Robust Late Fusion with Rank Minimization Supplementary Material

Guangnan Ye^{\dagger}, Dong Liu ${ }^{\dagger}$, I-Hong Jhuo ${ }^{\dagger \ddagger}$, Shih-Fu Chang ${ }^{\dagger}$
${ }^{\dagger}$ Dept. of Electrical Engineering, Columbia University
\ddagger Dept. of Computer Science and Information Engineering, National Taiwan University
\{yegn, dongliu,sfchang\}@ee.columbia.edu, ihjhuo@gmail.com

Theorem 1. Given a set of n skew-symmetric matrices T_{i}, the SVT solver employed by Algorithm 1 produces a skewsymmetry matrix \hat{T} if the spectrums between the dominant singular values are separated.

Proof. Following the proof in [1], to prove the above theorem, we first introduce some properties of skew-symmetric matrices. Assuming T is a skew-symmetric matrix with the property $T=-T^{\top}$, then the eigenvalues of T are pureimaginary and come in complex-conjugate pairs. Moreover, the rank of T is even [2]. Then the following lemma characterizes the Singular Value Decomposition (SVD) of a skewsymmetric matrix.

Lemma 1. If T is an $m \times m$ skew-symmetric matrix with eigenvalues $i \lambda_{1},-i \lambda_{1}, i \lambda_{2},-i \lambda_{2}, \ldots, i \lambda_{j},-i \lambda_{j}$ where $\lambda_{p}>0, p=1, \ldots, j, j=\lfloor(m / 2)\rfloor$, and i denotes the imaginary unit. Then the SVD of T is given by $T=U D V^{\top}$ where

$$
D=\left(\begin{array}{llllllll}
\lambda_{1} & & & & & & & \\
& \lambda_{1} & & & & & & \\
& & \lambda_{2} & & & & & \\
& & & \lambda_{2} & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& & & & & & & \\
& & & & & & \lambda_{j} & \\
& & & & & & \lambda_{j}
\end{array}\right)
$$

and the forms of U, V are given in the proof.
Proof. Based on Murnaghan-Wintner form of a real-valued matrix [3], the matrix T can be decomposed as

$$
\begin{equation*}
T=X Z X^{\top} \tag{1}
\end{equation*}
$$

for a real-valued orthogonal matrix X and a real-valued block-upper-triangular matrix Z with 2-by-2 blocks along the diagonal.

Since T is skew-symmetric, the decomposed component Z is also skew-symmetric. Then Z has a block-diagonal form:

$$
Z=\left(\begin{array}{cccccccc}
0 & \lambda_{1} & & & & & & \\
-\lambda_{1} & 0 & & & & & & \\
& & 0 & \lambda_{2} & & & & \\
& & -\lambda_{2} & 0 & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& & & & & & \cdot & \\
& & & & & & 0 & \lambda_{j} \\
& & & & & & -\lambda_{j} & 0
\end{array}\right)
$$

Furthermore, the SVD of the block matrix $\left(\begin{array}{cc}0 & \lambda_{1} \\ -\lambda_{1} & 0\end{array}\right)$ is given by
$\left(\begin{array}{cc}0 & \lambda_{1} \\ -\lambda_{1} & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \times\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{1}\end{array}\right) \times\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
Assume matrix A and matrix B are defined as follows:

$$
A=\left(\begin{array}{llllllll}
0 & 1 & & & & & & \\
1 & 0 & & & & & & \\
& & 0 & 1 & & & & \\
& & 1 & 0 & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& & & & & & & \\
& & & & & & & 0 \\
& 1 & 1 \\
& & & & & & 1 & 0
\end{array}\right)
$$

$$
B=\left(\begin{array}{cccccccc}
-1 & 0 & & & & & & \\
0 & 1 & & & & & & \\
& & -1 & 0 & & & & \\
& & 0 & 1 & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& & & & & & & \\
& & & & & & & -1 \\
& & & 0 & 1
\end{array}\right)
$$

Then, the real-valued matrix T has the following decomposition form: $T=X A D B X^{\top}$. We construct U and V such that $U=X A$ and $V^{\top}=B X^{\top}$, which are real and orthogonal. We thus complete the lemma which constructs the SVD of T.

Next, we use the following lemma to illustrate that the low rank approximation to a skew-symmetric matrix T generated by singular value thresholding is also skewsymmetric.

Lemma 2. Let T be an $m \times m$ skew-symmetric matrix, and let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{j}>\lambda_{j+1}$ be the magnitudes of the singular value pairs. (Recall that the previous lemma showed that the singular values come in pairs, e.g., (i λ_{p}, $\left.-i \lambda_{p}\right), p=1,2, \ldots, j$.). Then the low rank approximation of T generated by singular value thresholding in an orthogonally invariant norm is also skew-symmetric.

Proof. Since the number of singular values of T is even, and there is a gap between the k th and the $(k+1)$ th singular value, we can always get the even number of singular values if we truncate the singular values based on a threshold. Therefore, based on the SVD form from Lemma 1, we naturally obtain a skew-symmetric matrix.

Finally, we use the above lemma to prove that, given a set of n skew-symmetric matrices T_{i}, our ALM-based algorithm preserves a skew-symmetry matrix $\hat{T}^{(l)}$ in each iteration, where l denotes the iterative number.

Clearly, from Algorithm 1, $\hat{T}^{(0)}, E_{i}^{(0)}, Y_{i}^{(0)}, i=$ $1, \ldots, n$ are all skew-symmetric. In step 4 of our algorithm, we compute the SVD of a skew-symmetric matrix $\frac{1}{n \mu} \sum_{i=1}^{n} Y_{i}^{(0)}+\frac{1}{n} \sum_{i=1}^{n} T_{i}-\frac{1}{n} \sum_{i=1}^{n} E_{i}^{(0)}$ and truncate the singular values below the threshold, then the obtained $\hat{T}^{(1)}$ is skew-symmetric based on Lemma 2 and condition of our theorem. In step 5, the obtained $E_{i}^{(1)}$ is skew-symmetric due to the fact that $T_{i}+\frac{Y_{i}^{(0)}}{\mu}-\hat{T}^{(1)}$ is skew-symmetric. Similarly, in step 6, we can obtain $Y_{i}^{(1)}$ which is also skew-symmetric. As the iteration proceeds, we can obtain skew-symmetric matrices $\hat{T}^{(l)}, E_{i}^{(l)}, Y_{i}^{(l)}$ in each iteration. Therefore, we arrive at a skew-symmetric matrix \hat{T} when Algorithm 1 converges, which completes the proof.

References

[1] D. F. Gleich and L. H. Lim. Rank aggregation via nuclear norm minimization. In $K D D, 2011.1$
[2] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 1985. 1
[3] F. D. Murnaghan and A. Wintner. A canonical form for real matrices under orthogonal transformations. Proceedings of the National Academy of Sciences of the United States of America, 1931. 1

