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Introduction
Large Scale NN Search in the Era of Big Data

B Big data: web multimedia, enterprise data centers, mobile/surveillance sensor
systems, network nodes, efc....
B arge scale NN search for many big data applications

» Retrieval from massive data such as multimedia search

» Build neighborhood graphs for learning tasks like spectral clustering

> ...
Large Scale NN Search Methods

B Exhaustive NN search: prohibitively expensive for large scale data

B Recently many approximate NN search Methods
» Tree based methods: kd-tree, metric tree,...
»Hashing based methods: Locality Sensitive Hashing (LSH), spectral
hashing, ...

A More Fundamental Problem

BHow to measure the difficulty of a given data set for NN search,
iIndependent of NN search Methods?
B Moreover, what data properties affect the difficulty, and how?

A Toy Example

If we can not differentiate | |
NN point from other points, ' @
NN search is not meaningful! Q

A Concrete Measure -- Relative Contrast
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High Relative Contrast > more meaningful search
|f C —>1, search not meaningful

Normalized Variance o'

— Given a database X' = {x }" x & R a query ¢, and a
distance metric (say L,),
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Distance to any point becomes roughly the same !

What Affect NN Search and How?

NN Search Difficulty — Relative Contrast C,
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Relative Contrast and LSH Complexity

Theorem 3.1 LSH can find the exact nearest neigh-
bor with probability 1 — 0 by returning O(log %ng ()
candidate points, where g(C).) s a function monoton-
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Corollary 3.2 LSH can find the exact nearest neigh-
bor with a probability at least 1 — 0 with a time
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