

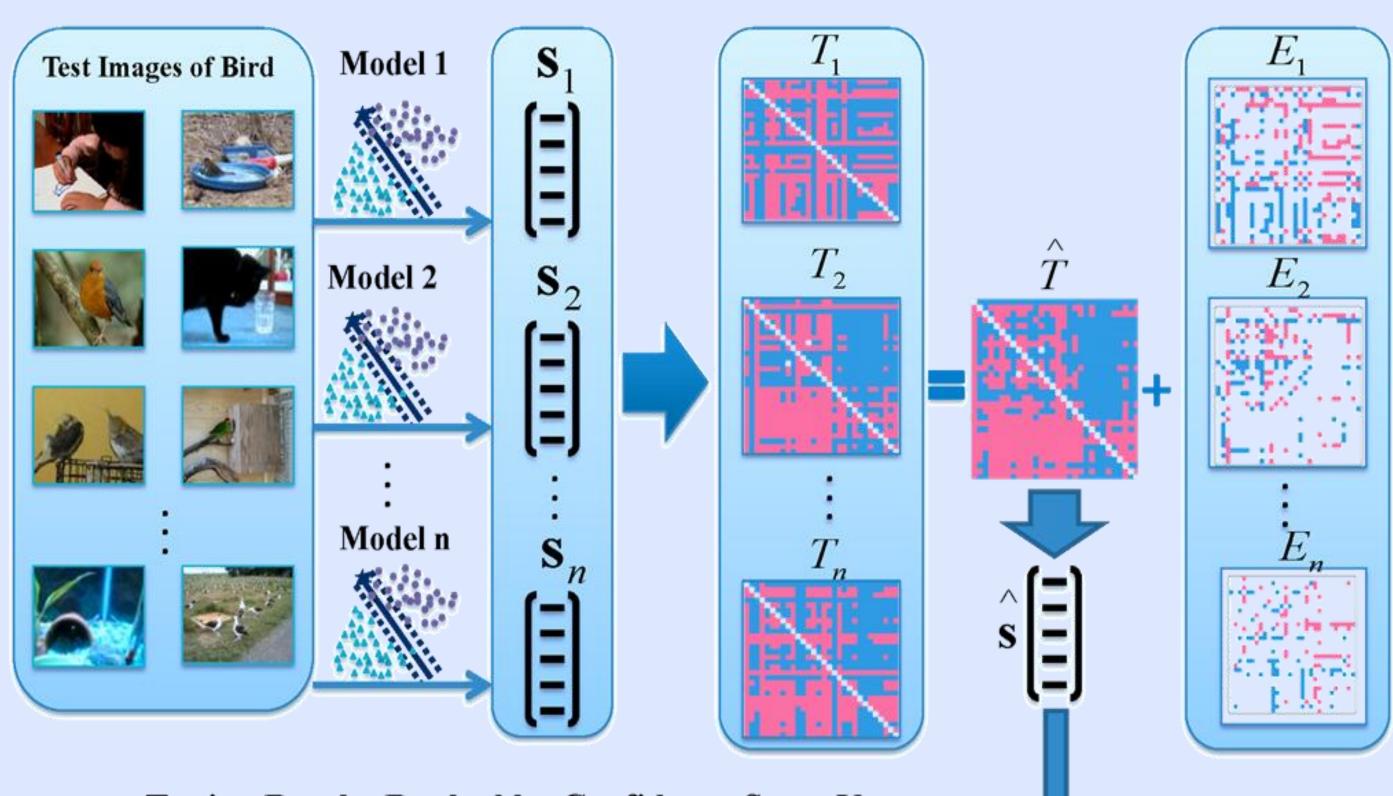
Motivation

- Late Fusion : Combine the prediction scores of multiple models.
- Issues: (1) Scales of scores from the individual models may vary a lot (2) Scores from each model may contain noise and outliers

Approach Overview

Observation:

- Preserve rank order relationship among scores instead of absolute values;
- If we have a real-value matrix \hat{T} such that $\hat{T}_{jk} = \hat{s}_j \hat{s}_k$, we can find a rank-2 factorization of \hat{T} such that $\hat{T} = \hat{\mathbf{s}} \mathbf{e}^{\top} - \mathbf{e} \hat{\mathbf{s}}^{\top}$.



Testing Results Ranked by Confidence Score Vector

Steps:

- Convert each confidence score vector into a pairwise rank relationship matrix to address the scale variance issue;
- Seek a shared rank-2 pairwise matrix based on which each score matrix can be decomposed into the consistent rank-2 matrix and sparse errors;
- A robust score vector is then extracted to fit the recovered low rank score rank relation matrix.

Problem Formulation

$$\begin{split} \min_{\hat{T}, E_i} \|\hat{T}\|_* &+ \lambda \sum_{i=1}^n \|E_i\|_1, \\ \text{s.t. } T_i &= \hat{T} + E_i, \ i = 1, \dots, n, \\ \hat{T} &= -\hat{T}^\top. \end{split} \quad \begin{array}{l} T_{ij} = \begin{cases} -1, & \text{if} \\ 0, & \text{if} \\ 1, & \text{if} \end{cases} \end{split}$$

Robust Late Fusion With Rank Minimization Guangnan Ye¹, Dong Liu¹, I-Hong Jhuo^{1,2}, Shih-Fu Chang¹

¹Dept.of Electrical Engineering, Columbia University ²Dept.of Computer Science and Information Engineering, National Taiwan University

 $\mathbf{s}_i < \mathbf{s}_j$ $\mathbf{s}_i = \mathbf{s}_j$, $\mathbf{s}_i > \mathbf{s}_j$.

Optimization and Score Recovery

Theorem: Given a set of skew-symmetric matrices, the solution from SVT solver is a skew-symmetric matrix if the spectrums between the dominant singular values are separated. The skew-symmetric constraint can be ignored.

Equivalent Form:

 $\min \|\hat{T}\|_* +$ T, E_i

Algorithm 1 Solving Problem by Inexact ALM

- $1, 2, \ldots, n$, parameter λ , number of samples m.
- $\mu = 10^{-6}, max_{\mu} = 10^{10}, \rho = 1.1, \varepsilon = 10^{-8}.$
- 3: repeat
- Fix the other term and update \hat{T} by

$$\mathcal{S}_{\varepsilon}[x] = \begin{cases} x \\ x \\ 0 \end{cases}$$

- $\frac{Y_i}{u} \hat{T}].$

Update the multipliers $Y_i = Y_i + \mu(T_i - \hat{T} - E_i)$. 6: Update the parameter μ by $\mu = \min(\rho\mu, max_{\mu})$. 8: **until** $\max_i ||T_i - \hat{T} - E_i||_{\infty} < \varepsilon$ and $\operatorname{rank}(\hat{T}) = 2$. 9: **Output:** T.

Score Recovery:

Extension with

Graph Laplacian:

(1/m)T

 $\min_{\hat{T}, E_i} \| \hat{T} \|$

s.t. T_i

 $\Psi^i(\hat{T}) =$

$$\lambda \sum_{i=1}^{n} \|E_i\|_1 + \sum_{i=1}^{n} \langle Y_i, T_i - \hat{T} - E_i \rangle$$
$$\frac{\mu}{2} \sum_{i=1}^{n} \|T_i - \hat{T} - E_i\|_F^2,$$

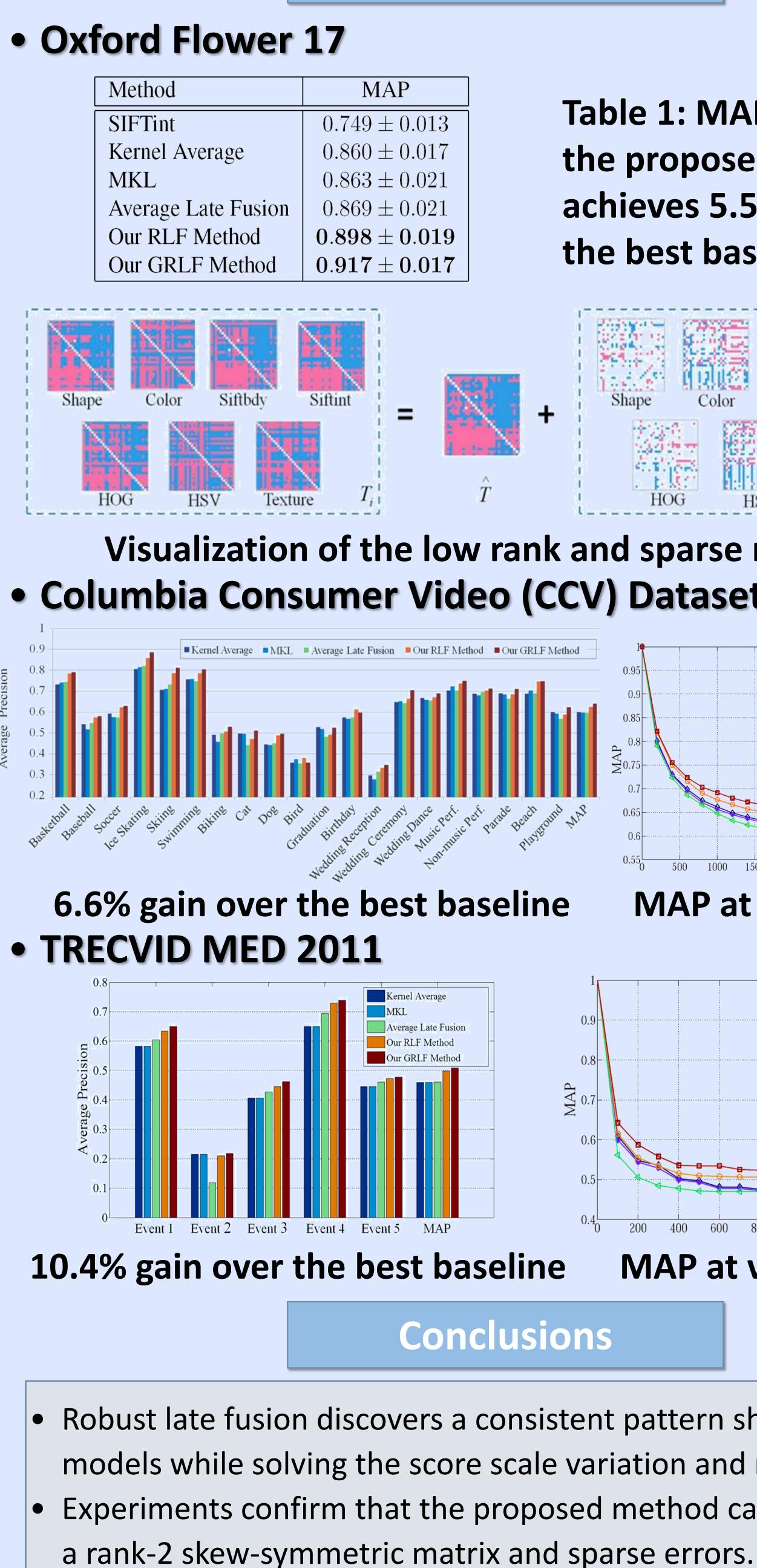
1: Input: Comparative relationship matrix T_i , i =2: Initialize: $T = 0, E_i = 0, Y_i = 0, i = 1, ..., n$,

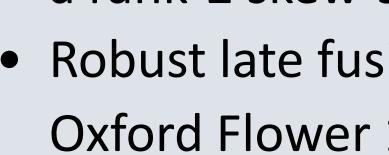
 $(U, \Lambda, V) = SVD(\frac{1}{n\mu}\sum_{i=1}^{n}Y_i + \frac{1}{n}\sum_{i=1}^{n}T_i - \frac{1}{n}\sum_{i=1}^{n}T_i - \frac{1}{n}\sum_{i=1}^{n}T_i$ $\frac{1}{n}\sum_{i=1}^{n}E_{i}), \hat{T} = US_{1}[\Lambda]V^{\top}$, where S is a shrinkage operator for singular value truncating defined as:

> $x - \varepsilon$, if $x > \varepsilon$, $x + \varepsilon$, if $x < -\varepsilon$, otherwise.

Fix the other term and update E_i by $E_i = S_{\frac{\lambda}{2}}[T_i +$

$$\hat{T} \mathbf{e} = \arg\min_{\hat{\mathbf{s}}} \|\hat{T}^{\top} - (\hat{\mathbf{s}} \mathbf{e}^{\top} - \mathbf{e} \hat{\mathbf{s}}^{\top})\|_{F}^{2}$$
$$\|_{*} + \lambda \sum_{i=1}^{n} \|E_{i}\|_{1} + \gamma \sum_{i=1}^{n} \Psi^{i}(\hat{T}),$$
$$= \hat{T} + E_{i}, \ i = 1, \dots, n, \hat{T} = -\hat{T}^{\top}.$$
$$= \frac{1}{2} \sum_{j,k=1}^{m} P_{jk}^{i} \|\hat{\mathbf{t}}_{j} - \hat{\mathbf{t}}_{k}\|_{2}^{2} = tr(\hat{T}^{\top}L^{i}\hat{T})$$

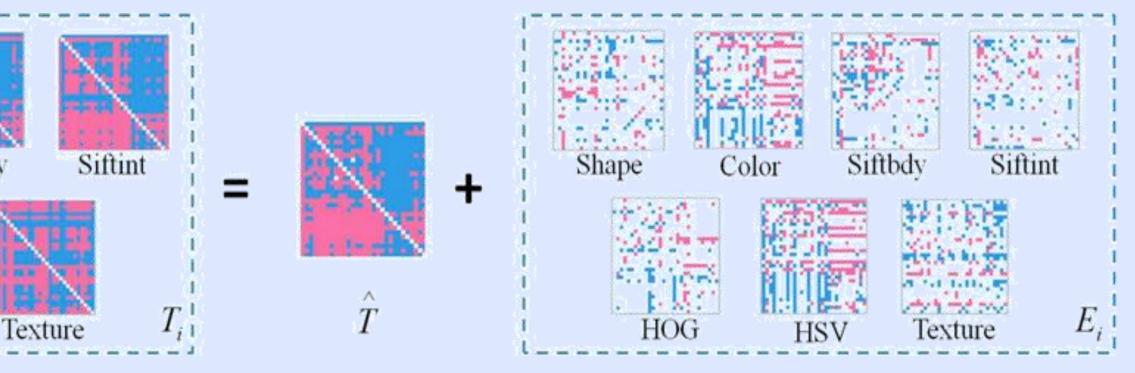




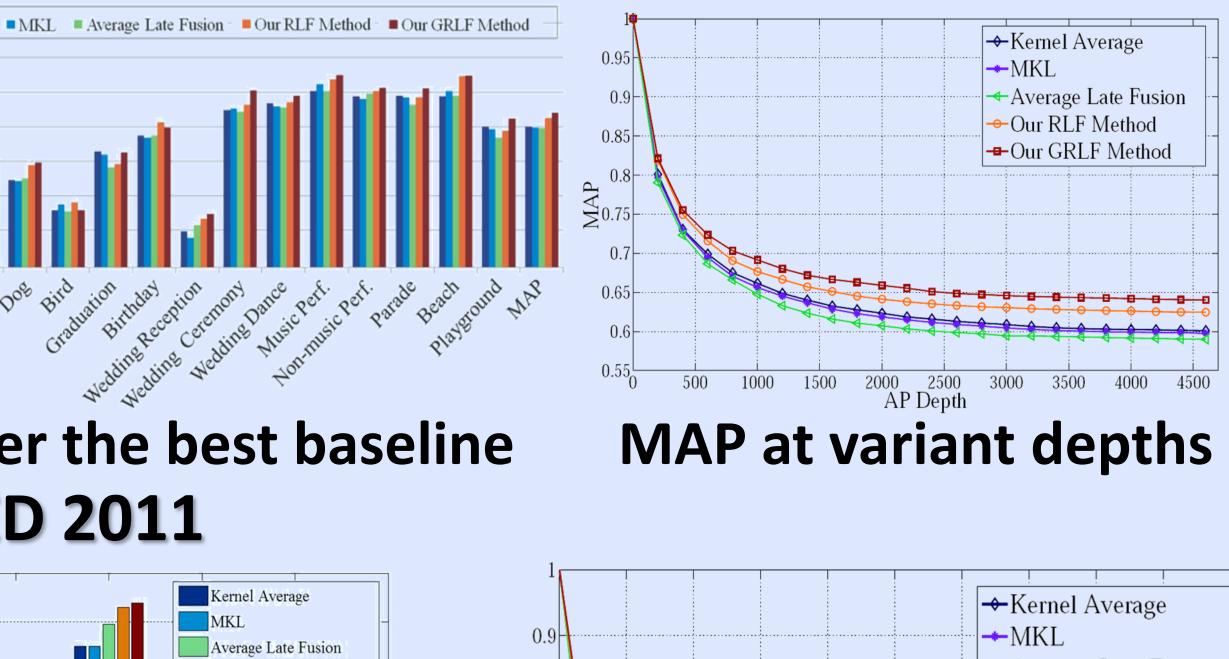
Experiments

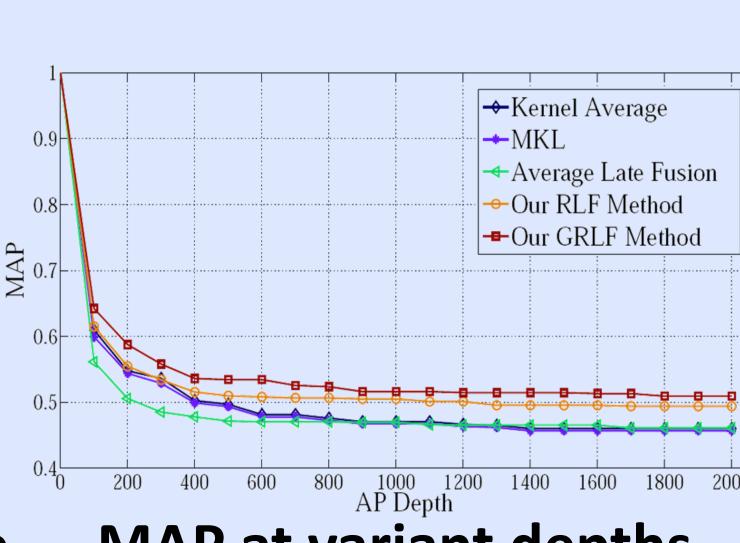
	MAP
	0.749 ± 0.013
	0.860 ± 0.017
	0.863 ± 0.021
sion	0.869 ± 0.021
1	0.898 ± 0.019
od	0.917 ± 0.017

Table 1: MAP comparison, the proposed method achieves 5.5% gain over the best baseline



Visualization of the low rank and sparse matrices • Columbia Consumer Video (CCV) Dataset





MAP at variant depths

Conclusions

• Robust late fusion discovers a consistent pattern shared among models while solving the score scale variation and noise issues. • Experiments confirm that the proposed method can robustly extract

• Robust late fusion achieves 5.5%, 6.6%, and 10.4% improvement in Oxford Flower 17, CCV, and TRECVID.