
Arguably, the problem of learning represents a
gateway to understanding intelligence in
brains and machines, to discovering how the
human brain works and to making intelligent
machines that learn from experience. What

distinguishes nontrivial learning from memory is the
ability to generalize: that is, to apply what has been
learned from limited experience to new situations.
Memory bears the same relationship to learning as a dry
list of experimental measurements does to a predictive
scientific theory. The key question addressed here — from
the perspective of the visual and motor systems — is what
are the brain mechanisms for such generalization?

Imagine looking for the phone in a new hotel room. Your
visual system can easily spot it, even if you have never seen
that particular phone or room before. So, learning to recog-
nize is much more than straightforward pixel-by-pixel
template matching. Visual recognition is a difficult compu-
tational problem, and it is a key problem for neuroscience.
The main computational difficulty is that the visual system
needs to generalize across huge variations in the appearance
of an object; for instance, owing to viewpoint, illumination
or occlusions. At the same time, the system needs to maintain
specificity; for example, to identify a particular face among
many similar ones.

A similar ability to generalize is key to motor learning.
Consider practicing how to hit a tennis ball: having learned to
play a specific shot, you must then be able to use it under new
conditions, adapting to changes in the spin on the incoming
ball, the speed and direction of your opponent’s shots, the
position of your body with respect to the ball, and so on. No
two shots can be exactly the same, requiring a generalization
ability of our motor program that can involve the modulation
of thousands of motor units in new, adaptive ways.

In abstract terms, generalization is the task of synthesizing
a function that best represents the relationship between an
input, x, and an output, y — an image and its label, say, or a
desired equilibrium position of an arm and the set of forces
necessary for attaining it — by learning from a set of ‘examples’,
xi , yi. In this formulation, the problem of learning is similar to
the problem of fitting a multivariate function to a certain
number of measurement data. The key point is that the
function must generalize. Generalization in this case is equiv-
alent to the ability of estimating correctly the value of the func-
tion at points in the input space at which data are not available
— that is, of interpolating ‘correctly’ between the data points.
In a similar way, fitting experimental data can, in principle,

uncover the underlying physical law, which can then be used in
a predictive way. In this sense, the process of learning distils
predictive ‘theories’ from data; that is, from experience. 

The modern mathematics of learning1 gives a precise def-
inition of generalization and provides general conditions
that guarantee it. It also implies that the ability to generalize
in the brain depends mostly on the architecture of the
networks used in the process of learning, rather than on the
specific rules of synaptic plasticity. (The latter are reviewed
in this issue by Abbott and Regehr, page 796.)

Here, we highlight a network architecture supporting the
ability to generalize in the visual and motor systems. Neurons
at various levels of the visual cortex are generally tuned simul-
taneously to multiple attributes; that is, they respond to a par-
ticular pattern of their inputs, and the frequency of the firing
follows a ‘tuning curve’, with a maximum for specific values of
each of the attributes (together representing an optimum
stimulus for the neuron), such as a particular direction of
movement and a specific colour and orientation (Fig. 1 shows
tuning for specific object views, each characterized by many
parameters; see review in this issue by Tsodyks and Gilbert,
page 775). We describe how a linear combination of the
activities of such neurons can allow generalization, on the
condition that the tuning is not too sharp, and that the
weights of such a linear combination are what changes during
learning. We then turn to the motor system and show that a
linear combination of neural modules — each module
involving several motor neurons innervating a coherent sub-
set of muscles which together generate a force field — is
mathematically equivalent to the linear combination of
tuned neurons described for the visual system. Finally, we
propose that the necessarily broad tuning of motor and visual
neurons might be based on a canonical microcircuit repeated
throughout different areas of cortex.

Generalization mechanisms in the visual system
Older mental models of how vision might work used the
simple notion of ‘computation through memory’. The classic
example is the ‘grandmother’ theory for vision, in which
visual recognition relies on ‘grandmother’ neurons respond-
ing selectively to the precise combination of visual features
that are associated with one’s grandmother. This theory was
not restricted to vision: the same basic idea surfaced for other
sensory modalities, for example in motor control, where it is
called ‘motor tapes’. These ideas were attractive because of
their simplicity: they replace complex information processing
with the simpler task of accessing a memory.
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The basic problem with these models is, of course, generalization:
a look-up table cannot deal with new events, such as viewing a face
from the side rather than the front, and it cannot learn in the predic-
tive sense described earlier. One of the simplest and most powerful
types of algorithm developed within learning theory corresponds to
networks that combine the activities of ‘units’, each broadly tuned to
one of the examples (Box 1). Theory (see references in Box 1) shows
that a combination of broadly tuned neurons — those that respond
to a variety of stimuli, although at sub-maximal firing rates — might
generalize well by interpolating among the examples.

In visual cortex, neurons with a bell-shaped tuning are common.
Circuits in infratemporal cortex and prefrontal cortex, which com-
bine activities of neurons in infratemporal cortex tuned to different
objects (and object parts) with weights learned from experience, may
underlie several recognition tasks, including identification and
categorization. Computer models have shown the plausibility of this
scheme for visual recognition and its quantitative consistency with
many data from physiology and psychophysics2–5 .

Figure 2 sketches one such quantitative model, and summarizes a
set of basic facts about cortical mechanisms of recognition established
over the last decade by several physiological studies of cortex6–8. Object
recognition in cortex is thought to be mediated by the ventral visual
pathway running from primary visual cortex, V1, over extrastriate
visual areas V2 and V4 to the inferotemporal cortex. Starting from
simple cells in V1, with small receptive fields that respond preferably to
oriented bars, neurons along the ventral stream show an increase in
receptive field size as well as in the complexity of their preferred stimuli.
At the top of the ventral stream, in the anterior inferotemporal cortex,
neurons respond optimally to complex stimuli such as faces and other
objects. The tuning of the neurons in anterior inferotemporal cortex
probably depends on visual experience9–19. In addition, some neurons
show specificity for a certain object view or lighting condition13,18,20–22.
For example, Logothetis et al.13 trained monkeys to perform an object
recognition task with isolated views of novel three-dimensional objects
(‘paperclips’; Fig. 1). When recording from the animals' inferotemporal
cortex, they found that the great majority of neurons selectively tuned
to the training objects were view-tuned (see Fig. 1) to one of the training
objects. About one tenth of the tuned neurons were view-invariant,
consistent with an earlier computational hypothesis23.

In summary, the accumulated evidence points to a visual recog-
nition system in which: (1) the tuning of infratemporal cortex cells is
obtained through a hierarchy of cortical stages that successively
combines responses from neurons tuned to simpler features; and (2)
the basic ability to generalize depends on the combination of cells
tuned by visual experience. Notice that in the model of Fig. 2, the
tuning of the units depends on learning, probably unsupervised (for
which several models have been suggested24; see also review in this
issue by Abbott and Regehr, page 796), since it depends only on
passive experience of the visual inputs. However, the weights of the
combination (see Fig. 3) depend on learning the task and require at
least some feedback (see Box 2). 

Thus, generalization in the brain can emerge from the linear com-
bination of neurons tuned to an optimal stimulus — effectively
defined by multiple dimensions25,23,26. This is a powerful extension of
the older computation-through-memory models of vision and
motor control. The question now is whether the available evidence
supports the existence of a similar architecture underlying general-
ization in domains other than vision. 
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Figure 1 Tuned units in inferotemporal cortex. A monkey was trained to recognize
a three-dimensional ‘paperclip’ from all viewpoints (pictured at top). The graph
shows tuning to the multiple parameters characterizing each view summarized in
terms of spike rate versus rotation angle of three neurons in anterior inferotemporal
cortex that are view-tuned for the specific paperclip. (The unit corresponding to the
green tuning curve has two peaks — to a view of the object and its mirror view.) A
combination of such view-tuned neurons (Fig. 2) can provide view-invariant, object
specific tuning as found in a small fraction of the recorded neurons. Adapted from
Logothetis et al.13.
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Figure 2 A model of visual learning. The model summarizes in quantitative terms
other models and many data about visual recognition in the ventral stream pathway
in cortex. The correspondence between the layers in the model and visual areas is
an oversimplification. Circles represent neurons and arrows represent connections
between them; the dots signify other neurons of the same type. Stages of neurons
with bell-shaped tuning (with black arrow inputs), that provide example-based
learning and generalization, are interleaved with stages that perform a max-like
operation3 (denoted by red dashed arrows), which provides invariance to position
and scale. An experimental example of the tuning postulated for the cells in the
layer labelled inferotemporal in the model is shown in Fig. 1. The model accounts
well for the quantitative data measured in view-tuned inferotemporal cortex cells10

(J. Pauls, personal communication) and for other experiments55. Superposition of
gaussian-like units provides generalization to three-dimensional rotations and
together with the soft-max stages some invariance to scale and position. IT,
infratemporal cortex, AIT, anterior IT; PIT, posterior IT; PFC, prefrontal cortex.
Adapted from M. Riesenhuber, personal communication. 
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Generalization mechanisms in the motor system
The architecture for generalization outlined for the visual system (Fig.
3a) leads to a stage of broadly tuned units. For any specific visual recog-
nition task, there are many inputs (such as the photoreceptors) and just
one output signal. In the computational architecture of the motor
system, however, the flow of information is the opposite, with few
inputs (discrete cortical commands from the fronto-parietal cortex)
and many outputs (the interneurons and motorneurons in the spinal
cord). For such architectures, the combination (with fixed weights set
by learning) of neurons tuned by learning to optimal stimuli (with an
activity dependent on the similarity between the input and the optimal
stimulus) can be formally viewed (see legend of Fig. 3) as a combination
(with weights depending on the input signal) of neural circuits or
modules, each generating a (fixed) motor ‘field’ of muscle forces. The
non-trivial equivalence may lead to novel experiments. It also suggests
that the evidence in the literature about tuned neurons may be fully
compatible with the apparently different reports supporting the com-
bination of modules and associated force fields.

In the fronto-parietal cortical areas, arm-related, broadly
directionally tuned neurons were first described by Georgopoulos et
al.27. These neurons are related to arm movements and their tuning
means that their frequency of discharge varies in an orderly fashion

with the direction of movement. For each neuron, the discharge was
most intense in a preferred direction resulting in a directional bell-
shaped tuning curve. In the motor areas of the frontal lobe, neurons
with similar preferred direction are interleaved with mini-columns
having nearly orthogonal preferred directions28. This recent discovery
indicates that the motor cortex is endowed with functional modular
structures not unlike those described for the visual cortex6,7, the
somato-sensory cortex8 and the auditory cortex29. Neuronal activity
in the frontal cortical areas, such as the primary motor cortex, the
supplementary motor areas and the dorsal premotor areas, change
during adaptation and visuo-motor learning30,31, and during exposure
to mechanical loads32–34. In addition, during motor learning a sig-
nificant number of cortical cells change their directional tuning.

While the significance of the information conveyed by the activity
of broadly tuned cortical neurons remains hotly debated, here we put
forward the hypothesis that the descending cortico-spinal impulses
may represent signals (such as the components of the vector b(x�) in
Fig. 3) that specify the activation for the modules in the spinal cord of
vertebrates. Several kinds of modular spinal systems, consisting of
circuits of interneurons, have been described. These range from central
pattern generators and unit burst generators35–37 to spinal motor
primitives generating specific force fields and muscle synergies38,39. 
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Basis functions
The problem of learning from examples can be formulated as a
problem of function approximation with the property of generalization
(robustness to noise is a special case of the ability to generalize). A
classical and simple mathematical approach to solving it is
regularization: the function f learned from the data minimizes the error
on the training set subject to certain ‘smoothness’ constraints. An
intriguing result is that the solution of the minimization problem above
can be expressed as a linear combination of basis functions k centred
on the examples x�i and depending on the new input vector x�:

f(x�)��
n

i
wik(x�,x�i),

where the x�i, are the n (vector) examples and wi are parameters to be
determined (for example, learned) from the n example pairs x�i, yi,
where x�i is the ‘input’ part of each example and yi is its associated
label or ‘output’. The basis functions k are fixed functions, such as the
gaussian function, of the input. Note that the centres x�i (the optimal
stimuli for each of the basis functions) are simply learned from
‘passive’ visual experience without the need of feedback, whereas the
weights wi also depend on the yi (corresponding to the feedback) and
can also be learned by simple learning rules such as the delta rule or
the covariance rule60. When the basis functions are radial gaussian
functions, the network consists of units each tuned to one of the
examples with a bell-shaped activation curve. Each ‘unit’ computes
the distance x��x�i of the input vector x� from its centre x�i (that is, the
dissimilarity of the input and the example stored in that unit) and then
applies the function k to the dissimilarity value, that is, it computes the
function k(x��x�i). Notice that in the limiting case of k(x→�y→) being a
delta function (for example, a very narrow gaussian function), the
network becomes a look-up table, in which a unit gives a non-zero
signal only if the input x� exactly matches its centre x�i: the network
cannot generalize and becomes a simple memory. The equation
above can always be rewritten as a feedforward network (Fig. 3a) with
one hidden layer containing as many units as examples in the training
set. The units of the hidden layer correspond to the basis functions
and can be regarded as processors doing a specific operation; the
parameters wi correspond to the weight of the synapses from the
units k to the output. The scalar output case above can be generalized
to the multi-output case (for example, the approximation of vector

fields), which is the general case and the relevant one for motor control
(Fig. 3b). The function f(x�) is thus the superposition of local, tuned
receptive fields such as gaussians; it is predictive; and it is also a
smooth (the exact definition of ‘smooth’ depends on k) solution as it
minimizes a smoothness constraint such as jerk61, while being close to
the examples. There are alternative ways to implement similar
solutions within recurrent networks25. It is well known that
regularization networks can be interpreted in bayesian terms25,62 but
detailed models of how general bayesian networks and graphical
models may be implemented in the visual or motor system are lacking
so far.

Time
We have described time-independent aspects of visual recognition and
motor control, corresponding respectively to recognition of static
images and to control of postures (say of an arm). In most of real life,
recognition and motor control happen in time: we recognize actions
and we control dynamic movements. The equations above, describing
the superposition of ‘prototypical’ images or prototypical force fields,
can be extended in time. Possibly the simplest such extension is
provided by:

f�(x,t)�Yb�(x)��
n

i
bi(x)gi(t)y�i

where f� and y�i are vector fields and gi(t) the associated time
dependence. This representation seems to be consistent with
experimental data in motor control54.

A similar description summarizes the model of Giese and Poggio55

for the recognition of actions from image sequences. Sequence
selectivity results from asymmetric lateral connections between the
snapshot neurons in the form pathway (and between the optic flow
pattern neurons in the motion pathway). With this circuitry, active
snapshot neurons pre-excite neurons that encode temporally
subsequent configurations and inhibit neurons that encode other
configurations. Significant activity can arise only when the individual
snapshot neurons are activated in the ‘correct’ temporal order.
Simulations show that in the model, appropriate lateral connections
for the ‘correct’ sequences can be learned robustly with a simple
time-dependent hebbian learning rule from a small number of stimulus
repetitions, consistent with psychophysical data55.

Box 1 
Learning and generalization with tuned, gaussian-like units
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Because limbs are typically controlled by multiple sets of muscles
(and an even larger number of muscle motor units), a major challenge
in motor control has been to explain how the cortical cells modulate
signals out of such large search space so that functional movements are
generated. Previous work in vertebrates and invertebrates supports
our hypothesis above, suggesting that specific motor behaviours are
constructed through flexible combinations of a small number of
modules, each generating a force field (in vertebrates a module is com-
posed of a population of interneurons40,41, but in invertebrates a single
interneuron may function as a module40). According to this view, a
module may reduce the number of degrees of freedom by controlling
groups of muscles — and thus the assoc-iated field of forces — thereby
functioning as a computational unit for use with different mod-
ulations in multiple motor behaviours40,42,43. Perhaps the most inter-
esting aspect of the work was the discovery that the force fields
induced by the focal activation of the cord follow a principle of linear
combination39,44 (see legend of Fig. 3 and Fig. 4), although this does
not seem to hold for cats45). Specifically, Mussa-Ivaldi et al.39 stimulated
simultaneously two distinct sites in the frog’s spinal cord and recorded
the resultant forces at the ankle. They observed vector summation of
the forces generated by each site separately: when the pattern of forces
recorded at the ankle following co-stimulation were compared with
those computed by summation of the two individual fields, they
found that ‘co-stimulation fields’ and ‘summation fields’ were equiva-
lent in more than 87% of cases. This is also true in the rat46. Moreover,
the force-field summation underlies the control of limb trajectories in
the frog47.

Thus the hypothesis for explaining movement and posture is
based on combinations of a few basic fields. The force fields (corre-
sponding to the columns of the matrix C in the legend of Fig. 3) stored
as synaptic weights in the spinal cord may be viewed as representing
motor field primitives from which, through linear superimposition,
a vast number of movements can be fashioned by impulses conveyed
by supraspinal and reflex pathways. Computational analysis48 verifies
that this proposed mechanism is capable of learning and controlling
a wide repertoire of motor behaviours.

Additional support to this view was provided by behavioural
studies of reaching movements showing that when new forces are
encountered, primates learn new dynamics to implement the desired
trajectory49. Thoroughman and Shadmehr50 were able to conclude
from the pattern of generalization that the desired velocity of the
reaching hand is mapped into a force required to move the hand at
this velocity by combining tuned units with a gaussian shape. Their
model can also be described in an equivalent, dual way as a combination
of force fields (Fig. 3; Box 1).

In conclusion, there is independent evidence, in separate studies, for
tuned neurons in motor cortex, and for a combination of a limited
number of basic modules, each generating a force field and each modu-
lated by supraspinal signals, in agreement with the caricature of Fig. 3b. 

A canonical local circuit for tuning and generalization?
Thus, it seems that the combination of tuned receptive fields is the
basic strategy used by both the visual and motor systems to learn and
generalize. The similarity of the strategies in the visual and motor cor-
tex, suggests that they might occur in other systems where learning is a
component. The circuits that underlie the bell-shaped tuning curves
are not known. Many cortical neurons seem to be tuned to a specific
pattern of inputs, meaning that the maximum response of the cell
occurs when the set of inputs takes specific activation values (which in
general are not the set of maximum values of each input). It is a puzzle
how this multidimensional tuning could be obtained parsimoniously
by plausible neural circuits. One possibility is that tuning of a neuron
to a specific set of activities of its many inputs (an infratemporal cortex
neuron is likely to receive inputs from many cells, for instance from
V4) is achieved by normalizing the inputs, which means dividing each
one by the sum of the strengths of all of them. In fact, gaussian-like,
multidimensional tuning — as found in many neurons in cortex —

insight review articles

NATURE | VOL 431 | 14 OCTOBER 2004 | www.nature.com/nature 771

Figure 3 The generalization architectures of the visual and motor systems. a, In the
case of vision, the single output signal is a combination of tuned unit activities 

f (x�)��
n

i
wiki (x�). b, In the case of motor control, the output vector can be similarly 

written as f�(x�)��
n

i
w�i ki (x�) where each component of the output field is a combination

of tuned unit activities. Here, w�i is the vector w1i, …, wni of the weights associated with
the tuned unit i. The same equation can also be read as a combination of the fields w�i

with coefficients ki (x�); that is, a combination of fields modulated by the activities of the
tuned units. Thus, a combination of tuned units is formally equivalent to a combination
of fields. The general description of the networks shown is given, rewriting the last
equation, by f (→x )�Wk (→x ), where W is a matrix and k (→x ) is a vector with the tuned
units as components. Notice that the factorization in terms of coefficients and basis
function is not unique (when only the input and the outputs of the network are
observed) since Wk (→x )�Cb (x�) where L is any matrix satisfying W�CL and
b (→x )�Lk�(x�). An additional constraint (such as specifying which parameters of the
network change with learning) is needed to fix L. The arbitrariness in the
decomposition might explain apparent differences in the interpretations of some
experiments. For instance, Thoroughman and Shadmer50 conclude from behavioural
data that the basis functions are gaussian and tuned to desired velocities, whereas
cortical cells would presumably show a linear tuning as a function of velocity27. 
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The distinction between supervised and unsupervised learning in biology
can be tricky: there is a whole spectrum between the two. The learning
process by which the neurons in the model of Box 1 get tuned more and
more specifically to a particular value of a given attribute is unsupervised:
it relies only on the inputs, and it does not require feedback about the
correctness or incorrectness of the output. Several mechanisms have
been suggested for such unsupervised learning of tuned units24 (see
also review in this issue by Abbott and Regehr, page 796). By contrast,
the coefficients of the linear combination of the unit responses (labelled
wi in Box 1 and Fig. 3a), similar to the synaptic weights in neural
networks, depend on the task and require at least some feedback about
the output — for example, whether the ‘male face’ label was the correct
answer or not. By definition, therefore, the modification of the weights
during training is a supervised form of learning. The visual and motor
tasks described in this paper are mostly supervised in the laboratory: for
each example x (input), there is a label y (correct output); in experiment,
monkeys receive feedback in every trial during training. Semi-supervised
‘online’ learning, however, in which feedback is provided for only some
of the examples, is a better description of real-life visual and motor
learning (see review in this issue by Tsodyks and Gilbert, page 775). Note
that the full unsupervised learning problem (technically called density
estimation) can be solved using supervised learning algorithms56.
Furthermore, it turns out58 that extending the regularization networks
described in Box 1 to the unsupervised case is natural and does not
change the basic architecture62. Biological learning is usually sequential
and can therefore be characterized as online learning, in which the
examples are provided one at a time. For online learning, biologically
plausible versions of stochastic gradient descent can be used25 (see
review in this issue by Abbott and Regehr, page 796).

Box 2 
Supervised and semi-supervised online learning
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can be generated by normalization of the input vector, followed by a
simple threshold-like sigmoidal nonlinearity (Box 3).

Various neural circuits have been proposed to implement the key
normalization stage, although the motivation behind the suggestions
was to account for gain control and not tuning properties51,52 (see
review in this issue by Destexhe and Marder, page 789). Here, we pro-
pose that another role for normalizing local circuits in the brain is to
provide (multidimensional) gaussian-shaped tuning, as a key step
towards generalization. In fact, this might be the fundamental reason
for the widespread presence of gain control circuits in cortex, where
tuning to optimal stimuli is a common property. The normalization
circuits might, for instance, use recurrent inhibition of the shunting
type (Box 3), for which there is abundant evidence in cortex53, although
this is only one of several possibilities. Interestingly, the same basic
circuit could implement the soft-max operation proposed for some of
the processing stages in the visual system (Fig. 2). In any case, our new
hypothesis is that gain control microcircuits underlie the tuning of cells
to optimal stimuli in both the visual and motor systems.

Further questions in neuroscience and learning theory
Computational models versus experiments
Throughout this review, we used theoretical models as a tool to sum-
marize experimental data provided by different approaches. The
problems of visual recognition and motor control are computationally
difficult and the experimental data from different sources are growing
rapidly. We believe that quantitative models will increasingly replace
the traditional qualitative mental models of the visual and motor phys-
iologist and will become ever more important tools for interpreting
data, and for planning and analysing experiments.

Time in vision and motor control
Our discussion of the visual system concentrated on the special case
of recognition of a static image. In reality, we can recognize images
that move and even sequences of movements. In the motor system,
time has an even more obvious role: most of our motor commands
deal with time-dependent motions and not simply with static
postures. In vision, time can be introduced in a direct way assuming

that visual neurons react to ‘snapshots’ of a
motion and are selective for sequences of
snapshots. In motor control, the equivalent
assumption is that the motor primitives are
time dependent. Box 1 suggests a strong
analogy between vision and motor control
in the time-dependent case: the basic strategy
is to combine locally tuned units with time-
dependent properties54,55.

Hierarchical cortex architectures
It seems that modern learning theory does
not offer any general argument in favour of
hierarchical learning machines. This is a
puzzle because the organization of cortex
— as we argued for the visual and motor
cortex — seems to be hierarchical.

Why hierarchies? There could be reasons of
efficiency — computational speed and use of
computational resources. For instance, the
lowest levels of the hierarchy in visual cortex
might represent a dictionary of features that
can be shared across multiple classification
tasks56. Hierarchical systems usually break
down a task into a series of simple computa-
tions at each level. The same argument could
apply to motor cortex. There might also be a
more fundamental issue. Classical learning
theory shows that the difficulty of a learning
task depends on the complexity of the

required learning architecture. This complexity determines in turn
how many training examples are needed to achieve a given level of gen-
eralization. Thus, the complexity of the learning architecture sets the
sample complexity for learning. If a task such as visual recognition can
be decomposed into low-complexity learning tasks, for each layer of a
hierarchical learning machine, then each layer might require only a
small number of training examples. Of course, not all tasks have a
hierarchical representation. Roughly speaking, the issue is about com-
positionality (S. Geman, personal communication): neuroscience
suggests that what humans can learn — in vision and motor control —
can be represented by hierarchies that are locally simple. Thus, our
ability to learn from just a few examples, and its limitations, might be
related to the hierarchical architecture of cortex.

Learning from very few examples
How then do the learning machines described in modern learning
theory compare with brains? There are of course many aspects of
biological learning that are not captured by the theory and several dif-
ficulties in making any comparison. One of the most obvious differ-
ences is the ability of people and animals to learn from very few
examples. This is one of the challenges for the learning architectures
we propose (although the networks described here, in particular the
network of Fig. 2,can learn certain recognition tasks from less than ten
labelled examples; M. Riesenhuber, personal communication). Of
course, evolution has probably done a part of the learning and
encoded it in the DNA. For instance, there is some evidence for basic
face categorization ability to be present in human infants at birth, and
for face-tuned neurons to be present in inferotemporal cortex of
infant monkeys57. 

In any case, neuroscience suggests that an important area for
future work on the theory and on the algorithms, is the problem of
learning from partially labelled examples (and the related area of
active learning): biological organisms usually have much visual and
motor experience but mostly without direct or indirect feedback
(providing the labels). Interesting theoretical work has begun on this;
for example, showing that regularization networks (similar to the
combination of tuned cells) could update their coefficients from a
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Figure 4 Spinal force fields combine linearly. Force fields A and B were obtained in response to stimulations delivered to
two different spinal sites. The ‘A and B’ field was obtained by stimulating the same two sites simultaneously. It matches
closely (correlation coefficient larger than 0.9) the force field A+B, which was calculated by pair-wise adding of the
vector fields in A and in B. This highly linear behaviour applies to more than 87% of dual stimulation experiments.
Adapted from Mussa-Ivaldi et al.39.
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For normalized t and x vectors (in the euclidean norm), the sigmoid of
a scalar product can approximate a gaussian-like radial function63.
Among the various neurally plausible circuits that have been proposed
to approximate a normalization stage51, we describe here a specific
circuit, using lateral shunting inhibition64–66, mainly to provide a
possible example. There are certainly different possibilities for the
nervous system to implement local normalization modules; for
instance, using more complex synaptic properties (see review in this
issue by Abbott and Regehr, page 796. The simplest equation — here
in a time-independent form — describing a feedforward network of
lateral shunting inhibition has the following form in a network of n cells:

yi� i�1, …, n.

where h and k represent the transduction between nonlinear
presynaptic and postsynaptic voltage at the output of cell i and at the
output of the interneurons mediating lateral inhibition, respectively. If
h(x)�x and k(x) � �x2�, the circuit performs a normalization operation;
if h(x) � xq�1 and k (x) � xq with q sufficiently large (q�2), then the
circuit performs a max operation, for example, yi � xi if xi�maxj xj,
otherwise yi � 0 (see ref. 67). The figure shows the circuit with
inhibition of the shunting type (the arrows indicate depolarizing
synapses, whereas the symbol indicates shunting inhibition onto
interneurons (blue). Depending on the parameters, the activity of the
tuned output cell (red) — after summation of the inputs with x1, x2, ...,
xn weighted with synaptic weights t1,t2,...,tn and then transformation
through a sigmoidal, threshold-like nonlinearity, such as provided by
the spike mechanism — can approximate a gaussian-like, bell-
shaped function of the inputs, that is e�(x1�t1)

2�(x2�t2)
2…�(xn�tn)

2

, since the
input vector is normalized by the recurrent inhibitory circuit.

Note that the neuron responds maximally to the ‘optimal’ pattern
of inputs with values t1,t2,...,tn. Note also that the same basic circuit of
lateral inhibition with somewhat different synaptic parameters could
underlie gaussian-like tuning (by means of normalization) and the
softmax operation54 — which are the two key operations required at
various stages in the model of object recognition shown in Fig. 2.

⊥

h(xi)��
c��

k
k(xk)

partially labelled set of examples58. Other approaches, such as
bayesian and graphical models, might be able to deal more generally
with the problem of unsupervised learning (for example, ref. 25).

The mind as a theory of the world
In modern mathematical theory, the property of generalization is
the key property of learning. Learning, as opposed to memory, syn-
thesizes functions that are predictive of the world. Thus, learning
synthesizes modules — such as vision and motor control — that are
effectively theories of the physical world, in the sense of being
predictive of specific aspects of it. Learning is done within these
architectures by the plasticity of synapses, and learning is what
makes the brain a theory of the world.

The quest for generalization mechanisms
There is considerable evidence in the visual and motor system for the
learning architectures we propose — a combination of tuned units.
But whether our hypothesis is a satisfactory, first-order description
of the first few hundred milliseconds of visual perception and motor
control or whether more complex, recurrent network models will be
needed remains unclear. It will be interesting to look at other systems,
such as the auditory, somatosensory and olfactory systems, from a
similar point of view. There is little evidence at this point for or
against our proposal of a canonical microcircuit underlying tuning in
many neurons throughout the brain52,59; there is even less evidence
for the specific circuit we suggest. In fact, other plausible neural and
synaptic circuits could work as well. Finally, it is unclear whether
similar, simple learning architectures could have any role in typical
human brain functions such as learning language. ■■
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