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SUMMARY

The generegulatory appar atus that directs development is
encoded in the DNA, in the form of organized arrays of
transcription factor target sites. Genes are regulated by
interactions with multiple transcription factors and the
target sites for the transcription factors required for the
control of each gene constitute its cis-regulatory system.
These systems are remarkably complex. Their hardwired
internal organization enables them to behave as genomic
infor mation processing systems. Developmental gene regu-
latory networks consist of the cis-regulatory systems of all

the relevant genes and the regulatory linkages amongst
them. Though thereis yet little explicit information, some
general properties of genomic regulatory networks have
become apparent. The key to understanding how genomic
regulatory networksare organized, and how they work, lies
in experimental analysis of cis-regulatory systems at all
levels of the regulatory network.

Key words: gene regulation, cis-regulatory element, regulatory
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INTRODUCTION

A defining property of metazoansisthe regulatory program for
development that is hardwired in their genomic DNA
seguence. Developmental programs are largely encoded in cis-
regulatory genomic sequences, through which the activities of
individual genes are governed. As everyone knows, cis-regu-
latory target sites are recognized sequence-specifically by the
transcription factors required to control the expression of each
gene. The target sites specify and anchor the relevant tran-
scription factors in appropriate positions with respect to one
another, and to the basal transcription apparatus. These factors,
and other proteins that in turn bind to them, determine the rate
of transcription and mediate the accurate activation or rep-
ression of the gene in developmental time, and in morpholog-
ical space, i.e., in the appropriate cell lineage(s), cell type(s) or
region(s) of the developing organism. The identities of the
genes encoding those transcription factors that, in terms of
causality, lie directly upstream of any given cis-regulatory
system are therefore determined by its target sites. Thus an
initial point of departure: knowledge of cis-regulatory systems
will indicate both their internal workings and also the specific
interconnections amongst them, i.e., the structure of the gene
regulatory network.

These statements are obvious but their consequences and
applications are not. A decade ago no one predicted the actual
complexity or character of cis-regulatory systems, nor for that
matter the shape of the regulatory networks that are erected as
genes encoding transcription factors themselves are differen-
tially activated during development. In terms of direct experi-
mental evidence, the forms of these networks are just

beginning to be perceptible. Yet anong the most fundamental
objectives must be to understand the flow of regulatory infor-
mation from the genome, since that is how the whole process
of development is organized. From this ‘genomic’ standpoint,
most current effort in developmental biology would seem
focused on the inputs and outputs of genomic regulatory
systems rather than on these systems themselves. A particu-
larly important class of inputs includes the signaling interrela-
tions, which ultimately affect gene expression in response to
the identity and activity of neighboring cells. The output of the
developmental regulatory system is the controlled expression
of thousands of genes encoding proteins that endow cells with
their various differentiated, communicative and morphogenetic
competence. Knowledge of their inputs and outputs informs us
about what genomic regulatory systems do and what they
respond to. But to find out how they really work requires direct
examination of the regulatory DNA sequence elements them-
selves, which is to say, of developmental cis-regulatory
systems.

PROPERTIES OF CIS-REGULATORY SYSTEMS

Modular regulatory organization

The complexity of the job that a cis-regulatory system has to
do is reflected in its primary structure. When a gene is to be
expressed (or repressed) in anumber of different circumstances
in a developing organism, it is usually found that separate cis-
regulatory subelements carry out different parts of the overall
regulatory job. We refer to these subelements as regulatory
modules. The experimental definition of such a module is a
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fragment of cis-regulatory DNA that, when linked to areporter
gene and transferred into an appropriate cell, executes a regu-
latory function that is a subfraction of the overall combined
regulatory function executed by the complete system. Individ-
ual modules are always found to contain multiple transcription
factor target sites, and these contribute in various ways to the
overal regulatory output. There are now agreat many excellent
examples of modular cis-regulatory organization, particularly
in Drosophila. The most remarkable cases are found among
genes encoding transcription factors that are expressed in
complex spatia patterns and at different times. For instance,
the cisregulatory system of the Kruppel gene includes
modulesthat direct expression specifically to certain regions of
early or later blastoderm stage embryos; plus at least ten
different elements that specify expression in Malpighian tubule
precursors, Bolwig organ, amnioserosa, muscle precursors and
various cells of the developing nervous system (Hoch et al.,
1990). Similarly, in the cisregulatory system governing
expression of the proneural achaete and scute genes, nine
different regulatory elements or modules are individualy
responsible for expression of these transcription factors in
diverse proneural clusters of the devel oping wing imaginal disc
alone (Gomez-Skarmeta et al., 1995). Modular cis-regulatory
organization is the subject of a recent review (Kirchhamer et
al., 1996a) in which many different cases from Drosophila,
mouse and sea urchin are cited, so it is unnecessary to cite
further examples here. Suffice it to say that modularity is a
common feature of developmental cis-regulatory organization,
observed particularly when genes must be expressed, or
silenced, in multiple spatial domains of the organism. Put
another way, target sites for the set of transcription factors
required to generate a given spatial regulatory output are often
found clustered together more or less contiguously, within a
given sequence element of the cis-regulatory DNA. Thisis not
always so, however. Some of the best examples of discrete cis-
regulatory modules are the individual stripe elements found in
the evenskipped (eve) and paired pair-rule genes (Harding et
al., 1989; Gutjahr et al., 1994), but the regulatory sites that
generate the similar stripes of the hairy pair-rule gene are
largely interspersed with one another (Howard and Struhl,
1990; Riddihough and Ish-Horowitz, 1991). And, as we
discuss below, many genes expressed in specific spatial
domains of the organism appear to be controlled by smaller
cis-regulatory systems that have the structural and functional
features of single modules.

It is clear from thousands of gene transfer experiments that
individual cis-regulatory modules have the intrinsic property
that they can transmit regulatory outputs to the basal tran-
scription apparatus (BTA), and/or to the modules to which they
are linked. The communication is performed by transcription
factors anchored within the modules, or by proteins that bind
to these factors rather than directly to the DNA. Regulatory
communication over hundreds or thousands of DNA base pairs
almost certainly involves DNA looping. This follows from the
great distances that often separate cis-regulatory modules from
the basal transcription apparatus that they control. Among the
most extreme examples is the Ubx gene of Drosophila, where
the individual regulatory modules are located throughout the
70 kb gene (Bender et al., 1983; Martin et al., 1995). Modular
cis-regulatory elements are conventionally found to work with
heterol ogous promoters (here ‘ promoter’ denotes the platform

onwhichthe BTA assembles), for instance, the commonly used
SV40 promoter. Therefore, in generd, it is the cis-regulatory
elements, and not the BTA, that are responsible for the speci-
ficity of the developmental regulatory outputs observed in gene
transfer studies. The most dramatic evidence is that two
modular regulatory elements can be recombined in novel
expression constructs, both servicing the same BTA, wherein
they generate patterns of transgene activity that are spatially an
accurate sum of the patterns mediated by the individua
modular components. Two examples are the crossed pattern of
lateral and dorsoventral stripes generated by constructs con-
taining both the stripe 2 module from the Drosophila eve gene
and the longitudinal neuroectodermal expression module from
the rhomboid gene (Gray et a., 1994); and the combined gut
and skeletogenic mesenchyme pattern of expression that is
generated by transgenesin which regulatory elements from the
gut-specific Endol16 gene and the skeletogenic SM50 gene of
the seaurchin arelinked (Kirchhamer et al., 1996b). Both these
results require that each of the constituent modules individu-
ally direct the activity of the BTA when the modular target sites
are engaged by transcription factors in the appropriate
embryonic spatial domains.

The term ‘enhancer’ to some extent overlaps the meaning
assigned here to the term module. We have avoided the use of
‘enhancer, however, because it has accumulated too many
different denotations. Some of these refer merely to stepping
up the rate of expression, others to causing the specificity of
expression. ‘Enhancer’ sometimes also refers to single factors
or target sites for single factors (e.g., asin ‘enhancer protein’).
As the examples that we now take up abundantly demonstrate,
transcription factors never work alone and, in life, develop-
mental cis-regulatory outputs never devolve entirely from cis-
regulatory sites for a single species of factor.

Intramodular complexity

Fig. 1 displays diagrammatically the organization of eleven
different cisregulatory systems for which the following
obtains. sequences of the specific transcription factor target
sites have been determined by gel shift mapping or footprint-
ing or other means; the factors have been identified or at least
characterized sufficiently that the number of different DNA-
binding factors and some of their properties are understood;
and functional information has been obtained in detailed gene
transfer studies. The examplesin Fig. 1 derive from three very
different metazoan phyla, viz echinoderms, chordates and
arthropods, and yet at a glance one can see that in interna
organization the cisregulatory elements are all similarly
complex. The size and scale of the cisregulatory elements
portrayed in Fig. 1 are indicated by the genomic positions of
their termini, which are shown with respect to the transcription
start sites. Most are single modules a few hundred base pairs
long; note that the eve (Fig. 1H) and the myosin light chain
(Fig. 1E) examples each include two different widely separated
modules. The sea urchin examples (Fig. 1A,B) are severa
times larger, since they represent complete cis-regulatory
systems, each of which includes several individual modules.
Thediversity of thefactorsbinding in each element isindicated
by the shapes of the symbols, and some aspects of their func-
tional roles, where known, are given in Fig. 1 by the color
coding (see legend). Briefly, factors present ubiquitously are
shown in blue; positively acting factors that are spatially



localized in the organism are in green; repressors, which are
here all spatialy localized, are in red; and factors whose pre-
sentation and/or activity is known to be directly affected by
signal transduction systems are shown hatched. All of the cis-
regulatory elements included in Fig. 1 function differentially
in the course of development.

Some fascinating generalizations emerge from Fig. 1, and
the first of these to be considered is the insight this compila-
tion provides into the complexity of interactions within the
developmental cis-regulatory module. Complexity is here
defined simply as the number of diverse interactions, i.e., of
different transcription factors bound per module (whether or
not the same factorsinteract in other modules of the same gene
and irrespective of the number of target sites per factor). Of
course, since not al of the regulatory elements have been
examined in the same detail at the molecular level, this number
is certain to be an underestimate; some factors must have been
missed. Furthermore, the elements shown were in many cases
isolated and defined as ‘minimal’ elements and, in genera, we
do not know where the actual boundaries of the regulatory
modules are. All these caveats indicate that the real complex-
ity is probably greater than that shown. Nonetheless, the
examplesin Fig. 1 turn out to be remarkably consistent: con-
sidering first the cases that represent single modular regulatory
elements, the average number of diverse interactions is about
6.2 (Fig. 1C, 6; D, 8; G, 8; 1, 5; J, 6; K, 4). Two modules are
included in Fig. 1H, containing three and four different inter-
actions; and also in Fig. 1E, containing four and five different
interactions; and four modules are shown in Fig. 1F, contain-
ing 5, 4, 2 and 3 different interactions. The complete systems
shown in Fig. 1A and B have an average of 4.5 interactions per
module (for Cyllla, Fig. 1A, 4 and 6; for Endol6, Fig. 1B,
module A, 5; B, 4; DC, 5; E, 5; F, 5; G, 2). For al 22 modules
included in Fig. 1, the average number of diverse interactions
per module is 4.7. We may conclude that the complexity of
specific interactions built into the DNA sequence of individual
cis-regulatory modules usually fallsin the range of four to eight
different factors and that the average value is near five.

All of the examples of Fig. 1 show, furthermore, that factors
of diverse chemical nature are utilized within each of the
regulatory modules. There are no examples of regulatory
modules serviced only by homeodomain proteins, or Zn finger
proteins, and so forth. This suggests diversity in the nature of
the protein:protein interactions that are required of the factors
in order for each module to generate and communicate its reg-
ulatory outpuit.

Significance of DNA-protein interactions detected in
vitro

A question that must be faced is whether al the DNA-protein
interactions that can be detected in vitro actually do anything.
Just because a protein is bound specifically at its DNA target
site, does that fact aone indicate a cis-regulatory function?
There are various thermodynamic and probability arguments,
all of which point obviously toward the functional significance
of many specific DNA-protein interactions. Three such
arguments are (i) that the equilibrium constants of some tran-
scription factor-DNA complexes are such as to require the
formation of multiple chemical bonds between protein side
chains and the DNA bases, as has been amply confirmed by X-
ray crystal structures of many such complexes; (ii) that where
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the affinity of a given factor for its target siteislow, it is often
found that highly specific cooperative interactions with other
factors bound at adjacent target sites greatly increases both
complex stability and site specificity and (iii) that the length of
sequence protected by bound transcription factors suffices to
specify these sites uniquely, even within the enormous animal
genome. But convincing as they may be, these are all a priori
arguments. The regulatory significance of transcription factor-
DNA interactions is demonstrable experimentally in gene
transfer experiments and, for the examples shown in color in
Fig. 1, functions have been identified by this means for most
of thefactorsindicated. In addition, for many of the Drosophila
cases, eg., the eve (Fig. 1H), rhomboid (rho) (1) and knirps
(kni) (J) elements, there is supporting genetic evidence in the
effects of mutations that eliminate the transcription factor or
cause its misexpression (these comments refer to interactions
by factor species, not to every one of the multiple target sites
often found for each species of factors). However, cis-regula-
tory analysis cannot be done by genetics alone, but only by
direct molecular manipulations, including characterization of
DNA-protein interactions in vitro, combined with transfer of
mutated or synthetic expression constructs into appropriate
cells or embryos. Even for genes as well studied as ftz (Fig.
1G) direct examination revealed the participation of a number
of new factors for which specific regulatory roles were demon-
strated (Dearolf et a., 1989; Topol et a., 1991). Specific sites
of DNA-protein interaction were mapped in vitro throughout
the whole cis-regulatory domain of the Cyllla gene of S pur-
puratus, and here the issue of functional importance was
explicitly examined for al the nine different species of inter-
action that were detected. All of these interactions (see Fig.
1A) have the property that the sequence preferences of the
factor for itstarget siteis at least 5-10x103 that for non-specific
DNA polymers in vitro (Calzone et al., 1988, 1991; Thézé et
a., 1990; Coffman et al., 1996), and this criterion turns out to
be sufficient. Thus interference with every single one of these
interactions, by in vivo competition (Franks et al., 1990;
Hough-Evans et a., 1990) or by deletion and mutation,
produces a distinct regulatory phenotype when introduced into
embryos (Coffman et al., 1996; Kirchhamer and Davidson,
1996). So we can conclude that, at least at this level of
sequence specificity, the target site code built into the cis-
regulatory DNA isindeed functionally meaningful. Or, looking
at the matter from the other side, if a sufficiently specific inter-
action is detected by physical methods, the observer had best
assume that it means something, and try to find out what that
something is.

Positive and negative functions of factors binding
within cis-regulatory modules

Each of the modular elements portrayed in Fig. 1 consists of
target sitesfor diverse factors, which execute diverse functions.
Some serve as termini of signa transduction systems, a par-
ticularly prominent feature, e.g., of the IL2 gene inducible
element shown in Fig. 1D (Rothenberg and Ward, 1996). Other
factors appear to control relations between the module and the
BTA, or between it and other modules, a subject we take up
below. Here we focus on interactions that have positive or
negative developmental significance, that is, interactions that
cause activation or repression of the gene in different spatial
domains of the organism.
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gene of Drosophila also includes negatively acting cis-regula-
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Hoffman, 1994). Negative spatial regulation has been discov-
ered in cis-regulatory analyses of developmentaly expressed
genes in other organisms too: for instance, in sea urchins (in
addition to the examples shown in Fig. 1A, B, see Niemeyer
and Flytzanis, 1993; Frudakis and Wilt, 1995; Gan et al.,
1990); in C. elegans (Egan et a., 1995) and in the snail Patella
(Damen and Van Loon, 1996). The implication is that such
negative regulators, or at least their activities, are confined to
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given spatial domains of the organism, and that is indeed what
is generally found.

Developmental repressors work in a number of different
ways, an interesting and important subject in itself that was
recently reviewed by Gray and Levine (1996a). Sometimes
negative regulators function as silencers, by shutting down the
BTA so that it is impervious to any positive inputs, but often
they work essentially by antagonizing activation functions
mediated by positive regulators bound near them within the
same module (‘short-range quenching’; Gray and Levine,
1996a). Short-range intramodular repression of the latter sort
requires that the repressor bind within about 100 bp of the
activator(s), the function of which it blocks. This has been
shown for the giant repressor of the eve stripe 2 element (Gt
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Drosophila Fig. 1. Some metazoan cis-regulatory
elements. Cis-regulatory elements are
illustrated from various relatively well

(G) Jiz zebra- studied genesin sea urchin (A, B),
stripe mouse (C, D), rat (E), man (F) and
element Drosophila (G-K). Black horizontal

lines represent the DNA. The scale
and the size of each element are

(H) eve stripe indicated by the positions of their
3+7 and 2 termini (in kilobases, kb) with respect
elements to the transcription start site (broken

arrow). Each symbol represents an
individual factor binding at its target
sitein the cis-regulatory DNA. The
size of each symboal is not intended to
be accurate in dimension, though
symbols are larger in elements shown
at higher magnification.
Superimposed symbols imply only
that specific sites are close together.
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neurectoderm
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) kni Factors are shown for which
posterior interaction with the specific DNA
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acting, spatially localized factors are
shown in green. Factors for which none of these descriptions are applicable, or for which functions remain unknown are shown in black.
Factors whose presentation or activity is known to be directly affected by signal transduction systems are shown hatched. Open, unlabeled
symbols represent still unidentified factors; open but labeled symbols represent factors about which there is some functional or biochemical
information which are either not cloned or are controversial. For detailed information on functional roles of factors when bound to their target
sites see following references: (A) Modular cis-regulatory system of the Cyllla cytoskeletal actin gene expressed in embryonic aboral ectoderm
(Kirchhamer and Davidson, 1996 and references therein). The roles of the two individual regulatory modules are indicated below the map.
(B) Cis-regulatory domain of the Endo16 gene expressed in vegetal plate, archenteron and then midgut. At top is the map showing DNA-
binding factors (from Yuh et a., 1994) and below is a summary of the modular functions and intermodular organization within the Endo16 cis-
regulatory system. Here individual modules (A-G) are represented by filled or hatched boxes to which the color coding described above also
applies. The function of each moduleisindicated beneath the horizontal double-headed lines. Arrows indicate positive interactions; terminally
barred lines indicate negative interactions (from Yuh and Davidson, 1996; Yuh et a., 1996). Transcription factors portrayed in (A) and (B) are:
A, AP-1-like factor; C, CREB-related protein; CT, CCAAT-binding factor; G, SpGCF1; M, SpMyb; O, SpOct-1, Ot, SpOtx; P, SpP3A2; R,
SpRunt-1; T, SpTEF-1; Z, SpZ12-1. (C) Structure of the upstream element responsible for autoregulation and retinoic acid (RA) response of the
pit-1 gene (adapted from Rhodes et al., 1993). Straight and curved arrows indicate the role that specific Pit-1 (P)-binding sites havein
maintenance of pit-1 gene expression or interference with RA response. Abbreviations for other factors are: RA, retinoic acid receptor; RX,
RXRa nuclear receptor coregulator; V, vitamin D receptor. (D) Stimulated T-cell configuration of the factors binding to an upstream element of
the interleukin 2 (IL-2) gene (Rothenberg and Ward, 1996). Symbol abbreviations are: A, NF-AT; AP, AP-1; C, CACCC binding factor, Sp-1-
like factor; D, CD28RC; N, NF-kB; O, Oct-1; T, TGGGC-binding factor. (E) Cis-regulatory elements of the myosin light chain (MLC) 1/3
locus. On top are shown, at |ft, the cis-regulatory element proximal to the ML C3 gene transcription start site (McGrew et al., 1996) and, at
right, the downstream element that controls both MLC1 and MLC3 gene expression (Rosenthal et al., 1992; Rao et a., 1996). Below the maps
isadiagram of the genomic organization of these elements, represented as green boxes, for which the functional roles are also indicated:
vertical and curved arrows indicate positive interactions, the outputs of which are represented by horizontal arrows. Factor abbreviations are: E,
E12; F, MAPF-1 (muscle actin promoter factor 1); F2, MEF 2; G4, GATA-4; H, unidentified HOX protein; M, MDF (myogenic determination
factor). (F) Partial organization of the cis-regulatory system of the B-globin locus. Cis-regulatory elements present in hypersensitive (HS) sites 4
(Pruzinaet al., 1991), 3 (Strauss and Orkin, 1992) and 2 (Philipsen et al., 1990) are portrayed; in addition,the element proximal to the -globin
gene transcription start site is shown (deBoer et al., 1988). Abbreviations are: AN, AP-1I/NF-E2 factors; C, CACC-binding factor(s); CT,
CCAAT-binding factor(s); G1, GATA-1. (G-K) Cis-regulatory elements from five Drosophila genes. (G) The fushi tarazu (ftz) proximal element
responsible for the ‘ zebra stripe’ pattern of expression of ftz (Topol et a., 1991; and Carl S. Parker, personal communication). (H) Modular cis-
regulatory elements responsible for stripe 2 (Small et a., 1993) and stripe 3+7 (Small et a., 1996) expression of the even-skipped (eve) gene. (1)
Cis-regulatory element controlling the longitudinal neurectodermal pattern of expression of the rhomboid (rho) gene (Gray et a., 1994). (J) The
knirps (kni) element for posterior expression (Rivera-Pomar et a., 1995). Many of the interactions shown are inferred only from the locations of
target sites for regulators for which there is functional genetic evidence. (K) PBX control region of the Ultrabithorax (Ubx) gene (Zhang et al.,
1991; Miiller and Bienz, 1992). Where known the role of specific subelements isindicated below the map. Factor abbreviations used in G -K
are: B, Bicoid; C, Caudal; Da, Daughterless; DL, Dorsal; F, Fushi tarazu; FF, ftz F1 steroid receptor; GA, GAGAG factor; Gt, Giant; Hb,
Hunchback; K, Knirps; Kr, Kruppel; S, Snail, Sc, Scute; St, D-Stat; TL, Tailless, Tw, Twist.
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in Fig. 1H; Arnosti et a., 1996) and for the snail repressor of
therho neuroectoderm lateral stripe element (Sin Fig. 11; Gray
and Levine, 1996b). Short-range quenching isalso found in the
later expression module of the S. purpuratus Cyllla genewhere
the repressor (M, in Fig. 1A) is required to prevent ectopic
expression. However, if the target site for the activator of this
module (R, in Fig. 1A) is aso destroyed, the function of M is
not needed, and no ectopic expression occurs, only a lower
level of normal expression (Coffman et a., 1996, 1997; Kirch-
hamer and Davidson, 1996). Intramodular short-range
guenching demonstrates the integrative function of cis-regula-
tory modules. The interplay of positive and negative functions
within the module thus suffices to generate an output that can
beinterpreted by either the endogenous or a heterologous BTA
to which it is linked, and that determines precisely bounded
domains of expression in the embryo.

Programming communication within complex cis-
regulatory systems

A requirement for interactions between cis-regulatory elements
at more or less distant locations has been observed in many
different systems. For instance, the cis-regulatory system of the
myosin light chain (MLC) genes consists of the downstream
positive regulatory elements shown in Fig. 1E, which are
thought to service both the MLC1 and the linked ML C3 genes,
and also individual regulatory modules upstream of each gene,
of which that adjacent to the start site of the MLC3 gene is
shown. Note that the proximal element contains target sites for
muscle-specific factors and does not act simply as a docking
sitefor the BTA. Hematopoietic expression of the globin genes
is mediated by a distant ‘locus control region,’ (LCR), together
with cis-regulatory elements in the immediate vicinity of the
individual genes (see Fig. 1F). This is a particularly interest-
ing case for the present context, due to an elegant in vivo
demonstration of dynamic interaction between the LCR and the
regions occupied by the genes themselves (Wijgerde et dl.,
1995). The dwell time for the compl exes formed between these
respective cis-regulatory modules ranges from 15-80 minutes.
Complex formation requires DNA looping and transcription
occurs only while the intermodular complex is extant. As Fig.
1F illustrates, both the LCR and proximal globin gene regula-
tory elements contain target sites for factors promoting
expression of hematopoietic genes (G1 in Fig. 1F), just as
muscle factors are bound in both proxima and upstream
regions of the myosin light chain cis-regulatory system.
Proximal cis-regulatory modules may perform specialy
important functions in processing the regulatory outputs of
more distantly located modules. This has been clearly shown
for the Endo16 gene of S purpuratus. Module A of this cis-
regulatory system performs three communicative regulatory
functions, in addition to mediating early vegetal plate-specific
gene expression for which an Otx factor is required (Yuh and
Davidson, 1996, Yuh et a., 1996; and unpublished data). The
individual communicative functions are indicated by the
arrows in the diagram shown in the lower portion of Fig. 1B.
(i) Module A processes negative outputs from modules F, E
and DC; i.e.,, an AP1-like protein bound in module A close to
the Otx factor is required for all three upstream modules to
execute their repressive functions. (ii) Module A synergisti-
cally amplifies the positive input of module B; again, a certain
specific factor bound in module A (denoted by the open

triangle) carries out this function. (iii) Module A transmits to
the BTA the integrated output of all the modules (including its
own). For this function, interactions in module A mediated by
the factors shown as open circles in Fig. 1B are required.
Needless to say, all these capacities of Module A are specified
by the target sites encoded in its DNA. This type of organiz-
ation of course increases the diversity of the control functions
that can be handled by a cis-regulatory system, since it adds
another level of integration upstream of direct interactionswith
the BTA.

How is the formation of looped complexes between factors
bound in distantly located regulatory modules controlled?
Some of the factors, or proteins bound to these factors, must
have specific affinities for one another. Pursuing this line of
thought a step further, there may be proteins the specific
function of which is to dock in modules that are to interact,
and then to recognize and bind to one ancther in order to facil-
itate or stabilize appropriate loop formation. Two candidates
are dready known, both initialy identified as transcription
factors, and both of which multimerize stably once bound to
their specific DNA target sites. They are the mammalian factor
Spl (Pascal and Tjian, 1991) and the sea urchin factor SpGCF1
(Zeller et al., 1995a). Target sites for SpGCF1 are found within
many of the regulatory modules of both Cyllla and Endol6
(the factors labeled G in Fig. 1A,B) as well as in other genes
(Frudakis and Wilt, 1995). Thus the possibility of specific
intermodule communication could also be hardwired in the
DNA, intheform of target sitesfor multimerizing proteins, and
this type of regulatory coding could be much more widespread
than is so far evident.

Cis-regulatory organization as an index of
developmental role

A recurrent theme here has been the relation between internal
cisregulatory structure and function. Some day we shall
perhaps know enough so that a map of cis-regulatory target
siteswill in itself provide auseful prediction as to the role that
the regulatory system performsin development and its position
inthe overall regulatory network. There are already someinter-
esting indications, several discussed earlier. For instance, the
point is made above that cis-regulatory modules that have the
function of interpreting embryonic spatial specification cues
characteristically display target sites for both positively and
negatively acting factors. It follows then that cis-regulatory
elements that direct spatially confined patterns of expression
but that use only positive regulators are likely to act down-
stream of the initial spatial specification systems. Pattern
formation processes cause the presentation of transcription
factors within given spatial domains and these factors may then
serve as positive regulators, which suffice to activate down-
stream genes in particular regions, morphogenetic progenitor
fields, or cell types of the embryo. Many interesting examples
demonstrate the applicability of this concept, including some
of those shown in Fig. 1. The Endol6 gene of S. purpuratus
provides one case: late in sea urchin embryo development, the
gut is partitioned into foregut, midgut and hindgut, and at this
point Module B aone suffices to produce correct expression,
which is confined to the midgut (Yuh and Davidson, 1996).
Endol16 isnow essentially governed by a one-module, positive-
only regulatory system. Gut regionalization depends on
signaling processes within the archenteron (McClay and



Logan, 1996). These apparently affect the presentation of the
transcription factor represented in Fig. 1B by the green box in
Module B, which is aone responsible for midgut expression
(Yuh and Davidson, 1996; and unpublished data). At this late
time, none of the negative modules required initially to specify
expression in the vegetal plate are needed anymore. Another
relevant S. purpuratus gene is that encoding the Cylla
cytoskeletal actin. In contrast to the Cyllla system shown in
Fig. 1A, the Cylla cis-regulatory system iscompact, apparently
consisting of asingleregulatory module and it lackstarget sites
for any negative regulators (unpublished data of the authors).
However, also in contrast with Cyllla, this gene turns on only
following specification and initial differentiation of the cell
types in which it is expressed, viz skeletogenic and secondary
mesenchyme, and gut. Of course cis-regulatory systems that
respond to already confined spatial regulators may operate by
repression as well as by activation. Thus the ftz zebra element
shown in Fig. 1G generates the complete 7-stripe pattern of
expression by responding to the output of an upstream regula-
tory apparatus, which produces a striped distribution of repres-
sors active in all the odd parasegments (Dearolf et al., 1989).
Again, thisisin contrast to the multimodule eve cis-regulatory
system, wherein each module performs the job of integrating
much broader patterns of transcription factor distribution into
one or two single stripes (Harding et a., 1989; Small et al.,
1992; Gray and Levine, 1996a; Fig. 1H).

A striking aspect of Fig. 1C-F isthat none of the mammalian
elements shown there include target sites for repressors. The
explanation isthat these are all cell-type-specific cis-regulatory
elements that lie downstream of the prior genetic control
functions by which the respective embryonic domains and
thencethe cell types arising within these domains are specified.
For example, the gene encoding the POU domain Pit-1 tran-
scription factor (Fig. 1C) is downstream of other transcription
factors required for specification of pituitary cell types,
including a paired homeodomain factor, Prop-1 (Sornson et al.,
1996). A modular regulatory element controlling axial
expression of the HoxC8 gene in the mouse embryo provides
asimilar case (Shashikant et al., 1995; Shashikant and Ruddle,
1996). This spatial control system apparently also responds to
aset of prior, positively acting developmental regulators. These
may include a caudal-related factor, and a forkhead class tran-
scription factor, as well as products of other Hox genes.
Similarly, the genes encoding transcription factors that activate
muscle-specific differentiation genes such as the MLC gene
(Fig. 1E) are themselves downstream of the regulatory
apparatus by which muscle precursors areinitially specified, as
has been elucidated in particular for Drosophila (see, e.g., Lilly
et al., 1994; Staehling-Hampton et al., 1994; Bodmer, 1995;
Carmena et a., 1995; Frasch, 1995; Maggert et al., 1995;
Taylor et al., 1995; Ranganayakulu et al., 1996). There are of
course many other examples of terminal differentiation genes
that do include negative spatial control elements; for instance,
in a number of neuron-specific genes (Schoenherr and
Anderson, 19953). Asin the cases of the S. purpuratus Cyllla
and Endo16 genes, these are examples in which some aspects
of spatia control depend on cis-regulatory interactions at the
level of the terminal differentiation gene.

One other developmental circumstance that probably
indicates entirely positive, singleemodule cis-regulatory
systems deserves mention. There is a large group of inverte-
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brate embryos that utilize essentially similar processes to
accomplish specification in early development, of which the
best known examples are ascidian, sea urchin and nematode
embryos. These embryos typically generate more or less
invariant cell lineages, some founder cells of which are
specified by interblastomere signaling during cleavage (‘ Type
1" embryos; Davidson, 1990, 1991, 1994; Davidson et d.,
1995). However, Type 1 embryos typically generate some
autonomously specified cell lineages as well. Autonomously
specified founder cells apparently inherit spatialy confined
maternal factorsthat arelocalized in the cytoarchitecture of the
cleavage-stage embryo. Cis-regulatory elements for three S
purpuratus genes that can reasonably be regarded as markers
of early autonomous specification have been examined in some
detail. One of these is SMI50 (Makabe et al., 1995), a gene
encoding a skeletogenic matrix protein that is expressed very
early inthe autonomously specified lineage from which derives
the skeletogenic mesenchyme. The other two, SpAn and SpHE
(Wei et d., 1995; Kozlowski et al., 1996; SpHE is the hatching
enzyme) encode metalloendoproteases that are expressed in
animal half and equatorial cells, but not in the vegetal-most
cells of the early blastula. All three of these genes display
compact, single-module cis-regulatory systems and, in none of
them, are target sites for negative regulators to be found. This
makes sense: like those cis-regulatory elements that lie down-
stream of prior specification systems, these also have only to
respond to already localized regulators.

GENE REGULATORY NETWORKS

The components that constitute gene regulatory networks
consist of the linkages between different cis-regul atory systems
together with the genes that they govern. The most concrete
examples at present are batteries of genes encoding cell-type-
specific differentiation proteins. Here the regulatory linkages
are between the genes encoding certain transcription factors
and individual genes encoding differentiation proteins, the cis-
regulatory systems of which share target sites for these factors.

Gene batteries

In hisoriginal use of thisterm, Morgan (1934) thought of gene
batteries as sets of genes expressed at different stages of devel-
opment. Britten and Davidson (1969, 1971) transformed this
into amolecular concept. Gene batteries were conceived as sets
of genes that are coordinately expressed because their cis-
regulatory sequences share homologous target sites for activa-
tors, and today’s definition descends from this. However, the
parallel input logic of cis-regulatory systems, as illustrated in
Fig. 1, meansthat we have to deal with the problem of multiple
regulatory inputs if we are to keep the original sense of a set
of genes encoding proteins that together perform certain
functions. Furthermore, even if the patterns of expression are
cell-type-specific, many of the transcription factors for which
the genes of a battery share sites are not. Reality differs from
a priori conception in that cell type specificity is often not
simply defined (particularly in mammalian lineages): it may in
different cases depend on combinatorial interactions amongst
factors; on cell-type-specific proteins that are bound to tran-
scription factors anchored on the DNA; on signal-dependent
modification of factors; on earlier developmental events than
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Fig. 2. Two examples of gene batteries. (A) Cis-regulatory elements
controlling the expression of some striated muscle genes: muscle
creatine kinase (MCK, Donoviel et a., 1996), myosin light chain
(MLC, Rosenthal et al., 1992; Rao et a., 1996), skeletal a-actin
(MacLéllan et al., 1994), cardiac a-actin (Moss et a., 1994) and
cardiac troponin T (Mar and Ordahl, 1988; Larkin et a., 1996).

(B) Cis-regulatory elements controlling the expression of some T-cell
specific genes: T-cell receptors (TCR) a, 3 and y (Leiden, 1993;
Giese et a., 1995); CD2 (Wotton et a., 1995) and CD3y
(Georgopoulos et al., 1990, 1992; Molnar and Georgopoulos, 1994).
Symbol, name, abbreviation and nature of the DNA-binding domain
of the transcription factors portrayed in A and B are indicated on the
right side of each gene battery. The position of the TATA box and the
position of transcription start site (broken arrow), when present in the
element reported, are also indicated. The scales used for the genes
grouped in A and B are indicated by bars at the bottom right of each
panel, respectively (bp, base pairs).

those mediated by the cis-regulatory modules controlling
expression at a particular time of observation; and so forth.
Two examples of gene batteries are shown in Fig. 2. Fig. 2A
portrays cis-regulatory elements controlling expression of some
contractile muscle proteins, and Fig. 2B illustrates cis-regula
tory elements of some T-cell specific genes. The individual cis-
regulatory elements of each of these batteries share most but
often not al of the set of transcriptional regulators that could
be used to define each battery. Furthermore, the order and

Fig. 3. A sector of animaginary developmental gene regulatory
network. (A) Network sector. Three genes encoding transcription
factors are shown at the top. These are a spatial regulator (orange),
atemporal regulator (green) and a signal-mediated regul ator
(blue). Genes encoding other transcription factors that originate
off the diagram are indicated in black type on open backgrounds.
A battery of six genes encoding some differentiation proteins
(P1-P6) is shown below. Connections between the three genes
encoding transcription factors and target sites in the P1-P6 genes
areindicated by respectively colored bent arrows and the
transcription factors as solid circles. The spatial regulatory geneis
controlled by positive and negative interactions, which establish
the limited spatial domain where it will be expressed, and it
utilizes a ubiquitous ancillary activator to achieve an appropriate
level of expression. This gene would be expressed only at certain
stages due to requirement for the factor produced by the green
temporal regulator, shown below the line binding to its target sites
in the cis-regulatory DNA. The cis-regulatory system of the
temporal regulator responds to its own transcription factor, and

a so depends on afactor appearing only after a certain stage of
development, and on another ubiquitous ancillary activator. The
signal-mediated regulator produces a factor that is activated by
signals. For example, if this were a short-range signal produced by
cells adjacent to the domain of expression of the spatial orange
regulator, P1-P6 would be expressed only near the boundary. The
cis-regulatory system controlling expression of the signal-
mediated transcription factor includes target sites for the product
of the orange spatial regulator, shown binding below the line
representing the DNA, and also for two factors that work together
to promote transcription during growth, one imagined as a
regulator produced when cells are cycling, the other asa
ubiquitous co-factor. The arrows at the right indicate that each of
the three genes encoding transcription factors have many
downstream targets besides the P1-P6 gene battery. Any
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spacing of the target sites for shared factors are in no two cases
exactly alike. This largely reflects lack of functional constraint
with respect to spacing and order, but it may also be that some
genes are expressed in subtly different ways from others, i.e.,
at different rates and times in differentiation or under different
forms of external inducement. But the fact remains that the cis-
regulatory elements of each battery share linkages to more or
less the same set of transcriptiona regulators. There are not so
many examples of cis-regulatory gene batteries defined so
extensively as those in Fig. 2. However, there are many cases
where target sites for at least one transcription factor have been
found in the cis-regulatory domains of sets of differentiation
genes which belong to some functional or developmental
cohort, and we can be sure that in each case additional factors
will be discovered to congtitute a shared set of regulators. For
mammals, examples of factors that regulate genes that are in
some sense coordinately expressed include HNF-4 in liver
genes (Sladek et a., 1990), C/EBP family members in genes
required in fat cells (Christy et al., 1991; Yeh et d., 1995), Pit-1
in genes encoding various pituitary products (Andersen and
Rosenfeld, 1994) and NRSFREST, a negative regul ator utilized
in neuron-specific genes to repress expression in other cells
(Schoenherr and Anderson, 1995b). Examples are also known
in seaurchinsfor genes expressed in skeletogenic cells, gut cells
and aboral ectoderm cells (Nemer et al., 1995; Kirchhamer et

a., 1996za; Y.-H. Lee, C.-H. Yuh, M. Arnone and E. Davidson,
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resemblance between this network sector and a known regulatory element is purely coincidental. (B) A single relationship extracted from the
network. A causal diagram is shown portraying the multilevel function of the orange spatial regulator, which controls both the gene encoding
the blue signal-mediated regulator and the P1 gene; the latter, however, is aso directly responsive to the spatial regulator.
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unpublished data). The gene battery concept is relevant to sets
of genes encoding transcription factors as well as to terminal
differentiation genes. For example, the transcription factors
encoded by the proneural achaete and scute genes of
Drosophila directly regulate the expression of the genes of the
Enhancer of Split complex, which encodes a set of transcrip-
tion factors required for local spatia specification of peripheral
nervous system elements (Singson et d., 1994).

Battery relations among cis-regulatory elements can only be
elucidated by direct analysis of structure and function within
these elements. Ultimately, this requires both gene transfer and
the ability to clone out all the DNA-binding factors. At present,
the only general approach is partial purification of the factor
by means of affinity chromatography and protein microse-
guencing. In the context of embryogenesis, there are so far only
two systemswherethisis possible, viz Drosophila (e.g., Biggin
and Tjian, 1988; Perkins et al., 1988; Huang et al., 1995; Liaw
et al., 1995) and sea urchin (Calzone et al., 1991; Coffman et
al., 1992, 1996; other referencesin Kirchhamer and Davidson,
1996). Yet the isolation of developmentally active gene
batteries that encode cohorts of differentiation proteins is of
obvious importance. Cis-regulatory analysis of such sets of
genes provides the most direct pathway upstream from a mor-
phogenetically intelligible starting position, i.e., proteins of
known function, into the interior of the gene regulatory
network.

General considerations
(i) Peripheral and internal network elements

In considering linkages within the genomic regulatory
network, one immediately realizes that there are two kinds of
genes. those for which all linkages to specific cis-regulatory
target sites are upstream and those for which there are both
upstream and downstream linkages. The latter category
consists exclusively of genes encoding transcription factors.
Here ‘upstream’ is used in a causal sense to denote the genes
encoding transcription factors that bind in a given cis-regula
tory system, and hence ‘downstream, with respect to genes
encoding transcription factors, denotes the cis-regulatory
system(s) to which these factors bind. The linkages in which
genes encoding transcription factors participate, and these
genes, congtitute the internal components of the regulatory
network; genes encoding all other kinds of proteins constitute
the peripheral or terminal elements.

Of course many other kinds of causal

relationship can be demonstrated, for A

instance, relationships that display

signal systems causally upstream of / \\
genes encoding transcription factors.

These involve chains of protein-to-

protein interaction, however, and thus
they describe regulatory connections
beyond those immediately repre-
sented in the genomic DNA
sequence.

(ii) Networks and causal
relationships

Fig. 3 describesan entirely imaginary
sector of a genetic regulatory
network. The internal part of this

/\
/ /

Fig. 4. Relationships between maternal transcription factors and zygotically expressed genes.

(A) Upstream of the eve and the rhomboid genes of Drosophila, from Ip et al. (1992a); a‘view
from the genome’ (see text). The maternal factors are, respectively, bed, which activates both the
hb activator and the gt repressor, as well as the downstream eve stripe 2 module and dI, which
activates both the twi activator and the sna repressor, as well as the downstream neuroectoderm
module of the rho gene. An additional relationship is that twi also activates the gene encoding the
snarepressor (Ip et al., 1992h). (B) Relationship diagram for early peripheral gene expressionin
sea urchin embryos. Arguments are discussed in text.

network sector is shown at the top. It consists of three genes
encoding transcription factors. The first, shown in orange, is a
spatial regulator, controlled by the usual mix of positively and
negatively acting transcription factors. The second, shown in
green, is a stage-dependent temporal regulator with an autoreg-
ulatory loop. The third, shown in blue, encodes a signal-
dependent transcription factor, which is wired up to the first,
so that it is only expressed in the spatial domains where the
orange regulator is presented. There are other inputs into the
three internal genes, as shown. The periphera genes are at the
bottom, constituting a battery encoding six proteins. They will
be expressed at certain places, according to the orange
regulator; but only in certain subregions where the signal
system activating the blue regulator is functional, and when
cells are dividing; and only at certain stages of development,
according to the green regulator. The point of this imaginary
diagram is purely heuristic: it illustrates interesting principles.
One such can be seen by comparing Fig. 3B to Fig. 3A. In Fig.
3B one of the causa relationships in Fig. 3A is abstracted.
Experimental analysis has revealed a number of relationships
of this kind, of which two interesting examples from the work
of Levine and colleagues are reproduced in Fig. 4A. But such
relationships should not be confused with regulatory networks
as they must really exist, given what we aready know of cis-
regulatory organization. Isolated relationships trace simple
lines of causality, whilein life there are multiple parallel inputs
into any cis-regulatory system, with at least some degree of
informational integration to be expected to occur within each
cis-regulatory module, whether it is located peripheraly or
internally.

(iif) Multilevel connections

Fig. 3A illustrates several kinds of connections: downstream
connections from the internal genes to the peripheral genes, an
autoregulatory connection and two connections amongst the
internal genes. Autoregulatory connections are known in many
genes that encode transcription factors. Fig. 1C in fact displays
the internal anatomy of the Pit-1 autoregulatory element and,
for example, there are autoregulatory modules (separate from
those portrayed in Fig. 1) in the cis-regulatory systems of the
ftz gene (Hiromi et al., 1985; Dearolf et al., 1989) and the eve
gene (Harding et al., 1989). Autoregulatory elements are also
found in Hox genes (e.g., Popperl et a., 1995), and often occur

Maternal TF's

Zygotic TF's

Differentiation
proteins
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in genes encoding transcription factors of all classes, examples
of which are too numerous to cite here. Regulatory linkages
between genes encoding transcription factors are now a
common theme. A famous example is the web of *cross-regu-
latory’ interactions amongst HOM-C/Hox genes (McGinnis
and Krumlauf, 1992). But, as Fig. 3A illustrates, and the real
relationshipsin Fig. 4A demonstrate, linkages between internal
genes of the network may connect a given gene to others at
several different levels or positions in the network. Therefore
the network cannot be conceived in any simple sense as strictly
hierarchical. That is, it cannot be composed simply of several
horizontal ‘layers’

(iv) The ‘view from the genome’ and the ‘view from the
nucleus’

Figs 1, 2 and 3 of this paper portray what one might call ‘the
view from the genome.’” They attempt to describe the organiz-
ation of cis-regulatory systems in terms of al the interactions
that occur under al circumstances, because that is what is
determined by the information hardwired into the regulatory
DNA. However, in life whether these interactions occur of
course depends on which nucleus one considers, and at what
stage of development. The ‘view from the nucleus describes
a different picture for each developmental state in which the
gene acts differently. For example, in vivo footprinting shows
that the IL-2 gene regulatory module portrayed in Fig. 1D is
either occupied as shown, partialy loaded or entirely devoid
of the transcription factors indicated, depending on the devel-
opmental and stimulatory state of the T cells (Rothenberg and
Ward, 1996). The same is true of other developmentally
regulated genes studied in this way (e.g., Jackson et al., 1989;
Mueller and Wold, 1989). Similarly, in a cell facing another
across a boundary, a cis-regulatory element might have a
negative regulator bound to it, while the view from the
opposing nucleus might reveal only positive regulators in the
same cis-regulatory element. The view from the genome is the
sum of the views from all the relevant nuclei, integrated over
time. Development is the process that partitions the total of
potential interactions specified in the DNA seguence into the
various states in which each cis-regulatory system exists in
these nuclei at specific stages. Another way of saying this is
that per-genome networks have no temporal dependence.
Developmental per-nucleus networks may depend on time, for
example progressive changes in chromatin structure in given
lineages, as well as on the identity of the nucleus in the
organism.

Complexity of developmental gene regulation

Itisat present impossible to define fully the complexity of any
sector of the genomic regulatory network for development.
Here ‘complexity’ is interpreted in an elemental way, as the
number of linkages upstream from the cis-regulatory system
controlling a given phase of the expression of a developmen-
tally regulated peripheral gene. We do not yet know enough
about any system to construct a true network diagram that
would cover even asmall sector such as we concocted for Fig.
3A. At our present state of knowledge, the greatest complex-
ity would seem likely to be required in the process of mor-
phogenetic pattern formation. As discussed elsewhere
(Davidson, 1990, 1991, 1993, 1994; Davidson et al., 1995) the
process by which major body parts arise in postembryonic
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development of al bilaterian metazoans begins with regional
expression of transcription factors in the anlage or progenitor
field of the future structure, or of various transcription factors
in the various portions of the field. After early embryonic
stages, this always results in expression of spatially confined
signals. These signals affect the activity of regulators control-
ling genes that encode new transcription factors essential to
generation of the pattern. The ultimate integration of the spatial
information conveyed by the intercellular signals thus occurs
in the cis-regulatory modules directing the expression of these
transcription factors, which are thereby expressed in newly
defined spatial subdivisions of the embryo. These events occur
in a context of growth and cellular expansion. Cell differen-
tiation programs are called into play only later in the process,
but how many linkages downstream is hard to guess. Currently
the best known examples are in appendicular development, i.e.,
imaginal discs in Drosophila and limb buds in amniotes (for
some references see the reviews cited above). Expression of
Hox’HOM-C genes in axia specification during body plan
formation is clearly an early step in a process that operates by
a similar mechanism. The same can be said for genes such as
eve and ftz (Fig. 1), which set up transient metameric patterns
of transcription factor expression that are necessary for, and
that foreshadow, parasegmental morphogenesis. But again, the
number of linkages that separate these initial stages of the
pattern formation process from parasegmental morphogenesis
is obscure, except that it is very unlikely to be a small number.

One circumstance where there are at least some indications
is at the very outset of development. The transcription factors
that activate the initial cohorts of zygotic genes expressed in
an embryo are al maternal. The two Drosophila examples in
Fig. 4A areinteresting in that they show that the maternal bed
and dl factors are each immediately utilized to activate genes
encoding both positively and negatively acting transcriptional
regulators, but also other genes at a level further removed in
the network. Furthermore, the same kinds of relationships
obtain in the two cases shown in Fig. 4A, though eve is an
internal and rho a peripheral gene in the network. Over 30
genes encoding transcription factors are expressed in spatial
patterns soon after cellularization in Drosophila (see reviews
of Harding and Levine, 1989; Jackle, 1992). Given an average
of five different factors per cis-regulatory module, one can
count on the existence of hundreds of network linkages even
a this very early stage, without even considering the terra
incognita that separates this stage from expression of the
peripheral genes that effect morphogenesis.

In type 1 embryos, the network sectors that relate maternal
transcription factors to at least the initial expression of periph-
era genes are likely to be far more shallow. These embryos
characteristically begin to express peripheral genes encoding
differentiation proteins early in embryonic development,
sometimes by the end of cleavage (Davidson, 1990, 1991). The
S purpuratus Cyllla and Endol6 genes considered in Fig. 1
are examples (Shott et al., 1984; Lee et a., 1986; Godin et al.,
1996). Strikingly, virtualy al the factors that regulate the
Cyllla gene are present as maternal activities, though those that
have been studied are soon transcribed zygotically as well
(Calzone et a., 1997; Zeller et al., 1995b; Wang et al., 1995;
Coffman et a., 1996; see also Gan et al., 1995). This leads to
the educated guess shown in Fig. 4B, a relationship diagram
the import of which is that the initial cohort of spatialy
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confined peripheral gene expressions does not require the par-
ticipation of many levels of genesin theinternal portion of the
network. The complex cis-regulatory systems of genes such as
Endol16 and Cyllla, and their extensive spatial information pro-
cessing capabilities, may follow from the shallow nature of the
regulatory network sectors required for early development in
these embryos. We cannot resist adding that, given the acces-
sibility of such embryos to extensive cis-regulatory analysis,
the relative simplicity of this portion of the network greatly
enhances their attractiveness for regulatory analysis. complete
network sectors for peripheral gene expression in the early
embryo may here actually be within reach.

CONCLUSION

The most general conclusion that one might draw from these
arguments concerns the central importance of cis-regulatory
analysis. Therein lies the experimental path to understanding
the organization of the genomic program for development.
Isolated causal relationships between individual internal genes
of the network have been enormously revealing over the last
decade, and will continue to be so, as the identity of important
internal genes and the evolutionary conservation of their
linkages is established. But we think the time has come for
workersin our field to bite the bullet and approach directly the
organization of developmental regulatory networks in the
genome. This can only be done by direct analysis of cis-regu-
latory systems situated at all levels of the network. Knowledge
of the structure of these networks will lead to solutions of fun-
damental mysteries of both development and evolution.

It is safe to predict that in this task primary genomic
sequence data will become an invaluable source of informa-
tion. For the regulatory developmental biologist this indeed
may be the most important ultimate outcome of the genome
project.

The authors are grateful to reviewers of drafts of this manuscript,
for their extremely helpful criticisms and comments, and above all,
their perspicacity. These reviewers were Professor Barbara Wold,
Professor Ellen Rothenberg and Dr R. Andrew Cameron of this
Ingtitute; Professor Lee Hood of the University of Washington;
Professor Nadia Rosenthal of Harvard Medical School; Professor Eric
Olson of the University of Texas Southwestern Medical Center; Dr
Carmen Kirchhamer of Harvard University and Professor James W.
Posakony University of California, San Diego. This work was
supported by the Stowers Institute for Medical Research and by the
Nationa Institute of Child Health and Human Development.

REFERENCES

Andersen, B. and Rosenfeld, M. G. (1994). Pit-1 determines cell types during
development of the anterior pituitary gland. J. Biol. Chem. 269, 29335-
29338.

Arnosti, D. N., Barolo, S., Levine, M. and Small, S. (1996). The eve stripe 2
enhancer employs multiple modes of transcriptional synergy. Development
122, 205-214.

Baumgartner, S. and Noll, M. (1991). Network of interactions among pair-
rule genes regulating paired expression during primordial segmentation of
Drosophila. Mech. Dev. 33, 1-18.

Bender, W., Akam, M., Karch, F., Beachy, P. A., Peifer, M., Spierer, P,,
Lewis, E. B. and Hogness, D. S. (1983). Molecular genetics of the bithorax
complex in Drosophila melanogaster. Science 221, 23-29.

Biggin, M. D. and Tjian, R. (1988). Transcription factors that activate the
Ultrabithorax promoter in developmentally staged extracts. Cell 53, 699-
711.

Bodmer, R. (1995). Heart development in Drosophila and its relationship to
vertebrates. Trends Cardiovasc. Med. 5, 21-28.

Britten, R. J. and Davidson, E. H. (1969). Generegulation for higher cells: A
theory. Science 165, 349-358.

Britten, R. J. and Davidson, E. H. (1971). Repetitive and non-repetitive DNA
sequences and a speculation on the origins of evolutionary novelty. Quart.
Rev. Biol. 46, 111-138.

Calzone, F. J., Thézé N., Thiebaud, P, Hill, R. L., Britten, R. J. and
Davidson, E. H. (1988). Developmental appearance of factors that bind
specifically to cis-regulatory sequences of a gene expressed in the seaurchin
embryo. Genes Dev. 2, 1074-1088.

Calzone, F. J.,H606g, C., Teplow, D. B., Cutting, A. E., Zeller, R. W., Britten,
R. J., and Davidson, E. H. (1991). Gene regul atory factors of the seaurchin
embryo. |. Purification by affinity chromatography and cloning of P3A2, a
novel DNA binding protein. Development 112, 335-350.

Calzone, F. C., Grainger, J., Coffman, J. A. and Davidson, E. H. (1997)
Extensive maternal representation of DNA-binding proteins that interact
with regulatory target sites of the Srongyl ocentrotus purpuratus Cyll1a gene.
Mol. Marine Biol. Biotech., in press.

Carmena, A., Bate, M. and Jiménez, F. (1995). lethal of scute, a proneural
gene, participates in the specification of muscle progenitors during
Drosophila embryogenesis. Genes Dev. 9, 2373-2383.

Christy, R. J., Kaestner, K. H., Geiman, D. E. and Lane, M. D. (1991).
CCAAT/enhancer binding protein gene promoter: binding of nuclear factors
during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA
88, 2593-2597.

Coffman, J. A., Moore, J. G., Calzone, F. J., Hood, L. E., Britten, R. J. and
Davidson, E. H. (1992). Automated sequential affinity chromatography of
sea urchin embryo DNA binding proteins. Mol. Marine Biol. Biotech 1, 136-
146.

Coffman, J. A., Kirchhamer, C. V., Harrington, M. G. and Davidson, E. H.
(1996). SpRunt-1, anew member of the Runt-domain family of transcription
factors, isapositive regulator of the aboral ectoderm-specific Cyllla genein
seaurchin embryos. Dev. Biol. 174, 43-54.

Coffman, J. A., Kirchhamer, C. V., Harrington, M. G. and Davidson, D. H.
(1997). A Myb target site in the regulatory domain of the Strongylocentrotus
purpuratus Cyllla gene is required for spatial restriction of SpRunt-1
mediated transcriptional activation. (In press)

Damen, W. G. M. and van Loon, A. E. (1996). Multiple cis-acting elements
act cooperatively in directing trochoblast-specific expression of the a-
tubulin-4 genein Patella embryos. Dev. Biol. 176, 313-324.

Davidson, E. H. (1990). How embryos work: A comparative view of diverse
modes of cell fate specification. Development 108, 365-389.

Davidson, E. H. (1991). Spatial mechanisms of gene regulation in metazoan
embryos. Development 113, 1-26.

Davidson, E. H. (1993). Later embryogenesis. regulatory circuitry in
morphogenetic fields. Development 118, 665-690.

Davidson, E. H. (1994). Molecular biology of embryonic development: How
far have we comein the last ten years? BioEssays 16, 603-615.

Davidson, E. H., Peterson, K. J. and Cameron, R. A. (1995). Origin of
bilaterian body plans: Evolution of developmental regulatory mechanisms.
Science 270, 1319-1325.

Dearalf, C. R., Topal, J. and Parker, C. S. (1989). Transcriptional control of
Drosophila fushi tarazu zebra stripe expression. Genes Dev. 3, 384-398.

deBoer, E., Antoniou, M., Mignotte, V., Wall, L. and Grosveld, F. (1988).
The human (3-globin promoter; nucler protein factors and erythroid specific
induction of transcription. EMBO J. 7, 4203-4212.

Donoviel, D. B., Shield, M. A, Buskin, J.N.,Haugen,H. S., Clegg, C. H.and
Hauschka, S. D. (1996). Analysis of muscle creatine kinase gene regul atory
elementsin skeletal and cardiac muscles of transgenic mice. Mol. Cell. Biol.
16, 1649-1658.

Egan, C.R.,Chung, M. A., Allen, F. L., Heschl, M. F. P,, Van Buskirk, C. L.
and McGhee, J. D. (1995). A gut-to-pharynx/tail switch in embryonic
expression of the Caenorhabditis elegans ges-1 gene centers on two GATA
sequences. Dev. Biol. 170, 397-419.

Franks, R. R., Anderson, R., Moore, J. G., Hough-Evans, B. R., Britten, R.
J., and Davidson, E. H. (1990). Competitive titration in living sea urchin
embryos of regulatory factors required for expression of the Cyllla actin
gene. Development 110, 31-40.

Frasch, M. (1995). Induction of visceral and cardiac mesoderm by ectodermal
Dpp in the early Drosophila embryo. Nature 374, 464-467.



Frudakis, T. N. and Wilt, F. (1995). Two cis elements collaborate to spatially
repress transcription from a sea urchin promoter. Dev. Biol. 172, 230-241.
Gan, L., Wessel, G. M. and Klein, W. H. (1990). Regulatory elements from
the related spec genes of Strongylocentrotus purpuratus yield different

spatial patternswith alac Z reporter gene. Dev. Biol. 142, 346-359.

Georgopoulos, K., Galson, D. and Terhorst, C. (1990). Tissue-specific
nuclear factors mediate expression of the CD3d gene during T-cell
development. EMBO J. 9, 109-115.

Georgopoulos, K., Moore, D. D. and Derfler, B. (1992). Ikaros, an early
lymphoid-specific transcription factor and a putative mediator for T-cell
commitment. Science 258, 808-812

Gérard, M., Duboule, D. and Zakany, J. (1993). Structure and activity of
regulatory elements involved in the activation of the Hoxd-11 gene during
late gastrulation. EMBO J. 12, 3539-3550.

Giese, K., Kingdey, C., Kirshner, R. and Grosschedl, R. (1995). Assembly and
function of a TCRa enhancer complex is dependent on LEF-1-induced DNA
bending and multiple protein-protein interactions. Genes Dev. 9, 995-1008.

Godin, R.E., Urry, L. A.and Erngt, S. G. (1996). Alternative splicing of the
Endol6 transcript produces differentially expressed mRNAs during sea
urchin gastrulation. Dev. Biol. 179, 148-159.

GOmez-Skarmeta, J. L., Rodriguez, |., Martinez, C., Culi, J., Ferrés-
Marco, D., Beamonte, D. and Modolell, J. (1995). Cis-regulation of
achaete and scute: shared enhancer-like elements drive their coexpressionin
proneural clusters of theimaginal discs. Genes Dev. 9, 1869-1882.

Gray, S. and Levine, M. (1996a). Transcriptional repression in development.
Curr. Opin. Cell Bial. 8, 358-364.

Gray, S. and Levine, M. (1996b). Short-range transcriptiona repressors
mediate both quenching and direct repression within complex loci in
Drosophila. Genes Dev. 10, 700-710.

Gray, S., Szymanski, P. and Levine, M. (1994). Short-range repression
permits multiple enhancers to function autonomously within a complex
promoter. Genes Dev. 8, 1829-1838.

Gutjahr, T., Vanario-Alonso, C. E., Pick, L. and Noll, M. (1994). Multiple
regulatory elements direct the complex expression pattern of the Drosophila
segmentation gene paired. Mech. Dev. 48, 119-128.

Harding, K., Hoey, T., Warrior, R. and Levine, M. (1989). Autoregulatory
and gap gene response elements of the even-skipped promoter of Drosophila.
EMBO J. 8, 1205-1212.

Hiromi, Y., Kuroiwa, A. and Gehring, W. J. (1985). Control elements of the
Drosophila segmentation gene fushi tarazu. Cell 43, 603-613.

Hoch, M., Schréder, C., Seifert, E. and Jackle, H. (1990). Cis-acting control
elements for Krippel expression in the Drosophila embryo. EMBO J. 9,
2587-2595.

Hough-Evans, B. R., Franks, R. R., Zdller, R. W., Britten, R. J., and
Davidson, E. H. (1990). Negative spatial regulation of the lineage specific
Cyllla actin genein the sea urchin embryo. Devel opment 110, 41-50.

Howard, K. R. and Struhl, G. (1990). Decoding positional information:
regulation of the pair-rule gene hairy. Development 110, 1223-1231.

Huang, J.-D., Schwyter, D. H., Shirokawa, J. M. and Courey, A. J. (1993).
The interplay between multiple enhancer and silencer elements defines the
pattern of decapentaplegic expression. Genes Dev. 7, 694-704.

Huang, J.-D., Dubnicoff, T., Liaw, G.-J., Bai, Y., Valentine, S. A.,
Shirokawa, J. M., Lengyel, J. A. and Courey, A. J. (1995). Binding sites
for transcription factor NTF-1/EIf-1 contribute to the ventral repression of
decapentaplegic. Genes Dev. 9, 3177-3189.

Ip, Y. T, Park, R. E., Kosman, D., Bier, E. and Levine, M. (19924). The
dorsal gradient morphogen regulates stripes of rhomboid expression in the
presumptive neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728-
1739.

Ip, Y. T., Park, R. E., Kosman, D., Yazdanbakhsh, K. and Levine, M.
(1992b). dorsal-twist interactions establish snail expression in the
presumptive mesoderm of the Drosophila embryo. Genes Dev. 6, 1518-1530.

Jackle, H., Hoch, M., Pankratz, M. J., Gerwin, N., Sauer, F. and Bronner,
G. (1992). Transcriptional control by Drosophila gap genes. J. Cell <ci.
Suppl. 16, 39-51.

Jackson, P. D. and Hoffman, F. M. (1994). Embryonic expression patterns of
the Drosophila decapentaplegic gene: separate regulatory elements control
blastoderm expression and | ateral ectodermal expression. Dev. Dyn. 199, 28-
44,

Jackson, P. D., Evans, T., Nickol, J. M. and Felsenfeld, G. (1989).
Developmental modulation of protein binding to B-globin gene regulatory
siteswithin chicken erythrocyte nuclei. Genes Dev. 3, 1860-1873.

Kirchhamer, C. V. and Davidson, E. H. (1996). Spatiad and temporal
information processing in the sea urchin embryo: Modular and intramodular

Genomic regulatory systems 1863

organization of the Cyllla gene cis-regulatory system. Development 122,
333-348.

Kirchhamer, C. V., Yuh, C.-H. and Davidson, E. H. (1996a). Modular cis-
regulatory organization of developmentally expressed genes: Two genes
transcribed territorially in the sea urchin embryo, and additional examples.
Proc. Natl. Acad. Sci. USA 93, 9322-9328.

Kirchhamer, C. V., Bogarad, L. D. and Davidson, E. H. (1996b).
Developmental expression of synthetic cis-regulatory systems composed of
spatial control elementsfrom two different genes. Proc. Natl. Acad. Sci. USA
93, 13849-13854.

Kozlowski, D. J., Gagnon, M. L., Marchant, J. K., Reynolds, S. D., Angerer,
L. M. and Angerer, R. C. (1996). Characterization of a SoAN promoter
sufficient to mediate correct spatial regulation along the animal-vegetal axis
of the seaurchin embryo. Dev. Biol. 176, 95-107.

Larkin, S, Farrance, |. K. G. and Ordahl, C. P. (1996). Flanking sequences
modulate the cell specificity of M-CAT elements. Mol. Cell. Bial. 16, 3742-
3755.

Lee, J.J., Calzone, F. J., Britten, R. J., Angerer, R. C. and Davidson, E. H.
(1986). Activation of sea urchin actin genes during embryogenesis.
Measurement of transcript accumulation from five different genes in
Srongyl ocentrotus purpuratus. J. Mol. Biol. 188, 173-183.

Leiden, J. M. (1993). Transcriptional regulation of T-cell receptor genes. Annu.
Rev. Immunol. 11, 539-570.

Leving, M. S. and Harding, K. W. (1989). Drosophila: the zygotic
contribution. In Genesand Embryos (ed. D. M. Glover and B. D. Hames), pp.
39-94. New York: IRL Press.

Liaw, G.-J., Rudolph, K. M., Huang, J.-D., Dubnicoff, T., Courey, A. J. and
Lengyel, J. A. (1995). The torso response element binds GAGA and
NTF-VEIf-1, and regulates tailless by relief of repression. Genes Dev. 9,
3163-3176.

Lilly, B., Galewsky, S., Firulli, A. B., Schultz, R. A. and Olson, E. N. (1994).
D-MEF2: A MADS box transcription factor expressed in differentiating
mesoderm and muscle cell lineages during Drosophila embryogenesis. Proc.
Natl. Acad. Sci. USA 91, 5662-5666.

MacL ellan, W.R., Lee, T.-C., Schwartz, R. J. and Schneider, M. D. (1994).
Transforming growth factor-(3 response elements of the skeletal a-actin gene.
J. Biol. Chem. 269, 16754-16760.

Maggert, K., Levine, M. and Frasch, M. (1995). The somatic-viscera
subdivision of the embryonic mesoderm is initiated by dorsal gradient
thresholdsin Drosophila. Development 121, 2107-2116.

Makabe, K. W., Kirchhamer, C. V., Britten, R. J. and Davidson, E. H.
(1995). Cisregulatory control of the SM50 gene, an early marker of
skeletogenic lineage specification in the sea urchin embryo. Development
121, 1957-1970.

Mar, J. H. and Ordahl, C. P. (1988). A conserved CATTCCT motif isrequired
for skeletal muscle-specific activity of the cardiac troponin T gene promoter.
Proc. Natl. Acad. Sci. USA 85, 6404-6408.

Martin, C. H., Mayeda, C. A., Davis, C. A, Ericsson, E. L., Knafels, J. D.,
Mathog, D. R., Celniker, S. E., Lewis, E. B. and Palazzolo, M. J. (1995).
Compl ete sequence of the bithorax complex of Drosophila. Proc. Natl. Acad.
Sci. USA 92, 8398-8402.

McClay, D. R. and Logan, C. Y. (1996). Regulative capacity of the
archenteron during gastrulation in the sea urchin. Development 122, 607-
616.

McGinnis, W. and Krumlauf, R. (1992). Homeobox genes and axia
patterning. Cell 68, 283-302.

McGrew, M. J., Bogdanova, N., Hasegawa, K ., Hughes, S. H., Kitsis, R. N.
and Rosenthal, N. (1996). Distinct gene expression patterns in skeletal and
cardiac muscle are dependent on common regulatory sequences in the
MLC1/3locus. Mal. Cell. Biol. 16, 4524-4534.

Molnar, A and Georgopoulos, K. (1994). The Ikaros gene encoses afamily of
functionally diverse zinc finger DNA-binding proteins. Mol. Cell. Biol. 14,
82992-8303.

Morgan, T. H. (1934). Embryology and Genetics. New York: Columbia
University Press.

Morrison, A., Moroni, M. C., Ariza-McNaughton, L., Krumlauf, R. and
Mavilio, F. (1996). In vitro and transgenic analysis of a human HOX4
retinoi d-responsive enhancer. Development 122, 1895-1907.

Moss, J. B., McQuinn, T. C. and Schwartz, R. J. (1994). Theavian cardiac a-
actin promoter isregulated through a pair of complex elements composed of
E boxes and serum response elements that bind both positive- and negative-
activing factors. J. Biol. Chem. 269, 12731-12740.

Mueéller, P. R. and Wold, B. (1989). In vivo footprinting of a muscle-specific
enhancer by ligation-mediated PCR. Science 246, 780-786.



1864 M. I. Arnone and E. H. Davidson

Mdller, J. and Bienz, M. (1992). Sharp anterior boundary of homeotic gene
expression conferred by the fushi tarazu protein. EMBO J. 11, 3653-3661.
Nemer, M., Stuebing, E. W., Bai, G. and Parker, H. R. (1995). Spatia
regulation of SOMTA metallothionein gene expression in sea urchin embryos

by aregulatory cassetteinintron 1. Mech. Dev. 50, 131-137.

Niemeyer, C. C. and Flytzanis, C. N. (1993). Upstream elements involved in
the embryonic regulation of the sea urchin Cylllb actin gene: temporal and
spatial specific interactions at a single cis-acting element. Dev. Biol. 156,
293-302.

Pascal, E. and Tjian, R. (1991). Different activation domains of Sp1 govern
formation of multimersand mediate transcriptional synergism. GenesDev. 5,
1646-1656.

Perkins, K. K., Dailey, G. M. and Tjian, R. (1988). In vitro analysis of the
Antennapedia P2 promoter: identification of a new Drosophila transcription
factor. Genes Dev. 2, 1615-1626.

Philipsen, S., Talbot, D., Fraser, P. and Grosveld, F. (1990). The p-globin
dominant control region: hypersensitive site 2. EMBO J. 9, 2159-2167.

Popperl, H., Bienz, M., Studer, M., Chan, S.-K., Aparicio, S., Brenner, S,,
Mann, R. S. and Krumlauf, R. (1995). Segmental expression of Hoxb-1is
controlled by a highly conserved autoregulatory loop dependent upon
exd/pbx. Cell 81, 1031-1042.

Pruzina, S., Hanscombe, O., Whyatt, D., Grosveld, F. and Philipsen, S.
(1991). Hypersensitive site 4 of the human -globin locus control region.
Nucl. Acids Res. 19, 1413-1419.

Ranganayakulu, G., Schulz, R. A. and Olson, E. N. (1996). Wingless
signaling induces nautilus expression in the ventral mesoderm of the
Drosophila embryo. Dev. Biol. 176, 143-148.

Rao, M. V., Donoghue, M. J., Merlie, J. P. and Sanes, J. R. (1996). Distinct
regulatory elements control muscle-specific, fiber-type-selective, and axially
graded expression of amyosin light-chain genein transgenic mice. Mol. Cell.
Biol. 16, 3909-3922.

Rhodes, S. J.,, Chen, R., DiMattia, G. E., Scully, K. M., Kalla, K. A., Lin, S.-
C., Yu, V. C. and Rosenfedld, M. G. (1993). A tissue-specific enhancer
confers Pit-1-dependent morphogen inducibility and autoregulation on the
pit-1 gene. Genes Dev. 7, 913-932.

Riddihough, G. and Ish-Horowicz, D. (1991). Individual stripe regulatory
elements in the Drosophila hairy promoter respond to maternal, gap, and
pair-rule genes. Genes Dev. 5, 840-854.

Rivera-Pomar, R., Lu, X., Perrimon, N., Taubert, H. and Jackle, H. (1995).
Activation of posterior gap gene expression in the Drosophila blastoderm.
Nature 376, 253-256.

Rosenthal, N., Wentworth, B., Engert, J., Grieshammer, U., Berglund, E.
and Gong, X. (1992). The myosin light-chain 1/3 locus. A model for
developmental control of skeletal muscle differentiation. In Neuromuscular
Development and Disease (ed. A. M. Kelly and H. M. Blau), pp. 131-144.
New York: Raven Press.

Rothenberg, E. V. and Ward, S. B. (1996). A dynamic assembly of diverse
transcription factors integrates activation and cell-type information for
interleukin 2 gene regulation. Proc. Natl. Acad. Sci. USA 93, 9358-9365.

Schoenherr, C. J. and Anderson, D. J. (1995a). Silencing isgolden - Negative
regulation in the control of neuronal gene transcription. Curr. Opin.
Neurobiol. 5, 566-571.

Schoenherr, C. J. and Anderson, D. J. (1995b). The neuron-restrictive
silencer factors (NRSF): a coordinate repressor of multiple neuron-specific
genes. Science 267, 1360-1363.

Shashikant, C.S. and Ruddle, F. H. (1996). Combinations of closely situated
cis-acting elements determine tissue-specific patterns and anterior extent of
early Hoxc8 expression. Proc. Natl. Acad. Sci. USA 93, 12364-123609.

Shashikant, C.S,, Bieberich, C.J., Belting, H.-G., Wang, J. C. H., Borbély,
M. A. and Ruddle, F. H. (1995). Regulation of Hoxc-8 during mouse
embryonic development: Identification and characterization of critical
elements involved in early neural tube expression. Development 121, 4339-
4347.

Shott, R. J., Lee, J. J.,Britten, R. J. and Davidson, E. H. (1984). Differential
expression of the actin gene family of Srongylocentrotus purpuratus. Dev.
Biol. 101, 295-306.

Singson, A., Leviten, M. W., Bang, A. G., Hua, X. H. and Posakony, J. W.
(1994). Direct downstream targets of proneural activatorsin heimaginal disc
include genes involved in lateral inhibitory signaling. Genes Dev. 8, 2058-
2071.

Sladek, F. M., Zhong, W., Lai, E. and Darnell, J. E., Jr. (1990). Liver-
enriched transcription factor HNF-4 is a novel member of the steroid
hormone receptor superfamily. Genes Dev. 4, 2353-2365.

Small, S., Blair, A.and Levine, M. (1992). Regul ation of even-skipped stripe 2
in the Drosophila embryo. EMBO J. 11, 4047-4057.

Small, S., Arnosti, D. N. and L evine, M. (1993). Spacing ensures autonomous
expression of different stripe enhancers in the even-skipped promoter.
Development 119, 767-772.

Small, S., Blair, A. and Levine, M. (1996). Regulation of two pair-rule stripes
by asingle enhancer in the Drosophila embryo. Dev. Biol. 175, 314-324.

Sornson, M. W., Wu, W., Dasen, J. S, Flynn, S. E.,, Norman, D. J.,
QO’Connéll, S. M., Gukovsky, |., Carriére, Ryan, A. K., Miller, A. P.,, Zuo,
L., Gleiberman, A. S., Andersen, B., Beamer, W. G. and Rosenfeld, M. G.
(1996). Pituitary lineage determination by the Prophet of Pit-1 homeodomain
factor defectivein Ames dwarfism. Nature 384, 327-333.

Staehling-Hampton, K., Hoffmann, F. M., Baylies, M. K., Rushton, E. and
Bate, M. (1994). dpp induces mesodermal gene expression in Drosophila.
Nature 372, 783-786.

Strauss, E. C. and Orkin, S. H. (1992). In vivo protein-DNA interactions at
hypersensitive site 3 of the human [3-globin locus control region. Proc. Natl.
Acad. Sci. USA 89, 5809-5813.

Studer, M., Popperl, H., Marshall, H., Kuroiwa, A. and Krumlauf, R.
(1994). Role of a conserved retinoic acid response element in rhombomere
restriction of Hoxb-1. Science 265, 1728-1732.

Taylor, M. V., Beatty, K. E., Hunter, H. K. and Baylies, M. K. (1995).
Drosophila MEF2 isregulated by twist and isexpressed in both the primordia
and differentiated cells of the embryonic somatic, visceral and heart
musculature. Mech. Dev. 50, 29-41.

Thézé, N., Calzone, F. J., Thiebaud, P, Hill, R. L., Britten, R. J. and
Davidson, E. H. (1990). Sequences of the Cyllla actin gene regulatory
domain bound specifically by sea urchin embryo nuclear proteins. Mol.
Reprod. Dev. 25, 110-122.

Topal, J., Dearoalf, C. R., Prakash, K. and Parker, C. S. (1991). Synthetic
oligonucleotides recreate Drosophila fushi tarazu zebra-stripe expression.
GenesDev. 5, 855-867.

Wang, D. G.-W., Kirchhamer, C. V., Britten, R. J. and Davidson, E. H.
(1995). SpZ12-1, a negative regulator required for spatial control of the
territory-specific Cyllla gene in the sea urchin embryo. Development 121,
1111-1122.

Wei, Z., Angerer, L. M., Gagnon, M. L. and Angerer, R. C. (1995).
Characterization of the SpHE promoter that is spatially regulated along the
animal-vegetal axis of the seaurchin embryo. Dev. Biol. 171, 195-211.

Wijgerde, M., Grosveld, F. and Fraser, P. (1995). Transcription complex
stability and chromatin dynamicsin vivo. Nature 377, 209-213.

Wimmer, E. A., Simpson-Brose, M., Cohen, S. M., Desplan, C. and Jackle,
H. (1995). Trans- and cis-acting requirementsfor blastodermal expression of
the head gap gene buttonhead. Mech. Dev. 53, 235-245.

Wotton, D., Lake, R. A., Farr, C.J. and Owen, M. J. (1995). The high
mobility group transcription factor, SOX4, transactivates the human CD2
enhancer. J. Biol. Chem. 270, 7515-7522.

Yeh, W.-C., Cao, Z., Classon, M. and McKnight, S. L. (1995). Cascade
regulation of terminal adipocyte differentiation by three members of the
C/EBP family of leucine zipper proteins. Genes Dev. 9, 168-181.

Yuh, C.-H. and Davidson, E. H. (1996). Modular cis-regulatory organization
of Endo16, a gut-specific gene of the sea urchin embryo. Development 122,
1069-1082.

Yuh, C.-H., Ransick, A., Martinez, P, Britten, R. J. and Davidson, E. H.
(1994). Complexity and organization of DNA-protein interactionsin the 5'-
regulatory region of an endoderm-specific marker gene in the sea urchin
embryo. Mech. Dev. 47, 165-186.

Yuh, C.-H.,Moore, J. G. and Davidson, E. H. (1996). Quantitative functional
interrelations within the cis-regulatory system of the S. purpuratus Endo16
gene. Development 122, 4045-4056.

Zéeller, R. W., Griffith, J. D., Moore, J. G., Kirchhamer, C. V., Britten, R. J.
and Davidson, E. H. (1995a). A multimerizing transcription factor of sea
urchin embryos capable of looping DNA. Proc. Natl. Acad. Sci. USA 92,
2989-2993.

Zédler, R. W., Britten, R. J. and Davidson, E. H. (1995b). Developmental
utilization of SpP3A1 and SpP3A2: two proteins which recognize the same
DNA target sitein several seaurchin generegulatory regions. Dev. Biol. 170,
75-82.

Zhang, C.-C., Miiller, J., Hoch, M., Jéckle, H. and Bienz, M. (1991). Target
sequences for hunchback in a control region conferring Ultrabithorax
expression boundaries. Development 113, 1171-1179.

(Accepted 14 March 1997)



