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Theorem 1. Given a set of n skew-symmetric matrices Ti,
the SVT solver employed by Algorithm 1 produces a skew-
symmetry matrix T̂ if the spectrums between the dominant
singular values are separated.

Proof. Following the proof in [1], to prove the above theo-
rem, we first introduce some properties of skew-symmetric
matrices. Assuming T is a skew-symmetric matrix with the
property T = −T⊤, then the eigenvalues of T are pure-
imaginary and come in complex-conjugate pairs. Moreover,
the rank of T is even [2]. Then the following lemma charac-
terizes the Singular Value Decomposition (SVD) of a skew-
symmetric matrix.

Lemma 1. If T is an m × m skew-symmetric ma-
trix with eigenvalues iλ1,−iλ1, iλ2,−iλ2, . . . , iλj ,−iλj

where λp > 0, p = 1, . . . , j, j = ⌊(m/2)⌋, and i de-
notes the imaginary unit. Then the SVD of T is given by
T = UDV ⊤ where
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and the forms of U , V are given in the proof.

Proof. Based on Murnaghan-Wintner form of a real-valued
matrix [3], the matrix T can be decomposed as

T = XZX⊤, (1)

for a real-valued orthogonal matrix X and a real-valued
block-upper-triangular matrix Z with 2-by-2 blocks along
the diagonal.

Since T is skew-symmetric, the decomposed component
Z is also skew-symmetric. Then Z has a block-diagonal
form:
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Furthermore, the SVD of the block matrix
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)
is

given by(
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Assume matrix A and matrix B are defined as follows:
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B =
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Then, the real-valued matrix T has the following decom-
position form: T = XADBX⊤. We construct U and V
such that U = XA and V ⊤ = BX⊤, which are real and
orthogonal. We thus complete the lemma which constructs
the SVD of T .

Next, we use the following lemma to illustrate that
the low rank approximation to a skew-symmetric matrix
T generated by singular value thresholding is also skew-
symmetric.

Lemma 2. Let T be an m×m skew-symmetric matrix, and
let λ1 ≥ λ2 ≥ . . . ≥ λj > λj+1 be the magnitudes of
the singular value pairs. (Recall that the previous lemma
showed that the singular values come in pairs, e.g., (iλp,
−iλp), p = 1, 2, . . . , j.). Then the low rank approximation
of T generated by singular value thresholding in an orthog-
onally invariant norm is also skew-symmetric.

Proof. Since the number of singular values of T is even,
and there is a gap between the kth and the (k + 1)th sin-
gular value, we can always get the even number of singular
values if we truncate the singular values based on a thresh-
old. Therefore, based on the SVD form from Lemma 1, we
naturally obtain a skew-symmetric matrix.

Finally, we use the above lemma to prove that, given a set
of n skew-symmetric matrices Ti, our ALM-based algorith-
m preserves a skew-symmetry matrix T̂ (l) in each iteration,
where l denotes the iterative number.

Clearly, from Algorithm 1, T̂ (0), E
(0)
i , Y

(0)
i , i =

1, . . . , n are all skew-symmetric. In step 4 of our algo-
rithm, we compute the SVD of a skew-symmetric matrix
1
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n
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n
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i and truncate the sin-

gular values below the threshold, then the obtained T̂ (1) is
skew-symmetric based on Lemma 2 and condition of our
theorem. In step 5, the obtained E

(1)
i is skew-symmetric

due to the fact that Ti +
Y

(0)
i

µ − T̂ (1) is skew-symmetric.

Similarly, in step 6, we can obtain Y
(1)
i which is also

skew-symmetric. As the iteration proceeds, we can obtain
skew-symmetric matrices T̂ (l), E(l)

i , Y (l)
i in each iteration.

Therefore, we arrive at a skew-symmetric matrix T̂ when
Algorithm 1 converges, which completes the proof.
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