memory area and then alters
the program-counter field of the user VP’s context structure
(also in shared memory) to point to a well-known entry point
in the ULS. Thus, when the VP is next scheduled by the KLS,
the VP immediately enters the ULS, which picks up the event
identifier and parameters and schedules a lightweight thread
to deal with the event. The implementation of our variant
of nonblocking system calls, which, because of the analogy
with software interrupts, we rtefer to as asynchronous system
calls [15], is similar. The user-level library places an operation
identifier and parameters in shared memory and then sets an
“operation request” bit. The KLS, when it runs at the next
system clock tick, notices that the operation request bit is
set and copies the user’s parameters to the appropriate VP or
kernel-server thread as determined by the operation identifier.
Note that both software interrupts and asynchronous system
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Fig. 3. Communications architecture.

calls avoid a special domain crossing; the call is actually
effected the next time the recipient context (i.e., the ULS or
the kernel) gets control by other means.

C. Communications Architecture

The standard Chorus communications stack was designed
for the support of connectionless datagram services and uses
retransmission strategies to enhance reliability. In contrast, our
communications architecture (see Fig. 3) is intended to sup-
port QoS-controlled connection-oriented communications and
configurable error control. Because of these disparate design
goals, we have initially designed our stack to operate entirely
separately from the existing Chorus facilities (however, we do
intend in the future to integrate the functionality of the two
stacks in a unified architecture).

1) Abstract Layering: The communications architecture
enforces a strong distinction between communication for
signaling purposes (i.e., connection establishment, network
resource management, and connection tear-down), and user
data-transfer purposes. The AALS and ATM layers are
common to both the signaling and the user data stack and
are described below, as is the transport layer. The signaling
stack specific layers comprise an upper network sublayer
for resource management in IP routers and a lower network
sublayer for resource management in ATM switches. The
IP layer is a subset of the existing RSVP network resource
reservation protocol [32]. The ATM signaling protocol, called
ATMSig, is a subset of the ATM Forum’s UNI 3.0 [4].
Note that the signaling stack also includes a reliable signaling
message protocol over AALS, which is a subset of the service-
specific connection-oriented protocol (SSCOP) (not shown in
Fig. 3).

The user data stack is positioned alongside the signaling
stack. The upper architectural layer is a connection-oriented
transport protocol [8], which provides for QoS specifica-
tion at connection time (including configurable error control),
in service QoS renegotiation, and end-to-end flow control
(via a rate-based mechanism). Other transport-layer functions,
such as admission control, resource reservation, performance
monitoring, and dynamic QoS maintenance are supported
outside the transport protocol proper by the scheduling, con-

nection, and memory-management subsystems described in
this paper.

The user stack’s IP layer, called IP++, allows us to
interwork outside the ATM network in a heterogeneous en-
vironment. It offers QoS-enhanced facilities along the lines
of those proposed in Deering’s simple Internet protocol plus
(SIPP) [33]. In particular, IP++ uses a packet header field
called a flow-id to identify IP packets as belonging to a
particular connection or flow, and a flow-spec (see Section
IV-D) to define the QoS associated with each flow. Flow-specs
are held by IP++ routers* and used to determine the resources
dedicated to the router’s handling of each IP++ packet on the
basis of its flow-id. The state held by routers is initialized at
connection set up time by the RSVP signaling protocol. Below
the IP layer we use an AALS ATM adaptation layer service to
perform segmentation and reassembly of IP packets into/from
53-byte ATM cells.

The lowest layer of our architecture is based on the Lan-
caster Campus ATM network. This delivers ATM to a mix
of workstations, PC’s, and multimedia devices designed at
Lancaster [25]. It also interconnects a number of Ethernets
and interfaces to the rest of the UK. via a 10Mb/s SMDS
connection to the UK SuperJANET 100 Mb/s Joint Academic
Network. The PC’s that run the system described in this paper
are directly connected to a 4 x 4 ATM switch via ISA bus
interface cards.

2) Mapping the Architecture onto Chorus: In implementa-
tion, we map the abstract layered communications architecture
partly onto per-actor user-level libraries and partly onto a
single, per machine, supervisor actor called the network actor.’
The signaling aspects of the transport layer are implemented
in the flow-management-protocol actor described in Section
III-D. The data-transport aspects of the transport layer are
implemented in the same user-level library® that supports the
API abstraction discussed in Section III-A. This allows the
transport service interface to be provided by the library-level
rtport and rthandler abstractions defined in that section. The
transport protocol communicates with the network actor via
software interrupts for receive side and asynchronous system
calls for send-side communications (see Section III-B).

Below the transport protocol, the rest of the communications
architecture, including the ATM device driver, is implemented
in the network actor. The two signaling protocols, RSVP and
ATMsig, are not described here as they are considered to
be outside the scope of this end-system-oriented paper. In
the user stack, the major complexity involved in the IP4+4
implementation is in supporting the routing function. This is
required when the current host is neither the source nor sink
of a flow but is merely routing packets from one network

4Flow specs are also used to control resource reservation at the ATM level
in ATM switches in an analogous way.

5 Note that this is distinct from the standard Chorus “network actor,” which
is also called the “network device manager.”

SIn fact, the transport protocol also runs in supervisor space in the case of
connections terminated by rtports on hardware devices. This is so that data
passing between such devices on the same machine, or between such devices
and the network card, do not incur the overhead of passing through user space.
The API still permits applications at the user level to monitor the flow of data
in such connections by attaching rthandlers.
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to another. In this case, CPU and memory resources are
dedicated to flows on the basis of a flow-spec supplied by the
flow-management protocol (see Section IV-D). Otherwise, the
function of the IP++ layer is effectively null as SDU sizes are
restricted and no SAR is required at the IP layer (see below).

AALS is also implemented in the network actor. A software
AALS implementation is required because our ATM interface
cards only support data transfer at the granularity of ATM
cells. The AALS implementation uses a single thread on the
receive side and per-flow threads on the send side to perform
segmentation and reassembly with optional checksumming.
The use of per-flow threads reduces multiplexing in the stack
to an absolute minimum as recommended in the literature [27].
Currently, the maximum service-data unit size for the AALS,
IP++, and transport layers alike is restricted to 64 Kb. This
means that no further segmentation/ reassembly is required
above the AALS layer.” The ATM cards are interrupt-driven
and communication between the interrupt service routines and
the per-flow AALS threads is via Chorus “miniports.” See
Section IV-D for more details of the low-level cell-handling
functions and AALS implementation.

D. Memory Management Architecture

The standard abstractions used by the Chorus virtual mem-

ory system are segments, regions and mappers:

» Segments are the unit of information exchange between
the outside world (e.g., files or swap areas) and the
virtual memory (VM) layer in the kernel. In main memory
segments are represented by so-called local caches of
physical pages.

» Regions are the unit of structuring of actor address spaces.
A region contains a portion of a segment mapped to
a given virtual address. Regions have associated access
rights policed by the VM layer.

» Mappers are supervisor actors that implement the link
between external segments and their main-memory rep-
resentation and maintain the protection and consistency
of segments. Mappers are accessed from the kernel via
an upcall RPC interface when the kernel needs to bring
in or swap out a page of a segment.

The purpose of our extended memory-management archi-
tecture, which is built on top of the above abstractions, is to
ensure that applications and QoS-controlled connections can
access memory regions with bounded latency. It is of little
use to offer guaranteed CPU resources to threads if they are
continually subject to nonpredictable memory-access latency
due to arbitrary page faulting.® Our design encapsulates most
of the QoS-driven memory-management functionality inside a
QoS-enhanced mapper called the QoS mapper. The roles of
the QoS mapper are:

« supplying application actors with memory regions offer-
ing latency-bounded access,

71t would be a relatively straightforward extension to support arbitrarily
sized buffers at the API level by supporting segmentation and reassembly in
the transport protocol if this proved necessary.

8Note that, in addition to buffers, it is also necessary to provide bounded
latency access to code and stack regions of QoS-controlled threads if QoS
guarantees are to be maintained.

« determining whether or not requests for QoS-controlled
memory resources should succeed or fail,

+ preempting QoS-controlled memory from “low urgency”
threads on behalf of “high-urgency” threads when neces-
sary, and

« efficiently remapping QoS-controlled memory regions
from one actor to another.

In addition to servicing requests from the kernel VM layer,
the QoS mapper is used to implement the connection abstrac-
tion in the intramachine connection case (see Section IV-E).
User-level code can also invoke the QoS mapper via extended
versions of the rgnAllocate() and rgnFree() Chorus system
calls. These respectively allocate and free a QoS-controlled
region of memory at connection establishment time.

E. Flow-Management Architecture

We have described frameworks for the management of CPU,
network and memory resources but have said nothing yet of
the relationship between these frameworks. It is the task of
the flow-management architecture, and in particular the flow-
management protocol (FMP) [11}, to realize this relationship.

The FMP must arrange, at connection time, for the allo-
cation of suitable CPU, memory, and network resources ac-
cording to the user specified QoS of the requested connection.
The FMP cooperates with the CPU memory management and
network subsystems and partitions the responsibility for QoS
support among individual resource managers. For example,
for remote communications, the FMP partitions the API-
level latency QoS parameter (see Section IV-A) between the
network and the CPU resource managers on each end system.

The FMP is also responsible for dynamic QoS management
in flows. In this role, it can adapt to degradations in one
resource by compensating in terms of another. Ideally, it will
do this without either involving the application or violating
overall the QoS specification. For example, an increase in jitter
caused by the network can be transparently compensated for
by an increased buffer allocation at the receiver—as long as
the latency QoS is not thereby compromised.

The flow-management architecture adopts a similar split-
level structure to the scheduling and communications ar-
chitectures. First, when a new QoS-controlled connection is
requested, a QoS translation function (see Section IV) in the
user-level library determines the resource requirements of the
request. Then, the output of the QoS translator is directed to
the FMP that runs in a per-machine FMP actor (see Fig. 4).
QoS translation is treated in detail in Section IV.

IV. RESOURCE MANAGEMENT

Prior reservation of resources to connections is necessary
to obtain guaranteed real-time performance. This section de-
scribes the resource-reservation framework in our system and
shows how user-level QoS parameters are used to derive the
resource requirements of connections and make appropriate
reservations. It also examines some dynamic resource man-
agement issues. This paper concentrates on the reservation of
specific resources (i.e., CPU, memory and network resources)
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Fig. 4. Flow management architecture.

rather than treating resource reservation as an integrated ac-
tivity driven by the FMP.

In outline, there are two stages in the resource-reservation
process. QoS translation is the process of transforming user-
level QoS parameters into resource requirements and ad-
mission testing determines whether sufficient uncommitted
resources are available to fulfill those requirements.

A. User QoS Parameters
The QoS parameters visible at the API level are as follows:

typedef enum {best_effort, guaranteed} com;
typedef enum {isochronous, workahead} del;
typedef struct {

com commitment ;

int buffsize;

int buffsize;

int priority;

int latency;

int error;

int error_interval;

int buffrate;

int jitter;

del delivery;
} StreamQos;

typedef
com
int
int

struct {

commitment ;

buffsize;

priority
int latency;
int error;

} MessageQoS;

typedef union {
MessageQoS mg;
StreamQoS sqg;
} Qosvector;

The two structures in the QoSVector union are for stream
connections and message connections, respectively. The first
four parameters are common to both connection types. Com-
mitment expresses a degree of certainty that the QoS levels
requested will actually be honored at run-time. If commitment
is guaranteed, resources are permanently dedicated to sup-

port the requested QoS levels. Otherwise, if commitment is
best effort, resources are not permanently dedicated and may
be preempted for use by other activities. Buffsize specifies
the required size of the internal buffer associated with the
connection’s rtports. Priority is used for fine-grained control
over resource preemption for connections; all things being
equal, a connection with a low priority will have its resources
preempted before one with a higher priority.

Latency refers to the maximum tolerable end-to-end de-
lay, where the interpretation of “end-to-end” is dependent
on whether or not rthandlers are attached to the rtport. If
rthandlers are attached, latency subsumes the execution of the
rthandlers; otherwise it refers to rtport-to-rtport latency. When
rthandlers are attached a further, implicit, QoS parameter
called quantum becomes applicable. The value of this param-
eter is dynamically derived by the infrastructure whenever an
rthandler is attached to an rtport. It is defined as the sum
of the rthandler execution time and the execution time of the
protocol code executed by the same thread directly before/after
the rthandler is called.’ To determine the quantum value, the
infrastructure performs a “dummy” upcall of the rthandler and
measures the time taken for it to return (a Boolean flag is
used to let the application code in the rthandler know whether
a given call is “real” or dummy). It is the responsibility of
the application programmer providing the rthandler to ensure
that the dummy execution path is similar to the general case.
Although the value of quantum is dynamically refined as the
connection runs, an inaccurate initial value will inevitably
cause QoS violations.

Error has different interpretations depending on the connec-
tion type. For stream connections, it is used in conjunction with
error_interval and refers to the maximum permissible number
of buffer losses and corruptions over the given interval.
In the case of message connections, it simply represents
the probability of buffers being corrupted or lost (note that
error_interval is not applicable to message connections).

For stream connections, there are three additional parame-
ters, buffrate, jitter, and delivery, which have no counterparts
in message connections. Buffrate refers to the required rate
(in buffers per second) at which buffers should be delivered
at the sink of the connection. Jifter, measured in milliseconds,
refers to the permissible tolerance in buffer delivery time from
the periodic delivery time implied by buffrate. For example,
a jitter of 10 ms implies that buffers may be delivered up to
5 ms either side of the nominal buffer delivery time. Delivery
also refines the meaning of buffrate. If isochronous delivery
is specified, stream connections attempt to deliver precisely
at the rate specified by buffrate; otherwise, if delivery is
workahead, it is permitted to “work ahead” (ignoring the
jitter parameter) at rates temporarily faster than buffrate. One
use of the workahead delivery mode is to more efficiently
support applications such as real-time file transfer. Its primary
use, however, is for pipelines of processing stages where
isochronous delivery is not required until the last stage [14].

9 Actually there is a third component to the quantum value, which is the
per-buffer time taken by per-connection transmit threads at the ATM level.
See Section IV-D for details.
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B. Resource Classes

In the following sections, we distinguish four major classes
of QoS-controlled connection for resource-management pur-
poses. These resource classes, named Gy, Gw, By, and By
are selected on the basis of the commitment and delivery QoS
parameters described above. They are defined and illustrated
in Fig. 5.

In addition to the two best effort classes shown in Fig. 5,
a third best effort class, B¢, is distinguished, which refers to
nonreal-time Chorus and UNIX threads out of the scope of the
real-time extensions. Additionally, all three best effort classes
are often grouped together and referred to by the shorthand
name B.

C. The CPU Resource

1) QoS Translation: For admission testing and resource
allocation purposes for stream connections, it is necessary
to know the period and quantum of the threads associated
with the connection. The period is simply the reciprocal of the
buffrate QoS parameter and the quantum is implicitly derived
at connect time as explained in Section IV-A. Fig. 6 illustrates
the notions of period and quantum together with the related
scheduling concepts of scheduling time, deadline, and jitter.

For message connections, sporadic server threads are used
at the receive side.!” One sporadic server per application actor
is provided for each of the two applicable commitment classes
(viz., Gw and Byy; isochronous delivery is not applicable to
message connections), and each sporadic server handles all the
message threads in its class. The quantum of each server is set
to the maximum of the quanta of all the message threads in
its class to ensure that adequate processing time is available
for any of the server’s associated threads. The period of each
server is heuristically derived as follows

period = min(recv_latency,, - - - , recv_latency,,).

Recv_latency; is the proportion of the total end-to-end
latency allocated by the FMP to the receive end-system for
message connection ¢. This method of calculating period is a
compromise that requires less resource than an optimal period
(i.e., the optimal period, 1/quantum, would ensure that the
server was always ready to service a message but would take

0There is no thread implicitly associated with the source side of message
connections. Dedicated threads are only applicable when rthandlers are used,

and it is not useful to attach rthandlers to the source of message connections
as message connections are not active in the sense of stream connections.

all the CPU resource allocated to the class!) while offering
a reasonable probability that the server will be ready when a
message arrives.

2) Admission Testing: The semantics of thread scheduling
for each of the three resource classes are as follows:

e Gyp: threads for these connections are (preemptively)
scheduled to run such that the completion of a quantum
is guaranteed to be completed by the logical arrival time
+ quantum + j (where j is the jitter QoS parameter and
logical arrival time is the start of the requisite period). An
extended earliest deadline first [23] (EDF) algorithm and
admission test is used to ensure this behavior.

o Gyy: these are scheduled according to the standard pre-
emptible EDF policy. The jitter QoS parameter is ignored
and quanta may be scheduled ahead of their logical arrival
time to permit workahead. Again, an admission test is
performed.

» B: these are scheduled according to the preemptible
earliest deadline first policy but no admission test is used.

Each of the G and B resource classes is allocated a fixed
portion of the CPU resource. Note, however, that the “firewall”
that this separation implies is used only to limit the number
of threads in each class—not to restrict the use of CPU cycles
at run-time. If there are unused resources in one class, these
resources are automatically exploited by the other class at
run-time (see Section IV-C3).

The firewalls can be dynamically altered at run-time by the
programmer, but a typical configuration will allow a relatively
small allocation for G threads. This is to encourage users
to choose best effort threads wherever possible. Best effort
threads should be perfectly adequate for many “soft” real-
time needs so long as the system loading is relatively low.
The guaranteed classes should only be used when absolutely
necessary—for example, when threads are delivering data to
a end device intended for human perception such as a video
frame buffer.

The admission tests for GGy threads are

Ng

uantum;
Y L < Re, 0<Ra<1
£~ period,
i=1
AL uantum
> et e S 1
= quantum; + jitter;

The admission test for this class is a two-stage process,
and each of the two tests are modifications of the well-known
Liu/Layland test [23] (this guarantees that each quantum in
the given set of tasks can be completed ar least by the end of
its period as long as it is runnable at the start of its period).
The first of our tests ensures that the overall resource used
by all G threads is not greater than the allocated portion. Ng
refers to the total number of G threads in the system and R¢
refers to the portion of CPU resources dedicated to this class
of threads (such that Rg + Rp = 1 where Rp represents the
portion of the CPU resource dedicated to B threads).

The second test imposes the additional constraint that each
quantum must complete by the end of its user-stated jitter
bound rather than simply by the end of the requisite period.
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Note that this second test is rather conservative (e.g., if a thread
with zero jitter is requested the test will pass only this one
thread!). However, we relax this overconservative property by
also taking into account the notion of harmonic sets (i.e., sets
of threads all of whose periods are divisible by the period of
the member with the smallest period). It can be shown that
harmonic sets can be scheduled without clashes as long as, in
each period of the thread with the smallest period, it is possible
to fit the quanta of all the threads in the set that fall within
this period. This remains true even where the threads involved
have a requirement for zero jitter. We are also working on an
approach that allows us to optimally exploit the degrees of
freedom allowed by the threads with relaxed jitter constraints
for use by those with tight constraints [34].
For Gy threads the admission test is simply

For B threads there is no admission test and the test for Gy
sporadic servers is identical to that for Gy periodic threads.
Each time a new message connection is created that alters the
period or quantum of its server, a new admission test must be
performed to ensure that the modified sporadic server can still
be accommodated in the appropriate resource class.

2) Dynamic QoS Maintenance: At run-time, the dynamic
operation of the scheduling scheme uses a combination of
priorities!', deadlines, and scheduling times to capture the
abstract notion of “urgency.” The scheduler uses three distinct
priority bands into which the four classes of thread are mapped.
The semantics of priority are that at any given time there is
no runnable thread in the system that has a priority greater
than the currently running thread. Within each priority band,
all threads are made runnable when their scheduling time is
reached and actually run when their deadline is earlier than
the deadline of all other runnable threads in the band.

The G class is given a single high-priority band (only
critical Chorus server threads such as the pager daemon are
allocated a higher band). B threads are given the next highest
band and Gy threads are initially assigned to the lowest
priority band. G threads are made runnable whenever their
logical arrival time is reached (i.e., the start of the period
pertaining to their current quantum). As mentioned above, Gw
threads are initially assigned to the lowest priority band but
they are “promoted” to the G band when their logical arrival
time is reached. This means that they can enjoy workahead
when resources allow, but not at the expense of Gy and B
threads. By, threads are also runnable before their logical
arrival time but are not similarly promoted. Finally, By threads
only become schedulable at a time indicated by the deadline
minus the quantum time. This approximates isochronicity to
the extent that it removes the possibility of jitter causing
threads to complete before time although it still leaves the
possibility of them completing after time. This overall scheme,
in conjunction with the admission tests, ensures that Gj

"' Note that the “priority” in this discussion is different from the priority API
level QoS parameter. In this section, priority is an internal thread scheduling
attribute, not visible or directly manipulable from the API level.

threads always meet their jitter constraints, Gy threads always
at least meet their rate requirement, and B threads optimally
share the resources left to them.

Nonreal-time threads in the B¢ class (e.g., those from
conventional UNIX applications) are assigned appropriate
priorities so that they receive reasonable service according
to their role. Their deadline and scheduling time are always
set to now so that they are effective scheduled solely on the
basis of their priority. As an example, B¢ threads fulfilling
an interactive role would have relatively high priority, which
may be greater than that of B threads. Other B¢ threads, such
as compute-bound applications and nontime-critical daemons,
will have accordingly lower priorities.

D. The Network Resource

1) QoS Translation: The network subsystem offers guar-
antees on bandwidth, delay bounds, and packet loss. To enable
it to do this, the QoS translation function maps the API-level
QoS parameters onto a flow spec, which is a representation of
QoS appropriate to the IP++ and ATM levels:

typedef struct {

int flow_id;
com commitment ;
int mtu_size;
int rate;

int delay;

int loss;

} flow_spec_t;

Flow_id uniquely identifies the network-level flow. It is the
virtual circuit identifier for flow specs used at the AALS/ATM
level and the flow id in the IP++ packet header for flow
specs used at the IP level. Mtu_size'? refers to the maximum
transmission unit size and rate refers to the rate at which
these units are transmitted. These are directly derived from
the buffsize and buffrate APIl-level QoS parameters. Delay
comprises that portion of the API-level latency parameter that
has been allocated, by the FMP, to the network. It subsumes
both propagation and queuing delays in the network. Finally,
loss is an upper bound probability of mtu loss due to buffer
overflow at switches and routers. Loss is trivially derived from
the error and error_interval API-level QoS parameters.

2) Admission Testing: In the network, only two traffic
classes are recognized: guaranteed and best effort as denoted
by the commitment API-level QoS parameter. Admission test-
ing and resource allocation are only performed for the former;
best effort flows use whatever resource is leftover.

For guaranteed flows, three admission tests are performed
at each switch along the chosen path: a bandwidth test,
a delay-bound test and a buffer-availability test. If, at the

12 Although the discussion and admission tests in this section apply generi-
cally to both the IP++ and ATM layers, the admission tests are described here,
for clarity, in an ATM context only. Mtu_size in the case of ATM cells is 53
b and in the case of IP++ packets is 64 Kb. One restriction of the admission
tests is that they are only applicable to switches/routers with a single CPU.
As we use single CPU ATM switches, this assumption is justified in our
implementation environment.
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current switch, the admission-control tests are successful, the
necessary resources are allocated. Then the switch appends
details of the cumulative delay incurred so far and forwards
the flow spec to the next switch. Eventually, the remote end-
system performs the final tests and determines whether or not
the QoS specified in the flow spec can be realized.

If the required QoS is realizable, the remote end-system
returns a confirmation message to the initiating end-system.
As it traverses the same route in reverse, the admission test
protocol relaxes any overallocated resources at intermediate
switches {3].

3) Bandwidth Test: 'The bandwidth test consists in veri-
fying that enough processing (switching) power is available
at each traversed switch to accommodate an additional flow
without impairing the guarantees given to other flows. The
admission test must satisfy worst case throughput conditions;
this happens when all flows send packets back to back at the
peak rate. As in Section IV-C2 the admission control test is
based on [23]

N
Zti - rate; < R.

=1

Here, ¢; refers to the service time (cf. mtu quantum) of flow
1 in the current switch, where there are N flows and rate; is
the rate of the ¢th flow (i.e.,, 1/mtu period). R,0 < R < 1,
represents the portion of resource dedicated to guaranteed
flows.

4) Delay-Bound Test: The delay-bound test determines the
minimum acceptable delay bound that does not cause sched-
uler saturation. There are two phases in the delay bound test.
First, each switch on the data path computes a local delay
bound. Second, it is checked that the sum of all the local
delay bounds do not exceed the flow spec’s delay parameter.

The first phase calculation is taken from [16]

Ny
d= Zti +T.
=1

Here, d is the local delay bound incurred at the current
switch by the current flow. As before, ¢; refers to the service
time of flow ¢ in the current switch, but here the index variable
1 ranges over the members of a set U/. The set U contains
those flows supported by the current switch whose local delay
bound is lower than the sum of the service times of all flows
supported by the current switch. Ny represents the cardinality
of U. T represents the largest service time of all flows in a set
V where V is the complement of set U. A full proof of the
theorem underlying this formula can be found in [16]

The second phase calculation is

N,
Z d, < delay.
i=1

This merely requires that sum of the delays at each switch
is less than the delay parameter in the flow spec. N; refers to
the number of switches on the path and d,, refers to the nth
value of d obtained from the first phase calculations.

5) Buffer Availability Test:  The amount of per-switch
memory allocated to a new flow must be sufficient to buffer the
flow for a period that is greater than the combined queuing
delay and service time of its packets. The calculation for
buffer space is

buffersize = mtu_size[d - rate - loss].

Here, buffersize represents the amount of memory that must
be allocated at the current switch for the current flow. The
combination of the queuing delay and service time is bounded
by d as derived from the first phase delay formula above.

6) Dynamic QoS Maintenance: Much of the dynamic QoS
maintenance for the execution of communications protocols
in the end-system is encapsulated either in the protocols
themselves (e.g., error control), in the scheduling subsystem
(e.g., rate control, maintaining latency, and jitter bounds) or in
the memory management subsystem (i.e., buffer management).
However, one interesting QoS-maintenance issue not in this
category is the interleaving of ATM cells at the network
interface from different connections on the basis of their QoS
[11]. On many ATM interface cards with on-board AAL’s this
is taken care of in hardware but in our case we have been able
to investigate this issue in software due to the fact that our
interface cards only deal with the ATM level.

The receive side cell processing is simple. The receiver
interrupt service routine'® reads the VCI of the current cell
while it is still on the ATM interface card. The interrupt-
service routine then dispatches a receiver thread to copy the
cell payload into the appropriate partially assembled AALS
packet, and when the receiver thread sees the last cell of an
AALS5 packet, it raises a software interrupt to the appropriate
VP. Unfortunately, we are not able to perform any QoS-driven
scheduling on the receive side as it has proved imperative to
get each cell off the board as quickly as possible to avoid
excessive cell loss due to FIFO overrun. Thus, the receive
thread is given a scheduling priority higher than even G;
threads.

On the transmit side, though, we are able to schedule
cells more intelligently and have designed an EDF-based
cell-level scheduler. Application actors running send-side user-
level transport-protocol code deliver buffers to the network
actor via a system call. This informs the network actor of 1)
the location in its address space into which the buffer has
been mapped and 2) the deadline of the buffer (the end of the
quantum of the transport protocol thread).

The cell-level scheduler runs in the context of the transmit-
interrupt service routine, which is periodically activated by the
ATM card to signal that cells can be copied to the card for
transmission. The scheduler chooses to run one of a number
of per-connection transmit threads by sending a message to
a miniport on which the transmit thread is waiting (see Fig.
7). The choice of thread to activate is made on the basis of
priority, deadline, and scheduling time as described in Section
IV-C3. Each transmit thread is given the same priority band as
its associated user-level lightweight thread, and the deadline

13 Although the card interrupts on each cell arrival, the receive thread

“greedily” consumes any cells waiting in the card’s FIFO each time it runs,
thereby avoiding an interrupt for each cell.
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Fig. 7. Cell-level scheduler.

of each thread is derived from the deadline of the next cell in
the thread’s associated buffer. Cell deadlines themselves are
derived by giving each cell in the buffer a specific temporal
offset from the deadline of the entire buffer. The scheduling
time of each thread becomes now whenever the thread has a
buffer to send.

The transmit threads are allocated at connection estab-
lishment time and are taken into account in the scheduling
admission tests. This is done by adding a time ¢, to the quan-
tum parameter of the connection’s transmit side lightweight
thread (see Section IV-A); ¢, is calculated as cells X tcen
where cells is the number of ATM cells in a buffer of size
buffsize and t.e is the average time taken to transfer an ATM
cell to the interface card.

E. The Memory Resource

1) QoS Translation: We can deduce two memory-related
quantities from the user-supplied QoS parameters at connec-
tion establishment time: 1) the number of buffers required per
connection and 2) the required access latency associated with
those buffers. Buffers are implemented as Chorus memory
regions:

2) Number of Buffers: To calculate the end-system buffer
requirement, the buffsize, buffrate, and jitter QoS parameters
are used. It is also necessary to take into account the network
delay bound, delay, offered by the FMP. The network delay
bound will typically permit a larger degree of jitter than the
APl-level jitter bound and any discrepancy must be made
good through the use of additional jitter smoothing buffers.
Given these input parameters, the expression for the number
of buffers required at the receiver is

buffers = buffrate (delay + quantum + ﬂt%) .

In this formula, the expression in the brackets represents
the maximum time for which any single buffer must be held.
Delay is the delay bound specified in the network-level flow
spec while quantum, jitter, and buffrate are API-level QoS
parameters. Jitter is divided by two because the jitter parameter
expresses both lateness and earlyness and it is only the lateness
component that need be taken into consideration.

Only one buffer is required at the sender due to the structure
of the send-side communications architecture: each buffer is
assumed to be “on the wire” before the start of the next period.

3) Region Access Latency: There are basically two quali-
ties of memory access available in the standard Chorus system.
These relate to the access latency of swappable pages and

the access latency of locked pages. The latency bound of
the former is a function of 1) the delay due to the RPC
communication between the VM layer and the mapper and
2) the delay associated with the external swap device.!* The
latency bound of the latter is much smaller and is a function
of the system bus and clock speed.

We assign either swappable or locked regions to connections
on the basis of their resource class as follows:

e Gp: buffer regions allocated to these connections are
locked and nonpreemptible.

* Gw: buffer regions for these connections are locked but
are potentially preemptible by memory requests from G,
connections if memory resources run low.

» B: buffer regions for these connections are assigned
from standard swappable virtual memory. These regions
may be explicitly locked by the API library code but
are subject to preemption from by both G; and Gw
connections. The decision as to whether the library code
should lock buffers or not is determined by the priority
API-level QoS parameter.

The QoS mapper can deduce the class of each memory
request on the basis of the commitment, delivery, and priority
QoS parameters initially passed to the extended rgnAllocate()
system call and retained to validate future operations on
regions.

4) Admission Testing: In its admission testing role, the
QoS mapper maintains tables of all the physical memory
resources in the system. In a similar way to the KLS, it
also maintains firewalls and high- and low-water marks be-
tween resource quantities dedicated to the different connection
classes. The B section is used by all standard and nonreal-time
applications as well as best effort connections.

If no physical memory is available to fulfill a request from a
G connection, the QoS mapper can preempt a locked memory
region from an existing B or Gy connection. Similarly, Gy
connections can preempt locked regions from B connections.
The QoS mapper chooses for preemption the buffer associated
with the connection with the lowest priority in the lowest class
available. The effect of preemption is simply to transform
locked memory into standard swappable memory. This, of
course, may result in a failure of the preempted connection’s
QoS commitment. However, a software interrupt is delivered
to the ULS of a thread whose memory has been preempted
so that if QoS commitments are violated, the connection
concerned can deduce the likely reason.

5) Dynamic QoS Maintenance: The only dynamic QoS
mapper function we have yet considered in detail is the region
remapping function. This is used when buffers are mapped
from one actor to another in a QoS-controlled connection be-
tween local rtports. Region remapping is particularly important
in the context of pipelines, which arises when applications are
structured as chains of modules that sequentially process a
stream of real-time data. Pipelines can be implemented either
within single actors or across multiple actors (or, indeed,

14We intend in the future to look at the possibility of bounding the
access latency to swappable pages (e.g., through specialized page replacement
policies and disk layout strategies), but our present design simply considers
the access latency of swappable pages to be unbounded.
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across multiple machines although it is only the intramachine
cases that concern us here).

Pipelines across multiple actors are implemented using
software interrupts as the control transfer mechanism. When a
pipeline stage wants to send a buffer of data to a subsequent
stage in another actor, the user-level library implementing the
QoS-controlled connection performs a software interrupt

int raiseEvent (VP % dest; int event; bool unmap;
VmAddr addr; VmSize size);.

The raiseEvent() system call specifies a destination actor
and details of the memory region to be remapped. When
the kernel receives this call, it invokes the QoS mapper,
which maps the specified region into the destination address
space (the Boolean argument is used to control whether or
not the region is also unmapped from the caller’s address
space). The QoS mapper then forwards a software interrupt
to the target VP, passing as an argument the virtual address
at which the region is mapped (see Fig. 8). Note that, in
many cases, it is only necessary to perform this mapping
the first time data is passed along the pipeline. Subsequent
transfers can be accomplished using the existing shared region
that raiseEvent() has already established and simply passing
control with a call of raiseEvent with null addr and size
parameters.

The extra cost due to the QoS mapper invocation is minimal.
It incurs no protection boundary crossing and no virtual
memory context switch as the QoS mapper is executed as
a supervisor actor and thus shares the kernel’s address space.

The QoS mapper is also currently used as a repository of
QoS related statistics of relevance to user-level library code
when it detects QoS degradations. The primary statistic is the
number of page faults incurred by a region associated with
a B connection. This information is used to better inform the
choice of which B regions to lock and which to leave unlocked.

V. RELATED WORK

A large amount of work has been carried out on QoS
support in networks but significantly less work has been
done on integrated QoS support over all layers including
the end-system. Several different ways of categorizing QoS

guarantees have been identified in the network-level work. For
example, in [12] a distinction is made between three different
service commitments: 1) guaranteed service for real-time
applications; 2) predicted service, which utilizes the measured
performance of delays and is targeted towards continuous
media applications; and 3) best effort service, where no
QoS guarantees are provided. In our design, commitment is
supported both in the network and in the end-system.

There have been a number of reported efforts in the area
of resource reservation in network nodes. In particular, ST-
11 {30] was designed as a source initiated resource allocation
framework for packetised audio and video communications
across the Internet. RSVP [32] is a similar design, which of-
fers receiver initiated reservation and multipoint-to-multipoint
support. SRP {3}, also designed for the Internet, supports both
network and end-system resource allocation.

In the area of QoS-configurable transport systems, [31]
describes a protocol intended to run over a network layer
offering comprehensive QoS guarantees. The protocol offers
QoS configurability and includes an algorithm for bounding
buffer allocation given throughput and jitter bounds. The de-
sign uses a shared memory interface between user and protocol
threads. However, scheduling issues were not addressed in
this work. Another prominent QoS-driven transport protocol
is TPX, which was designed under the Esprit OSI 95 project
[5].

The HeiTS project [20] has investigated end-system issues
in the integration of transport QoS and CPU scheduling.
HeiTS puts considerable emphasis on an optimized buffer
pool that minimizes copying and also allows efficient data
transfer between local devices. The scheduling policy used is
a rate monotonic scheme whereby the priority of the thread is
proportional to the message rate accepted. The implementation
environment of HeiTS, AIX, and OS/2, differs from our
microkernel based environment.

A major influence on our work in the scheduling area is
the split-level scheduling scheme described in [17]. However,
in Govindan’s scheme, there is no end-to-end QoS control
and, although threads are appropriately scheduled once an
application-level message has been received, the scheduling
of protocol processing is controlled by a standard nonreal-time
policy. Our scheme integrates the scheduling of protocol and
application processing through the mechanisms of rthandlers
and QoS-controlled connections. Govindan also describes a
framework for interaddress-space communication known as
memory mapped streams (MMS). MMS’s are integrated with
the scheduling system and work with a range of data trans-
fer implementations such as copying, shared memory, or
remapping. However, the abstraction is only applicable for
intramachine communication. Our QoS-controlled connection
abstraction performs a similar role but is applicable to remote
as well as local communications. Our design as a whole also
differs in that it incorporates guaranteed as well as best effort
commitment.

Work on real-time extensions to the Mach microkernel,
consisting of real-time threads, real-time synchronization prim-
itives and time-driven scheduling, is described in [28]. The
scheduling mechanism is derived from the ARTS kernel and
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permits hard real-time scheduling based on EDF. The main
limitations of this work are the lack of API-level QoS specifi-
cation and the lack of integration with the communications
subsystem. As an example of the latter, the API provides
means to create periodically executable threads, but there
is no way to associate this periodicity with the arrival of
messages on a Mach port. More recent work by the same
group has addressed QoS issues, including QoS monitoring
through the concept of deadline handlers, which are invoked
when deadlines are missed [29].

VI. CONCLUSION AND FUTURE WORK

We have described the design of a QoS-driven communica-
tions stack in a microkernel operating system environment.
The discussion has focused on resource management as-
pects of the design and in particular we have dealt with
CPU scheduling, network resource-management and memory-
management issues. The architecture minimizes kernel-level
context switches and exploits early demultiplexing so that
incoming data can always be treated according to the QoS
of its associated API-level connection. It also eliminates data
copying on both send and receive (except for unavoidable
copies to/from the ATM interface card). On send, the user’s
buffer is mapped to the lower layers, which process it in situ,
and, on receive, the lower layers allocate a buffer and map
it to the transport layer, which subsequently passes it to the
application by passing the address of the buffer as an argument
to an rthandler.

At the present time we are experimenting with an infra-
structure consisting of three 486 PC’s running Chorus and
connected to an Olivetti ATM switch via ISA bus ATM
interface cards. The PC’s contain VideoLogic audio/video/
JPEG compression boards as real-time media sources/sinks.
The Olivetti switch is also connected to a wider ATM network
consisting of Fore ASX100 switches. The current state of the
implementation is that the API, split-level scheduling infra-
structure, transport protocol and ATM card drivers are in place.
In the next implementation phase we will refine the QoS-
driven memory-management scheme and add heterogeneous
networking with IP++ support.

There remain a number of important issues that we have
yet to tackle. One is the need to synchronize real-time data
delivery on separate application-related connections (e.g., for
lip sync over audio and video connections). Along with our
collaborators at CNET, Paris, we are currently investigating
the use of real-time controllers written in the Esterel real-time
language for this purpose [19]. Another issue, which is being
addressed in a related project at Lancaster, is the requirement
for QoS-controlled multicast connections. We already know
how we can support multicast at the API level, but our ideas on
engineering multicast support in the microkernel environment
are still immature. A further issue is the incompleteness of the
dynamic QoS management design. In particular, we would
like to extend our design to include access latency bounds
on swappable memory regions and also to accommodate
comprehensive QoS monitoring and automated reconfiguration
of resources in the event of QoS degradations.

Finally, we briefly report on our experiences with our ATM
hardware, which is proprietary equipment supplied by Olivetti
Research Labs, Cambridge, U.K. The hardware consists of
PC ISA bus ATM interface cards and a “soft” switch, which
runs a microkernel called ATMos and is fully programmable.
While the link speed of the ATM equipment is 100 Mb/s, and
the switch is capable of throughput of this order, the speed
of the system as a whole is restricted by the fact that the
ATM interface cards only support host/card data transfer at
the granularity of ATM cells. Although this is a drawback
in performance terms, the advantage is that it permits us to
experiment with cell-level scheduling in the end-systems (see
Section IV-D3) as well as in the switch [6]. Unfortunately,
the card has architectural as well as performance implications
for the rest of our design in that it dictates that SAR be
carried out in kernel space to avoid the crippling overhead
of a software interrupt/asynchronous system call per cell.
We are thus forced to compromise our ideal strategy of
a single, nonmultiplexed, user-level, per-connection thread
operating all the way up/down the stack. Another problem
is that the receive side AALS kernel thread in the network
actor is impossible to schedule correctly as it must take
“top™ priority in order to ensure that cells are copied off
the card as soon as possible. In light of these considerations,
we intend to experiment in the future with an interface card
that has on-board AAL5 and DMA for cell movement in
order to realistically evaluate the performance potential of our
design.
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