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ABSTRACT

Semi-Supervised Learning for Scalable and Robust Visual
Search

Jun Wang

Unlike textual document retrieval, searching of visual data is still far from satisfactory. There ex-

ist major gaps between the available solutions and practical needs in both accuracy and computa-

tional cost. This thesis aims at the development of robust and scalable solutions for visual search

and retrieval. Specifically, we investigate two classes of approaches: graph-based semi-supervised

learning and hashing techniques. The graph-based approaches are used to improve accuracy, while

hashing approaches are used to improve efficiency and cope with large-scale applications. A com-

mon theme shared between these two subareas of our work is the focus on semi-supervised learning

paradigm, in which a small set of labeled data is complemented with large unlabeled datasets.

Graph-based approaches have emerged as methods of choice for general semi-supervised tasks

when no parametric information is available about the data distribution. It treats both labeled and

unlabeled samples as vertices in a graph and then instantiates pairwise edges between these vertices

to capture affinity between the corresponding samples. A quadratic regularization framework has

been widely used for label prediction over such graphs. However, most of the existing graph-

based semi-supervised learning methods are sensitive to the graph construction process and the

initial labels. We propose a new bivariate graph transduction formulation and an efficient solution

via an alternating minimization procedure. Based on this bivariate framework, we also develop

new methods to filter unreliable and noisy labels. Extensive experiments over diverse benchmark

datasets demonstrate the superior performance of our proposed methods.

However, graph-based approaches suffer from the critical bottleneck in scalability since graph

construction requires a quadratic complexity and the inference procedure costs even more. The

widely used graph construction method relies on nearest neighbor search, which is prohibitive for

large-scale applications. In addition, most large-scale visual search problems involve handling high-



dimensional visual descriptors, thereby causing another challenge in excessive storage requirement.

To handle the scalability issue of both computation and storage, the second part of the thesis focuses

on efficient techniques for conducting approximate nearest neighbor (ANN) search, which is key to

many machine learning algorithms, including graph-based semi-supervised learning and clustering.

Specifically, we propose Semi-Supervised Hashing (SSH) methods that leverage semantic similarity

over a small set of labeled data while preventing overfitting. We derive a rigorous formulation in

which a supervised term minimizes the empirical errors on the labeled data and an unsupervised

term provides effective regularization by maximizing variance and independence of individual bits.

Experiments on several large datasets demonstrate the clear performance gain over several state-of-

the-art methods without significant increase of the computational cost.

The main contributions of the thesis include the following.

1. Bivariate graph transduction: a) a bivariate formulation for graph-based semi-supervised

learning with an efficient solution by alternating optimization; b) theoretic analysis from the

view of graph cut for the bivariate optimization procedure; c) novel applications of the pro-

posed techniques, such as interactive image retrieval, automatic re-ranking for text based

image search, and a brain computer interface (BCI) for image retrieval.

2. Semi-supervised hashing: a) a rigorous semi-supervised paradigm for hash functions learn-

ing with a tradeoff between empirical fitness on pair-wise label consistence and an information-

theoretic regularizer; b) several efficient solutions for deriving semi-supervised hash func-

tions, including an orthogonal solution using eigen-decomposition, a revised strategy for

learning non-orthogonal hash functions, a sequential learning algorithm to derive boosted

hash functions, and an extension to unsupervised cases by using pseudo labels.

Two parts of the thesis - bivariate graph transduction and semi-supervised hashing - are compli-

mentary and can be combined to achieve significant performance improvement in both speed and

accuracy. Hash methods can help build sparse graphs in a linear time fashion and greatly reduce

the data size, but they lack sufficient accuracy. Graph-based methods provide unique capabilities to

handle non-linear data structures with noisy labels but suffer from high computational complexity.

The synergistic combination of the two offers great potential for advancing the state-of-the-art in

large-scale visual search and many other applications.
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Chapter 1

Introduction

1.1 Motivation

Due to the advance of modern imaging techniques, rich media, e.g., images and videos, overflow

in everyday life. For example, there is explosive growth of online media data. The photo sharing

website, Flickr, has over 5 billion images 1 and is being uploaded at the rate of over 3000 images per

minute. Another media sharing website, YouTube, receives more than 24 hours of uploaded videos

per minute 2. Besides the impact on the average person’s everyday life, modern imaging technique

also provides an unprecedented ability to record phenomena in the micro-world for scientific re-

search, such as microscopic imaging for biomolecular research. For example, genome-wide high

content screening has recently created an enormous amount of microscopic images that provide

important visual clues for accessing gene functions and designing drugs [93][178].

There is an emerging need to search and retrieve relevant content from such massive visual

databases. The widely-used commercial search engines, like Google and Bing, heavily rely on

keyword matching techniques, and their search performance is often unsatisfactory due to erro-

neous textural tag information. Content based image retrieval (CBIR) has attracted substantial

attention over the past decade [38][123][141][142]. Among the current CBIR research, the su-

pervised methods, such as concept detection, have been extensively explored and applied for visual

1The 5 billionth image was uploaded on September 19th, 2010, and it can be viewed at

http://blog.flickr.net/en/2010/09/19/5000000000/.

2This statistic was recorded on March 17, 2010.

http://blog.flickr.net/en/2010/09/19/5000000000/
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search [75][76][84][170]. Briefly speaking, these methods first define some concept categories, in-

cluding objects, scenes, events and so on, and then train classifiers for each category. These trained

classifiers are used to classify and index query images as well as the images in the databases to

generate search results in response to user queries.

However, there are some critical challenges in applying such supervised methods to deal with

applications over web-scale image databases. The first is the scalability issue. Since real large-

scale image databases often contain millions, or even billions, of samples and the visual descriptors

commonly contain hundreds or thousands of dimensions, there result both computational and stor-

age bottlenecks. Second, usually only a small portion of the samples in the real image databases

are associated with class labels. The available label information, such as the tags associated with

the photos on Flickr, is often noisy and unreliable. All these challenging conditions make the su-

pervised methods, like concept detection, infeasible for large-scale applications in the real world.

Therefore, in this thesis, we focus on semi-supervised learning techniques and develop scalable and

robust solutions for visual search applications. The two major technical components of this thesis,

bivariate graph transduction and semi-supervised hashing, are summarized below.

1.2 Methodology

1.2.1 Bivariate Graph Transduction

Since labeled samples are scarce but unlabeled samples are abundant in reality, the learning paradigm

considering both labeled and unlabeled data, i.e., semi-supervised learning (SSL), has proliferated

in applied machine learning systems. Among various SSL methods, graph-based approaches have

become popular due to its high accuracy and computational efficiency. Graph-based SSL (GSSL)

first uses the input data to construct a weighted graph, where both labeled and unlabeled samples are

treated as graph vertices, and weighted edges between these vertices indicate affinity between the

corresponding samples. Then the small portion of labeled vertices is used to perform propagation

or diffusion on the graph which provides unlabeled nodes with predicted labels. Designing a robust

label diffusion algorithm for such graphs is a widely studied problem and many recent methods are

reported, as surveyed in [27][180][181].

When applying the existing GSSL approaches to the visual search system, there remain critical
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challenges in both robustness and scalability, two highly desired properties for practical applica-

tions. These limitations result from the heuristic process used in graph construction and the strong

dependency of results on the labels. Therefore, existing approaches are extremely sensitive to the

pre-computed graph and initial given labels [74][156]. Many practical situations, such as those as-

sociated with uneven sampling [74], imbalanced labels [155], noninformative labels, and erroneous

labels [157], could ruin the label propagation process and generate unsatisfactory predictions. To

handle these challenging situations, this thesis proposes a bivariate formulation for graph-based

semi-supervised learning, where both the prediction function and the label matrix are treated as

optimization variables. Though the final formulation, turning to be a mixed integer problem, is NP-

hard, we design a very efficient solution via an alternating optimization procedure [156]. We further

prove the equivalence between this bivariate formulation and a constrained Max-Cut problem, and

provide a solution based on gradient greedy graph cut. Two advanced extensions of the bivariate

framework, including a label tuning strategy for handling problematic labels and multi-graph based

transduction, are also developed in this thesis. We validate the effectiveness of the proposed bivari-

ate graph transduction methods through extensive experiments, and compare with state-of-the-art

techniques on both artificial data and real applications from different domains.

1.2.2 Semi-Supervised Hashing

Note that all graph-based techniques require at least a quadratic complexity in computation since

graph construction costs O(n2) and the label diffusion procedure needs even more computational

cost. Besides computational constraints, construction of the full adjacency graph is infeasible due

to memory cost. Therefore, many GSSL techniques use sparse graphs, like KNN and b-matched

graphs [74], in which each vertex is connected with a small number of neighbors. However, finding

nearest neighbors in a large dataset is challenging. Nowadays, image datasets containing millions

or billions of samples are quite common, with the data dimensionality exceeding hundreds or thou-

sands. An exhaustive linear search to find nearest neighbors is infeasible for such gigantic datasets.

Fortunately, in many applications, it is sufficient to return approximate nearest neighbors (ANN)

instead of exact nearest neighbors. Conventional tree-based approximate nearest neighbor search

techniques cannot deal with high dimensional data and also require large memory. On the contrary,

hashing approaches achieve fast query time and require substantially reduced storage by indexing
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data with compact hash codes.

Among various hashing techniques, linear projection based hashing functions remain popular

due to their simplicity and efficiency. There are mainly two categories of linear projection based

hashing. The first category relies on random projections, such as locality sensitive hashing (LSH).

The second category of methods learn data-driven projections. For example, spectral hashing (SH)

uses principal projections and usually performs better than LSH. However, for typical CBIR appli-

cations, even returning the exact nearest neighbors does not guarantee search quality. This is due to

the well-known problem called semantic gap, where the high level semantic description of visual

content often differs from the low level visual descriptors [141]. In summary, due to the lack of

appropriate semantic visual descriptors and associated similarity measures, existing hashing based

ANN searches do not yield satisfactory results.

To handle the above challenging issues, we propose a novel hashing method, called semi-

supervised hashing (SSH), to learn efficient hash codes. Different from existing data-driven hash

techniques, SSH uses both semantic similarity/dissimilarity information associated with a small set

of sample pairs and the distribution properties of the whole dataset (both labeled and unlabeled)

to obtain compact and robust binary codes. The formulation of SSH contains two components: a

supervised term measuring empirical consistency over pair-wise labeled data and an unsupervised

term reflecting desirable properties, e.g., maximizing the entropy of each hash bit. Starting from

this formulation and using some relaxation processes, we derive three different versions of semi-

supervised hashing methods, i.e., orthogonal, non-orthogonal, and sequential hashing. Finally, we

propose an unsupervised extension of the sequential hashing method, where a set of pseudo-labels

are generated and incorporated with the sequential learning procedure. Experiments on several

large datasets, with up to 80 million points, clearly demonstrate the performance gain over several

state-of-the-art methods without significant increase of computational cost.

1.3 Evaluation and Applications

Besides the theoretical formulation and validation of the proposed approaches, empirical evalua-

tions, including both quantitative and qualitative testing, are also extensively investigated. We first

evaluate the performance of the proposed techniques with widely used artificial data, e.g., two-moon
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and two-circle point clouds, and standard benchmark data, e.g., UCI Machine Learning Repository

datasets [52] and Caltech 101 dataset [46]. In addition, we also apply our proposed methods to

real image data from different domains, such as the high-content microscopic imagery [161], satel-

lite imagery [160], and Flickr data collections [157]. Several different evaluation metrics, including

Mean Average Precision (MAP) [149], are used in our experiments. For the largest image collection,

which includes around 80 million tiny images, the qualitative evaluation is also provided.

Based on the proposed techniques, we also develop several visual search systems for different

applications.

1. Interactive Image Search: We first explore an interactive search mode that keeps users in the

loop and incorporates relevance feedback. A practical system, named Columbia TAG (Trans-

ductive Annotation by Graph) system 3 [154], is designed to facilitate both rapid retrieval

and exploration of large image and video collections. It incorporates novel graph-based label

propagation methods and intuitive graphic user interfaces (GUI) for relevance feedback. The

system allows additional positive images/videos matching the user’s interest to be quickly

discovered. It can be used as a fast search system alone, or as a bootstrapping system for

developing additional target recognition tools needed in critical application domains such as

intelligence, surveillance, consumer media, biomedical informatics [155], and the Web.

2. Automatic Image Search: We design an automatic mode for web image search through

refining the keyword based search results. In this framework, the textual tags are treated as

potentially incorrect labels and a label refinement method, named label diagnosis through self

tuning (LDST), is applied to correct labeling mistakes and to propagate label information over

the entire collection. The experimental results over a collection of Flickr images confirm the

significant performance gain over both text search baselines and state-of-the-art re-ranking

methods [157].

3. Hybrid Image Search with Brain Computer Interface: Through integration with an Elec-

troencephalogram (EEG)-based brain computer interface (BCI), we propose a hybrid paradigm

that marries the strengths of human vision and graph-based learning systems in a unique and

synergistic way: human vision for its superb capability in detecting general objects in diverse

3Demo: http://www.ee.columbia.edu/ln/dvmm/researchProjects/CTAG/tag.htm
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and complex conditions, and content analytics for automatic processing of large volumes of

data [127] [160].

4. Large-Scale Visual Indexing and Search: Finally, we apply the proposed semi-supervised

hashing techniques [158] [159] to indexing and searching large-scale image databases, includ-

ing a Flickr image collection with tens of thousands of samples [33] and the largest available

image collection with around 80 million tiny images [147].

1.4 Thesis Overview

The following describes the organization of the remainder of the thesis. In Chapter 2, we start with a

brief survey of semi-supervised learning, especially focusing on the existing graph-based SSL tech-

niques, then present the background of graph construction and label propagation over graphs, and

finally introduce some challenging issues, e.g., label dependency and heuristic graph construction.

Chapter 3 presents the bivariate graph transduction framework and related theoretical proofs, fol-

lowed by two advanced extensions, including one for handling mislabeled instances and the other

for multi-graph based transductive learning. Chapter 4 presents the semi-supervised hashing tech-

niques for approximate nearest neighbor search. In this chapter, we provide a brief survey of the

related work, detailed theoretical formulation of our hashing approaches, including three different

semi-supervised hashing methods and an unsupervised extension, followed by extensive experi-

ments and comparison studies with emerging approaches on several large datasets. In Chapter 5, we

present several real image search applications using the proposed techniques, including an interac-

tive search mode with user feedback and an automatic search mode through refining keyword-based

search results. Chapter 6 describes a very unique image retrieval system via integrating machine

learning approaches with a Brain Machine Interface. Finally, in Chapter 7, we conclude the thesis

and discuss future work.
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Chapter 2

Graph-Based Semi-Supervised

Learning: Background & Issues

2.1 Introduction

In many real applications, labeled samples are scarce but unlabeled samples are abundant. The

learning paradigm that considers both labeled and unlabeled data, i.e., semi-supervised learning

(SSL), has been extensively explored for practical machine learning systems. Of various SSL meth-

ods, graph-based approaches have become popular due to their high accuracy and computational

efficiency. Graph-based semi-supervised learning (GSSL) treats both labeled and unlabeled samples

from the dataset as vertices in a graph and builds pairwise edges between these vertices which are

weighted by the affinity between the corresponding samples. The small portion of vertices with

labels are then used by SSL methods to perform graph partition or information propagation to pre-

dict labels for unlabeled vertices. For instance, the graph mincuts approach formulates the label

prediction as a graph cut problem [20][21]. Other GSSL methods, like graph transductive learn-

ing, formulate the problem as a regularized function estimation over an undirected weighted graph.

Specifically, they try to optimize the tradeoff between the accuracy of the classification function

on labeled samples and a regularization term that favors a smooth function. The weighted graph

and the optimal function ultimately propagate label information from labeled data to unlabeled

data and thus accomplish transductive predictions. Popular algorithms for GSSL include graph

cuts [20][21][80][92], graph random walks [5][143], manifold regularization [14][15][136][138],
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and graph regularization [176][182]. Comprehensive surveys can be found in [27][180][181]. Here,

we provide a brief overview of the fundamental components and open issues of graph-based SSL.

2.2 Notations for Graph Representation

We define the notations of graph representations, which will be used throughout the thesis. Assume

we are given iid (independent and identically distributed) labeled samples {(x1, z1), . . . , (xl, zl)}

as well as unlabeled samples {xl+1, . . . ,xl+u} drawn from a distribution p(x, z). Define the set

of labeled inputs as Xl = {x1, . . . ,xl} with cardinality |Xl| = l and the set of unlabeled inputs

Xu = {xl+1, . . . ,xl+u} with cardinality |Xu| = u. The labeled set Xl is associated with labels

Zl = {z1, · · · , zl}, where zi ∈ {1, · · · , c}, i = 1, 2, · · · , l. The goal of semi-supervised learning

is to infer the missing labels {zl+1, · · · , zn} corresponding to the unlabeled data {xl+1, · · · ,xn},

where typically l << n (l + u = n). A crucial component of GSSL is the estimation of a weighted

sparse graph G from the input data X = Xl ∪ Xu. Subsequently, a labeling algorithm uses G

and the known labels Zl = {z1, . . . , zl} to provide estimates Ẑu = {ẑl+1, . . . , ẑl+u} which try to

approximate the true labels Zu = {zl+1, . . . , zl+u} as measured by an appropriately chosen loss

function.

In this thesis, assume the undirected graph converted from the data X is represented by G = {X,E},

where the set of vertices is X = {xi} and the set of edges is E = {eij}. Each sample xi is treated

as a vertex and the weight of edge eij is wij . Typically, one uses a kernel function k(·) over pairs of

points to compute weights. For instance, wij = k(xi,xj) with the RBF kernel has been a popular

choice. The weights for edges are used to build a weight matrix which is denoted by W = {wij}.

Similarly, the vertex degree matrix D = diag ([d1, · · · , dn]) is defined as di =
n∑

j=1
wij . The

Laplacian of graphs is defined as:

∆ = D−W. (2.1)

The graph Laplacian can be viewed as an operator on the space of functions f which can be used to

define a regularization measure of smoothness over strongly-connected regions in a graph [34]:

⟨f,∆⟩ =
∑

i

∑
j

wij ∥f(xi)− f(xj)∥2 . (2.2)
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In the literature, there are different strategies to normalize the graph Laplacians [152]. The two

typical versions are

Lsym = D−1/2∆D−1/2 = I−D−1/2WD−1/2 (2.3)

Lrw = D−1∆ = I−D−1W, (2.4)

where Lsym denotes a symmetric version of the graph Laplacian and Lrw is closely related to a

random walk since D−1W can be viewed as a transition matrix [1]. Although the author of [152]

advocates using Lrw in spectral clustering tasks, we follow the work in [174] and use Lsym in this

thesis. Without specific declaration, we use L to represent the symmetrically normalized version

Lsym and define the corresponding smoothness measurement of functions f over a graph as

⟨f,L⟩ =
∑

i

∑
j

wij

∥∥∥∥∥f(xi)√
di

− f(xj)√
dj

∥∥∥∥∥
2

. (2.5)

Finally, the label information is formulated as a label matrix Y = {yij} ∈ Bn×c, where yij = 1

if sample xi is associated with label j for j ∈ {1, 2, · · · , c}, i.e., zi = j, and yij = 0 otherwise.

For single label problems (as opposed to multi-label problems), the constraints
c∑

j=1
yij = 1 are also

imposed. Moreover, we will often refer to row and column vectors of such matrices. For instance,

the ith row and jth column vectors of Y are denoted as Yi· and Y·j , respectively. Let F = f(X)

be the values of classification function over the dataset X. Most of the GSSL methods then utilize

the graph quantity W as well as the known labels to recover a continuous classification function

F ∈ Rn×c by minimizing a predefined cost on the graph.

2.3 Graph Construction for Semi-Supervised Learning

To estimate Ẑu = {ẑl+1, . . . , ẑl+u} using G and the known labels Zl = {z1, . . . , zl}, the first

step is to convert the data points X = Xl ∪ Xu to a graph G = {X,E}. In this section, the

graph construction X → G is addressed. Given input data X with cardinality |X| = l + u, graph

construction produces a graph G = (X,E) consisting of n = l + u vertices where each vertex is

associated with the sample xi. Furthermore, take E to be the set of undirected edges between pairs

of vertices. It is common to also associate a weighted symmetric adjacency matrix W with the

edges E in G where W = {wij} ∈ Rn×n has zeros on its diagonal and each scalar wij represents
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the edge weight between vertex xi and vertex xj . The estimation of G from X usually proceeds in

two steps.

The first step is to compute a similarity score between all pairs of vertices using a similarity

function. This creates a full adjacency matrix, K ∈ Rn×n, where Kij = k(xi,xj) is computed

using kernel function k(·) to measure sample similarity. Subsequently, in the second step of graph

construction, the matrix K is sparsified and reweighted to produce the final matrix W. Sparsifi-

cation is important since it leads to improved efficiency, better accuracy, and robustness to noise

in the label inference stage. Furthermore, the kernel function k(·) is often only locally useful as

a similarity and does not recover reliable weights between pairs of samples that are relatively far

apart.

2.3.1 Graph Sparsification

Starting with the fully connected matrix K, sparsification removes edges by recovering a binary

matrix B ∈ Bn×n where Bij = 1 indicates that an edge is present between sample xi and xj ,

and Bij = 0 indicates the edge is absent (assume Bii = 0 unless otherwise noted). Here we will

primarily investigate two graph sparsification algorithms: neighborhood approaches including the

k-nearest and ϵ neighbors algorithms, and matching approaches such as b-matching (BM) [44]. All

such methods operate on the matrix K or, equivalently, the distance matrix D ∈ Rn×n obtained

from K element-wise as Dij =
√

Kii + Kjj − 2Kij since it is possible to convert a similarity

function k(·) into a distance function via

d(xi,xj) =
√
k(xi,xi) + k(xj ,xj)− 2k(xi,xj) . (2.6)

Sparsification via Neighborhood Methods: There are two typical ways to build a neighbor-

hood graph: the ϵ-neighborhood graph connecting samples within a distance of ϵ, and the kNN

graph connecting k closest samples. Recent studies show the dramatic influences that different

neighborhood methods have on clustering techniques [25][102]. In practice, the kNN graph remains

a more common approach since it is more adaptive to scale variation and data density anomalies

while an improper threshold value in the ϵ-neighborhood graph may result in disconnected com-

ponents or subgraphs in the dataset or even isolated singleton vertices, as shown in Figure 2.1(a)

and Figure 2.2(d). In this thesis, we often use kNN neighborhood graphs since the ϵ-neighborhood
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graphs provide consistently weaker performance. In the remainder of this thesis, we will use neigh-

borhood and kNN neighborhood graph interchangeably without specific declaration.

More specifically, the k-nearest neighbor graph is a graph in which two vertices xi and xj are

connected by an edge if the distance Dij between xi and xj is within or equal k-th smallest among

the distances from xi to other samples in X. Roughly speaking, the k-nearest neighbors algorithm

starts with a matrix B̂ of all zeros and for each point, searches for the k closest points to it (without

considering itself). If a point j is one of the k closest neighbors to i, then we set B̂ij = 1. It

is straightforward to show that the k-nearest neighbors search solves the following optimization

problem:

min
B̂∈B

∑
ij

B̂ijDij (2.7)

s.t.
∑

j
B̂ij = k, B̂ii = 0, ∀i, j ∈ 1, . . . , n.

Then the final solution is produced by symmetrizing B̂ as Bij = max(B̂ij , B̂ji) 4. This greedy

algorithm is in fact not solving a well defined optimization problem over symmetric binary matrices.

In addition, since it produces a symmetric matrix only via the ad hoc maximization over B̂ and its

transpose, the solution B it produces does not satisfy the equality
∑

k Bij = k, but, rather, only

satisfies the inequality
∑

j Bij ≥ k. Ironically, despite conventional wisdom and the nomenclature,

the k-nearest neighbors algorithm is producing an undirected subgraph with more than k neighbors

for each vertex. This motivates researchers to investigate the b-matching algorithm which actually

achieves the desired output.

Sparsification via b-Matching: The b-matching problem generalizes maximum weight match-

ing, i.e., linear assignment problem, where the objective is to find the binary matrix to minimize the

optimization problem

min
B∈B

∑
ij

BijDij (2.8)

s.t.
∑

j
Bij = b,Bii = 0,Bij = Bji, ∀i, j ∈ 1, . . . , n,

achieving symmetry directly without post-processing. Here, the symmetric solution is recovered

up-front by enforcing the additional constraints Bij = Bji. The matrix then satisfies the equality

4It is possible to replace the maximization operator with minimization to produce a symmetric matrix, yet in the

setting B = min(B̂, B̂⊤), the solution B only satisfies the inequality
∑

j Bij ≤ k and not the desired equality.
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: A comparison of the neighborhood algorithms and the b-matching algorithm for graph

construction. a) & d) ϵ-neighborhood connectivity; b) & e) kNN connectivity for k = 4 and k = 6,

respectively; c) & f) b-matching connectivity for b = 4 and b = 6, respectively. It is easy to verify

that b-matching technique generates a more balanced (or regular) graph with equal vertex degree.

∑
j Bij =

∑
i Bij = b strictly. The solution to Eq. (2.8) is not quite as straightforward or efficient

as the greedy k-nearest neighbors algorithm. A polynomial time O(bn3) solution has been known,

yet recent advances show that much faster alternatives are possible via (guaranteed) loopy belief

propagation [67].

In Figure 2.1, an intuitive demonstration of neighborhood graphs and b-matching graphs is

shown, where appropriate values of ϵwere chosen to make the total number of edges in ϵ-neighborhood

graphs comparable to those in other graphs. Compared with the neighborhood graphs, the b-

matching graph is balanced or b-regular. In other words, each vertex in the b-matched graph has

exactly b edges connecting it to other vertices. This advantage plays a key role when conducting la-

bel propagation on typical samples X that are unevenly and non-uniformly distributed. An efficient

implementation for the b-matching problem is available online from the authors of the loopy belief

propagation method [67], which handles both unipartite and bipartite graphs. In addition, the faster

belief propagation implementation has been developed, as described in Appendix A. It is possible to

apply the method to large scale problems without significantly increasing the runtime of the overall
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Figure 2.2: The synthetic dataset used for demonstrating different graph construction approaches.

a) The synthetic data; b) The ϵ-nearest neighbor graph; c) The k-nearest neighbor graph; d) The

b-matched graph.

semi-supervised learning procedure.

Previous work also applied b-matching for spectral clustering through removing spurious edges

and sparsifying a graph from the original fully connected adjacency matrix [73]. For example, in

Figure 2.2, this dataset clearly contains two clusters of points, a dense Gaussian cluster surrounded

by a ring cluster. Furthermore, the cluster data is unevenly sampled; one cluster is dense and the

other is fairly sparse. In this example, the k-nearest neighbor graph constantly generates many

cross-cluster edges while b-matching efficiently alleviates this problem by removing most of the

improper edges. The example clearly shows that the b-matching technique produces regular graphs

which could overcome the drawback of cross-structure linkages often generated by nearest neighbor

methods. This intuitive study confirms the importance of graph construction methods and advocates

b-matching as a valuable alternative to k-nearest neighbors, a method that many practitioners expect

to produce regular undirected graphs, though in practice often generates irregular graphs.

2.3.2 Graph Edge Re-Weighting

Once a graph has been sparsified and a binary matrix B is computed and used to delete unwanted

edges, several procedures can then be used to update the weights in the matrix K to produce a final

set of edge weights W. Specifically, whenever Bij = 0, the edge weight is also Wij = 0; however,

Bij = 1 implies that Wij ≥ 0. Three possible approaches are considered here for estimating the

non-zero components of W.
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Binary Weighting: The simplest approach for building the weighted graph is the binary weight-

ing approach, where all the linked edges in the graph are given the weight 1 and the edge weights

of disconnected vertices are given the weight 0. In other words, this setting simply uses W = B.

However, this uniform weight on graph edges can be sensitive, particularly if some of the graph

vertices were improperly connected by the sparsification procedure (either the neighborhood based

procedures or the b-matching procedure).

Gaussian Kernel Weighting: An alternative approach is Gaussian kernel weighting which

is often applied to modulate sample similarity. Therein, the edge weight between two connected

samples xi and xj is computed as:

wij = Bij exp
(
−d(xi,xj)

2σ2

)
, (2.9)

where the function d(xi,xj) evaluates the dissimilarity of samples xi and xj , and σ is the ker-

nel bandwidth parameter. There are many choices for the distance function d(·) including any ℓp

distance and the χ2 distance, as listed below:

dℓ1(xi,xj) = |xi − xj | (2.10)

dℓ2(xi,xj) =∥ xi − xj ∥ (2.11)

dχ2(xi,xj) =
∑

k

(xi,k − xj,k)2

xi,k + xj,k
. (2.12)

The ℓ2 distance has been widely used in previous research [180], while χ2 distance is useful for

histograms [172]. Moreover, the cosine distance is another straightforward way to compute scale

invariant sample similarity and is commonly used for text classification [14].

Locally Linear Reconstruction Based Weighting: Another way of estimating edge weight

for the connected edges is motivated by the locally linear embedding technique presented in [122].

In this procedure, a novel edge weighting model using the non-negative coefficients of the locally

linear reconstruction is performed as described in [153]. Given the sparse connectivity matrixP , the

error of a locally linear reconstruction of the sample xi, given its (sparse) connectivity information

(or neighborhood information, equivalently) is defined as:

εi =

∥∥∥∥∥∥xi −
n∑

j=1

Bijwijxj

∥∥∥∥∥∥
2

. (2.13)



CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING: BACKGROUND & ISSUES 15

The best local linear reconstruction can be achieved by minimizing the above reconstruction error.

Since direct optimization on Eq. (2.13) could generate negative coefficients for wij , constraints

are imposed on the optimization such that the weights are non-negative and normalize to unity as

follows:

min
W

∑
i

∥∥∥∥∥∥xi −
n∑

j=1

Bijwijxj

∥∥∥∥∥∥
2

(2.14)

s.t.
∑

j
wij = 1, wij ≥ 0.

The above can be solved as standard quadratic programming problems, as described in [153]. By

considering all neighborhoods for each point as determined by Bij , it is possible to reconstruct an

entire set of edge weights. This gives another procedure for setting the edge weights W from the

sparsified binary connectivity B.

This final step in the graph construction procedure ensures that the unlabeled data X has now

been converted into a graph G with a weighted and undirected sparse matrix W. Given this graph

and some initial label information Yl, any of the current popular algorithms for graph-based SSL

can be used to solve the labeling problem.

2.4 Label Diffusion and Inference over Graphs

Given the constructed graph G = {X,E}, whose geometric structure is represented by the weight

matrix W, the label inference task is to diffuse the known labels Zl to all the unlabeled vertices

Xu in the graph and estimate Ẑu. Designing a robust label diffusion algorithm for such graphs is a

widely studied problem and many recent methods are surveyed in [27][180][181].

Here we are particularly interested in a category of approaches that estimates the prediction

function F ∈ Rn×c through minimizing a quadratic cost function defined over the graph. The cost

function typically involves a tradeoff between the smoothness of the function over the graph of both

labeled and unlabeled data, i.e., consistence of the predictions on closely connected vertices, and the

accuracy of the function at fitting the label information on the labeled vertices. Many well-known

methods like the Gaussian fields and harmonic functions (GFHF) method [182] and the local and

global consistency (LGC) method [174] fall in this category, as does our proposed method of graph

transduction via alternating minimization (GTAM) [156].
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Both LGC and GFHF define a cost function Q that involves the combined contribution of two

penalty terms: the global smoothness Qsmooth and local fitting accuracy Qfit. The final prediction

function F is obtained by minimizing the cost function as:

F∗ = arg min
F∈Rn×c

Q(F) = arg min
F∈Rn×c

{Qsmooth(F) +Qfit(F)} . (2.15)

A very natural formulation of the above cost function was proposed as LGC in [174], where an

elastic regularizer framework was used to formulate the following cost function:

Q(F) = ∥F∥2G +
µ

2
∥F−Y∥2. (2.16)

The first term ∥F∥2G represents function smoothness over graph G, and the second term ∥F −Y∥2

plays as a regularization term through measuring the empirical loss on given labeled samples.

Specifically, in LGC, the function smoothness is defined in the form of semi-inner product as:

Qsmooth = ∥F∥2G =
1
2
⟨F,LF⟩ =

1
2
tr(F⊤LF). (2.17)

Note that the coefficient µ in Equation (2.16) balances global smoothness and local fitting

penalty terms. If we set µ = ∞ and use a standard graph Laplacian quantity ∆ (as defined in

Eq. 2.1) for the smoothness term, the above framework reduces to the harmonic function formu-

lation proposed in [182]. More precisely, the cost function only preserves the smoothness term

as:

Q(F) = tr(F⊤∆F). (2.18)

Meanwhile, the harmonic function F, minimizing the above cost, also satisfies two conditions:

∂Q
∂F u

= ∆Fu = 0

Fl = Yl, (2.19)

where Fl,Fu are the function values of f(·) over labeled and unlabeled vertices, i.e., Fl = f(Xl),

Fu = f(Xu), and F = [Fl Fu]⊤. The first equation above denotes the zero derivative of the object

function on the unlabeled data and the second equation requires clamping the function value on the

given label value Yl. Both LGC and GFHF fit in a univariate regularization framework, where the

continuous prediction function is treated as the only variable in the optimization procedure. Since

the cost functions are convex, the optimal solutions for Eq. 2.16 and Eq. 2.18 are easily obtained

through solving a linear system.
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Figure 2.3: Examples of constructed kNN (k = 5) graphs on the artificial two moon dataset: a)

completely separable graph; b) non-separable graph due to noisy samples.

2.5 Open Issues

Existing graph-based SSL methods hinge on having good label information and an appropriately

constructed graph [156]. But the heuristic design of the graph may result in suboptimal inference.

In addition, the label propagation procedure can easily be misled if there exist excessive noise or

outliers in the initial labeled set. Finally, in iid settings, the difference between empirically estimated

class proportions and their true expected value is bounded [68]. However, practical annotation pro-

cedures are not necessarily iid and labeled data may have empirical class frequencies that deviate

significantly from the expected class ratios. These degenerate situations seem to plague real world

problems and compromise the performance of many state-of-the-art SSL algorithms. We next dis-

cuss some open issues which occur often in graph construction and label propagation, two critical

components of all GSSL algorithms.

Sensitivity to Graph Construction:

As shown in Figure 2.3(a), a well-built graph with separable manifolds leads to simple cases for

which most of the existing GSSL approaches work well. However, practical applications often

produce non-separable graphs, as shown in Figure 2.3(b). In addition to the widely used kNN

graph, we showed that b-matching could be used successfully for graph construction [74]. But both

kNN graphs and b-matched graphs are heuristics and require the careful selection of the parameter

k or b which controls the number of links incident to each vertex in the graph. Moreover, edge
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Figure 2.4: Examples illustrating the sensitivity of graph-based SSL to adverse labeling conditions.

Particularly challenging conditions are shown in (a) where an uninformative label with on a outlier

sample is the only negative label (denoted by a black circle) and in (g) where imbalanced labeling

is involved. Prediction results are shown for the GFHF method [182] in (b) and (h), the LGC

method [174] in (c) and (i), the LapSVM method [15] in (d) and (j), the TSVM method [79] in (e)

and (k); our method in (f) and (l).
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reweighing on the sparse graph often also requires exploration forcing the user to select try kernels

and various kernel parameters. All these heuristic steps in graph design require extra effort from the

user and demand some level of familiarity with the data domain.

Sensitivity to Label Noise:

Most of the existing methods GSSL methods are based on a univariate quadratic regularization

framework which relies heavily on the quality of the initially assigned labels. For certain synthetic

and real data problems, such graph transduction approaches achieve promising performance. How-

ever, several realistic labeling conditions produce unsatisfactory performance [156]. Even if the

graph is perfectly constructed from the data, noisy initial labels can easily deteriorate the perfor-

mance of SSL prediction. Figure 2.4 provides examples depicting imbalanced and noisy labels that

lead to invalid graph transduction solutions for all the aforementioned algorithms. The first label-

ing problem involves uninformative labels (Figure 2.4(a)). The only negative label (dark circle) is

located in an outlier region where the low density connectivity limits its diffusion to the rest of the

graph. The leading SSL methods classify the majority of unlabeled nodes in the graph as positive

(Figure 2.4(b)-Figure 2.4(e)). Such conditions are frequent in real problems like content-based im-

age retrieval (CBIR) where the visual query example is not necessarily representative of the class.

Another difficult case is due to imbalanced labeling. There, the ratio of training labels is dispro-

portionate to the underlying class proportions. For example, Figure 2.4(g) depicts two half-circles

with an almost equal number of samples. However, since the training labels contain three negative

samples and only one positive example, the SSL predictions are strongly biased towards the negative

class (see Figures 2.4(h) to 2.4(k)). This imbalanced labeling situation occurs frequently in realistic

problems such as the annotation of microscopic images [155]. Therein, the human labeler favors

certain cellular phenotypes due to domain-specific biological hypotheses. Other challenging cases,

e.g., mislabeling due to uncontrolled labeling, can also generate undesirable label prediction results,

as described in [157].

In summary, there exist several challenging issues, including heuristic setting of graph con-

struction and sensitivity to label conditions, that create the need for a more robust label prediction

mechanism. In the next Chapter, we will propose a novel graph-based SSL framework based on a

bivariate optimization procedure and show its robustness to both graph construction and labeling

conditions.
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2.6 Related Work

Here we briefly go through several related topics about semi-supervised learning and graph-based

learning problems.

Co-Training:

As one of the earliest cases of the empirical success of SSL, co-training was first developed for text

mining [22], and was later extended in various forms to other applications [2][31][61][106][179].

Briefly speaking, multiple classifiers are first trained using conditionally independent feature sets of

training data. The predictions with sufficient confidence of each classifier are then added to the label

set and used to train new classifiers iteratively. Its performance highly relies on the existence of inde-

pendent and complementary classifiers – some classifiers can correctly classify the samples that are

mislabeled by other classifiers. Theoretical study shows that a weak assumption on the underlying

data distribution is sufficient for co-training to work [8]. Another recent theoretical analysis treats

co-training as a combinative label propagation over multiple views and provides a sufficient and

necessary condition desired for co-training [163]. However, the performance could be dramatically

degraded if the classifiers do not complement each other or the independency assumption does not

hold [88]. Though co-training is conceptually treated as a semi-supervised learning paradigm due

to the way unlabeled data is incorporated, the classifier training procedure is often supervised [22].

Semi-Supervised Support Vector Machines:

The extension of traditional supervised support vector machines (SVMs) to a semi-supervised sce-

nario is intuitive and straightforward. Instead of maximizing separation (maximum-margin hy-

perplane) over training data in standard SVMs, semi-supervised SVMs (S3VMs) aims at estimat-

ing a hyperplane to balance maximum-margin partition over labeled data and separation through

low-density regions of the data [151]. For example, in [79], transductive support vector machines

(TSVMs) were developed as one of the earliest versions of semi-supervised SVMs 5. Various op-

timization techniques have been applied to solve S3VMs [28], resulting in a wide range of meth-

ods, such as low density separation [30], semi-definite programming based methods [18][166], and

a branch and bound based approach [29]. A thorough review of S3VMs methods can be found

5It is actually more appropriate to call this method semi-supervised SVMs since the learned classifier is indeed induc-

tive [181].
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in [181].

Graph-based Clustering:

As a natural representation of data, graphs have also been used for clustering since the early

1970s [40]. One of the most representative methods is spectral clustering [112][134]. Like GSSL

methods, spectral clustering starts by representing the data with a similarity graph and then com-

putes the eigenvectors of the graph Laplacian matrix. Using the theoretical foundation from the

spectral graph theory [34], a number of spectral clustering algorithms have been designed for differ-

ent applications with various graph designs and different normalization strategies of graph Lapla-

cian [6] [32][73][167][171][175]. As an extension, constrained clustering uses side information or

weak supervision, e.g., so-called must-link and cannot-link information, to achieve better cluster-

ing performance [11][97][164] 6. For details about graph-based clustering, refer to [50][152] for

additional survey.

6Some literatures categorize constrained clustering as a special case of semi-supervised learning.
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Chapter 3

Bivariate Framework for Graph

Transduction

3.1 Introduction

In order to handle the various challenging issues discussed in the previous chapter, we first extend

the existing GSSL formulation by casting it as a bivariate optimization problem over the classifica-

tion function and the labels. Then we demonstrate that minimizing the mixed bivariate cost function

can be reduced to a pure integer programming problem that is equivalent to a constrained Max-Cut

problem. Though semi-definite programming can be used to obtain approximate solutions, it is im-

practical due to the scalability issue. We propose an efficient greedy gradient-based solution, named

graph transduction via alternating minimization (GTAM). GTAM alternates the steps to minimize

the cost function over both the label matrix and the prediction function that leads to convergence to

a local minimum. Moreover, to alleviate the dependency on initial labels, we propose using a label

weight term to apply within-class normalization by vertex degree, as well as between-class normal-

ization by class prior information. We demonstrate that the GTAM algorithm produces significantly

better performance on both artificial and real datasets.

In addition, we further propose a greedy gradient-based Max-Cut solution that remedies the

instability previous methods seem to have vis-a-vis the initial labeling. In our greedy solution,

initial labels simply act as the starting value of the graph cut which is incrementally refined until

convergence. During each iteration of the greedy search, the optimal unlabeled vertex is assigned
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to the labeled subset with minimum connectivity to maximally preserve cross-subset edge weights.

Finally, the overall Max-Cut is achieved after placing all the unlabeled vertices in the proper label

sets. It is then straightforward to come up with the final label prediction based on the graph cut

results. It is interesting that the greedy gradient-based Max-Cut solution can be used to interpret the

alternative minimization procedure of GTAM.

Based on the above bivariate framework of graph transduction, we further extend two advanced

versions. First, we design a graph-based label tuning strategy, called Label Diagnosis through Self

Tuning, to handle errors in the initial labeled set. Second, we propose multi-graph based transduc-

tive learning through conducting an alternating optimization strategy across multiple graphs. We

empirically demonstrate its superiority in both prediction accuracy and computational efficiency,

compared with prior work. Both these two extensions make the bivariate framework easily adapt-

able to practical applications, such as web image search and video retrieval.

The remainder of this chapter is organized as follows: In Section 3.2, we present our bivariate

graph transduction framework and propose the alternating minimization solution. Section 3.3 pro-

vides several theoretic proofs of the equivalence between the bivariate framework and maximum cut

problem and describes an efficient solution using greedy gradient Max-Cut. Two advanced exten-

sions, including label tuning technique and multiple-graph transduction, are discussed in Sections

3.4 and 3.5. Section 3.6 includes the experimental validation and comparison with other leading

SSL methods over both toy and real datasets. Concluding remarks and discussions are provided in

Section 3.7.

3.2 Bivariate Graph Transduction

3.2.1 The Cost Function

Recall the univariate regularization formulation for graph-based SSL in Eq. (2.15). As discussed

earlier in Section 2.5, the label propagation process is very sensitive to the choice of the initial

labels and the pre-computed graph. First, the optimization procedure of the existing approaches,

such as LGC and GFHF, can be broken up into separate parallel problems since the cost function

decomposes into terms that only depend on individual columns of the prediction matrix F. Such a

decomposition reveals that biases may arise if the input labels are disproportionately imbalanced.
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Second, when the graph contains background noise and makes class manifolds nonseparable (Fig-

ure 2.3(b)), these existing graph transduction approaches fail to output reasonable classification

results.

Realizing that the univariate framework treating the initial label information as a constant serves

as the main cause of the label sensitivity issue, we propose a novel bivariate optimization framework

that explicitly optimizes over both the classification function F and the binary label matrix Y:

(F∗,Y∗) = arg minF∈Rn×c,Y∈Bn×cQ(F,Y), (3.1)

where Bn×c is the set of all binary matrices Y of size n × c that satisfy
∑

j Yij = 1, and for the

labeled data xi ∈ Xl, Yij = 1 if zi = j. Second, we specify the loss function as

Q(F,Y) = ∥FG∥2 +
µ

2
∥F−Y∥2 =

1
2
tr

(
F⊤LF + µ(F−Y)⊤(F−Y)

)
. (3.2)

Finally, rewriting the cost as a summation [174] reveals a more intuitive formulation where

Q(F,Y) =
1
2

n∑
i=1

n∑
j=1

wij

∥∥∥∥∥ Fi·√
di
− Fj·√

dj

∥∥∥∥∥
2

+
µ

2

n∑
i=1

∥Fi· −Yi·∥2. (3.3)

3.2.2 Reduction to a Univariate Problem

In the new graph regularization framework proposed above, the cost function involves two variables

to be optimized. Simultaneously recovering both solutions is intractable due to the mixed integer

programming problem over binary Y with constraints and continuous F. To solve the issue, we first

show how to reduce the original mixed problem to a univariate optimization problem with respect

to the label variable Y.

F optimization step:

In each loop with Y fixed, the classification function F ∈ Rn×c is continuous and the cost function

is convex, allowing the minimum to be recovered by zeroing the partial derivative:

∂Q
∂F∗ = 0 =⇒ LF∗ + µ(F∗ −Y) = 0

=⇒ F∗ = (L/µ+ I)−1Y = PY, (3.4)

where we denote the P matrix as

P = (L/µ+ I)−1, (3.5)
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and name it the propagation matrix since it is used to derived a prediction function F given a label

matrix Y. Because the graph is often symmetrically built, it is easy to show that the graph Laplacian

L and the propagation matrix P are both symmetric.

Y optimization step:

Next replace F in Eq. (3.2) by its optimal value F∗ from the solution of Eq. (3.4). This yields

Q(Y) =
1
2
tr(Y⊤P⊤LPY + µ(PY −Y)⊤(PY −Y))

=
1
2
tr

(
Y⊤

[
P⊤LP + µ(P⊤ − I)(P− I)

]
Y

)
=

1
2
tr

(
Y⊤AY

)
, (3.6)

where we group all the constant parts in the above equation and define

A = P⊤LP + µ(P⊤ − I)(P− I) = P⊤LP + µ(P− I)2. (3.7)

The final optimization problem becomes

Y∗ = arg min
1
2
tr

(
Y⊤AY

)
s.t. yij ∈ {0, 1},∑

j
yij = 1, j = 1, · · · , c

yij = 1, for zi = j, j = 1, · · · , c. (3.8)

The first constraint produces a binary integer problem and the second one
∑

j yij = 1 produces

a single assignment constraint, i.e., each vertex can only be assigned one class label. The third

group of constraints encode the initial label information in the variable Y. Since the binary matrix

Y ∈ Bn×c is subject to linear constraints of the form
∑

j yij = 1 and initial labeling conditions, the

optimization in Eq. (3.8) requires solving a linearly constrained binary integer programming (BIP)

problem which is NP hard [36][82].

3.2.3 Incorporating Label Normalization

To solve the minimization problem in Eq. (3.8), a straightforward way is to use gradient approach

to greedily update label variable Y. However, this will raise anther practical issue of biased classifi-

cation since the class with more labels will be preferred to be assigned new labeled samples in each

iteration. This has been seen in practice (see the examples in Figure 2.4) but can also be explained
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mathematically by the fact that Y starts off extremely sparse and has many unknown terms. To han-

dle this bias issue during label propagation, we propose using a normalized label variable Ỹ = ΛY

for computing the cost function in Eq. (3.2) as:

Q =
1
2
tr

(
F⊤LF + µ(F− Ỹ)⊤(F− Ỹ)

)
=

1
2
tr

(
F⊤LF + µ(F−ΛY)⊤(F−ΛY)

)
. (3.9)

The diagonal matrix Λ = diag(λ) = diag([λ1, · · · , λn]) is introduced as a label weight to balance

the influence of labels from different classes, and modulates the label importance based on the node

degree. The value of λi (i = 1, · · · , n) is computed using the vertex degree di and label information

λi =


pj · di∑

k ykjdk
: yij = 1

0 : otherwise,
(3.10)

where pj is the prior of class j and is subject to the constraint
c∑

j=1
pj = 1. The value of pj can be

either estimated from the labeled training set or simply set to be uniform pj = 1/c (j = 1, · · · , c)

in agnostic situations (when no better prior is available or if the labeled data is plagued by biased

sampling). Using the normalized label matrix Ỹ in the bivariate formulation allows labeled nodes

with high degrees to contribute more during the label propagation process. However, the total

diffusion of each class is kept equal (for agnostic settings with no priors available) or proportional

to the class prior (for the setting with prior information). Therefore, the influence of different classes

is balanced even if the given class labels are imbalanced. If class proportion information is known,

it can be integrated by scaling the diffusion with the appropriate prior. In other words, the label

normalization attempts to enforce simple concentration inequalities which, in the iid case require

the predicted label results to concentrate around the underlying class ratios [68]. This intuition is

in line with prior work that uses class proportion information in transductive inference where class

proportion is enforced as a hard constraint [29] or as a regularizer [103].

3.2.4 Graph Transduction via Alternating Minimization

We now present an alternating optimization procedure, named graph transduction via alternating

minimization (GTAM), to efficiently minimize the above cost function. Starting with Eq. (3.9) and
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repeating the similar derivation as in Section 3.2.2, we obtain the optimal solution F∗ and the final

cost function with respect to label variable Y as

F∗ = PỸ = PΛY (3.11)

Q =
1
2
tr

(
Ỹ⊤AỸ

)
=

1
2
tr

(
Y⊤ΛAΛY

)
. (3.12)

Instead of finding the global optimal Y∗, we only take an incremental stop in each iteration to

update one label in Y. Namely, in each iteration, we find the optimal position (i∗, j∗) in the matrix

Y and change the binary value of yi∗j∗ from 0 to 1. To do this, we find the direction with the largest

negative gradient guiding our choice of binary step on Y. Specifically, we evaluate ∥ ▽ QY∥ and

find the largest negative value to determine (i∗, j∗).

Note that setting yi∗j∗ = 1 is equivalent to a similar operation on the normalized label matrix ỹ

by setting ỹi∗,j∗ = ϵi∗ , 0 < ϵi∗ < 1, and Y, Ỹ have one-to-one correspondence. Thus, the greedy

optimization of Q with respect to Y is equivalent to the greedy minimization of Q with respect to

Ỹ. More formally, we derive the gradient of the above loss function ∇ỸQ = ∂Q
∂Ỹ

and recover it

with respect to Y as:

∂Q
∂Ỹ

= AỸ = AΛY. (3.13)

As described earlier, we search the gradient matrix ∇ỸQ to find the minimal element

(i∗, j∗) = arg minxi∈Xu,1≤j≤c∇ỹijQ. (3.14)

Because of the binary nature of Y, we simply set yi∗j∗ = 1 instead of using a continuous update

approach. Accordingly, the node weight matrix Λt+1 can be recalculated with the updated Yt+1

in the t + 1th iteration. The update of Y is greedy, and thus it could backtrack from predicted

labels in previous iterations without convergence guarantees. We propose a straightforward way

to guarantee convergence and avoid backtracking or unstable oscillation in the greedy propagation

process. Once an unlabeled point has been labeled, its labeling can no longer be changed. Thus,

we remove the most recently labeled point (i∗, j∗) from future consideration and conduct the search

over the remaining unlabeled data only. In other words, to avoid changing nearly added labels, the

labeled vertex xi∗ will be removed from Xu and added to Xl.
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Note that although the optimal F∗ can be computed as in Eq. (3.11), we do not need to compute

it explicitly. Instead, it is implicitly used in Eq. (3.14) to update Y. In the following, we summarize

the updating rules from step t to t+ 1 in the alternative minimization scheme.

. Compute gradient matrix:

(∇ỸQ)t = AỸt = AΛtYt,Λt = diag(λt). (3.15)

. Update one label:

(i∗, j∗) = arg minxi∈Xu,1≤j≤c(∇ỹijQ)t (3.16)

yt+1
i∗j∗ = 1. (3.17)

. Update label normalization matrix:

λt+1 =


Dii∑

k Yt+1
kj Dkk

: yt+1
ij = 1

0 : otherwise.
(3.18)

. Update the list of labeled and unlabeled data:

Xt+1
l ←− Xt

l + xi∗ ; Xt+1
u ←− Xt

u − xi∗ . (3.19)

From the above discussion, our method is unique in that it optimizes the loss function over

both the continuous-valued F space and the binary-valued Y space. Starting with a few given

labels, the method iteratively and greedily updates the label matrix Y, label weight matrix Λ, and

gradient matrix ∇ỸQ. In each iteration, new labeled samples are obtained to drive a better graph

propagation in the next iteration. This procedure repeats until all points have been labeled. In our

approach, we directly acquire new labels in each iteration without explicitly calculating F∗, which

is the regular procedure used in other graph transduction methods like LGC and GFHF. This unique

feature makes the proposed algorithm very efficient since we only update the gradient matrix∇ỸQ

in each iteration.

Due to greedy assignment, the algorithm can repeat the alternative minimization (or the gradient

computation equivalently) at most n− l times. Each minimization step over F and Y thus requires

O(n2) complexity and thus the total complexity of the greedy GTAM algorithm isO(n3). However,
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Algorithm 3.1 Graph Transduction via Alternating Minimization (GTAM)
Input: data set X = {Xl,Xu} containing labeled subset Xl = {x1, · · · ,xl}, unlabeled subset

Xu = {xl+1, · · · ,xn}, labels {z1, · · · , zj , · · · , zl}, where zj ∈ {1, · · · , c}.

Weight matrix W = {wij}, node degree matrix D, initial label matrix Y0, graph Laplacian L,

propagation matrix P, matrix A;

Initialization:

iteration counter t = 0, initial label weight matrix Λt;

repeat

Compute derivative: (∇ỸQ)t = AỸt;

Find the optimal element in ∇ỸtQ: (i∗, j∗) = arg minxi∈Xu,1≤j≤c∇ỹijQ;

Update label matrix by setting: yt+1
i∗j∗ = 1; also zi∗ = j∗;

Add xi∗ to Xl: Xt+1
l ←− Xt

l + xi∗ ;

Remove xi∗ from Xu: Xt+1
u ←− Xt

u − xi∗ ;

Update label weight matrix Λt+1 based on Eq. (3.10);

Update iteration counter: t = t+ 1;

until Xt
u = ∅

Output: The labels of unlabeled samples {zl+1, · · · , zn}.

the update of the graph gradient can be done efficiently by modifying only a single entry in Y per

iteration, which greatly reduces the computational cost to O(n2). Empirically, the value of the loss

function Q decreases rapidly in the first dozen iterations and steadily converges afterward. This

phenomenon indicates that the alternating procedure could be stopped early. Once the first few

iterations are completed, the new labels are added and the standard propagation step can be used

to predict the optimal F∗ as indicated in Eq. (3.11) over the whole graph in one step. The above

algorithm chart (3.1) summarizes the proposed GTAM method.

3.3 Graph Cut View for the Bivariate Framework

In this section, we introduce a connection between the proposed bivariate graph transduction frame-

work and the well-known maximum cut problem. Then, a greedy gradient based Max-Cut solution

will be developed and related to the above GTAM algorithm.
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3.3.1 Equivalence to a Constrained Max-Cut Problem

Recall the optimization problem defined in Eq. (3.8), which is exactly a linearly constrained binary

integer programming (BIP) problem. Particularly in the case of a two-class problem, we can prove

that it is equivalent to a weighted Max-Cut problem over a graph GA = {X,A} with linear con-

straints converted from the given labels, as described below. The cost function in Eq. (3.8) can be

rewritten as below:

Q(Y) =
1
2
tr

(
Y⊤AY

)
=

1
2
tr

(
AYY⊤

)
=

1
2
tr (AR) , (3.20)

where R = YY⊤. Considering the constraints
∑

j yij = 1 and Y ∈ Bn×2 for a two-class problem,

we can let

Y = [y e−y], (3.21)

where y ∈ Bn (i.e., y = {yi}, yi ∈ {0, 1}, i = 1, · · · , n) and e = [1, 1, · · · , 1]⊤ are column

vectors. Then rewrite R as

R = YY⊤ = [y e−y][y e−y]⊤

= yy⊤ + (e− y)(e⊤ − y⊤)

= ee⊤ + 2yy⊤ − ye⊤ − ey⊤

= ee⊤ − y(e⊤ − y⊤)− (e− y)y⊤. (3.22)

Now rewrite the cost function in Eq. (3.20) by replacing R with Eq. (3.22):

Q(y) =
1
2
tr

(
A

[
ee⊤ − y(e⊤ − y⊤)− (e− y)y⊤

])
. (3.23)

Since ee⊤ is the all-ones matrix, we obtain

1
2
tr

(
Aee⊤

)
=

1
2

∑
i

∑
j

Aij . (3.24)

It is easy to show that A is symmetric and

y(e⊤ − y⊤) = [(e− y)y⊤]⊤. (3.25)

Next, simplify the cost function Q as

Q(y) =
1
2
tr

(
Aee⊤

)
− tr

[
(e⊤ − y⊤)Ay

]
=

1
2
tr

(
Aee⊤

)
− y⊤A(e− y). (3.26)
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Since the first part is a constant, the optimal value y∗ of the above minimization problem is the

argument of the maximization problem

y∗ = arg min
y
Q(y) = arg max

y
y⊤A(e− y). (3.27)

Define a new function f(y) as

f(y) = y⊤A(e− y). (3.28)

Again, the variable y ∈ Bn is a binary vector and e = [1, 1, · · · , 1]⊤ is the unit column vector.

Now we show that maximization of the above function maxy f(y) is exactly a Max-Cut problem

if we treat the symmetric matrix A as the weighted adjacency matrix of an undirected graph GA =

{VA,A}. Note that the diagonal elements of A could be non-zero Aii ̸= 0, i = 1, 2, · · · , n, which

indicates the undirected graph GA has self-connected nodes. Assume A = A0 + AΛ, where A0

is the matrix by zeroing the diagonal elements of A, and AΛ is a diagonal matrix with AΛ
ii =

Aii,AΛ
ij = 0, i, j = 1, 2, · · · , n, i ̸= j. It is straightforward to show that the function f(y) can be

written as

f(y) = y⊤(A0 + AΛ)(e− y) = y⊤A0(e− y) (3.29)

In other words, the non-zero elements in A do not affect the value of f(y). Therefore, in the

remainder part of this thesis, we will assume that the matrix A has zero diagonal elements unless

the text specifies otherwise.

Since y = {y1, y2, · · · , yn} is a binary vector, each setting of y partitions the vertex set VA in

the graph GA into two disjoint subsets (S1, S2). In other words, the two subsets S1 = {vi|yi = 1}

and S2 = {vi|yi = 0} satisfy S1 ∪ S2 = VA and S1 ∩ S2 = ∅. The maximum problem can be

written as

max f(y) = max
∑
i,j

Aij · yi(1− yj)

= max
1
2

∑
vi∈S1
vj∈S2

Aij . (3.30)

Because each binary vector y resulting in a partition (S1, S2) over the graph GA and f(y) is a cor-

responding cut, the above maximization max f(y) is easily recognized as a Max-Cut problem [39].
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However, in graph based semi-supervised learning, the variable y is partially specified by the ini-

tial label values. This given label information can be interpreted as a set of linear constraints on

the Max-Cut problem. Thus, the optimal solution can achieved by solving a linearly constrained

Max-Cut problem [82]. In addition, we also show that a multi-class problem equals a Max K-Cut

problem (K = c) (refer to Appendix B).

However, since there is no guarantee that the weights of the graph GA are non-negative, such

solutions could be problematic in practice, as discussed in [10]. Therefore, in the following sub-

section, we will propose a gradient greedy solution to efficiently solve the above Max-Cut problem,

which can be treated as a different view of the previous alternating minimization solution.

3.3.2 Greedy Gradient Based Maximum Cut

For the standard Max-Cut problem, there have been many approximation techniques developed, in-

cluding the most remarkable Goemans-Williamson algorithm using semidefinite programming [58]

[59]. However, applying these guaranteed approximation schemes to solve the constrained Max-Cut

problem for Y mentioned above is infeasible due to the constraints on initial labels. Furthermore,

there is no guarantee that all edge weights aij of the graph GA are non-negative, a fundamental

requirement in solving a standard Max-Cut problem [59]. Instead, here we use a greedy gradi-

ent based strategy to find the local optima by assigning each unlabeled vertex to the label set with

minimum connectivity to maximize cross-set edge weights iteratively.

The greedy Max-Cut algorithm randomly selects the unlabeled vertices and places each of them

into a proper subset depending on the edges between this unlabeled vertex and the vertices in the

labeled subset. Given the label information, the initial label set for class j can be constructed as

Sj = {xi|yij = 1} or Sj = {xi|zi = j}, i = 1, 2, · · · , n; j = 1, 2, · · · , c. Define the following

connectivity measurement between unlabeled vertex xi and label set Sj as:

cij =
n∑

m=1

aimymj = Ai.Y.j . (3.31)

where Ai. is the ith row vector of A and Y.j is the jth column vector of Y. Intuitively, cij represents

the sum of edge weights between vertex xi to label set Sj given the graph GA with edge weights A.

Based on this definition, a straightforward local search for maximum cut is to place each unlabeled

vertex xi ∈ Xu to the labeled set Sj with minimum connectivity cij to maximize the cross-set edge
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Algorithm 3.2 Greedy Max-Cut for Label Propagation
Input: the graph GA = {X,A} and the given labeled vertex Xl, and initial label Y;

Initialization:

Obtain the initial cut {Sj} through assigning the labeled vertex Xl to each subset:

Sj = {xi|yij = 1}, j = 1, 2, · · · , c

Unlabeled vertex set Xu = X \Xl;

repeat

Randomly select an unlabeled vertex xi ∈ Xu

Compute connectivity cij , j = 1, 2, · · · , c

Place the vertex to the labeled subject Sj∗ :

j∗ = arg minj cij

Add xi to Xl: Xl ←− Xl + xi;

Remove xi from Xu: Xu ←− Xu − xi;

until Xu = ∅

Output: The final cut and the corresponding labeled subsets Sj , j = 1, 2, · · · , c

weights, as shown in Algorithm (3.2). In order to achieve a good solution, it is desirable to run

Algorithm (3.2) multiple times with different random seeds and return the best cut [104].

Besides the significant computational cost, the above random solution may easily fall into un-

desired local optima and generate biased cuts. Following the definition in Eq. (3.31), the initial

conditions of the given labels, such as the size of individual label sets and the density of each la-

beled vertex, determine the connectivity between unlabeled vertices and labeled subsets. In the case

that the computed connectivity is negative, which occurs often in reality, the above random search

will prefer assigning unlabeled vertices to the label set with the most labeled vertices, resulting in

biased partitioning. Such biased partitioning also occurs in the case of minimum cut over an undi-

rected graph with positive weights, as discussed in [134]. Other ill-label conditions may also make

the random cut approach ineffective. For example, the numbers of labels among different classes

may be disproportionate to the underlying class sizes, or the labeled vertices may reside in the re-

gions of the graph with significantly different densities. Such labels often cause erroneous label

prediction results, as reported in our empirical study [155]. Furthermore, the random selection of
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an unlabeled vertex results in unstable predictions since unlabeled vertex xi could have equally low

connectivity to multiple label sets Sj under the condition of extremely sparse labels.

To address the aforementioned issues, we first modify the original definition of connectivity to

alleviate the label imbalance among different classes. Motivated by the label weight term used in

GTAM, a weighted connectivity is computed as

cij = pj ·
n∑

m=1

λmaimymj = pj ·ΛAi.Y.j . (3.32)

The diagonal matrix Λ = diag([λ1, λ2, · · · , λn] is called label weight matrix, same as the one

used in GTAM:

λi =


di/dSj : if xi ∈ Sj , j = 1, · · · , c

0 : otherwise,
(3.33)

where dSj =
∑

xm∈Sj
dm is the sum of the degrees of the vertices in the label set Sj . This heuristic

setting weighs the importance of each label based on the vertex degree, which alleviates the adverse

impact from outliers or problematic labels. Without considering class priors, this definition of Λ is

exactly the same as that in Eq. (3.10).

Finally, to handle unstable output from the random search algorithm, we propose a greedy gra-

dient search approach, where the most beneficial vertex is assigned to the proper label set with min-

imum connectivity. In other words, we first compute the connectivity matrix C = {cij} ∈ Rn×c

that gives the connectivity between all unlabeled vertices to existing label sets

C = AΛY. (3.34)

Then we examine C to identify the element (i∗, j∗) with minimum value as

(i∗, j∗) = arg min
i,j,xi∈Xu

cij . (3.35)

This means the unlabeled vertex xi∗ has the least connectivity with label set Sj∗ . Then we can

update label set Sj∗ by adding vertex xi∗ as one greedy step for maximizing the cross-set edge

weights. This greedy search can be repeated until all the unlabeled vertices are assigned to labeled

sets. In each iteration of the greedy cut process, the weighted connectivity of all unlabeled vertices

to each labeled set is re-computed. Then the vertex with minimum connectivity is placed in the

proper labeled set. The algorithm is described in the chart (3.3).
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Algorithm 3.3 Greedy Gradient based Max-Cut for Label Propagation
Input: the graph GA = {X,A} and the given labeled vertex Xl, and initial label Y;

Initialization:

Obtain the initial cut {Sj} through assigning the labeled vertex Xl to each subset:

Sj = {xi|yij = 1}, j = 1, 2, · · · , c

Unlabeled vertex set Xu = X \Xl;

repeat

for all j = 0 to |Xu| do

Compute weighted connectivity:

Cij =
n∑

k=1

λiaikykj ,xi ∈ Xu, j = 1, · · · , c

end for

Update the cut {Si} by placing the vertex xi∗ to the Sj∗ th subset:

(i∗, j∗) = arg min
i,j,xi∈Xu

cij

Add xi to Xl: Xl ←− Xl + xi;

Remove xi from Xu: Xu ←− Xu − xi;

until Xu = ∅

Output: The final cut and the corresponding labeled subsets Sj , j = 1, 2, · · · , c

The connectivity matrix C can also be viewed as the gradient of the cost functionQ in Eq. (3.12)

with respect to Ỹ , which is exactly the same as what was used in Eq. (3.13 ) of the GTAM algorithm

C =
∂Q
∂Ỹ

= AΛY. (3.36)

We named this the greedy gradient Max-Cut (GGMC) algorithm since in the greedy step, the un-

labeled vertices are assigned labels in a manner that reduces the value of Q along the direction

with the steepest gradient descent. Considering both the variables Y and F in the original bivariate

formulation in Eq. (3.9), this greedy Max-Cut method is equivalent to the alternating minimization

procedure between these two variables presented in our GTAM algorithm. Different from other

graph cut based SSL methods, such as mincuts methods in [20][21], our GGMC algorithm tends to

generate more nature graph cuts avoiding biased solutions due to the use of weighted connectivity.

This allows us to effectively address the issues mentioned above and in practice achieve signifi-

cant gains in accuracy while retaining the algorithm efficiency at the quadratic level (refer to the
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following subsection for more details).

3.3.3 Complexity and Speed Up

Assume the graph has n = |X| vertices and a subset Xl with l = |Xl| labeled vertices (where

l≪ n). The greedy gradient algorithm terminates after at most n−l ≃ n iterations. In each iteration

of the greedy gradient algorithm, the connectivity matrix C is updated by a matrix multiplication

(an n × n-matrix is multiplied by a n × c-matrix). Hence, the complexity of the greedy algorithm

is O(cn3).

However, the greedy algorithm can be greatly accelerated in practice. For example, the compu-

tation of the connectivity in Eq. (3.32) can be done incrementally after assigning each new unlabeled

vertex to a certain label set. This circumvents the re-calculation of all the entries in the C matrix.

Assume in the tth iteration the connectivity is Ct = {ctjk} and an unlabeled vertex xi with degree

di is assigned to the labeled set Sj . Clearly, for all remaining unlabeled vertices, the connectivity

to the labeled sets remains unchanged except for the kth labeled set. In other words, only the jth

column of C needs updating. This update is performed incrementally via

Ct+1
.k =

dSt
j

dSt+1
j

Ct
.k +

di

dSt+1
j

A.i, (3.37)

where dSt+1
j

= dSt
j

+ di is the sum of the degrees of the labeled vertices after assigning xi to

the labeled set Sj . This incremental update reduces the complexity of the greedy gradient search

algorithm to O(n2).

3.4 Label Tuning over Graphs

As mentioned earlier, existing graph-based semi-supervised learning techniques convert the entire

data to an undirected graph and then propagate the label information from labeled vertices to the

entire graph. Obviously, all these approaches heavily rely on the quality of the training data. The

fundamental assumption is that the initial labels are trustworthy. Moreover, the labeled data are

expected to have adequate diversity and representation of the sample space. One challenging issue

remains open - the labels may not always be reliable. Only few works have addressed this issue.

The filter-based approaches were developed to eliminate the unreliable labels in [23][24][182]. Par-

ticularly, in [23], ensemble classifiers were developed as filters with a cross validation strategy to
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Figure 3.1: Demonstration of the effect of incorrect labels on prediction results. Large red markers

indicate known labels, including wrong labels, and the two-color small markers represent the clas-

sification results. a) SVM; b) LapSVM [15]; c) RLS [121]; d) LapRLS [15]; e) GFHF [182]; f) LGC

[174]; g) GTAM [156]; h) our method LDST. Only LDST achieved fully correct results.

identify and eliminate mislabeled training instances. However, all these efforts assume sufficient

labels and require training supervised classifiers.

The proposed GTAM method also suffers from the mislabeling problem. Although it achieved

much better performance due to its robustness to labels and graphs, it still can not handle incorrect

labels since the initial labels are treated as ground truth. To illustrate the problem, we show the

mislabeling issue using the two-moon dataset in Figure 3.1. Among the eight labeled samples, two

samples are falsely assigned. The results show that most of the existing techniques, either supervised

or semi-supervised methods, generate erroneous prediction results (refer to Figure 3.1(a) - 3.1(g)).

In order to handle problematic labels, we further revise the unilateral greedy search strategy

and adopt a bidirectional mechanism to perform label tuning over the graph. It leads to our new

approach of label diagnosis through self tuning (LDST). While preserving the optimal F, LDST

explores greedy search among the most beneficial gradient directions of Q on both labeled and

unlabeled samples. Following Eq. (3.13), we can compute the derivative ∇ỸQ = ∂Q
∂Ỹ

, which

measures the rate of change of the cost function Q with respect to the normalized label Ỹ.
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Note that Y is constrained in a binary space. Therein, the labeling operation changes the value

from 0 to 1 for a certain element yij in the label matrix, and the unlabeling operation (i.e., removing

the labels) does the reverse by setting yij = 1→ 0. To reduce the value of the cost function Q, we

manipulate the label variable Y in both directions, labeling and unlabeling. Note that the labeling

operation is carried out on the unlabeled nodes with the minimum value of the gradient min∇ỸQ,

while the unlabeling operation is executed on the labeled nodes with the maximum value of gradient

max∇ỸQ. To summarize, we have the following bidirectional gradient descent search, including

both labeling and unlabeling operations, to achieve the steepest reduction on the cost function Q:

(i+, j+) = arg minxi∈Xu,1≤j≤c∇ỹijQ; yi−j− = 1

(i−, j−) = arg maxxi∈Xl,1≤j≤c∇ỹijQ; yi−j− = 0, (3.38)

where (i+, j+) and (i−, j−) are the optimal elements in variable Y for labeling and unlabeling op-

erations, respectively. Different from the labeling procedure, the optimal element for the unlabeling

operation is only performed on the positions of variable Yl where the element has nonzero values.

In other words, through each bidirectional gradient descent iteration, we add one most reliable label,

and remove one least confident label.

We summarize the LDST method in Algorithm (3.4). In the first s iterations, a number of

unlabeling and labeling operations are executed in order to eliminate the problematic labels and

add trustable new labels. We refer to this stage as LDST-self-tuning. In this self tuning stage,

the same number of labels are added and removed to maintain a fixed size label pool. Moreover,

each individual operation of labeling and unlabeling leads to the update of the label weight matrix

Λ. After executing s steps of label self tuning, the subsequent stage, called LDST-propagation, is

conducted to propagate the updated labels to the rest of the graph. Note that the LDST-propagation

procedure is essentially the same as GTAM since it continuously selects the most confident unlabeled

vertices and assigns them with proper labels.

Theoretically, the algorithm continues until all the unlabeled samples are labeled. However, this

may result in a prohibitive level of computation if the data size is huge. There are two strategies

we may use to speed up the algorithm. First, the iterative procedure of LDST-propagation can be

terminated early after obtaining enough labels. The final prediction results are computed directly

using Eq. (3.4). Second, the computation associated with matrix multiplication in calculating gra-
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Algorithm 3.4 Label Diagnosis through Self Tuning (LDST)
Input: data set X = {Xl,Xu}, where Xl = {x1, · · · ,xl} and Xu = {xl+1, · · · ,xn}, labels

Zl = {zi}, i = 1, · · · , l, zi ∈ {1, · · · , l}. Weight matrix W = {wij}, node degree matrix D,

initial label matrix Y0, graph Laplacian L, propagation matrix P, matrix A;

Initialization:

iteration counter t = 0, initial label weight matrix Λt;

repeat

Compute partial derivatives: (∇ỸQ)t = AỸt;

if t ≤ s then

Find the optimal element in (∇ỸQ)t: (i−, j−) = arg maxxi∈Xl,1≤j≤c(∇ỹijQ)t;

Update label matrix by setting: yt+1
i−j− = 0; also zi− = 0;

Update Xl,Xu: Xt+1
l ←− Xt

l − xi− ; Xt+1
u ←− Xt

u + xi− ;

end if

Find the optimal element in (∇ỸQ)t: (i+, j+) = arg minxi∈Xl,1≤j≤c(∇ỹijQ)t;

Update label matrix by setting: yt+1
i+j+

= 1; also zi+ = j+;

Update Xl,Xu: Xt+1
l ←− Xt

l + xi+ ; Xt+1
u ←− Xt

u − xi+ ;

Update label weight matrix Λt+1 based on Eq. (3.10);

Update iteration counter: t = t+ 1;

until Xt
u = ∅ or maximum iterations achieved.

Output: The labels of unlabeled samples {zl+1, · · · , zn}.

dient ∇ỸQ
t+1 can be converted to vector addition since each step only involves changing a single

column entry in∇ỸQ
t, similar to the idea for speeding up GTAM in Section 3.3. Finally, in order to

guarantee convergence and avoid backtracking in the bidirectional greedy search, we can constrain

that after an unlabeled point has been labeled, its label can no longer be changed.

3.5 Multi-Graph GTAM

Note that all the above methods represent data in a single graph. However, in many applications,

the data can have multiple representations naturally. For example, the web can be represented as

different relationship maps, either by a directed graph with hyperlinks as edges or by an undirected
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similarity graph in the feature space of the Bag-of-Word model [62]. For the applications of visual

search, there are even more representations for images, such as SIFT features [100], GIST fea-

tures [114], and sparse coding based features [95][168]. Even with the same feature space, graph

construction also varies in many ways, including kernel selection, sparsification, and edge weight-

ing, as discussed in Section 2.3. The choices of data representation and the graph construction

process result in a myriad of graphs. In this section, we develop a new algorithm, called Multi-

Graph GTAM (MG-GTAM), which alternatively identifies the most confident unlabeled vertices for

label assignment by considering multiple graphs, and combine the predictions from each individual

graph to achieve more accurate labels over the entire label set.

Note that the learning problem using multiple representations simultaneously is termed as multi-

view learning in previous literature [125]. For instance, in [137][139], a framework of joint com-

plexity regularization, named Co-Regularization, was proposed for semi-supervised learning with

multiple views. A closely related work using a mixture of Markov chains defined on different views

was proposed in [175] for both spectral clustering and transductive learning. Another method of

multi-view learning is to derive a convex combination of multiple kernels, each of which comes

from one data representation [3][173]. However, most of the existing methods tend to learn a fixed

combination of the regularization terms or graph weights and require sufficient labeled data.

Recall the cost function Q(F,Y) defined over both the classification function F and the binary

label matrix Y in the GTAM method, as shown in Eq. (3.9). Instead of using only one graph G,

now we have a set of graphs {G1, · · · ,Gm} constructed over the given data with either different

features or graph construction processes. The natural extension of the formulation from a single

graph to multiple graphs is to combine the smoothness terms from multiple graphs into a single cost

function, as shown below:

F∗ = arg minF∈R|V |×c,Y∈B|V |×c,α∈Rm Q(F,Y,α) = arg min
m∑

q=1
αq∥FGq∥2 + µ

2∥F−VY∥2

s.t.
m∑

q=1
αq = 1, αq ≥ 0, ∀ q ∈ {1, . . . ,m}

Yij ∈ {0, 1},
∑

j Yij = 1, ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . , c}, (3.39)

where α = [α1, · · · , αm] are the weights corresponding to different graphs. The smoothness term



CHAPTER 3. BIVARIATE FRAMEWORK FOR GRAPH TRANSDUCTION 41

can be written in the following form with multiple graph Laplacians:

m∑
q=1

αq∥FGq∥2 =
1
2
tr

 m∑
q=1

αqF⊤LqF


=

1
2
trF⊤

 m∑
q=1

αqLq

F =
1
2
trF⊤LF, (3.40)

where we define the combined graph Laplacian as the weighted sum of Laplacians of all the graphs

L =
m∑

q=1

αqLq. (3.41)

The problem in Eq. (3.39) is intractable since it is a constrained mixed-integer programming prob-

lem. A similar idea was proposed in [3], called an optimal combined kernel, where an alternative

optimization strategy was used [4]. A similar technique, called co-regularization, was proposed

in [137]. However, both of these approaches are inefficient in practical applications due to the

need for computing the combined graph Laplacian in each iteration of the optimization procedure.

Moreover, the co-regularization method include additional q(q − 1) regularization terms, which

significantly increases the computational cost. Another work using multiple graphs for clustering

was proposed in [144], which uses a combined affinity matrix. In summary, this kind of early fusion

strategy with multiple graphs suffers from the overhead of additional computational cost and thus is

less desirable in practice.

Here we propose a more efficient way to extend the GTAM method from a single graph to

multiple graphs by using a novel approach that aggregates the most confident labels captured

from multiple graphs. First, consider the transductive inference over an individual graph by solv-

ing arg minF Q(F,Y) with the label variable Y fixed. Then the optimal prediction functions

F = {F1, · · · ,Fm} can be derived for all the given graphs {G1, · · · ,Gm} independently. Then

the weighted combination over the prediction functions from individual graphs can be computed as:

F =
m∑

q=1

αqFq, (3.42)

where α = [α1, · · · , αm] are the weights, and large values of the components in α indicate the

most relevant graphs. Recall the definition of the label weight Λ = {λi}, i = 1, · · · , n in Eq. (3.10)
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and extend it to the multiple-graph case as:

λi =


m∑

q=1
αq

Dq
ii∑

k YkjDkk
: Yij = 1

0 : otherwise.

(3.43)

The above extension of label weight is very intuitive since the weighted sum of the normalized

density, rather than the density from a single graph, is calculated as the importance measurement

of each label. Given the above combined predictions and normalized density, we can define the

following cost function over multiple graphs as:

Q(F , Ỹ,α) =
1
2

m∑
q=1

αqtr
(
F⊤

q LqFq

)
+
µ

2

m∑
q=1

αq

(
Fq − Ỹ

)⊤ (
Fq − Ỹ

)
. (3.44)

Although the minimization problem of the above cost function is nontrivial, a similar optimizing

strategy as that in GTAM can be applied to derive local optimal solutions. We first derive the optimal

prediction function over each graph as:

∂Q
∂Fq

= 0 =⇒ αqLqFq + µαq(Fq − Ỹ) = 0

=⇒ F∗
q = (Lq/µ+ I)−1Ỹ = PqỸ (3.45)

Pq = (Lq/µ+ I)−1, (3.46)

where Pq is the propagation matrix over graph Gq. Replace the optimal F∗
q in Eq. (3.44) and we can

derive the following:

Q(Ỹ,α) =
1
2
tr

Ỹ⊤

 m∑
q=1

αq

(
P⊤

q LqPq + µ(Pq − I)2
) Ỹ


=

1
2
tr

Ỹ⊤

 m∑
q=1

αqAq

 Ỹ

 =
1
2

m∑
q=1

αqtr
(
Ỹ⊤AqỸ

)
(3.47)

Aq = P⊤
q LqPq + µ(Pq − I)2. (3.48)

The constant matrix Aq is determined by the structure of graph Gq and can be computed off-line

for each individual graph. Since the cost function Q is linear with respect to α, it can be treated

as a convex combination over {Aq}, q = 1, · · · ,m. We apply a gradient descent method, which

alternatively optimizes over Ỹ and α, similar as in [4].
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Algorithm 3.5 Multi-Graph GTAM (MG-GTAM)
Input: data set X = {Xl,Xu}, multiple graphs {Gq}, weight matrices {Wq}, vertex degree

matrix {Dq}, graph Laplacians {L}q, propagation matrix {Pq}, matrix {Aq}, q = 1, · · · ,m,

initial label matrix Y0;

Initialization: iteration counter t = 0; iteration number T , αq = 1/m, q = 1, · · · ,m, label

weights Λt = {λt
i}, i = 1, · · · , n;

for i = 1 to T do

Compute partial derivatives ( ∂Q
∂Ỹ

)t as Eq. (3.49)

Find the optimal element (i∗, j∗) = arg minxi∈Xu,1≤j≤c(
∂Q
∂Ỹ

)t

Update label matrix to obtain Yt+1 by setting: yt+1
i∗j∗ = 1; also zi∗ = j∗;

Update labeled and unlabeled sets: Xt+1
l ←− Xt

l + xi∗ , Xt+1
u ←− Xt

u − xi∗ ;

Update label weights Λt as in Eq. (3.43)

Compute partial derivatives (∂Q
∂α )t = [( ∂Q

∂α1
)t, · · · , ( ∂Q

∂αq
)t] as Eq. (3.50)

Update α as α = α− η(∂Q
∂α )t and truncate negative values to 0;

Normalize α as αq = αq/
m∑

k=1

αk, q = 1, · · · ,m;

Update iteration counter: t = t+ 1;

end for

Output: Compute final prediction function F =
m∑

q=1
αqFq, where Fq is computed as Eq. (3.45).

The partial derivatives of Q over Ỹ and α can be computed as:

∂Q
∂Ỹ

=
m∑

q=1

αqAqỸ (3.49)

∂Q
∂αq

=
1
2
tr

(
Ỹ⊤AqỸ

)
. (3.50)

As clarified in Section 3.2, the update over the normalized label matrix Ỹ is equivalent to

updating the original label matrix Y, where Y and Ỹ have one-to-one correspondence. Therefore,

we identify the minimal element of the unlabeled part in ∂Q
∂Ỹ

as:

(i∗, j∗) = arg minxi∈Xu,1≤j≤c

∂Q
∂Ỹ

, (3.51)

and update the label matrix by setting yi∗,j∗ = 1. The update of Y is indeed a labeling procedure

that assigns the most confident unlabeled vertex with the proper label. With the updated Y, we
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recompute the node weight Λ using Eq. (3.43), and correspondingly update Ỹ. After finishing the

update of the Y matrix, the coefficients α can also be updated using the gradient descent approach

αq = αq − η
∂Q
∂αq

, (3.52)

where η is the step length. Since α = {αq}, q = 1, · · · ,m is constrained as
∑

q αq = 1 and

αq ≥ 0, we need to normalize the αq after each iteration. The updating procedure of the elements

in α can be interpreted as imposing higher weights to the most relevance graphs.

As summarized in the Algorithm (3.5), the alternative optimization procedure over both Λ and

Y runs T iterations to find a solution as predictions over all data. Since the elements in α are

positively constrained, we check the signs of all αq and truncate negative ones to be zero after each

iteration. Note that the above optimization strategy is fairly efficient since we only need fusion

prediction scores instead of having to compute new graph Laplacians or graph edge weights in each

iteration. Specifically, the gradient descent for α requires linear time computation and the complex-

ity of the gradient descent for Y isO(n2), which can further speed up to theO(n) complexity if we

adopt an implementation trick as described in Section 3.3, which just incrementally updates single

column vectors of the partial derivatives.

3.6 Experiments

In this section, we will present a set of experiments to evaluate the performance of the methods

described in this chapter.

a. Graph transduction via alternating minimization (GTAM): We will demonstrate the superi-

ority of the proposed GTAM method in comparison with the state-of-the-art semi-supervised

learning methods over both synthetic and real data. Particularly, we compare with TSVM [79],

LapSVM [138] [14], and two other closely related methods, namely LGC [174] and GFHF [182].

b. Label diagnosis through self tuning (LDST): By simulating noisy and incorrect labels on the

two-moon artificial dataset, we show the unique capability of the LDST method in handling

wrong labels.

c. Multi-graph GTAM (MG-GTAM): For the multiple-graph method, i.e. MG-GTAM, we show

the comparison with the combined graph Laplacian (CGL) method [3], demonstrating the
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significant performance gain when using very few labels. In addition, the MG-GTAM method

requires much less computation than the CGL approach.

For fair comparison, we use the same graph construction process for different methods. Specif-

ically, the widely used kNN approach is applied for sparsifying the original full adjacency matrix.

For edge weighting, we use the following different strategies, as suggested in [74] [156]:

1. Binary weighting: All the linked edges in the graph are given the weight 1 and the edge

weights of disconnected nodes are given weight 0. In other words, this setting simply uses

W = P . Notice that these binary weights on graph edges can be sensitive, in particular if

some of the graph nodes were improperly connected.

2. Fixed Gaussian kernel weighting: The edge weight between two connected samples xi and

xj is computed as:

wij = Pij exp
(
−d(xi,xj)2

2σ2

)
. (3.53)

The parameter σ is the kernel bandwidth parameter, which was uniformly set as the average

distance between each selected sample and its kth nearest neighbor [27]. This fixed kernel

size might be infeasible for some real data since the samples might not be sampled evenly

and uniformly.

3. Adaptive Gaussian kernel weighting: As suggested in [64][156], here the kernel bandwidth

parameter σ is locally scaled to the mean distance of k-nearest neighborhoods of the sample

xi,xj . Assume the k nearest neighbor set of xi is Nxi with cardinality N1 = |Nxi | and

the neighbor set of xj is Nxj with cardinality N2 = |Nxj |, the adaptive kernel bandwidth is

computed as:

σ =
1

N1 +N2

 ∑
xp∈Nxi

d(xi,xp) +
∑

xq∈Nxj

d(xj ,xq)

 . (3.54)

In the experiments, we tested the above three different edge weighting strategies and showed the

robustness of the proposed methods. For all the experiments, the ℓ2 distance dℓ2(xi,xj) =
√
∥xi − xj∥2

was used.
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3.6.1 Evaluation of GTAM

Noisy Two-Moon Dataset:

We first compared our GTAM method with state-of-the-art SSL algorithms over the noisy two-moon

dataset, as shown in Figure 2.4. Despite the near-perfect classification results reported on the clean

two-moon dataset in the literature [138][174], we showed how a small level of noise added to the

dataset could affect the results of the previous algorithms. In Figure 2.4, two separable manifolds

containing 600 two-dimensional points are mixed with 100 noisy outlier samples. This modification

makes the prior methods fail to achieve reasonable prediction results because they are overly sen-

sitive to locations of the initial labels, ratios of the two-class labels, and the level of ambient noise

or outliers. In order to obtain reliable evaluation of the performance, 100 independent trials with

random selection are repeated under each setting and the average error rates are recorded.

The first group of experiments were conducted by varying the number of labels. We uniformly

set k = 6 to construct the neighborhood graph and applied the above three types of edge weight-

ing schemes. The average error rates of the predictions over the unlabeled points are shown in

Figures 3.2(a), 3.2(b), 3.2(c), corresponding to binary edge weighting, fixed Gaussian kernel edge

weighting, and adaptive Gaussian kernel edge weighting, respectively. The results clearly show that

the GTAM method is robust to a range of label set sizes and generates perfect prediction results for

all three versions of edge weights.

The second group of experiments demonstrate the influence of the number of linkages, i.e., the

value of k, for neighborhood graph constructions. Specifically, we varied the value of k from 4 to 20

and Figures 3.2(d), 3.2(e), 3.2(f) show the results for different versions of edge weights. Apparently,

GTAM generates significantly better performance than other algorithms for most of the test cases.

Finally, a thorough study is also conducted to assess the effect of imbalanced labels on SSL

algorithms. We first fix one class to have only one label and select r labels fore the other class.

Here, r indicates the imbalance ratio and we study the range 1 ≤ r ≤ 20. Figures 3.2(g), 3.2(h),

3.2(i) show the results with different edge weighting methods. Clearly, GTAM is insensitive to

the imbalance condition since the per-class label weight normalization is shown to be effective in

compensating the differences of label size.

In summary, Figure 3.2 demonstrates the performance advantage of the proposed GTAM ap-

proach versus the LGC, GFHF, LapRLS, and LapSVM methods. From the figure, we can conclude
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Figure 3.2: Experimental results on the noisy two-moon dataset simulating different graph construc-

tion approaches and label conditions. Figures a) d) g) use binary weighting. Figures b) e) h) use

fixed Gaussian kernel weighting. Figures c) f) i) use adaptive Gaussian kernel weighting. Figures

a) b) c) vary the number of labels. Figures d) e) f) vary the value of k in the graph construction.

Figures g) h) i) vary the label imbalance ratios.
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Figure 3.3: Experimental results on the USPS digits dataset under varying levels of labeling using:

a) binary weighting; b) fixed Gaussian kernel weighting and c) adaptive Gaussian kernel weighting.

that all the four prior approaches are very sensitive to the initial labels since none of them can pro-

duce perfect predictions, and the error rates of LGC and GFHF are significantly increased when the

label class becomes more imbalanced, even when more labels become available. However, GTAM

is clearly superior, achieving the best accuracy regardless of the imbalance ratio and the size of the

label set. Furthermore, the GTAM approach is also more robust to graph construction in terms of

different weighting strategies and number of edge linkages.

USPS Handwritten Digits:

We also evaluated the proposed method in an image recognition task, i.e. classifying handwritten

digits 0 ∼ 9 in the USPS database. The dataset contains gray scale handwritten digit images with

the resolution 16 × 16 scanned from envelopes by the U.S. Postal Service. We used a subset of

the data by randomly selecting 4000 samples. For all the constructed graphs, the value of k was

uniformly set as 6 and three different edge weighting approaches were tested. We varied the total

number of labels from 20 to 100 and guaranteed that each digit class had at least one label. For each

setting, the average error rate was computed over 20 random trials.

The experimental results are shown in Figures 3.3(a), 3.3(b), 3.3(c), corresponding to three

different edge weighting approaches. We can conclude that GTAM significantly improves the clas-

sification accuracy, compared to all the other approaches, especially when very few labeled samples

are available. The mean error rates of GTAM are consistently low with a very small standard devia-

tion (10−4 level). This again demonstrates that the GTAM method is insensitive to the numbers and

specified locations of the initial labels.
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Figure 3.4: Performance of LGC, GFHF, LapRLS, LapSVM, and GTAM algorithms using the UCI

datasets. The horizontal axis is the number of training labels provided while the vertical axis is the

average error rate achieved over 100 random folds. Results are shown in a) for the Iris dataset, in b)

for the Wine dataset and in c) for the Breast Cancer dataset.

UCI Datasets:

Finally, we tested GTAM and other methods over several of the most popular benchmark datasets

from the UCI Machine Learning Repository [52] in real application domains. Specifically, we

use datasets of Iris, Wine, and Breast Cancer. The datasets are collected from several different

disciplines and are related to different specific applications. For instance, the Iris dataset has been

used to predict the type of the iris plant. In the Wine dataset, some measured chemical properties

are used to determine the origin of wines. The Breast Cancer dataset is related to the characteristics

of the cell nuclei extracted from digitized images of a fine needle aspirate (FNA) of the breast mass

for discrimination between a benign and malignant diagnosis. Since each attribute of these datasets

could have significantly different scales, we normalized each feature to the range [0, 1]. For all three

datasets, we applied the same graph construction process, where k = 6 was used for constructing

the neighborhood graph and the edge weight is computed using the Gaussian kernel with fixed

bandwidth.

Figure 3.4 shows the results of GTAM and several other SSL methods. The vertical axis indicates

the average error rate computed over 100 random trials and the horizontal axis shows the number

of labeled samples. Again, our GTAM method outperformed others in most of the test cases with

significant performance gain when very few labeled data were available.
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Figure 3.5: The cost function Q during optimization procedures of the LDST and GTAM methods.

The LDST method reaches a much lower value of the cost function after the initial steps of label

tuning.

3.6.2 Evaluation of LDST

In this test, we evaluate the performance of the proposed LDST method by using a manipulated

version of the two-moon dataset in which a certain number of label errors are added, as shown in

Figure 3.1. Large red markers are the labeled samples and the shape represents different classes, i.e.,

positive or negative. Each class is assigned four labeled samples, among which one is mislabeled.

We compared a few different approaches, including supervised methods, like the standard SVM,

existing GSSL algorithms, and our LDST method. Again for all the graph-based approaches, we use

the common setting to build a KNN graph with the same number of neighborhoods (k = 6). For pa-

rameters of other methods, we adopt the best setting reported in previous literature [15][156][174][182].

Figure 3.1 shows the classification results using different methods. From this test, several obser-

vations can be obtained. First, the performance of supervised methods like SVM is heavily degraded

due to the blind trust on the false labels and the exclusive reliance on the labeled data. Second, most

SSL methods generate erroneous results even though both the labeled and unlabeled data are used.

It is because the labeled samples outweigh the unlabeled data in driving the inference process. In

particular, some algorithms, like GFHF, require the prediction results to exactly match the initial

labels. LGC incorporates an elastic fitness term in the cost function but can not rectify the wrong
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Method SVM LapSVM RLS LapRLS GFHF LGC GTAM LDST

Error (%) 34.64 30.16 34.01 30.26 38.76 23.77 5.99 0.91

Std (%) 7.03 10.63 11.23 10.67 3.69 6.82 11.24 2.43

Table 3.1: The mean and standard deviation of the error rates on 20 random tests.

labels. GTAM achieves the best accuracy among the methods without tuning initial labels due to

its bivariate formulation and iterative label propagation procedure. However, it still fails to com-

pletely separate the manifolds due to the significant level of noise. It is clear that these SSL methods

lack the capability to identify and eliminate false labels, and thus produce inaccurate predictions by

propagating erroneous label information. On the contrary, the proposed LDST method uses a self

tuning process to eliminate unreliable labels leading to accurate prediction results without breaking

the structure of the two manifolds, as shown in Figure 3.1(g). Since GTAM achieved a high accuracy

close to that achieved by LDST, and both share the common bivariate optimization framework, we

analyze the cost function valueQ of these two methods by showing the first 50 iterations during the

optimization process in Figure 3.5. This figure clearly shows that after pruning the wrong labels by

self tuning (the first 8 iterations marked as red circles), the cost descends rapidly in the propagation

stage thereafter. This demonstrates that most of the performance improvement of LDST over GTAM

can be attributed to the label self tuning procedure.

In addition, a comprehensive comparison study was conducted by 20 rounds of random tests.

For each round, three correct labels and one wrong label were randomly assigned to each class. The

graph construction options and several parameters, like the number of self tuning iterations s = 8,

were fixed for all the runs. The mean and standard deviation of the classification errors are recorded

in Table 3.1. From this evaluation, LDST achieves much higher and more stable performance,

which further confirms the superiority of the LDST method for predicting labels using an initial set

of imperfectly labeled samples.

3.6.3 Evaluation of MG-GTAM

We evaluated the performance of the proposed MG-GTAM method using the USPS dataset. Similar

to the experimental setting in [3], four different pairwise classification tasks were conducted to
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Figure 3.6: Performance comparison of the CGL [3] method and our MG-GTAM method on the

experiments on USPS digit recognition. The figures show the error rates when using different

numbers of labeled samples for classifying digits: a) 1 vs 7; b) 2 vs. 3; c) 2 vs. 7 d) 4 vs. 7.

discriminate ambiguous digit pairs, such as 1 vs. 7, 2 vs. 3, 3 vs. 7, and 4 vs. 7,. For each test,

the dataset consisted of 200 images for each digit and the number of labeled points randomly varied

between 2 and 50. To generate different graphs, we first varied the value of k from 1 to 5 when

constructing kNN graphs. Then all three types of edge weighting schemes (binary weighting, fixed

Gaussian kernel weighting, and adaptive Gaussian kernel weighting) were applied to compute the

weight matrix, resulting in a total of 15 graphs. We evaluated the proposed MG-GTAM method as

well as the prior work of combining graph Laplacians (CGL) [3]. Figure 3.6 shows the average error

rates over 100 random trials for each classification task. The results demonstrate that the proposed

MG-GTAM method clearly outperforms the CGL method. Particularly, when the number of labels
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is small, such as 2 and 4, the performance gain provided by multi-graph GTAM is fairly significant.

This property indicates that our multi-graph approach is suitable for image search applications, in

which usually only very few queries are provided. In addition, our multi-graph transduction method

is more efficient than CGL - it takes only about 25% of the time it takes to run CGL to complete the

label prediction process.

3.7 Summary and Discussion

The effectiveness of existing graph-based SSL methods heavily depends on the availability of ac-

curate labels and appropriately constructed graphs. However, the performance often significantly

degrades if the labels are not distributed evenly across classes, if the initial label locations are bi-

ased, or if excessive noise samples or outliers corrupt the underlying manifold structure. These

degenerate settings seem to plague real world problems as well, compromising the performance of

state-of-the-art SSL algorithms. In addition, there remain many heuristic choices in the graph design

process which usually requires empirical trials when applying these methods to specific domains.

These shortcomings have been confirmed in our experiments over synthesis data sets and real data

sets, as described in this chapter.

We propose a novel graph-based semi-supervised learning method, bivariate graph transduction

method, to address these problems. Our main contributions include:

1. We extended the existing quadratic regularization framework based on a single variable to

a new one including both the label matrix and the classification function as variables. Such

extension allows us to treat input labels as part of the optimization targets and thereby address

the label sensitivity problem.

2. We demonstrated that the bivariate formulation is actually a mixed integer programming

problem, which can be reduced to a pure binary integer programming (BIP) problem. An

alternative optimizer, named Graph Transduction via Alternating Minimization (GTAM), was

designed to achieve a local optimal solution with high efficiency for real applications.

3. We further proved that the proposed bivariate formulation is equivalent to a Max-Cut prob-

lem for two-class cases, and a Maximum K-cut problem for multi-class cases. In addition,
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we proposed an efficient solution withO(n2) complexity by using a greedy gradient search to

achieve approximation of the above Max-Cut problem. This greedy gradient Max-Cut solu-

tion can be interpreted as the optimization procedure of GTAM in the content of the equivalent

graph-cut formulation.

4. Based on the bivariate framework, we further developed a graph-based label tuning strategy,

called Label Diagnosis through Self Tuning, to handle errors in the initial labeled set.

5. Finally, we developed a multi-graph based transductive learning approach, called multi-graph

GTAM, and showed its superiority in both prediction accuracy and computational efficiency,

compared with prior work.

Future work includes extensions of the proposed methods to handle out-of-sample cases such

that new data points can be added without requiring a full retraining procedure. Another interesting

extension of the bivariate framework is to incorporate active learning to achieve efficient manual

labeling and accurate prediction.
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Chapter 4

Semi-Supervised Hashing for Large

Scale Visual Search

4.1 Introduction

In previous chapters, we have shown the promising results using graph-based semi-supervised learn-

ing techniques. However, graph-based approaches suffer from the critical bottleneck in the scala-

bility of graph construction and label propagation procedure. For instance, the widely used neigh-

borhood graph relies on nearest neighbor search, which leads to quadratic complexity for the graph

construction process. In addition, most large-scale visual search problems involve handling high-

dimensional visual descriptors, thereby causing another challenge in excessive storage requirement.

Thus, existing graph-based approaches are prohibitive for large-scale applications like image and

video retrieval due to both computational and storage cost.

In reality, visual data, both image and video, is growing rapidly over the Internet. For example,

the photo sharing website, Flickr, has over 5 billion images. Another sharing website, YouTube,

receives more than 24 hours of uploaded videos per minute. There is an emerging need of effective

tools for retrieving relevant content from such massive databases. Besides the widely used text-

based commercial search engines, like Google and Bing, content based image retrieval (CBIR) has

attracted substantial attention over the past decade [38]. Instead of taking textual key words as input,

CBIR techniques directly take a visual query q and try to return its nearest neighbors from a given

database of images or videos X using certain features and distance measure.
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Searching nearest neighbors is a fundamental step in many machine learning algorithms [132].

Exhaustively comparing the query q with each sample in the database X is infeasible because linear

complexity O(|X|) is not scalable in practical settings. Besides the scalability issue, most large-

scale CBIR applications also suffer from the curse of dimensionality [16] since visual descriptors

usually have hundreds, or even thousands, of dimensions. Therefore, besides the infeasibility of

exhaustive search, storage of the original data also becomes a critical bottleneck.

Fortunately, in many applications, it is sufficient to return approximate nearest neighbors. In-

stead of an exact nearest neighbor search through linear scan, a fast and accurate indexing method

with sublinear (o(|X |)), logarithmic (O(log |X |)) or even constant (O(1)) query time is desired for

approximate nearest neighbors (ANN) search. For example, ϵ-ANN aims to find p ∈ X satisfying

d(p, q) ≤ (1 + ϵ)d(p′, q), where ϵ satisfies ϵ > 0 and p′ is the nearest neighbor of query q [71].

Over the past several decades, many techniques have been developed for fast and efficient ANN

search. Especially, tree-based approaches store data with efficient data structures, which makes the

search operation extremely fast, typically with the complexity of O(log(|X |)). The representative

tree-based algorithms include KD tree [17] [54] [135], ball tree [115], metric tree [150], and vantage

point tree [169]. A detailed survey of the tree-based ANN search algorithms can be found in [110].

However, the performance drops significantly for high-dimensional data, and the efficiency is de-

graded to the worst level, identical to an exhaustive search [70].

Recently, hashing based ANN techniques have attracted much attention. They have constant

query time and need substantially reduced storage as only compact binary codes are stored. In this

work, we focus on compact binary hash codes Y ∈ BK×n of original feature data X ∈ RD×n

(K ≪ D). To generate a K-bit hash code Y, K binary hash functions are used. The linear

projection-based hash function family has been widely used since it is very efficient. Also, it has

achieved state-of-the-art performance for various tasks [56] [165] [120]. In linear projection-based

hashing, the kth hash function is of the following form:

hk(x) = sgn
(
f(w⊤

k x + bk)
)
, (4.1)

where x is a data point, wk is a projection vector, bk is a threshold and f(·) is a function to be

determined. Since h(x) ∈ {−1, 1}, the corresponding binary hash bit can be simply expressed as:

yk(x) = (1 + hk(x))/2.
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Different choices of w and f(·) lead to different hashing approaches. Roughly, hashing methods

can be divided into two main categories: unsupervised methods and supervised methods. Unsuper-

vised methods design the hash function using random samples or the unlabeled data X. Locality

Sensitive Hashing (LSH) [56] is arguably one of the most popular unsupervised hashing methods

and has been applied to many applications, including information retrieval and computer vision.

Its kernelized version has recently been developed in [90]. Another representative unsupervised

method called Spectral Hashing (SH) was proposed recently in [165]. Since unsupervised meth-

ods do not require any labeled data, they can be easily applied to different data domains given a

pre-specified distance metric.

Note that hashing-based ANN methods aim to return an approximate set of nearest neighbors.

However, in typical CBIR, even returning the exact nearest neighbors does not guarantee search

quality. This is due to the well-known problem called semantic gap, where the high level semantic

description of visual content often differs from the low level visual descriptors [141]. Furthermore,

most hashing techniques provide theoretic guarantees only when certain distance metrics are used.

For instance, the LSH function family works for the ℓp(p ∈ [0, 2]), Mahalanobis, and Jaccard dis-

tances. But there exist other popular distance measures, like χ2 distance, which have been shown

to be effective for histogram style descriptors, such as the popular Bag-of-Visual-Words (BoW)

representation [96][172]. In summary, due to the lack of appropriate semantic visual descriptors

and associated similarity measure, existing unsupervised hashing-based ANN search does not yield

satisfactory results.

For the specific application of image search, the similarity (or distance) between image pairs

sometimes is not defined with a simple metric. Ideally, one would like to provide pairs of images

that one believes contain ‘similar’ or ‘dissimilar’ images. From such pairwise labeled data, the

hashing mechanism should be able to generate codes that preserve the semantic consistency, i.e.

semantically similar images should have similar hash codes. Supervised learning techniques have

been explored to handle this issue. For example, in [91], authors have suggested merging standard

LSH with a learned Mahalanobis metric to achieve semantic-level indexing. Since this approach

uses labeled sample pairs for training distance metric, it was categorized as a semi-supervised learn-

ing paradigm. However, the hash functions still use a random hyperplane, same as in the standard

LSH.
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Method Hash Function Projection Hamming Distance Learning Paradigm

LSH [56] sgn(w⊤x + b) data-independent non-weighted unsupervised

SIKH [120] sgn(cos(w⊤x + b) + t) data-independent non-weighted unsupervised

SH [165] sgn(cos(kw⊤x)) data-dependent non-weighted unsupervised

BSSC [131] – data-dependent weighted supervised

RBMs [65] – – non-weighted supervised

BRE [89] sgn(w⊤kx) data-dependent non-weighted supervised

LAMP [109] sgn(w⊤x + b) data-dependent non-weighted supervised

SSH [158] sgn(w⊤x + b) data-dependent non-weighted semi-supervised

Table 4.1: The conceptual comparison of the proposed SSH method with other binary encoding

methods.

In addition, another supervised hashing technique, called Boosted Similarity Sensitive Coding

(BSSC), was proposed in [131] which tries to learn a series of weighted hash functions from labeled

data. Kulis and Darrell recently proposed learning hash functions by explicitly minimizing the

reconstruction error between the metric space and hamming space, termed as Binary Reconstructive

Embedding (BRE) [89]. Other binary encoding methods, like deep neural network stacked with

Restricted Boltzmann Machines (RBMs), were recently applied to learn binary codes [65], and have

shown superior performance over BoostSSC given sufficient training labels [148]. Although RBMs

use both labeled and unlabeled data, the latter is only used in a pre-training phase to provide a

good initialization for the supervised back-propagation phase. So RBMs are still categorized as a

supervised method. One of the problems with all of these supervised methods is that they are much

slower in comparison with the unsupervised methods. Another problem for supervised methods

stems from limited or noisy training data, which can easily lead to overfitting.

In this chapter, we propose a Semi-Supervised Hashing (SSH) framework that can leverage se-

mantic similarity using labeled data while preventing overfitting by incorporating unlabeled data.

The objective function of SSH consists of two main components: supervised empirical fitness and

unsupervised information theoretic regularization. Specifically, we provide a rigorous formula-
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tion in which a supervised term aims to minimize the empirical error on the labeled data while an

unsupervised term provides effective regularization by ensuring desirable properties like variance

and independence of individual bits. After relaxation and imposing orthogonality constraints, one

can derive uncorrelated hash codes. Finally, we present a sequential learning technique to learn

bit-dependent hash codes with the capability of correcting errors made by previous hash bits. In

Table 4.1, we compare the proposed methods with other popular ones by using a taxonomy based

on important properties of the methods.

The remainder of this chapter is organized as follows. In Section 4.2, we briefly describe several

popular hashing methods. Section 4.3 presents the formulation of our proposed approach, i.e. semi-

supervised hashing (SSH). In Section 4.4, we present three different solutions for designing semi-

supervised hash functions, followed by an extension of designing unsupervised sequential hash

functions in Section 4.5. Section 4.6 provides extensive experimental validation over real datasets.

The conclusions and future work are given in Section 4.7.

4.2 Related Work on Hashing

In this section, we review a few important hashing methods, such as spectral hashing, boosted

similarity sensitive coding, binary reconstructive embedding based hashing, and deep belief network

along with pros and cons when using these methods in practical image retrieval applications.

4.2.1 Locality Sensitive Hashing

A key ingredient of Locality Sensitive Hashing (LSH) is mapping “similar” samples to the same

bucket with a high probability [56]. In other words, the locality in the original space is preserved in

the hamming space. More precisely, the hash functions h(·) from LSH family satisfy the following

elegant locality preserving property:

P {h(x) = h(y)} = sim(x,y), (4.2)

where the similarity is usually associated with a the distance measure. For example, RBF kernel is

often used to compute similarity from ℓ2 distance as

sim(x,y) = exp
(
−∥x− y∥2

σ2

)
. (4.3)
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A popular class of LSH functions involve random projections and thresholds as:

h(x) = sign(w⊤x + b), (4.4)

where w is a random hyperplane and b is a random intercept. Here, the random vector w is data-

independent, and is usually constructed by sampling each component of w randomly from a p-stable

distribution corresponding to a general ℓp metric, where p ∈ (0, 2], e.g., standard Gaussian for ℓ2

distance [37].

Due to the asymptotic theoretical guarantee, many LSH-based large-scale search systems have

been developed. For instance, a self-tuning indexing technique, called LSH forest was proposed

in [12] to improve the performance without additional storage and query overhead. However,

the practical efficiency of LSH is still very limited since it usually requires long codes to achieve

high precisions at the cost of greatly reduced recalls. A practical solution for this problem is to

use multiple tables to increase recall [56]. For instance, constructing a total of l K-bit length

hash tables can map the original data point x to a Hamming embedding representation H(x) =

[h1(x), · · · , hK(x)]. The corresponding Hamming distance between points xi and xj can be effi-

ciently computed as

dH =
K∑

k=1

|hk(xi)− hk(xj)| . (4.5)

Accordingly, LSH using l tables with K-bit codes provides the following collision probability:

P {H(x) = H(y)} ∝ l ·
(

1− cos−1x⊤y
π

)K

. (4.6)

For a large-scale application, the value of K should be considerably large to reduce false colli-

sions (i.e., the number of non-neighbor sample pairs falling into the same hash bucket). However

a large value of K decreases the collision probability between similar samples as well. In order

to overcome this drawback, a compromise strategy using multiple hash tables is usally adopted in

practice. Obviously, this is inefficient due to the extra storage cost and query time. In [101], a tech-

nique called MultiProbe LSH was developed to reduce the number of required hash tables through

intelligently probing multiple buckets within each hash table. Although such ideas are shown to

be useful, data-independent random projection based methods suffer from the lack of effective dis-

crimination over data. Therefore, recent research of hash functions tends to leverage data-driven

machine learning techniques to improve the performance of hashing [26].
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In addition, incorporating kernel learning further generalizes LSH by extending the standard

metric space to a broad class of kernel-based similarity functions [90][109]. Metric learning has

been incorporated into randomized LSH functions using pairwise similarity and dissimilarity con-

straints between some examples [91]. However, all these methods still use random projections to

design hash functions, which usually has limited performance with short codes.

4.2.2 Boosted Similarity Sensitive Hashing

To improve discrimination among hash codes, boosted similarity sensitive coding (BSSC) was de-

veloped in [131] to learn a weighted hamming embedding for task specific similarity search, as

shown below

H : X → {α1h1(x), · · · , αKhK(x)}. (4.7)

Therein, the conventional hamming distance dH is replaced by the weighted version as

dWH =
K∑

k=1

αk|hk(xi)− hk(xj)|n (4.8)

Through learning the optimal weights {α1, · · · , αk}, the objective is to lower the collision proba-

bility of non-neighbor pairs, while improving the collision probability of neighborhood pairs. If we

treat each hash function as a decision stump, a straightforward approach to learn the weights is to

directly use the adaptive boosting algorithm [53], as described in [131].

4.2.3 Spectral Hashing

Spectral Hashing (SH) was recently proposed to design compact binary codes for ANN search

by exploring data-driven machine learning techniques. Besides the desired property of locality

preservation, SH also aims at designing balanced and uncorrelated binary codes. Balanced codes

ensure an even size of hash buckets, while uncorrelated codes help reduce redundancy. The hash
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functions of SH satisfy the following criteria [165]:

min
∑
ij

sim(xi,xj)∥H(xi)−H(xj)∥2 (4.9)

subject to: hk(xi) ∈ {−1, 1}∑
i

hk(xi) = 0, k = 1, · · · ,K∑
i

hk(xi)hl(xi) = 0, for k ̸= l.

The direct solution for the above optimization is non-trivial even for a single bit since it is a balanced

graph partition problem, which is NP hard. The combination of K-bit balanced partitioning is even

harder because of the pairwise independence constraints. After relaxing the constraints, the above

optimization was solved using spectral graph analysis [51]. Especially, with the assumption of

uniform data distribution, the spectral solution can be efficiently computed using 1D-Laplacian

eigenfunctions [165].

The final SH algorithm consists of three key steps: 1) extraction of maximum variance directions

through Principal Component Analysis (PCA) over the data; 2) direction selection, which prefers

projections with large spread and small spatial frequency; 3) partition of projected data by a sinu-

soidal function. SH has been shown to be very effective in encoding large-scale, low-dimensional

data since the dominant PCA directions are selected multiple times to create binary bits. How-

ever, its performance degrades severely for high-dimensional cases. For high-dimensional problems

(D >> K) where many directions contain enough variance, usually each PCA direction is picked

only once. This is because the top few projections have similar range and thus, a low spatial fre-

quency is preferred. In this case, SH can be simply considered as a PCA projection followed by a

mean partition. In SH, the projection directions are data dependent but learned in an unsupervised

manner; thus, it does not really take into account the information available in the labeled subset.

Moreover, the assumption of uniform data distribution is usually not true for real-world data.

4.2.4 Deep Belief Networks

Learning deep belief networks (DBN) via Restricted Boltzmann Machines (RBMs) was recently

proposed in [65][128] to obtain binary codes. Such learned networks are capable of capturing

higher order correlations between different layers of the network. Through the multi-layer network
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structure, the number of units in each layer is reduced and high-dimensional input can be projected

to a much more compact binary vector space.

In practice, RBMs have two stages: unsupervised pre-training and supervised fine-tuning. The

greedy pre-training phase is progressively executed layer by layer from input to output. After

achieving convergence of the parameters of a layer via contrastive divergence, the derived activation

probabilities are fixed and treated as input to drive the training of the next layer. During the fine-

tuning stage, the labeled data is used to help refine the trained network through back-propagation.

Specifically, a cost function is first defined to estimate the number of correctly classified points in the

training set [60]. Then, the network weights are refined to maximize this objective function through

gradient descent. RBM-based binary encoding involves estimating a large number of weights. For

example, the RBMs structure used in [148] has four layers of size 512 − 512 − 256 − 32 nodes

requiring learning of a total of 663552 weights. This not only incurs an extremely costly training

procedure, but also demands a large pool of training data for fine-tuning. For instance, in [148], 20

batches of 1000 × 1000 neighborhood matrices are used during the back-propagation stage, which

is fairly large compared to the actual size of the dataset, LabelMe + Peekaboom (70000 images).

4.2.5 Binary Reconstruction Embedding

Instead of using data-independent random projections in LSH or principal components in SH, Kulis

and Darrell proposed data-dependent and bit-correlated hash functions as [89]:

hk(x) = sgn

 s∑
q=1

Wkqκ(xkq,x)

 . (4.10)

The sample set {xkq}, q = 1, · · · , s is the training data for learning hash function hk, and κ(·) is a

kernel function. The weight matrix W is used to combine multiple kernel functions.

Based on the above formulation, a method called binary reconstruction embedding (BRE) was

designed to minimize the difference between the metric space and reconstructed distance in ham-

ming space. The Euclidean metric dM and the binary reconstruction distance dR are defined as:

dM(xi,xj) =
1
2
∥xi − xj∥2 (4.11)

dR(xi,xj) =
1
K

K∑
k

(hk(xi)− hk(xj))
2 . (4.12)
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The objective is to minimize the following reconstruction error to derive the optimal W:

W∗ = arg min
W

∑
(xi,xj)∈N

[dM(xi,xj)− dR(xi,xj)]
2 , (4.13)

where N is the data pool consisting of the training sample pairs. Optimizing the above objective

function is difficult due to the non-differentiability of the sgn(·) function. Instead, a coordinate-

descent algorithm was applied to iteratively update the hash functions to obtain a local optimum.

This hashing method can be easily extended to supervised scenarios by setting neighbor pairs with

zero distance and non-neighbor pairs with a large distance. However, since the binary reconstruction

distance dR is bounded in [0, 1] while the metric distance dM has no upper bound, the minimization

problem in Eq. (4.13) is only meaningful when input data is appropriately normalized. In practice,

the original data point x is often mapped to a hypersphere with unit length to produce bounded dM

as 0 ≤ dM ≤ 1. This normalization removes the scale of data points, which is often not negligible

for practical applications of nearest neighbor search.

4.3 Semi-Supervised Paradigm for Hashing

In this section, we present the formulation of our hashing method, Semi-Supervised Hashing (SSH).

In this setting, one is given a set of n points, X = {xi}, i = 1 . . . n, xi ∈ RD, in which a

subset of pairs is associated with two categories of label information,M and C. Specifically, a pair

(xi,xj) ∈ M is denoted as a neighbor-pair when (xi,xj) are neighbors in a metric space or share

common class labels. Similarly, (xi,xj) ∈ C is called a non-neighbor-pair if xi and xj are far away

in the metric space or have different class labels. Let us denote the data matrix by X ∈ RD×n

where each column is a data point. Also, suppose there are l points Xl ∈ RD×l, l ≪ n, which are

associated with at least one of the categoriesM or C. The goal of SSH is to learn hash functions

that minimize the error on the labeled training data Xl, while maximally satisfying the desirable

properties, e.g., independence of bits and balanced partitioning. We discuss the formulation and

solution of our method in the following subsections.

4.3.1 Empirical Fitness

SSH aims to map the data X ∈ RD×n to a Hamming space to obtain its compact representation.

Suppose we want to learn K hash functions leading to a K-bit Hamming embedding of X. Without
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loss of generality, let X be normalized to have zero mean. In this work, we use linear projection

coupled with mean thresholding as a hash function. In other words, given a vector wk ∈ RD, the

kth hash function is defined as

hk(xi) = sgn(w⊤
k xi + bk), (4.14)

where bk is the mean of the projected data, i.e.,

bk = − 1
n

n∑
j=1

w⊤
k xj = 0, (4.15)

since X is zero-mean. One can get the corresponding binary bit as

yki =
1
2

[1 + hk(xi)] =
1
2

[
1 + sgn(w⊤

k xi)
]
, (4.16)

and Y = {yki} ∈ BK×n represents the hash codes of all samples. Let H = [h1, . . . , hK ] be a

sequence of K hash functions and W = [w1, . . . ,wK ] ∈ RD×K . We want to learn a W that gives

the same bits for (xi,xj) ∈M and different bits for (xi,xj) ∈ C. We define the following objective

function measuring the empirical accuracy on the labeled data for a family of hashing functions H:

J(H) =
∑

k

 ∑
(xi,xj)∈M

hk(xi)hk(xj)−
∑

(xi,xj)∈C

hk(xi)hk(xj)

 . (4.17)

One can express the above objective function in a compact matrix form by first defining a matrix

S ∈ Rl×l incorporating the pairwise labeled information from Xl as:

Sij =


1 : (xi,xj) ∈M

−1 : (xi,xj) ∈ C

0 : otherwise.

(4.18)

Also, suppose H(Xl) ∈ RK×l maps the points in Xl to their K-bit hash codes. Then, the objective

function J(H) can be represented as

J(H) =
1
2
tr

(
H(Xl) S H(Xl)⊤

)
(4.19)

=
1
2
tr

(
sgn(W⊤Xl) S sgn(W⊤Xl)⊤

)
,

where sgn(W⊤Xl) is the matrix of signs of individual elements. Since the above function measures

only the empirical accuracy, it is prone to overfitting, especially when the size of the labeled set is
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small compared to the entire dataset (i.e. l ≪ n). To get better generalization ability, one needs

to add regularization by incorporating some desirable conditions. These additional regularization

terms use all the data X, including both unlabeled and labeled data and thus belong to the semi-

supervised learning category.

Motivated by spectral hashing [165], we would like to generate hash codes in which each bit

maximizes the information by generating a balanced partition of the data. The balancing property

specifies that each hash function hk(·) should partition the dataset X into two sets with equal size.

In summary, we intend to learn optimal hashing functions H by maximizing the objective function

with the following constraints:

H∗ = arg max
H

J(H) (4.20)

subject to
n∑

i=1

hk(xi) = 0, k = 1, . . . ,K.

Since the objective function J(H) itself is non-differentiable, the above problem is difficult to solve

even without considering any constraints. As an alternative, we first present a simple relaxation of

the empirical fitness.

In the relaxed version of the objective function, we replace the sign of projection with its signed

magnitude in (4.17). This relaxation is intuitive in the sense that it not only desires similar points to

have the same sign but also large projection magnitudes, and it projects dissimilar points not only

with different signs but also as far as possible. With this relaxation, the new objective can be directly

written as a function of W as

J(W) =
∑

k

 ∑
(xi,xj)∈M

w⊤
k xix⊤

j wk −
∑

(xi,xj)∈C

w⊤
k xix⊤

j wk

 . (4.21)

Without loss of generality, we also assume ∥wk∥ = 1, ∀k. The above function can be expressed in

a matrix form as

J(W) =
1
2
tr

(
W⊤XlSX⊤

l W
)
. (4.22)

4.3.2 Information Theoretic Regularization

Maximizing empirical accuracy for just a few pairs can lead to severe overfitting, as illustrated in

Figure 4.1. Hence, we use a regularizer which utilizes both labeled and unlabeled data. From the
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information-theoretic point of view, one would like to maximize the information provided by each

bit [9]. Using the maximum entropy principle, a binary bit that gives balanced partitioning of X

provides maximum information. Thus, it is desired to have
∑n

i=1 hk(xi) = 0. However, finding

mean-thresholded hash functions that meet the balancing requirement is hard. Instead, we use this

property to construct a regularizer for the empirical accuracy given in (4.22). We now show that

maximum entropy partitioning is equivalent to maximizing the variance of a bit.

Proposition 4.3.1. [maximum variance condition] A hash function with maximum entropyH(hk(x))

must maximize the variance of the hash values, and vice-versa, i.e.,

maxH(hk(x))⇐⇒ maxvar[h(x)]. (4.23)

Proof. Assume hk has a probability p of assigning the hash value hk(x) = 1 to a data point and

1− p for hk(x) = − 1. The entropy of hk(x) can be computed as

H(hk(x)) = −p log2 p− (1− p) log2(1− p). (4.24)

It is easy to show that the maximum entropy is maxH(hk(x)) = 1 when the partition is balanced,

i.e., p = 1/2. Now we show that balanced partitioning implies maximum bit variance. The mean of

hash value is E[h(x)] = µ = 2p− 1 and the variance is:

var[hk(x)] = E[(hk(x)− µ)2]

= 4(1− p)2p+ 4p2(1− p) = 4p(1− p). (4.25)

Clearly, var[h(x)] is concave with respect to p and its maximum is reached at p = 1/2, i.e. balanced

partitioning. Also, since var[h(x)] has a unique maximum, it is easy to see that the maximum

variance partitioning also maximizes the entropy of the hash function.

Using the above proposition, the regularizer term is defined as

R(W) =
∑

k

var[hk(x)] =
∑

k

var[sgn(w⊤
k x)]. (4.26)

Maximizing the above function with respect to W is still hard due to its non-differentiability. To

overcome this problem, we first show that the maximum variance of a hash function is lower-

bounded by the scaled variance of the projected data.
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Neighbor pair Non-neighbor pair

Figure 4.1: An illustration of partitioning with maximum empirical fitness and entropy. Both of the

partitions satisfy the given pairwise labels, while the one on the right is more informative due to

higher entropy.

Proposition 4.3.2. [lower bound on maximum variance of a hash function] The maximum variance

of a hash function is lower-bounded by the scaled variance of the projected data, i.e.,

max var[hk(x)] ≥ α · var[w⊤
k x]. (4.27)

where α is a positive constant.

Proof. Suppose, ∥xi∥2 ≤ β ∀i, β > 0. Since ∥wk∥2 = 1 ∀k, from Cauchy-Schwarz inequality,

∥w⊤
k x∥2 ≤ ∥wk∥2 · ∥x∥2 ≤ β = β · ∥ sgn(w⊤

k x)∥2

⇒ E
[
∥ sgn(w⊤

k x)∥2
]
≥ 1
β
E

[
∥w⊤

k x∥2
]

⇒ max var[hk(x)] ≥ 1
β

var[w⊤
k x]. (4.28)

Here, we have used the properties that the data is zero-centered, i.e.,E[w⊤
k x] = 0, and for maximum

bit variance E[sgn(w⊤
k x)] = 0.

Given the above proposition, we use the lower bound on the maximum variance of a hash

function as a regularizer, which is easy to optimize, i.e.,

R(W) =
1
β

∑
k

E[∥w⊤
k x∥2] =

1
nβ

∑
k

w⊤
k XX⊤wk

=
1
nβ

tr
(
W⊤XX⊤W

)
. (4.29)
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4.3.3 Final Objective Function

Combining the relaxed empirical fitness term from Eq. (4.22) and the relaxed regularization term

from Eq. (4.29), the overall semi-supervised objective function is given as

J(W) =
1
2
tr

(
W⊤XlSX⊤

l W
)

+
η

2
tr

(
W⊤XX⊤W

)
=

1
2
tr

[
W⊤

(
XlSX⊤

l + ηXX⊤
)
W

]
=

1
2
tr

(
W⊤MW

)
, (4.30)

where the constants n and β are absorbed in the coefficient η. Here the adjusted covariance matrix

is represented as

M = XlSX⊤
l + ηXX⊤. (4.31)

It is very interesting to note the form of M, the unsupervised data variance part XXT adjusted by

XlSX⊤
l W arising from the given partial pair-wise labeled data.

4.4 Semi-Supervise Projection Learning for Hashing

4.4.1 Orthogonal Projection Learning

While learning compact codes, one would like to avoid redundancy in bits as much as possible,

in addition to having each bit be highly informative. One way to achieve this is by making the

projection directions orthogonal. Combining this, the optimal projections are:

W∗ = arg max
W

J(W)

subject to W⊤W = I. (4.32)

Now, the learning of optimal projections W becomes a typical eigenproblem, which can be easily

solved by doing an eigenvalue decomposition on matrix M:

max
W

J(W) =
K∑

k=1

λk

W∗ = [e1 · · · eK ], (4.33)

where λ1 > λ2 > · · · > λK are the top eigenvalues of M and ek, k = 1, · · · ,K are the corre-

sponding eigenvectors.
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To summarize, the objective function in Eq. (4.30) consists of two components. The first (super-

vised) term is the empirical accuracy of the learned hash functions over the pairwise labeled data,

while the second (unsupervised) term is a regularizer that prefers those directions that maximize the

variance of the projections subject to orthogonality constraints. Mathematically, it is very similar

to finding the maximum variance direction using PCA except that the original covariance matrix

gets “adjusted” by another matrix arising from the labeled data. Hence, our framework provides an

intuitive and easy way to learn hash functions in a semi-supervised paradigm.

4.4.2 Non-Orthogonal Projection Learning

In the previous section, we imposed orthogonality constraints on the projection directions in order to

approximately decorrelate the hash bits. However, these orthogonality constraints sometimes lead

to a practical problem. It is well known that for most real-world datasets, most of the variance is

contained in the top few projections. The orthogonality constraints force one to progressively pick

those directions that have very low variance, substantially reducing the quality of lower bits, and

hence the whole embedding. We empirically verify this behavior in Section 4.6. Depending on the

application, it may make sense to pick a direction that is not necessarily orthogonal to the previous

directions but has higher variance as well as low empirical error on the labeled set. On the other

hand, one doesn’t want to pick a previous direction again since the fixed thresholds will generate the

same hash codes in our case. Hence, instead of imposing hard orthogonality constraints, we convert

them into a penalty term added to the objective function. This allows the learning algorithm to pick

suitable directions by balancing various terms. With this, one can write the new objective function

as

J(W) =
1
2
tr(W⊤MW)− ρ

2
∥W⊤W − I∥2F

=
1
2
tr(W⊤MW)− ρ

2
tr

[
(W⊤W − I)⊤(W⊤W − I)

]
. (4.34)

The new formulation has a certain tolerance to non-orthogonality, which is modulated by a

positive coefficient ρ. However, the above objective function is non-convex and there is no easy

way to find the global solution unlike the previous case. To maximize with respect to W, we set the

derivative to zero and absorb all constants into ρ as

∂J(W)
∂W

= 0⇒ (WW⊤ − I− 1
ρ
M)W = 0. (4.35)
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Though the above equation admits an unlimited number of solutions since W has a non-empty

nullspace, we can obtain a solution by ensuring

WW⊤W =
(
I +

1
ρ
M

)
W. (4.36)

One can get a simple solution for the above condition if I + 1
ρM is positive definite. From (4.30),

M is symmetric but not necessarily positive definite. Let Q = I+ 1
ρM. Clearly, Q is also symmet-

ric. In the following proposition we show that Q is positive definite if the coefficient ρ is chosen

appropriately.

Proposition 4.4.1. The matrix Q is positive definite if ρ > max(0,−λ̄min), where λ̄min is the

smallest eigenvalue of M.

Proof. By definition in (4.34), ρ > 0. Since M is symmetric, it can be represented as M =

Udiag(λ1, · · · , λD)U⊤ where all λi’s are real. Let λ̄min = min(λ1, · · · , λD). Then Q can be

written as

Q = I + Udiag
(
λ1

ρ
, · · · , λD

ρ

)
U⊤

= Udiag
(
λ1

ρ
+ 1, · · · , λD

ρ
+ 1

)
U⊤. (4.37)

Clearly, Q will have all eigenvalues positive if λmin
ρ + 1 > 0⇒ ρ > −λmin.

If Q is positive definite, it can be decomposed as Q = LL⊤ using Cholesky decomposition.

Then, one can easily verify that W = LU satisfies Eq. (4.36). To achieve a meaningful approximate

solution to our problem, we truncate the computed matrix W by selecting its first k columns. The

final non-orthogonal projections are derived as

Wnonorth = LUk, (4.38)

where Uk are the top k eigenvectors of M.

4.4.3 Sequential Projection Learning

The above non-orthogonal solution is achieved via single-shot adjustment over the orthogonal ones.

However, the objective function in Eq. (4.34) is ill posed and the approximate solution is somewhat
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ad-hoc since it is sensitive to the choice of the penalty coefficient ρ. Moreover, such single-shot

solutions do not have the sequential error correcting property where each hash function tries to

correct the errors made by the previous one. Hence, we propose an alternative solution to learn a

sequence of projections, which implicitly incorporates bit correlation through iteratively updating

the pair-wise label matrix.

The idea of sequential projection learning is quite intuitive. The hash functions are learned it-

eratively such that at each iteration, the pairwise label matrix S in (4.18) is updated by imposing

higher weights on point pairs violated by the previous hash function. This sequential process im-

plicitly creates dependency between bits and progressively minimizes empirical error. The sign of

Sij , representing the logical relationship in a point pair (xi,xj), remains unchanged in the entire

process and only its magnitude |Sij | is updated. Chart 4.1 describes the algorithm of the proposed

semi-supervised sequential projection learning method.

Here, S̃k ∈ Rl×l measures the signed magnitude of pairwise relationships of the kth projections

of Xl:

S̃k = X⊤
l wkw⊤

k Xl. (4.39)

Mathematically, S̃k is simply the derivative of empirical accuracy of the kth hash function, i.e.,

S̃k = ∇SJk, where Jk = w⊤
k XlSX⊤

l wk. The function T(·) implies the truncated gradient of Jk:

T(S̃k
ij ,Sij) =


S̃k

ij : sgn(Sij · S̃k
ij) < 0

0 : sgn(Sij · S̃k
ij) ≥ 0.

(4.40)

The condition sgn(Sij ·S̃k
ij) < 0 for a labeled pair (xi,xj) indicates that hash bits hk(xi) and hk(xj)

contradict the given pairwise label. In other words, points in a neighbor pair (xi,xi) ∈ M are

assigned different bits or those in (xi,xi) ∈ C are assigned the same bit. For each such violation, Sij

is updated as Sij = Sij − αS̃k
ij . The step size α is chosen such that α ≤ 1

β where β = maxi ∥xi∥2,

ensuring |αS̃k
ij | ≤ 1. This leads to numerically stable updates without changing the sign of Sij .

Those pairs for which the current hash function produces the correct bits, i.e., sgn(Sij · S̃k
ij) > 0,

Sij are kept unchanged by setting T(S̃k
ij ,Sij) = 0. Thus, those labeled pairs for which the current

hash function does not predict the bits correctly exert more influence on the learning of the next

function, biasing the new projection to produce correct bits for such pairs. Intuitively, it has a flavor

of boosting-based methods commonly used for classification.
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Algorithm 4.1 Sequential projection learning for hashing (SPLH)
Input: data X, pairwise labeled data Xl, initial pairwise labels S1, length of hash codes K,

constant α

for k = 1 to K do

Compute adjusted covariance matrix:

Mk = XlSkX⊤
l + ηXX⊤

Extract the first eigenvector e of Mk and set:

wk = e

Update the labels from vector wk:

Sk+1 = Sk − αT
(
S̃k,Sk

)
Compute the residual:

X = X−wkw⊤
k X

end for

After extracting a projection direction using Mk, the contribution of the subspace spanned by

that direction is removed from X to minimize the redundancy in bits. Note that this is not the

same as imposing the orthogonality constraints on W discussed earlier. Since the supervised term

XlSkX⊤
l still contains information potentially from the whole space spanned by the original X,

the new direction may still have a component in the subspace spanned by the previous directions.

Thus, the proposed formulation automatically decides the level of desired correlations between

successive hash functions. If empirical accuracy is not affected, it prefers to pick uncorrelated

projections. Thus, unlike the single-shot solution discussed earlier, the proposed sequential method

aggregates various desirable properties in a single formulation leading to superior performance on

real-world tasks as shown in Section 4.6. In fact, one can extend this sequential learning method in

unsupervised cases as well, as shown in the next subsection.

4.5 Unsupervised Sequential Learning

Unlike the semi-supervised case, pairwise labels are not available in the unsupervised case. To apply

the general framework of sequential projection learning to an unsupervised setting, we propose the

idea of generating pseudo labels at each iteration of learning. In fact, while generating a bit via a
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Figure 4.2: Potential errors due to thresholding (red line) of the projected data to generate a bit.

Points in r− and r+, are assigned different bits even though they are quite close. Also, points in R−

(R+) and r− (r+) are assigned the same bit even though they are quite far.

binary hash function, there are two types of boundary errors one encounters due to thresholding of

the projected data. Suppose all the data points are projected on a one-dimensional axis as shown

in Figure 4.2, and the red vertical line is the partition boundary, i.e. w⊤
k x = 0. The points left of

the boundary are assigned a hash value hk(x) = −1 and those of the right are assigned a value

hk(x) = 1. The regions marked as r−, r+ are located very close to the boundary and regions

R−, R+ are located far from it. Due to thresholding, points in the pair (xi,xj), where xi ∈ r− and

xj ∈ r+, are assigned different hash bits even though their projections are quite close. On the other

hand, points in pair (xi,xj), where xi ∈ r− and xj ∈ R− or xi ∈ r+ and xi ∈ R+, are assigned

the same hash bit even though their projected values are quite far apart. To correct these two types

of boundary “errors”, we first introduce a neighbor-pair setM and a non-neighbor-pair set C:

M = {(xi, xj)} : h(xi) · h(xj) = −1, |w⊤(xi−xj)| ≤ ϵ (4.41)

C = {(xi, xj)} : h(xi) · h(xj) = 1, |w⊤(xi − xj)| ≥ ζ. (4.42)

Then, given the current hash function, a desired number of point pairs are sampled from bothM

and C. Suppose XMC contains all the points that are part of at least one sampled pair. Using the

labeled pairs and XMC , a pairwise label matrix Sk
MC is constructed similar to Equation (4.18). In

other words, for a pair of samples (xi,xj) ∈ M, a pseudo label Sk
MC = 1 is assigned while

for those (xi,xj) ∈ C, Sk
MC = − 1 is assigned. In the next iteration, these pseudo labels force

the point pair in M to be assigned the same hash values and those in C different ones. Thus, it



CHAPTER 4. SEMI-SUPERVISED HASHING FOR LARGE SCALE VISUAL SEARCH 75

Algorithm 4.2 Unsupervised sequential projection learning for hashing (USPLH)
Input: data X, length of hashing codes K

Initialize X0
MC = ∅,S0

MC = 0.

for k = 1 to K do

Compute adjusted covariance matrix:

Mk =
k−1∑
i=0

λk−iXi
MCS

i
MCX

i
MC

⊤ + ηXX⊤

Extract the first eigenvector e of Mk and set:

wk = e

Generate pseudo labels from projection wk:

Sample Xk
MC and construct Sk

MC

Compute the residual:

X = X−wkw⊤
k X

end for

sequentially tries to correct the potential errors made by the previous hash functions.

Note that each hash function hk(·) produces a pseudo label set Xk
MC and the corresponding label

matrix Sk
MC . The new label information is used to adjust the data covariance matrix in each iteration

of sequential learning, similar to that for the semi-supervised case. However, the unsupervised

setting does not have a boosting-like update of the label matrix unlike the semi-supervised case.

Each iteration results in its own pseudo label matrix depending on the hash function. Hence, to learn

a new projection, all the pairwise label matrices since the beginning are used but their contribution

is decayed exponentially by a factor λ at each iteration. Note that one does not need to store these

matrices explicitly since incremental updates can be done at each iteration, resulting in the same

memory and time complexity as for the semi-supervised case. The detailed learning procedure is

described in algorithm chart (4.2). Since there exist no pseudo labels at the beginning, the first vector

w1 is just the first principal direction of the data. Then, each hash function is learned to satisfy the

pseudo labels iteratively by adjusting the data covariance matrix, similar to SPLH approach.

In summary, besides the three different versions of semi-supervised hashing methods, i.e., the

orthogonal solution SSHorth, the non-orthogonal solution SSHnonorth, and the sequential solution

SPLH, we further provided an unsupervised extension of the sequential learning method, named as

USPLH. Table 4.2 conceptually summarizes the four proposed hashing methods.
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Method Projection Correlation Learning Paradigm Learning Style

SSHorth orthogonal semi-supervised single-short

SSHnonorth non-orthogonal semi-supervised single-short

SPLH non-orthogonal semi-supervised sequential

USPL non-orthogonal unsupervised sequential

Table 4.2: The conceptual summary of the proposed hashing methods.

4.6 Experiments

We evaluated all the three versions of the proposed semi-supervised hashing methods, including

orthogonal solution SSHorth, non-orthogonal solution SSHnonorth (with orthogonality constraint re-

laxed), and sequential solution SPLH, as well as the unsupervised extension (USPLH) on several

benchmark datasets, and compared with other popular binary coding methods, including locality

sensitive hashing (LSH), spectral hashing (SH), binary reconstructive embedding (BRE) method,

boosted similarity sensitive coding (BSSC), and shift invariant kernel based hashing (SIKH). These

methods cover both unsupervised and supervised categories. Especially, previous work has shown

that SH performs better than other binary encoding methods [165] [158], such as Restricted Boltz-

mann Machines (RBMs) [128]. For both SH and BRE, we used the best setting reported in previous

literature. For LSH, we randomly select projections from a Gaussian distribution with zero-mean

and identity covariance and apply random partitioning to construct hashing functions. In addition,

for all the supervised and semi-supervised methods, a very small portion of labeled samples were

used during training. For example, only 1000 labeled images are used in the experiments on the

CIFAR10 dataset and 2000 on the Flickr image data.

In the following subsections, we will first discuss our evaluation protocols, followed by brief

descriptions of the benchmark datasets. Finally, the extensive experimental results and comparison

study is presented.
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4.6.1 Evaluation Protocols

To perform a reasonable and practical evaluation, we adopt two criteria commonly used in the

literature:

1. Hamming ranking: All the points in the database are ranked according to their Hamming

distance from the query and the desired neighbors are returned from the top of the ranked list.

The complexity of Hamming ranking is linear even though it is very fast in practice.

2. Hash lookup: A lookup table is constructed using the database codes, and all the points in the

buckets that fall within a small Hamming radius r of the query are returned. The complexity

of the hash lookups is constant time.

Note that evaluations based on Hamming ranking and hash lookup focus on different character-

istics of hashing techniques. For instance, hash lookup emphasizes more on the practical search

speed. However, when using many hash bits and a single hash table, the Hamming space becomes

increasingly sparse, and very few samples fall within the Hamming radius r (r = 2 in our experi-

ments), resulting in many failed queries. In this situation, Hamming ranking provides better quality

measurement of the Hamming embedding, while neglecting the issue of search speed.

All the experiments were conducted using a single hash table with relatively compact codes

(up to 64 bits for the largest image collection dataset with around 80 million points). The search

results are evaluated based on whether the returned images and the query sample share the same

semantic labels for supervised and semi-supervised tests. We use several metrics to measure the

quantitative performance of different methods. For Hamming ranking based evaluation, we compute

the precision of the top ranked M neighbors, where M is uniformly set as 500 in the experiments.

Finally, similar to [165], a Hamming radius of 2 is used to retrieve the neighbors in the case of hash

lookup. The precision of the returned samples falling within Hamming radius 2 is reported. If a

query returns no neighbors inside Hamming ball with radius 2, it is treated as a failed query with

zero precision.

4.6.2 Datasets

We used three image datasets in our experiments, i.e., CIFAR-10, a Flickr image collection, and the

80 million tiny images [147], with the number of samples ranging from tens of thousands to hundred
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Figure 4.3: Some example images from the CIFAR10 dataset. From top row to bottom row, the

image classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

of thousands to millions. In addition, we use 1 million image SIFT features for the experiments of

unsupervised hashing methods. For the first two datasets, since they are fully annotated, we focus

on the quantitative evaluation of the search accuracy. For the 80 million image data, we demonstrate

the scalability of the proposed methods and provide qualitative evaluation by providing the search

results of some exemplar queries.

CIFAR-10 dataset

The CIFAR-10 dataset contains a labeled subset of the 80-million tiny images collection [147]. It

consists of a total of 60000 32 × 32 color images in 10 classes, each of which has 6000 samples 7.

Each sample in this dataset is associated with a mutually exclusive class label. Examples of the

images in the CIFAR10 dataset are shown in Figure 4.3. Since this dataset is fully annotated,

the ground truth semantic neighbors can be easily retrieved based on the class labels. The entire

dataset is partitioned into two parts: a training set with 59000 samples and a test set with 1000

7http://www.cs.toronto.edu/ kriz/cifar.html
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samples. The training set is used for learning hash functions and constructing the hash look-up

tables. For BSSC, BRE and the proposed semi-supervised hashing methods, we additionally sample

1000 random points from the training set and assign semantic nearest neighbor information (i.e.

construct the pairwise label matrix S) based on the image labels. The binary encoding is performed

in the 384-dim GIST feature space [114].

Flickr Images

Here we use a set of Flickr consumer images collected by NUS lab, i.e. NUS-WIDE dataset [33].

It was created as a benchmark for evaluating multimedia search techniques. This dataset contains

around 270000 images associated with 81 ground truth concept tags. Unlike the CIFAR10 dataset,

each sample in NUS-WIDE could be assigned with multiple labels, since this kind of multiple

tagging occurs very often in real annotation scenarios. The Bag-of-Visual-Word model with local

SIFT features is used for extracting the image descriptor [100]. Particularly, a visual vocabulary

with 500-length code book and a soft assignment strategy was used for deriving the image features,

as described in [77].

Similar to the CIFAR10 dataset, this dataset is partitioned into two parts, 1K for query test

and around 269K for training and constructing hash tables. In addition, 2K images are randomly

sampled with labels for BSSC, BRE and our proposed semi-supervised hashing methods. The pre-

cision is evaluated based on whether the returned images and the query share at least one common

semantic label. The performance was evaluated with different code lengths varying from 8-bit to

64-bit.

SIFT-1M Dataset

We also test the performance of our unsupervised sequential learning method (USPLH) using SIFT-

1M dataset. It contains 1 million local SIFT descriptors [100] extracted from random images. Each

point in the dataset is a 128-dim vector representing histograms of gradient orientations. We use

1 million samples for training and an additional 10K for testing. Euclidean distance is used to

determine the nearest neighbors. Following the criterion used in [165] [158], a returned point is

considered a true neighbor if it lies in the top 2 percentile points closest to a query. Since no labels

are available in this experiment, both SSHorth and SSHnonorth have no adjustment term. Because

it results in the same hash functions by using just principal projections, we named it as PCA-based

hashing (PCAH). We also compare it with a few unsupervised hashing techniques, including LSH,
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SH, SIKH on this dataset. For USPLH, to learn each hash function sequentially, we select 2000

samples from each of the four boundary and margin regions r−, r+, R−, R+. A label matrix S is

constructed by assigning pseudo-labels to pairs generated from the samples.

80 Million Tiny Images

Besides the quantitative evaluation on the above two datasets, we also apply our techniques on a

large collection of images with gist feature, i.e., 80 million tiny images dataset [147], which has

been used as a benchmark dataset for designing binary encoding approaches [89] [49] [165] [148].

However, only a small portion of the dataset is manually labeled and the associated meta informa-

tion is fairly noisy. Since CIFAR10 is a fully annotated subset of this gigantic image collection, we

combine these two datasets in our experiments. The experimental protocol for quantitative evalua-

tion is described as below. A subset of two million data points is sampled to construct the training

set, especially for computing the data covariance matrix for all the eigen-decomposition based ap-

proaches, and a separate set of 2K samples from the CIFAR10 dataset is used as labeled samples.

For SH, the hash functions were designed using this two-million dataset. For BRE and the proposed

semi-supervised hashing methods, both the two-million dataset and 2K labeled data were used to

learn the hash functions. After obtaining the hash functions, the Hamming embedding of the entire

dataset with a total of 79, 302, 017 samples is computed with 64-bit hash codes. Finally, some exam-

ples are randomly selected for query test, and qualitative comparison is made with other methods.

4.6.3 Results

For quantitative evaluation on the CIFAR10 and Flickr datasets, the number of bits is varied from

8 to 48 for the CIFAR10 dataset, and from 8 to 64 for the Flickr image dataset. The performance

curves of both Hamming ranking and hash lookup are shown in Figure 4.4 and 4.5, respectively.

From these figures, it is not very surprising to see that the single table based LSH provides

the worst performance since the random hash functions lack discrimination for small bits. The or-

thogonal solution for SSH described in Section 4.4, i.e. SSHorth, has comparable performance to the

non-orthogonal solution, SSHnonorth, for small numbers of bits (i.e. 8, 12, and 16 bits) since there is

enough variance in the top few orthogonal directions computed in our semi-supervised formulation.

But when using large numbers of bits, SSHorth performs much worse since the orthogonal solution
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Figure 4.4: Results on the CIFAR10 dataset. a) Precision within Hamming radius 2 using hash

lookup; b) Precision of the top 500 returned samples using Hamming ranking; c) Recall curves with

24 bits; d) Recall curves with 32 bits;

forces one to progressively pick the low variance projections, substantially reducing the quality of

the whole embedding. Both Figures 4.4 and 4.5 clearly show that SSHnonorth is significantly better

than SSHorth when using long hash codes. Note that although SH also uses principal projection

directions, it can somewhat alleviate the negative impact of low variance projections by reusing the

large variance projections with higher frequency sinusoidal binarization. The sequential method of

SSH, i.e., SPLH, provides the best performance for all bits. Particularly, in the evaluation of hash

lookup within Hamming radius 2 (Figures 4.4(a) and 4.5(a)), the precision for most of the compared

methods drops significantly when longer codes are used. This is because, for longer codes, the num-
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Figure 4.5: Results on the Flickr image dataset. a) Precision within Hamming radius 2 using hash

lookup; b) Precision of the top 500 returned samples using Hamming ranking; c) Precision-Recall

curve with 32 bits; d) Precision-Recall curve with 64 bits.

ber of points falling in a bucket decrease exponentially. Thus, many queries fail by not returning

any neighbor even in a Hamming ball of radius 2. This shows a practical problem with hash lookup

tables even though they have a faster query response than Hamming ranking. Even in this case,

SPLH provides the best performance for most of the cases. Also, the drop in precision for longer

codes is much less compared to others, indicating less failed queries for SPLH. Besides, the recall

curves of the CIFAR10 tests are given in Figures 4.4(c) 4.4(d), and the precision-recall curves of the

Flickr tests are given in Figures 4.5(c) 4.5(d). The results demonstrate a significant improvement of

the proposed semi-supervised hashing approaches, especially SPLH, compared with other methods.
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Figure 4.6: Computational cost for different binary encoding methods. a) Training cost on the

CIFAR10 dataset; b) Compression cost on the CIFAR10 dataset; a) Training cost on the Flickr

dataset; b) Compression cost on the Flickr dataset.
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Figure 4.6 provides the comparison of the computational cost, including training time and com-

pression time, for different techniques. The training time indicates the cost of learning the hash func-

tions from training data and the compression time measures the encoding time from the original test

data to binary codes. It is not surprising that LSH needs negligible training time since the projections

are randomly generated, instead of being learned. The three eigenvalue decomposition based tech-

niques, i.e. SH, SSHorth, and SSHnonorth, requires similar training cost. Since SPLH needs to update

its pair-wise label matrix and performs eigenvalue decomposition at each iteration, its training time

is longer but comparable with BRE. Compared with off line training cost, the compression time is

usually more important for realistic tasks since it is done in real time. As shown in Figures 4.6(b) and

4.6(d), BRE is the most expensive method in terms of computing the binary codes. SH method re-

quires a little more time than the remaining methods due to the calculation of the sinusoidal function.

The code generation time can be ranked as: BRE≫ SH > LSH ≃ SSHorth ≃ SSHnonorth ≃ SPLH.

Figure 4.7 shows the experimental results of the unsupervised tests on the SIFT-1M dataset.

Methods that learn data-dependent projections, i.e., USPLH, SH and PCAH, perform generally

much better than LSH and SIKH. SH performs better than PCAH for longer codes since, for this

dataset, SH tends to pick the high-variance directions again. USPLH yields the best precision for all

bits. Particularly, Figure 4.7(a) shows precision curves for different methods using a hash lookup

table, and Figure 4.7(b) shows the precision curves using hamming ranking. USPLH gives the best

performance for most cases. Also, the performance of USPLH does not drop as rapidly as SH and

PCAH with an increase in bits. Thus, USPLH leads to less query failures in comparison to other

methods. Figures 4.7(c) and 4.7(d) show the recall curves for different methods using 24-bit and 48-

bit codes. Higher precision and recall for USPLH indicate the advantage of learning hash functions

sequentially even with noisy pseudo labels.

Finally, we present the experimental results on the large 80-million image data set to show the

scalability of the proposed semi-supervised hashing methods. We design the hash tables with 64-bit

length to index the 384-dimension gist descriptor, which dramatically reduces the storage of the

entire dataset from hundreds of gigabytes to a few hundred megabytes. A random set of queries

was sampled from the database and used for tests. Here we compared the visual search results of

the three best performing methods, i.e., BRE, SSHnonorth, and SPLH. After obtaining the search

results in hash lookup (within Hamming radius r = 2), we computed the Euclidian distance of the
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Figure 4.7: Results on the SIFT-1M dataset. The horizontal axis indicates the number of bits, and the

vertical axis represents: a) precision of the top 500 returned samples; b) precision within Hamming

radius 2. Recall curves (c) with 24 bits, and (d) with 48 bits.

collected nearest neighbors and query images in Gist feature space and then sorted the results. The

top ten returned images for some exemplar queries are shown in Figure 4.8. SPLH presents more

visually consistent search results than BRE and SSHorth. This exhaustive search usually involves

only around 0.005% ∼ 0.01% of the entire 80 million samples, which indicates that the search is

scalable for real time applications.
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(a) (b)

(c) (d)

Figure 4.8: Qualitative evaluation over the 80 million image set though visualizing the search results

with different hashing methods. a) query images; top 10 returned images using b) BRE method; c)

SSHnonorth method, and d) SPLH method. All these hashing approaches use 64-bit binary coding.

4.7 Summary and Discussion

In this chapter, we have proposed a semi-supervised paradigm to learn efficient hash codes by

simple linear mapping which can handle semantic similarity/dissimilarity among the data points.

It tries to maximize empirical accuracy over the labeled data while regularizing the solution using

an information-theoretic term. Specifically, the proposed method combines empirical loss over the

pair-wise labeled data with other desirable properties, e.g., maximum entropy of the hash bits over

both labeled and unlabeled data points. We proved that the maximum entropy condition equals the

maximum variance of hash bits, which can be furthered relaxed. Therefore, the proposed method

leads to a very simple eigen-decomposition based solution which is extremely efficient. Based on

this framework, we proposed the following ways to obtain:
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1. Orthogonal hash functions (SSHorth): By adding orthogonality as hard constraints, the hash

codes can be directly obtained by conducting eigen-decomposition over an adjusted covari-

ance matrix.

2. Non-orthogonal hash functions (SSHnonorth): The orthogonality constraints can be re-

moved and imposed as a penalty term in the objective function. Then, an approximate non-

orthogonal projections can be derived through a single-shot adjustment over the previous

orthogonal solution.

3. Sequential hash functions (SPLH): More specifically, the sequential hash function is learned

iteratively such that in each iteration the new bit tends to minimize the errors made by the

previous bit. For this, the pairwise label is updated by imposing higher weights on point pairs

violated by the previous hash function.

4. Unsupervised sequential hash functions (USPLH): Further, the sequential learning method

was extended for the unsupervised setting, where a set of pseudo-labels are generated sequen-

tially using the probable mistakes made by the previous bit. Each new hash function tries to

minimize these errors subject to the same regularizer as in the semi-supervised case.

We conducted extensive experiments on four large datasets containing up to 80 million points

and provided both quantitative and qualitative comparison with the state-of-the-art hashing tech-

niques. The experimental results show superior performance of the proposed semi-supervised hash-

ing methods. Particularly, SPLH achieved the best performance for semi-supervised and supervised

cases and USPLH performs the best for unsupervised cases. The sequential techniques, i.e. SPLH

and USPLH, need more time for training than LSH or the eigen-decomposition based methods, SH,

SSHorth, and SSHnonorth, but comparable or even faster than the BRE method, and must faster than

BSSC. In terms of binary code generation time, all the four proposed hashing methods are as fast as

LSH, which is significantly faster than SH and BRE methods. In the future, we would like to investi-

gate if the semi-supervised hashing methods can provide theoretical guarantees on the performance

of approximate nearest neighbor search.
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Chapter 5

Application: Visual Reranking and

Pattern Discovery

In this chapter, we present a few visual search systems for real world applications to validate and

demonstrate the power of the semi-supervised learning methods described in previous chapters. In

Section 5.1, we will present a general image annotation and search framework using the developed

graph transduction method. Section 5.2 describes a specific application of the proposed method

for microscopic image analysis. Specifically, we show how to keep the expert in the loop and

minimize the user labeling cost for efficient cellular phenotype identification. In Section 5.3, we

apply the LDST algorithm to improve web image search by re-ranking initial search results based

on keywords.

5.1 Columbia TAG System - Transductive Annotation by Graph

The Columbia TAG (Transductive Annotation by Graph) system is deigned to facilitate rapid re-

trieval and exploration of large image and video collections. It incorporates novel graph-based label

propagation methods and intuitive graphic user interfaces (GUI) that allow users quickly browse

and annotate a small number of images/videos, and then in real or near real time receive refined la-

bels for all remaining unlabeled data in the collection. Using such refined labels, additional positive

images/videos matching user’s interest can be quickly discovered. It can be used as a fast search

system alone, or a bootstrapping system for developing additional target recognition tools needed
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in critical image application domains such as intelligence, surveillance, consumer, biomedical, and

Web.

TAG system differs from the traditional approaches that are based on automatic image clas-

sification. These methods usually require a sufficiently large number of labeled samples to train

classifiers - a method referred to as supervised learning. Instead, TAG minimizes the burden of

manual labeling on users. The objective is to leverage the best use of whatever user input available

(as few as one or two samples per class) and propagate such information in the most effective way to

all the remaining data in the database. Specifically, we use our bivariate graph transductive learning

methods developed in Chapter 3 to address several challenging issues, such as imbalanced, noisy,

and biased labels, and achieve promising performance in several application domains, including

bimolecular images, web documents, and satellite images.

TAG system is different from prior works using semi-supervised learning, which utilize both

labeled and unlabeled data in learning the classifier or inferring labels of new data. Most semi-

supervised techniques focus on separation of labeled samples of different classes while taking into

account distribution of the unlabeled data. The performance of such methods often suffers from

the scarcity of labeled data, invalid assumptions about classification models or distributions, and

sensitivity to non-ideal label conditions. To overcome these issues, we adopt the bivariate graph

transduction paradigm that makes least assumptions about the data and labels. One central principle

of this paradigm is that data share and propagate their labels with other data in their proximity,

defined in the context of a graph. Data are represented as vertices in a graph and the structure and

edges in the graph define the relation among data. Propagation of labels among data in a graph

is intuitive, flexible, and effective, without requiring complex models for the classifier and data

distributions. Moreover, our graph inference method improved the existing graph learning approach

in terms of the sensitivity to weak labels, graph construction, and noisy situations, as described in

Chapter 3.

Starting with the small number of labels given by users, our graph-based transductive learning

method propagates the initial labels to the remaining data and predicts the most likely labels (or

scores) for each vertex in the graph. The propagation process is optimized with respect to several

criteria. How well do the predictions fit the already known labels given by the user? What’s the

regularity of the predictions over data in the graph? Is the propagation process amicable to addition
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of new labels? Are the results sensitive to quality of the initial labels and specific ways the labeled

data are selected?

The output of TAG system consists of refined or predicted labels of images in the collection.

They can be used to identify additional positive samples matching targets of interest, which in turn

can be used to train more robust classifiers, arrange the best presentation order for image browsing,

or rearrange image presentations for EEG-based image visualization.

The TAG system can be used in different modes - interactive and automatic. The interactive

mode is designed for applications in which a user uses the GUI to interact with the system in

browsing, labeling, and providing feedback. The automatic mode takes the initial labels or scores

produced by other processes and then output refined scores or labels for all the data in the col-

lection. The processes providing the initial labels may come from various sources, such as other

classifiers using different modalities, models, or features, rank information of the data from other

search engines, or even other manual annotation tools. When dealing with labels/scores from im-

perfect sources (e.g., search engines), special care is needed to filter the initial labels and assess

their reliability before using them as input for propagation.

5.1.1 Comparison with Prior Work

There have been prior works exploring use of user feedback in improving the image retrieval expe-

rience. In [124], relevance feedback provided by the user is used to indicate which images in the

returned results are relevant or irrelevant to the search target user has in mind. Such feedback can

be indicated explicitly (by marking labels of relevance or irrelevance) or implicitly (by tracking spe-

cific images viewed by the user). Given such feedback information, the initial query (either in the

form of keywords or example images) can be modified. Alternatively, the underlying features and

distance metrics used in representing and matching images can be refined using relevance feedback

information [117]. Though such ideas are intuitive and easy to implement, applications in practical

domains have not shown effective results. There is no guarantee that the refined query, feature, or

metric will improve the capability of retrieving additional targets that have been missed in the initial

results.

In another thread of research, researchers attempt to answer the question that given a small set

of labels, what will be the best data sample in the next iteration of user inspection or observation?
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The objective is to actively select the most beneficial sample for observation so that the uncertainty

about the classification model can be reduced to the largest extent. In contrast with the conventional

machine learning methods that passively sample data for labeling, such approaches select sample

data in an active way, therefore referred to as active learning in the literatures [35][69][146]. Active

learning methods have shown very promising results in interactive multimedia retrieval. However,

in most cases supervised learning techniques are used and a non-trivial number of labeled data

are needed in order to learn a classifier with reasonable quality. Such requirements make them

non-competitive when there are only very few labeled samples available. In addition, most active

learning methods select data that are difficult to classify, aiming at resolving the uncertainty near

the local point. However, such methods ignore the impact of additional labels to a larger extent,

including other data in the unlabeled collection.

Semi-supervised learning techniques have attracted a lot of attention from researchers due to its

major advantage that the manual labeling cost can be greatly reduced. As discussed in Chapter 2, the

existing graph-based transductive learning techniques, though promising, are still inadequate under

several challenging conditions in practice. For example, the interactive retrieval process considered

in this chapter often lead to imbalanced situations in which labeled samples from one class often

significantly outnumber those from different classes. Such conditions often cause inaccurate results

from label propagation. In addition, the data samples and their features may be subject to a large

level of noise, causing confusing and ambiguous cases for classification. Furthermore, data labeled

by users may be sampled in a biased way, leading to biased coverage of the data set and thereby

incorrect classification results.

In the TAG system, we implement several novel ideas described in Chapter 3 to address the

problems mentioned above. Specifically, we use an iterative optimization method to improve the

label propagation accuracy. During each iteration of the process, the most informative label is

automatically selected and its class label is predicted. The added label sample is then added to the

labeled pool and the optimal predicted labels for the rest of the unlabeled data are then computed.

Such techniques improve the quality of the label propagation results by avoiding an aggressive step

of predicting a large number of labels from a small number of labels. Instead, it implements a

judicious procedure to predict new labels incrementally, starting from the most informative ones.

In addition, we apply a novel label normalization method to address the class imbalance issue.
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Each class is assigned an equal amount of weights and each member of a class is assigned a weight

proportionally to its connection density and inversely proportional to the number of samples sharing

the same class.

Finally, the TAG system includes a novel incremental learning method that allows addition of

new labeled samples efficiently. Each time when user labels more data, the prediction results of the

rest of the images can be quickly updated using a superposition process without repeating the entire

propagation process. Influence by the new labels can be easily added to the original predicted labels.

Such incremental learning capabilities are important for achieving real-time responses interaction

between the users and the system.

5.1.2 TAG System Overview:

We present the system diagram of TAG system in Figure 5.1. Given a collection of images or video

clips, TAG system builds an affinity graph to capture the relationship among individual images or

videos. The graph is also used to propagate information from labeled data to a large number of

data in the same collection. In the following, we will walk through the main processed involved in

building the graph and using the graph for label propagation.

Feature Extraction and Graph Construction: Each vertex in the graph represents a basic

entity (data sample) of retrieval and annotation. It can be an image, a video clip, a multimedia

document, or an object contained in an image or video. In the ingestion process, each data sample

is first pre-processed (e.g., scaling, partitioning, noise reduction, smoothing, quality enhancement

etc). After pre-processing, features are extracted from each sample. TAG does not dictate usage of

specific features. Any feature set preferred by practical applications may be used, such as global

features (color, texture, edge), local features (such as local interest points), and spatial information

(such as layout). Multiple types and modalities of features may also be aggregated or combined.

Given the extracted features, affinity (or similarity) between each pair of samples is computed. The

pair-wise affinity values are then assigned to be weights of the corresponding edges in the graph.

Usually, weak edges with small weights are pruned to reduce the complexity of the affinity graph.

Alternatively, a fixed number of edges may be set for each vertex to construct neighborhood or

b-matching graph, as described in Chapter 2.
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Figure 5.1: The system diagram and usage modes of Columbia TAG (Transductive Annotation by Graph)

System.

Annotation and Browsing With the affinity graph in place, TAG system is ready to be used

for retrieval and annotation. TAG currently provides two different modes for such processes. In the

Interactive Mode, users browse, view, inspect, and label images or videos through a graphic user

interface (GUI) described later in this document. Initially before any label is assigned, a subset of

data may be shown in the browsing window by using certain metadata (time, ID, etc) or simply

random sampling of the collection. Using the GUI, user may view any image of interest and then

provide feedback about relevance of the result (e.g., marking the image as relevant or irrelevant).

Such labels can then be encoded as labels and assigned to the corresponding vertices in the graph.

In the Automatic Mode, the initial labels of a subset of vertices in the graph may be provided

by some external filters, classifiers, or ranking systems. For example, if the target of interest is

”helipad” for military intelligence analysis in satellite imagery, an external classifier using image

features and computer vision classification models may be used to predict whether the target is

present in an image and assign the image to the most likely class (positive vs. negative). If the target

is product image search for Web images (say ”automobile”), external Web image search engines
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may be used to retrieve most likely images using keyword search. The rank information of each

returned image can then be used to estimate the likelihood of detecting the target in the image

and approximate the class scores which can be assigned to the corresponding vertex in the graph.

As mentioned above, each vertex in the graph is associated with either a binary label (positive vs.

negative) or a continuous-valued score approximating the likelihood of detecting the target.

Graph-Based Label Propagation and Results Visualization

Given the assigned labels or scores for some subset of the vertices in the graph (usually a very

small portion of the entire graph), a key function of the TAG system is to propagate the labels

to other vertices on the graph in an accurate and efficient way. Such propagation process needs

to be fast, completed in the real time or near-real time in order to keep users engaged. After the

propagation process is completed, the predicted labels of all the vertices of the graph are used to

determine the best order of presenting the results to the user. A standard option is to rank the images

in the database in the descending order of likelihood so that user can quickly find additional relevant

images. Figure 5.2 shows the GUI used in TAG following this standard method. An alternative is to

determine the most informative data to show to the user so that human inspection and labels may be

collected for such critical samples. The objective is to maximize the utility of the user interaction

so that the best prediction model and classification results can be obtained with the least amount

of manual user input. The graph propagation process may also be applied to predict labels for new

data that are not yet included in the graph. Such processes may be based on nearest neighbor voting

or some forms of extrapolation from existing graph to external vertices.

5.1.3 Sample Applications

Here, we present a case study in searching images downloaded from Internet photo sharing site

Flickr. In this application, users are given a collection of images that have been filtered using

keywords, and would like to quickly retrieve images of a specific class (for example Statue of

Liberty) through interactive browsing and relevance feedback. We assume that no prior defined

recognition models have been trained to simulate the scenarios in which users may change their

targets of interest dynamically depending on the contexts and tasks. Using the TAG system, users

are able to quickly zero in on the images matching their specific interest by browsing and annotating

returned results as positive (relevant to target) or negative (irrelevant to target). The TAG system
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Figure 5.2: The graphic user interface (GUI) of Columbia TAG System. Images shown in this

example are from the photo sharing website Flickr using a text search ”statue of liberty”.

uses the label propagation method described earlier to infer likelihood scores for each image in the

collection indicating whether the image contains the desired target. User can repeat the procedure

of labeling and propagation to refine the results until the output results satisfy the requirements.

Data

For this proof-of-concept experiment, we acquired an image collection from Flickr first by a a sim-

ple text search ”Statue of Liberty”. Images on such web sharing sites usually are already associated

with certain textual tags, assigned by users who upload the images. However, it has been well recog-

nized that such manually assigned tags are inaccurate - the error rate could be as high as 50% [85].

Such discrepancy may be due to the ambiguity of labels or lack of control of the labeling process.

Here, in this experiment, we show how TAG system can be used to quickly refine the accuracy of

the labels. In the specific experiment, we use ”statue of liberty” as the keyword and download the

top 3000 returned images, which are fed as input to the TAG label propagation system. As shown

in Figure 5.2, many of the initial returned images from Flickr are not correct - the visual content in

the images does not actually show the scene or object of the statue. Using the initial 3000 images
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from Flickr, we extract features and construct a TAG graph. Users then interact with the TAG sys-

tem to browse images and provide relevance labels for a few images, from which additional images

showing the object/scene of the statue are predicted and retrieved.

Features and Graph Each candidate image is processed to extract features. We applied the soft

weight version of bag of visual word (BoW) feature, which has been shown effective in improving

robustness of object and scene recognition [77]. Note TAG system is scalable in terms of feature

representation. Therefore, other application specified features can also be utilized to improve the

graph propagation.

With the extracted image features, we can compute the pair wise affinity between samples to

construct the undirected and weighted graph. The procedure of building a efficient and robust

graph contains several key steps, such as graph sparsification and edge weighting, as described in

Chapter 2. In our experiments, we build kNN graph with a fixed number of nearest neighbors

(k = 25). Then Gaussian kernel weighting with adaptive kernel size is used to to compute the edge

weights between image pairs.

Results

In this experiment, we use a data set that includes 3000 Flickr images in response to a search key-

word ”statue of liberty”. We formulated the problem as a two-class problem - distinguishing images

containing Statue of Liberty from those not containing Statue of Liberty. We use TAG to label a

small number of samples and then conduct graph-based label propagation to predict the likelihoods

and re-rank the images in the database. We evaluate the performance of the TAG system by measur-

ing the accuracy of the first page of results (precision of the top 20 returned images). Specifically,

we compute the top-20 precision (average over multiple runs) and evaluate the influence of the

number of labeled images on the accuracy. We will demonstrate that a very high precision can be

achieved by using the TAG system even only a very small number of labels are given by users.

Figure 5.3 shows the performance curve of the TAG system for the experiment on the statue of

liberty dataset. The horizontal axis is the number of manually labeled samples and the vertical axis

is the error rate among the top 20 ranked images. As shown in this figure, TAG system demonstrates

very good performance (error rate as low as 1%) with only 4 labels on the average. In Figure 5.4,

we show samples of the TAG retrieval results (top 20 images) with only one label given by the

user. Two different scenarios are shown - one targeting at the far view of the location and the
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Figure 5.3: The top-20 accuracy of TAG label propagation results with different number of manual

labels.

other focusing on the near view. Excellent accuracies are achieved, 95% for the far-view statue of

liberty and 100% for the near view. These confirm the effectiveness of using the TAG system to

rapidly refine the search results and retrieve relevant images from large collections for any arbitrary

targets of interest, without depending on pre-defined target classes and time consuming labeling and

learning processes.

5.1.4 Discussion and Summary

Columbia TAG system implements novel graph-based label propagation methods for rapid search-

ing of images and videos that match user interest related to either predefined categories or arbitrary

targets without prior definition. Its unique features include

. a new framework for real-time interactive image search and label propagation;

. novel graph-based transductive learning methods for solving the challenging issues, such

as small labeled data set, imbalanced labels, noisy locations of labeled data, and unreliable

labels;

. a superposable graph transduction method for decomposing the label propagation process into

subprocesses, each of which involves only a single or subset of label inputs;
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Figure 5.4: Examples of image search results by TAG system. The left and the right figure show

the TAG propagation results of far-view and close-view of statue of liberty, respectively. With only

one manual label by user, TAG successfully propagates the labels to correct samples with 95% and

100% accuracy.

. implementation of the above label propagation algorithms in an interactive image retrieval

system, in which user labels are used as input for propagation in each iteration;

. implementation of the above label propagation algorithms in a fully automatic label refine-

ment system without user interaction.

In the next section, we will present a specific application of the the TAG system for biomedical

microcopy image analysis.

5.2 Interactive Visual Annotation for Microscopic Images

5.2.1 Introduction and Motivation

Cellular Microscopic Screening: Gene function can be assessed by analyzing disruptive effects

on a biological process caused by the absence or disruption of genes. With recent advances in

fluorescence microscopy imaging and gene interference techniques like RNA interference (RNAi),

genome-wide high-content screening (HCS) has emerged as a powerful approach to systematically

study the functions of each individual gene. These microscopic screenings generate a large number

of biological readouts, including cell size, cell viability, cell cycle, and cell morphology. A typical
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HCS cellular image usually contains a population of cells shown in multi-channel signals, such

as DNA channel (indicating locations of nuclei) and F-actin channel (indicating information of

cytoplasm) (Figure 5.5).

(a) (b)

Figure 5.5: Typical microscopic images of Drosophila Kc167 embryonic cells. (a) image of the

DNA channel; (b) image of the F-actin channel after homomorphic enhancement.

Recently through manual analysis of fluorescence microscopy images, cellular phenotypes vis-

ible in RNAi cell images (e.g., cytoskeletal organization and cell shape) have been found important

for HCS study [87]. Specifically, when an individual gene is ”turned off” by the RNAi technology,

the resulting changes of the morphological structures of the cells in the images can be used to infer

the function of the gene on the biological process under investigation (e.g., drug design, disease

mechanism). However, a critical barrier preventing successful deployment of large-scale genome-

wide HCS is the lack of efficient and robust methods for automating phenotype classification and

quantitative evaluation of the rapidly increasing collection of HCS images.

Interactive Microscopy Annotation: One important task in HCS is to rapidly retrieve the most

relevant cellular images from the database given a certain cell phenotype of interest specified by bi-

ologists. Currently this is handled in a manual way - biologists first examine a few example images

showing the phenotype of interest, and then manually browse through individual microscopic im-

ages, and assess the relevance of each image to the cellular phenotypes. Apparently, this manual

procedure is very expensive and relies on well trained domain experts. In [161][162], we have de-

veloped a supervised learning manner based cellular phenotype identification system. However, it
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still requires a significant amount of input from experts.

In this section, we present an efficient interactive annotation framework for RNAi microscopic

cellular images using the TAG system described in the previous section. Starting with the expert

labeling of a few cells according to some predefined phenotypes, the system infers the phenotype

classes of all unlabeled cells on the microscopic images. As mentioned earlier, the learning process

is done in a semi-supervised manner that both the labeled and unlabeled data are utilized. Given the

predicted phenotype label for the cells, image-level relevance scores are also computed. Then the

system recommends the most relevant cell images to the biologist who will review the results and

make further cell-level inspection.

The objective of the proposed interactive system is to drastically improve the throughput of

finding relevant images from a large RANi cellular image collection. The underlying technical goal

is to develop a novel graph transduction approach that can infer accurate cell phenotype prediction,

and also work in an incremental manner to handle new cell labels obtained from the interactive

annotation procedure. Note the proposed system is different from the regular relevance feedback

or active learning systems for image retrieval. Here the annotation is done at the cell level, while

relevance scoring and recommendation are computed at the image level.

Motivation: There are two major problems in directly applying such the semi-supervised learn-

ing techniques to the cellular image annotation task. First, the manual cell labeling on microscopic

images easily generates imbalanced labels since the priors of different phenotypes vary a lot and

the most images shown to the users often belong to a certain phenotype. In such situations, existing

methods usually fail, as illustrated in the experiments using a toy example in Figure 2.4. Second, the

interactive annotation system needs to respond fast to the input from experts in the practical setting.

To solve these problems, we developed an interactive annotation and search system for microscopic

image analysis that utilizes the power of graph transduction. Specifically, we apply the label weight

normalization process (described in Chapter 3) to handle the imbalanced label issue, and a new su-

perposable graph propagation approach to achieve real-time response to user interaction. Through

extensive experiments over realistic RANi cellular images, we demonstrate the proposed techniques

can significantly improve annotation accuracy while improving the speed at the same time.
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5.2.2 Graph Transduction with Superposition Law

First, we will show the graph transduction procedure can be decomposed into superposable compo-

nents, each of which can be computed incrementally. First the label matrix Y can be decomposed

to the sum of a series individual sample label mask. For each individual labeled sample xi, the cor-

responding label mask is defined as Ŷi = {ŷij} ∈ Rn×c, where only one nonzero element ŷij = 1

if the class label of xi is j. So we can write Y =
l∑

i=1
Ŷi, where l is the cumulative number of labels

given by the user so far. Replace Y in Eq. (3.11) by the sum of individual label mask, we can get:

F = PΛ
l∑

i=1

Ŷi =
l∑

i=1

PΛŶi =
l∑

i=1

F̂i, (5.1)

where F̂i = PΛŶi is the classification function predicted only by using labeled sample xi. In

other words, the classification function F obtained by graph propagating using the labeled sample

set Xl = {x1, · · · ,xl} equals the sum of a functional set F̂ = {F̂1, · · · , F̂l}, where each element

of F̂ is the classification function propagated from a individual sample in Xl. We call this as the

superposition law in graph propagation procedure [155]. This allows us to update the classification

function F incrementally when each new labeled is received without recalculating the whole prop-

agation from the entire label set. The superposition solution in Eq. (5.1) can be further extended to

class-based superposition cases as:

F =
c∑

j=1

∑
zi=j

PΛŶi =
c∑

j=1

∑
zi=j

F̂i, (5.2)

where
∑

zi=j F̂i denote the contribution to the final prediction results from labels of class j. Ap-

parently, it only has nonzero values in the jth column vector.

It is easy to see how the imbalanced labeling mentioned above affects prediction results. For

example, consider a two-class case and assume there are l1 positive and l2 negative labels. From the

class superposition Eq. 5.2, it is easy to derive the following:

F =
l1+l2∑
i=1

F̂i =
l1∑

i=1

F̂i +
l1+l2∑

i=l1+1

F̂i ≃
l1+l2∑

i=l1+1

F̂i (5.3)

If l1 << l2 for the imbalanced labeling condition, the predicted classification results will have

strong bias towards the positive class since most vertices will be dominated by the scores propagated

from labels of the majority class. We have discussed this imbalanced label issue using the two-moon



CHAPTER 5. APPLICATION: VISUAL RERANKING AND PATTERN DISCOVERY 102

toy data earlier in Figure 2.4(g). Most of the existing SSL methods generate biased classification

results, as shown in Figure 2.4(h)-2.4(k). Compared to other methods, our proposed bivariate graph

transduction algorithm, i.e., GTAM, produced more reasonable predictions (Figure 2.4(l)). The

robustness of our approach to imbalanced labels is mainly attributed to the label weight term Λ and

the alternating minimization strategy, as discussed in Chapter 3.

To handle the label imbalance issue, we apply the label weight normalization procedure dis-

cussed in Chapter 3. Consider the classification function F and label matrix Y as the concatenation

of column vectors as:

F = [F·1 · · ·F·j · · ·F·c] (5.4)

Y = [Y·1 · · ·Y·j · · ·Y·c] , (5.5)

where F·j and Y·j(j = 1, · · · , c) correspond to predictions and labels from class j. Applying the

superposition method, the column vector F·j can be computed as:

F·j = PΛY·j . (5.6)

The above equation can be seen as the vector version of superposition law of Eq. (5.2). Given a new

labeled sample xs with degree ds belong to class zs = j. In this case, only the jth column of the

label matrix needs to be updated, which is vector Y·j . From Eq. (5.6), only the vector F·j need to

be recomputed. Let Dj denotes the total degree of the existing labeled samples in class j excluding

the new labeled sample xs. We can calculate two weighting coefficients σ, γ as:

σ =
Dj

Dj + ds
(5.7)

γ =
ds

Dj + ds
= 1− σ. (5.8)

Then the new vector Fnew
j can be updated as:

Fnew
·j = σF·j + γF̂s = σF·j + γP·s, (5.9)

where F̂s propagation results based on xs only. Note that F̂·s is exactly the sth column vector of P,

i.e. F̂s = P·s. Based on the superposition law discussed in the previous section, the above updating

step by replacing the jth column of F with Fnew
·j is equivalent to the the optimal prediction directly



CHAPTER 5. APPLICATION: VISUAL RERANKING AND PATTERN DISCOVERY 103

(b)(a)

Figure 5.6: The automatic segmentation result of the microscopy image of Figure 5.5. (a) nuclei

segmentation; (b) extracted cell bodies.

derived from Eq. (5.1). However, the superposition approach is much efficient since we reduce the

computation cost from matrix multiplication to scalar multiplication and vector addition.

During the active annotation process, the cells in the microscopic images are assigned with

soft labels indicating the class memberships of various phenotypes. We use a simple method to

aggregate the class labels for cells and measure the class labels of the whole image. The image

relevance score vector r = {rj}, (j = 1, · · · , c) representing the relevance score of an image is

computed as the average of class scores of all cells xt in the image X̂:

rj =
∑
xt∈X̂

Ftj/ncell, (5.10)

where ncell is the number of cells in the image X̂. Finally, the image-level scores are used to rank

images in the databases for user annotation and browsing.

5.2.3 Experiments and Evaluation

5.2.3.1 Material and Preprocessing

We collaborated with the bioinformatics group and Genetics Laboratory in Harvard University for

the experiments of cellular microscope image annotation. The microscopic images of Drosophila

Kc167 embryonic cells were used to validate the active annotation approach. The images were ac-
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Cell Phenotype Appearance Description

Actin Accumula-

tion (AA)

actin accumulation in the cell body, bright intensity, may have non-round

nuclei;

Cell Cycle Arrest

(CycA-sti) 8

large size, round cells with multi-nuclei;

Longthin-LPA

(LL)

long punctuate actin, with a cell shape like prolonged water drops or long

thin poles;

LS-Fla (LF) cells with a large spiky and filamentous structure;

Rho large and flat shape, with multi-nuclei, non-round.

Table 5.1: Biologically pre-defined cellular phenotypes and the description about their appearances.

quired by automated microscopy with a Universal Imaging AutoScope Nikon TE300 [161]. The

previous study on this dataset shows that the image appearance at the cell level reflected the un-

derlying gene function expression [7]. We used 70 HCS microscopy screening sets, resulting a set

of 210 cell images with three channels (only DNA and F-actin images are used for analysis). First

we applied homomorphic filtering on the raw data to perform image enhancement and denoising.

Since the DNA signal is fairly strong, clearly noticeable with respect to a relatively uniform dark

background, we first segmented nuclei by a simple histogram thresholding technique. However,

cytoplasmic boundary segmentation was a challenging task due to intensity variation and cellu-

lar phenotype diversity. Starting with the segmented nuclei region, we further applied a seeded

watershed algorithm incorporating deformable models to separate both isolated and attached cell

bodies [177]. Figure 5.6 shows examples of the segmented cells in cellular microscopic images.

After segmentation, we obtained a total of 3162 valid cell segments, among of which 191 (6%) cells

were manually labeled as ground truth.

For these cell segments, biologists pre-defined five distinct cellular phenotypes (refer to Ta-

ble 5.1). All these cellular phenotypes exhibit unique texture and geometric characteristics, as the

8abbreviated as CycA-sti since this cellular phenotype is frequently found when the genes CycA and sti are knocked

down by RNAi.
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(a) (b) (c) (d) (e)

Figure 5.7: The cell segments examples of predefined cellular phenotype prototypes. The top row

is the cytoplasm and the bottom row is the corresponding nuclei. (a) Actin Accumulation (AA); (b)

Cell Cycle Arrest (CycA-sti); (c) Longthin-LPA (LL); (d) LS-Fla (LF); and (e) Rho.

examples shown in Figure 5.7. In order to capture the morphological and appearance properties

of different cellular phenotypes, a total of 214 dimensional attributes, including wavelet features,

Zernike moments features, Haralick features, region properties, were computed from the cell seg-

ments [161]. The ℓ2 distance and Gaussian kernel were applied to compute pair-wise similarity

among cells and a neighborhood graph is constructed from these cellular features.

5.2.3.2 Results

Since each microscopic image contains a population of cells, some of which belongs to different

phenotypes. However, the most dominant cellular phenotype in an image reveals the underlying

gene “turn down” function expression. Hence, the microscopic images are categorized into five

types, corresponding to the five phenotype in cell level. The task of annotating the image class is

to rank all the images in the collection based on the relevance to a certain cell phenotype query. It

helps the scientists rapidly target the most relevant genes related to a biological hypothesis. It also

can be used to collect the positive samples for further mining task.

Staring from 10 initial cellular labels, at least one for each phenotypes, we simulated the inter-

active annotation procedure by subsequentially adding 10 more cell labels in the next round. In the

experiments, we combine the above active graph transduction approaches on top of LGC and GFHF

to design so called label regularized LGC (LR-LGC) and label regularized GFHF (LR-GFHF) meth-
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Figure 5.8: The performance of active cellular image annotation using the graph transductive learn-

ing approach. X coordinate denotes the number of labeling rounds and Y coordinate denotes the

accuracy of top 5 ranked microscopy images.

ods. We compared these two new methods with the standard LGC, GFHF, and LapRLS. Figure 5.8

gives the performance comparison of the five approaches. We can see that the annotation accu-

racy on the microscopies increases as more cell labels are available. Our proposed idea using label

weight normalization improved both LGC and GFHF significantly. With 8 rounds of annotation,

only 80 cell labels (around 2.5% of the total cell segments) are given, but an annotation accuracy

(by LR-LGC) as high as 92.6% can be achieved. Figure 5.9(a) and 5.9(b) shows two examples of

the top four images in response to the cellular phenotype query of AA and Rho. Additionally, the

computational cost of the active annotation is analyzed in Table 5.2. Since the graph construction

can be implemented off line, the table only includes the computation cost associated with the online

active annotation procedure. The superposable solution LR-LGC discussed in this section reduced

the computation cost and matches the real-time requirement in practical applications. However,

LG-GFHF method does not benefit from the superposition procedure since the prediction results

have to be recomputed after receiving new labels, as discussed in our previous work [155].
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Method LGC GFHF LapRLS LR-LGC LR-GFHF

Computation Cost (sec.) 0.81 70.05 218.9 0.14 70.28

Table 5.2: Computation cost of graph-based transductive annotation after 8 rounds of user interac-

tion.

(d)(c)

(a) (b)

(a)

(a)

(c) (d)

(b)

(b)

Figure 5.9: Examples of cellular image annotation results by graph-based transductive learning: a)

query results of AA cellular phenotype; b) query results of Rho cellular phenotype.

5.3 Label Diagnosis through Self Tuning for Web Image Search

5.3.1 Motivation and Introduction

Mislabeling issue occurs frequently in web image annotation due to uncontrolled labeling procedure

and semantic ambiguity. For example, Flickr, one of the most popular photo sharing website, allows

users to assign textual tags when they upload images. However, it has been well recognized that

there exists high inaccuracy among such manually assigned textual tags, whose accuracy is only

around 50% accuracy [85]. Most of the current image search techniques directly utilize the textual

tag associated with the images. Apparently, this significantly degrades the accuracy of the search

results. For instance, when the user types in the keyword “tiger”, visually inconsistent results,

as shown in Figure 5.10, could be returned though all contain the keyword “tiger”. The results

may include images of images of apex predator, butterfly, flower, tank, or golf professional. As

discussed earlier, such falsely tagged images, if used as labels in machine learning methods, will
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cause significant performance drop.

In this section, we apply our bivariate graph transduction approach, i.e. label diagnosis through

self tuning (LDST), to address this critical problem with mislabeled samples. The objective is to

diagnose the quality of the given labels and remove unreliable labels while preserving visual con-

sistency. As described in Chapter 3, a floating greedy approach is executed to simultaneously carry

out correction over labeled samples and prediction over unlabeled samples. In the case of Flickr

image search, LDST is used to refine the text based image search results by preserving only “high-

quality” labels, and then use GSSL methods to propagate initial labels to the rest of the databases,

and retrieve additional true positive samples. Conceptually, such refinement and propagation tech-

niques belong to the broad category of works in search re-ranking [66]. Though most of the prior

work did not address the issue of false labels and thus suffers from performance degradation when

it occurs.

5.3.2 Related Work on Web Image Search Reranking

Most works on visual search reranking start with the text-based query and then apply various re-

rank methods to refine initial search results. For example, the approaches based on pseudo-relevance

feedback (PRF) use an initial search result set as pseudo labels, among which a small number of

the top-ranked samples are assumed as positive, and bottom ranked images as negative [111]. Such

labeled samples are then used to train classifiers modeling the semantic target of the query. Then

the learned classifiers are used to re-rank the initial search results. PRF methods highly rely on

the quality of the pseudo-positive or negative samples since they are considered as ground truths

in the subsequent learning procedure. Another category of approaches apply probabilistic models,

such as constellation model [48], probabilistic latent semantic analysis and latent Dirichlet alloca-

tion [47], to train region based bag-of-words classifiers. The principle of information bottleneck

was applied to find the optimal clusters of images that preserve the maximal mutual information

in the top result set [66]. However, the calculation of mutual information, which involves proba-

bility density estimation with a small number of samples, remains challenging in high dimensional

feature space. VisualRank is recently developed to exploit visual content to re-rank image search

results from Google. It uses random walk over an affinity graph to rank images based on the visual

hyperlinks (similarity) among the images. Finally, the re-ranked image list is sorted based on the
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Figure 5.10: Example images using text search “tiger” from the photo sharing website Flickr.

“importance” of graph vertices. This method suffers from several potential shortcomings. First, the

top images from re-ranked results are often nearly duplicated with each other because near duplicate

images tend to share similar vertex importance, thus produce equal high re-ranking scores. Second,

the re-ranked images may be inconsistent if the initial text-search results have multiple dense sub-

graphs corresponding to different patterns. For example, the text search by “tiger” returns multiple

disparate clusters, such as apex predator and the professional golfer, both of which have high vertex

importance.

In summary, the current visual search re-rank methods are failure in either blindly trusting the

quality of top pseudo labels from the initial search results, or completely ignoring the initial ranking

order and just resorting to data-driven unsupervised methods. In this section, we will apply the

LDST method described in Chapter 2 to handle the semi-supervised scenario with unreliable labels.

Specifically, we treat the top ranked images in the initial search results as possibly noisy positive

samples, and use the LDST method to diagnose and tune such labels before propagating to the a

large set of candidate images. The graph-based propagation results are then used to estimate the

relevance scores and re-rank the images.

5.3.3 Refine Keyword Based Web Image Search

To evaluate our approach on the web image search task, a total of nine categories of images are

acquired from the photo sharing website Flickr using text search. The selected categories cover

a diverse range of targets, including animals, plants, man-made objects and scenes. For each set
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Figure 5.11: Example images of text search results from the photo sharing website Flickr. A total of

nine text queries are used: dog, tiger, panda, bird, flower, airplane, forbidden city, statue of liberty,

golden bridge.

of text search results, about 1500 returned images are collected for re-ranking. Example images

corresponding to these text queries are shown in Figure 5.11.

For image feature representation, we adopt the widely used Bag-of-Visual-Words (BoW) derived

from local key points, which has been shown effective in many applications of object and scene

classification. We use difference of Gaussian as key point detector and SIFT as descriptor [100]. To

quantize the local features to visual words, we adopt the soft-assignment strategy which has been

shown effective in [77].

The pair-wise affinity value is computed using cosine similarity between BoW vectors. The

number of nearest neighbors is uniformly set as 200 (a typical setting for cosine similarity graph [14]

[156]) to construct kNN graphs for the returned images from each individual query. Since there

is no clear cue for selecting negative samples for each individual query, the classification task is

degenerated to a ranking problem [176]. Here the top ranked 60 samples are treated as pseudo

positive labels. Label self tuning is used to remove visually inconsistent samples and afterward

propagation is done to rank the remaining images (the number of self tuning iteration is uniformly

set as 30). We compare LDST with other automatic re-ranking methods, like Pseudo-relevance

feedback (PRF) framework [111]. Specifically, we implemented PRF-SVM, PRF-LGC and PRF-
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Figure 5.12: Comparison of the precision of the top 100 reranked images over different categories

of images.

GTAM for comparison. In addition, we included the recent VisualRank technique [78], which has

shown empirical success on product image search on Google. The same parameter setting is applied

as suggested by [78]. Moreover, all the graph-based approaches use the same graph, as described

earlier. The precision of the top 100 reranked images are calculated to evaluate the performance, as

shown in Figure 5.12.

From Figure 5.12, LDST achieves significant performance improvement over most semantic

categories, like tiger, panda, and dog. For these cases, the visual content of targets exhibits consis-

tent pattern though there is strong ambiguity associated with the keywords. However, LDST does

not show much gain for the categories of bird and flower. Because the pseudo positive samples

associated with these two tags are quite diverse, which affects the stability of the label self tuning

procedure. Overall, LDST improves the average accuracy of text search results from 67.11% to

87.56% on the nine categories (Table 5.3). Compared to VisualRank method, LDST also enjoys a

clear performance gain of 10.8%.

There are two parameters in LDST for web image search, the initial number of positive l and

the number of tuning iteration s. In the above experiments, we empirically set l = 60 images from
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Method Text SVM LGC GTAM VisualRank LDST

Accuracy (%) 67.11 74.22 79.89 81.44 79.00 87.56

Table 5.3: The accuracy of the top ranked Flickr images by different approaches.

top ranked list as positive samples and fix s = l/2. We have carried out an extensive study by

varying the value of l from 20 to 100. The result shows that LDST achieved fairly consistent and

stable performance under different choices of l with the precision of the top 100 ranked images

as 87.23 ± 0.6%. In addition, the proposed method can be made very efficient by applying the

superposable update model mentioned in the previous subsections. The current implementation

takes only a few seconds to re-rank more than 1500 images for each query on a regular PC.

5.4 Summary and Discussion

Based on the bivariate graph transduction algorithms developed in Chapter 3, we designed several

systems for image annotation and search in this chapter. Our main contributions include:

1. We proposed a general image annotation and search platform, called Transductive Anno-

tation by Graph (TAG). It combines intuitive graphic user interfaces with the graph-based

semi-supervised method that allow users quickly browse and annotate a small number of im-

ages/videos, and then in real or near real time predict the labels for all remaining unlabeled

data. The TAG system can be used as a search system alone, or a bootstrapping system for

developing additional target recognition tools.

2. We extended the general TAG framework to a specific application of real-time analysis of

cellular images. Specifically, the cellular image annotation task is formulated as a joint pro-

cedure of cell label propagation and image relevance ranking. The developed system can be

used to annotate and retrieve cellular images showing a large variety of cell phenotypes. It is

critical for various biomedical applications such as large scale gene function study and drug

designs. To the best of our knowledge, this is the first multi-level graph transduction learning

system successfully validated over real microscopic cellular images.

3. Finally, we explored the power of label correction of the LDST algorithm and applied it to re-
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rank keyword-based web image search results. By combining label diagnosis, manipulation,

and propagation in a uniform optimization framework, the system can identify and eliminate

unreliable labels, and return more consistent visual ranking results.
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Chapter 6

Application: Image Retrieval via Brain

Machine Interface

Different from the traditional image annotation and retrieval systems developed in the previous

chapter, we here propose an integrated paradigm that marries the strengths of brain computer in-

terface and machine learning systems in a unique and synergistic way. The brain state decoding

subsystem utilizes advanced spatio-temporal analysis of neural response signals measured by Elec-

troencephalography (EEG) in a single trial setting. The content analytics component applies our

bivariate graph transduction and label diagnosis methods described in Chapter 3 to handle rare tar-

gets, small label sizes, and noisy conditions. The neural signal analysis component has a unique

power for recognizing generic target classes, while the visual content analysis component is suit-

able for high throughput processing. The proposed system explores the synergy of these two and

has shown promising performance in detecting generic target classes in a high throughput fashion.

6.1 Introduction

The human brain is widely considered to be the most powerful visual information processing sys-

tem. The human visual system is able to get the “gist” of a scene in a few hundred millisec-

onds [86][113] [145]. As a result, many efforts have been made to understand the human vision

mechanism through decoding brain state from neural signals. By monitoring the neural response

signals, e.g., those recorded non-invasively via electroencephalography (EEG) [41], promising re-
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sults have been shown in detecting objects of interests (OOI) contained in the visual stimuli pre-

sented to subjects [19][55][81][116][118].

One of the ultimate goals for automated computer vision or media content analysis is to detect

and recognize objects, scenes, people, and events in images or videos. Such capabilities, if realized,

will greatly enhance the performance and utility of many applications, such as human computer

interaction and visual information search. Recently, impressive progress has been reported in the

literature, including advances in image feature extraction, visual matching, and object categoriza-

tion. Several widely participated benchmarking efforts, such as Caltech 101 [46], PASCAL [45],

ImageClef [130], and TRECVID [140], have been organized to demonstrate and evaluate the state of

the art in this field. A common framework used in such efforts is to learn object models from a pool

of training data, which may have been wholly or partly annotated over pre-defined object classes.

Such a learning framework has been shown to be powerful. However, it is limited in its scalability

to large-scale applications. One of main barriers is the dependence on the manual annotation pro-

cess, which is laborious and time consuming. To overcome this, efforts have been reported using

interactive annotation with relevance feedback and active learning in order to reduce the amount of

the required manual input [69] [124], including our work reported in Chapter 5. Recent works have

also started to explore the freely available (but imperfect) metadata associated with images on the

Web [78] [157].

In this chapter, we propose a novel framework that combines the power of brain state decoding

and visual content analysis to maximize the efficiency of the image annotation and retrieval task

in a completely hand free streamlined fashion. The proposed brain computer interface and visual

pattern mining (BCI-VPM) based image annotation system, as shown in Figure 6.1, consists of

two critical components, EEG-based generic interest detector and graph-based salient visual pat-

tern discovery. The EEG-based interest detector mentioned above is generic - a subject adaptive

EEG-based detector trained over a generic class can be applied to detect any new objects of interest.

Likewise, the subsequent graph-based visual saliency discovery is general as it does not assume any

prior knowledge about image classes or data sets. Additionally, by completely freeing users from

any manual operation (e.g., button pressing) in the viewing stage, we achieve the maximal through-

put of annotation or retrieval from a fast stream of image sequence via a process called rapid serial

visual presentation (RSVP) paradigm [119]. RSVP involves images being flashed to the viewer
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Figure 6.1: System diagram of the proposed BCI-VPM image annotation system. A small subset

of images is shown to users, whose EEG-based neural response signals are used to detect objects of

interest that catch users’ attention. The EEG scores of the subset are then refined and propagated

to the entire image collection through recovering the visual consistency and discovering the salient

visual pattern over a visual similarity graph.

at high rates, such as 10 frames per second. EEG signal recorded from an array of transducers

placed on the scalp of the subject are recorded continuously and analyzed to extract discrimina-

tive spatial-temporal features. Techniques like Hierarchical and Bilinear Discriminant Component

Analysis [42] can be applied to analyze EEG signal to generate a probabilistic interest score for each

image. The image sequence ordered by the EEG scores is then given further analysis to determine

the salient visual patterns that catch users’ attention. It utilizes our bivariate graph transduction

approach described in Chapter 3 to recover visual consistency on a graph constructed from visual

similarity. Label diagnosis and tuning techniques are also used to refine the interest score decoded

from EEG neural signals. The unreliable EEG labels are eliminated, while the EEG scores associ-

ated with the small image subset that have undergone the EEG-based brain state decoding step are

propagated to the entire database to retrieve further relevant images, including those not yet shown

to users. The regular graph and the diffusion process with label correction have unique power in

handling imperfect labels and sparse targets with extreme low prior.
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In summary, we propose exploration of an integrated paradigm that marries the strengths of

human vision and machine learning systems in a unique and synergistic way - human vision for

its superb capability in detecting general objects in diverse and complex conditions and content

analytics for automatic processing of large volumes of data.

We will show effectiveness of the proposed approach over images from multiple domains. The

first set includes a total of 3798 Internet images with 62 object categories from the well-known Cal-

tech 101 dataset. The second is for target detection in high-resolution satellite imagery (DigiGlobe

images), containing 1051 images with “Helipad” targets. Experimental results from multiple sub-

jects indicate a very promising performance. In the Internet image experiments, the annotation

accuracy, measured in terms of average precision (AP), of one of the object classes Dalmatian was

improved from 1.76% (random baseline) to 36.7% by EEG interest detector, and further boosted to

69.1% by the visual pattern mining process.

6.2 System Overview

The proposed BCI-VPM image annotation framework consists of two subsystems (as shown in

Figure 6.1) - one using the neural signals measured by EEG to detect generic OOI present in images,

while the other using graph-based visual pattern mining methods to refine the detection results from

the first subsystem and propagate results to an expanded data set. We provide a brief overview here

and give further details on each components in later sections.

For EEG-based OOI detection, a small subset of images (on the order of few hundred) is first

randomly sampled from an image collection and presented as visual stimuli to the subject. The

selection process avoids long EEG recording sessions which may cause subject fatigue. One of our

design goals is to require minimal subject participation, yielding just sufficient information for the

neural state decoder and the pattern mining module to effectively infer objects that have attracted a

user’s attention and generate labels for all the images in the collection.

The sampled images are then presented to the subject in a sequential fashion, following a

paradigm called Rapid Serial Visual Presentation (RSVP) [55], as shown in in the left part of Fig-

ure 6.2. The subject is instructed to focus on a fixed marker in the screen center in the first 2 seconds,

then each image is shown to the subject for a fixed period of time, ranging from 100ms to 200ms



CHAPTER 6. APPLICATION: IMAGE RETRIEVAL VIA BRAIN MACHINE INTERFACE 118

Figure 6.2: Overview of the processing pipeline of the proposed BCI-VPM image annotation sys-

tem. The left demonstrates the RSVP paradigm used for presenting visual stimuli to subjects. The

RSVP sequence contains 1000 randomly selected images, which are further partitioned into 10

blocks and 100 images each. An image block typically is shown at 5 − 10Hz and each image lasts

around 100− 200 milliseconds. The right shows the process of graph-based visual pattern mining.

After ingesting the estimated EEG “interest” scores as initial labels, the underlying data manifold

structure is explored to discover the salient visual pattern among the top EEG score ranked images

to refine the initial labels, retrieve additional relevant images, and propagate labels to a much large

image pool.

each (equivalent to 5 − 10 Hz). The subject may be given instructions ahead of time to look for

a specific class of object or simply allowed to choose any object class to their interest on the spot.

An array of EEG electrodes placed on the subject scalp are used to continuously record multiple

channels of neural response signals (e.g., at 1K sampling rate). Spatio-temporal processing and dis-

criminative analysis are performed on the post-stimulus signals to compute a score, which predicts

the confidence in detecting the OOI in each image viewed by the subject. Based on the EEG scores,

images are ranked to form initial results, from which top ranked results are used as pseudo positive

labels and fed to the pattern discovery module for further refinement and prediction. Note that due

to low signal quality and subject variations, the EEG-based OOI detector is pre-trained for each

subject. However, such one-time offline training can be done very efficiently without restricting the

generality of the detector. As the detector is trained to detect shifts in the user’s attention as opposed

to detect the recognition of a specific object, an object class uncorrelated with the test objects can
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(a)

(b)

Figure 6.3: Example images shown to subjects with target objects highlighted with a color bounding

box. a) Satellite imagery with target “helipad”; b) Caltech101 images with targets “dalmatian”,

“starfish” and “menorah”.

be used to train the detector.

The pattern discovery subsystem starts with construction of an affinity graph, which captures

the pairwise visual content similarity among vertices (corresponding to images) and the underlying

subspace structures in the high dimensional space (as shown in the right part of Figure 6.2). Such a

construction process is done offline before user interaction. The small set of pseudo positive labels

generated by the EEG-based interest detector is fed to the initially unlabeled graph as assigned

labels for a small number of vertices, which are used to drive the subsequent processes of label

identification, refinement, and propagation. Bivariate graph transduction technique plays a critical

role here since we will rely on both the initial noisy labels and the large pool of unlabeled data

points throughout the diffusion process. Finally, the propagated label predictions over the entire

graph can be used to generate annotations for every single image in the collection, or to re-rank the

images based on the detection scores. The top ranked results, as shown in Figure 6.6, 6.7, 6.8, and

6.12 (b), are expected to be more accurate (in terms of both precision and recall) than the baseline

of using EEG-based detection alone.
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6.3 Generic Interest Detector via Single Trial EEG Decoding

There has been increasing interest in investigating the application of BCI for image annotation and

search [55][116][81][19]. Motivated by humans’ ability to make very rapid and accurate visual

decisions in “the blink of an eye” [57], we extend the usage of the BCI based image search system

in [55] to design a generic interest detector, where users are instructed to look for specific object

classes in sequences of images presented using the RSVP paradigm. Examples of segments of the

RSVP image sequences used in our experiments are shown in Figure 6.3 9. A crucial aspect of

this particular annotation system is that we can measure brain signals, in real-time, that can be used

to annotate or rank an image given a desired object class. From neuroimaging studies, the neu-

ral signals can be measured non-invasively to detect and recognize objects in rapidly shown image

sequences [86][145]. A very robust signal measurable from the EEG is the P300. It reflects a per-

ceptual “orienting response” or shift of attention which can be driven by the content of the sensory

input stream. Below we briefly describe the method we use to map the EEG into an “interest score”

to be used for annotating the imagery. Given the RSVP paradigm for presenting a rapid sequence

images to the subject, we simultaneously record EEG, using 64 scalp electrodes (Figure 6.4), and

map the activity to an ”interest score” for each image. The interest score is meant to reflect how

much of a user’s attention was directed toward an image. From a neuroscience perspective it can

be seen as the single trial correlate of the P300-related orienting response. The algorithm we use

to decode the EEG and ultimately map it to an interest score has been described previously [55].

Briefly, our approach begins with the linear model

zt =
∑

i
αisit, (6.1)

where sit represents the electrical potential measured at time t for electrode i on the scalp surface,

while αi represents the spatial weights which will be learned based on a set of training data. The goal

is to combine voltages in the electrodes linearly such that the sum zt is maximally different between

two conditions. The two conditions are “target of interest” vs “distracter”. We also assume that this

maximally discriminant activity is not constant but changes its spatial distribution within the second

that follows the presentation of an image, thus we assume a stationarity time T of approximately

9The satellite images are provided by DigiGlobe.
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Figure 6.4: Demonstration of the EEG-based generic interest detector. The scalp surface shown

is monitored with 64 electrodes. The bottom left color scalp maps show the spatial distribution of

the recorded cortical signal at different time intervals. The right part shows the signal decoding

procedure by Hierarchical Discriminant Component Analysis.

100ms. As a result, we find distinct optimal weight vectors, αki for each 100ms window following

the presentation of the image (index k labels the time window):

zkt =
∑

i
αkisit , t = (k − 1)T · · · kT. (6.2)

These different zkt are then combined in an average over time to provide the optimal discriminant

activity over the entire second of data, with the result being our “interest score” e for the image as:

e =
∑

t

∑
k
vkztk . (6.3)

For on-line implementation purposes we use the method of Fisher Linear Discriminants to train

coefficients αik within each 100ms time window. The coefficients vk are learned using penalized

logistic regression after all exemplars have been observed. Because of the two step process of first
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combining activity in space, and then again in time, the above EEG decoding method is termed Hi-

erarchical Discriminant Component Analysis [116]. One advantage of such two-stage hierarchical

modeling is the significant reduction of the number of model parameters that need to be learned

- from about 105 to 104 (a 10 fold reduction). Colored scalp maps indicating spatial distribution

of recorded cortical signal with different time interval are shown in Figure 6.4. It is important to

confirm a strong correlate with the P300 attention orienting neural response, suggested by the neu-

rological studies. Detectors built based on such single trial spatio-temporal EEG signal analysis

have shown very promising results in various tasks such as people detection and image triage [55].

We will discuss the effectiveness of such a detector in detecting diverse objects such as those in

Caltech 101 database in Section 6.5.1.

6.4 Visual Pattern Mining with Noisy EEG Labels

Assume that the generic interest detector outputs the EEG score e = {e1, e2, · · · , en} from a RSVP

sequence X = {x1,x2, · · · ,xn} shown to the subject 10. Usually, the top ranked images based on

scores e do not match the desired OOI due to the noisy nature of EEG signals in practice, as shown

in Figure 6.6, 6.7, 6.8, and 6.12 (a). In Chapter 3, we showed that the existing semi-supervised

methods cannot handle cases with extremely noisy labels. In order to refine the noisy EEG scores,

we apply the bivariate graph transduction method to extract salient image patterns and eliminate

mislabeled samples (by EEG interest detector) among the top ranked images. In other words, an

improved interest measurement f is estimated using an image based representation and initial EEG

scores as {X, e} → f . We formulate the following process of EEG label refinement and visual

pattern mining.

1. Convert the image representation to a visual similarity graph X → G = {V,E,W}, where

vertices V are the image samples X and the edges E with weights W measure the pairwise

similarity of images.

2. Transfer the interest scores to pseudo EEG labels e = {e1, e2, · · · , en} → y = {y1, y2, · · · , yn}.

In other words, a binarization function g(·) is applied to convert EEG scores to EEG labels as

10For an RSVP image sequence, the decoded EEG score vector e = {e1, e2, · · · , en} is usually normalized as ei ∈

[0, 1], i = 1, · · · , n.
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y = g(e), where yi ∈ {1, 0} and yi = 1 for ei > ϵ, otherwise yi = 0. The value ϵ is called

interest level for discretizing the EEG scores.11

3. Apply the bivariate graph transduction framework to define the following risk function

Q(f ,y) = Qfit(f ,y) + γQG(f), (6.4)

which imposes the tradeoff between the smoothness measurement QG(f) of function f over

the undirected graph G and empirical error Qfit(f ,y).

4. Alternatively minimize the above risk function with respect to f and y to finally achieve the

optimal interest score f∗:

f∗ = arg min
f ,y
Q(f ,y). (6.5)

In the following discussion, we follow the above procedure to detail our method for salient visual

pattern mining with noisy EEG labels.

6.4.1 Image Features and Graph Construction

For the image feature extraction, we applied the widely used Bag-of-Visual-Words (BoW) derived

from local key points, which has been shown to be effective in many applications of object and

scene classification. In particular, we use the difference of Gaussian (DOG) and Harris-Affine as

key point detector and SIFT as descriptor [100][105]. To weigh the importance of a visual word to

an image, a soft-assignment strategy for computing the frequency of visual words is adopted [77].

With a constructed visual vocabulary (size is 5000), the sparse representation of BoW features for

each image is extracted. The χ2 distance is often used for the calculation of dissimilarity Dij be-

tween histograms of BoW as in Eq (2.10). We have also used global features (texture and shape

feature) and Euclidean distance for part of the experiments, such as satellite images. Such features

have been shown to be efficacious in previous work [155]. Starting from the distance matrix D,

the graph construction X → G = {V,E,W} is addressed in two steps, graph sparsification and

edge weighting. As discussed in Chapter 2, sparsity is important to ensure that graph-based algo-

rithms remain efficient and robust to noise. The most common algorithm for recovering a sparse

11In practice, the value of ϵ is set dynamically to achieve a fixed-number l of EEG positive labels, i.e.
∑

i yi = l.
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subgraph is the k nearest neighbors algorithm (kNN), where each vertex greedily connects with its

k neighbors with the minimal distance. However, the kNN method typically produces asymmetric

and irregular graphs, where the connectivity is uneven over different parts of the graph. This situ-

ation generates unreliable learning results if X contains very imbalanced class ratios, which occur

very often in realistic image annotation settings, such as the 1.76% prior of target images in our

Caltech 101 experiments. We have shown that b-matched graph is superior to kNN graph in terms

of stability and accuracy for semi-supervised learning approaches [74]. Though the comparison

between kNN and b-matched graph is not provided in this chapter, kNN graphs poorly performed

in our experiments because the OOI is very infrequent in the tested image database.

With the vertex sparsified subgraph, the edge weights wij are estimated by applying heat kernel

function on the χ2 distance Dij as: wij = exp(−Dij

2σ2 ). Realize the samples X might be draw

unevenly, here we re-weight the similarity measure using an adaptive kernel size σ as suggested in

Chapter 2.

6.4.2 Graph-based Visual Pattern Mining

Given the constructed b-matched graph with edge weight W and the vertex degree matrix D, the

normalized graph Laplacian is computed as L = I−D−1/2WD−1/2. Starting from the regulariza-

tion framework in Eq. (6.4), we formulate the following cost function:

E(f ,y) = ∥f − y∥2 + γ∥f∥2G , (6.6)

where ∥f−y∥2 is the empirical square loss with pseudo EEG label y = g(e). The semi-inner prod-

uct ∥f∥G measures the function smoothness over the graph G, which reflects the visual consistency:

∥f∥2G = ⟨f , f⟩ = f⊤ L f . (6.7)

Note that the above problem is formed in a bivariate cost function and the empirical risk is

estimated using unreliable pseudo EEG labels. Similar to the the alternating optimization procedure

developed in Chapter 3, we derive partial differentials with respect to y and f , respectively, and

iteratively update the function values to refine EEG labels. Since f ∈ Rn is a continuous valued

function, the optimal one can be derived by zeroing the partial differential ∇fE:

∂E

∂f
=

∂Q(f ,y)
∂f

+ γ
∂V(f)
∂f

= 2(f − y) + 2γLf = 0

⇒ f∗ = (I + γL)−1y = py, (6.8)
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Algorithm 6.1 EEG label refinement and visual pattern mining
Input: initial EEG scores e;

Graph G and normalized graph Laplacian L;

Constant matrix: p = (I + γL)−1.

Initialization:

The number of pseudo EEG labels l;

Iteration number M = l/2;

Initialize function f with EEG scores f0 = e.

Loop: τ = 0, · · · ,M

Convert EEG scores to labels:

yτ = g(f τ ), satisfying
∑

i y
τ
i = l;

Compute gradient:

∇yτE =
(
∥p− I∥2 + γp⊤Lp

)
yτ ;

Update EEG label with truncated gradient:

yτ+1 = yτ − T (∇yτE);

Recalculate interest level function:

f τ+1 = pyτ+1;

Output: the refined EEG scores f∗.

where p = (I + γL)−1 is a constant matrix in Rn×n and I is identity matrix. Replace function f in

Equation 6.6 by the optimal one f∗ and rewrite the risk function as:

E(y) = ∥p− I∥2∥y∥2 + γy⊤p⊤Lpy. (6.9)

Derive the partial differential∇yE and ignore the constant coefficient:

∂E

∂y
∝

(
∥p− I∥2 + γp⊤Lp

)
y. (6.10)

Note that y ∈ Bn is a binary vector representing class labels. The conventional approaches, such

as zeroing∇yE or standard stochastic gradient is not appropriate for minimizing E with respect to
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the binary-valued variable y. Here, we truncate the gradient ∇yE and discretize it to T (∇yE):

T (∇yiE) =


1 : ∇yiE = max(∇yl

E)

−1 : ∇yiE = min(∇yuE)

0 : otherwise,

(6.11)

where yl,yu are the labeled and unlabeled parts of the label variable y. Then the variable y can be

updated with this truncated stochastic gradient T (∇yE):

y← y − T (∇yE). (6.12)

Intuitively, the above updating by truncated gradient descent will remove one unreliable EEG

label, and meanwhile choose the most suitable one from the remaining data as a new EEG label.

Through iteratively repeating this truncated gradient descent updating, the EEG label set will be

gradually refined to derive visually consistent visual pattern from the top ranked image list. Note

that the gradient truncation approach is different with the method developed in [94], where the

truncated gradient is applied to induce sparsity in the continuous-valued weights for online learning.

Algorithm chart 6.1 presents the summary of the proposed method for EEG label refinement and

visual pattern mining. Compared with the bivariate framework developed in Chapter 3, here we

apply the following modifications. First, the BCI based image retrieval application is formulated as a

ranking problem, instead of the standard classification problem in our previous bivariate framework.

Second, the initial noisy labels are given in the form of continuous scores acquired from the EEG

interested detector, instead of the binary-valued label information. Both these two modifications are

critical in adapting the the approach to the hybrid neuro-computer vision system.

6.5 Experiments

We tested the developed BCI-VPM annotation system on the image data from various domains,

including Internet image collections (i.e. Caltech 101) and satellite imagery (DigiGlobe images), to

show the scalability and generalization. The detailed experimental setting and performance evalua-

tion are reported below. The experimental scenario is that a user is instructed to look for a certain

OOI in each presentation of an RSVP image sequence. The BCI interest detector generates prob-

ability based EEG confidence scores, which measure the relevance of the presented image to the
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Figure 6.5: The summary of the experimental results on Caltech 101 dataset. The performance

is evaluated in terms of average precision (AP). A total of four subjects and three OOI are tested

(12 trials of RSVP presentations). The APs of random sequence, EEG detector and BCI-VPM

refinement are recorded. The yellow color table cells highlight the significant improved trials (8 out

of 12).

instructed OOI. The estimated EEG score are then fed into the subsystem of visual pattern mining

for refinement and propagation. During these tests, EEG data was recorded at 2048 Hz using a 64-

electrode EEG recording system (Biosemi, BrainProduct, Germany) in a standard (10-20) setting.

6.5.1 Caltech 101 Object Annotation

Data filtering: Caltech 101 is a very challenging dataset for EEG decoding because it contains fairly

common and diverse object categories with large intra class variations. Moreover, images greatly

vary in both resolutions and scales. This can significantly affect the user’s detection performance

during the EEG signal decoding. To design a practical set of intial EEG experiments, we first filter

the object categories by selecting 62 categories that provide 3798 images that have similar scales

and resolutions. When displayed during the RSVP, these images are re-scaled to a size of 240×240

to achieve the desired uniformity in view.
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(a)

(b)

Figure 6.6: The experimental results (top 20 images) of the trial from Subject A on Caltech 101

RSVP with OOI as Dalmatian. a) ranking by interest scores from EEG detector; b) ranking by

scores after label refinement.

Experimental scenario: As it is impractical to require a user to perceive 62 OOI simulta-

neously, we also narrowed th choice of target categories that a user has to detect to one specific

target each time. Specifically, users were instructed perceive Starfish, Dalmatian, and Chande-

lier/Menorah 12 for each pass of RSVP (with the target order being varied between subjects). Notice

that this simplification still did not reduce much of the challenge due to the diverse object categories

and sparse targets. For example, “Starfish” and “Dalmatian” only account for 2.26% and 1.76%

of the data set, respectively. For the BCI interest detector training, we use two popular objects,

Soccer Ball or Baseball Gloves as OOI to train the EEG-based detector. Most subjects are familiar

with such objects without the need of special instruction and thus they serve as adequate common

patterns that can catch user’s attention. The Caltech 256 database was used to select training images

to differentiate between the training and testing images.

Image database down sampling: Furthermore, in order to show the scalability of the proposed

method, we randomly partition the 62-object database into two parts X = {Xs,Xu}. The subset

12The experiments were initially designed to annotate the object class Chandelier. Realizing the ambiguity between

Chandelier and Menorah due to visual similarity, we decided to treat the samples from these two object categories as the

same class in these experiments.
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(a)

(b)

Figure 6.7: The experimental results (top 20 images) of the trial from Subject B on Caltech 101

sequence with OOI as Starfish. a) ranking by interest scores from EEG detector; b) ranking by

scores after label refinement.

Xs containing 1000 images is randomly ordered to form a RSVP image sequence shown to all test

subjects. The RSVP image sequences were shown in 10 blocks of 100 images each, with images

shown at 6Hz within each block. The other subset Xu containing a total of 2798 images is treated as

EEG-unlabeled samples in later label refinement stage by setting their EEG scores as eu = 0⃗. This

strategy shows that with only partial images processed by the BCI detector, the proposed BCI-VPM

system can extend the usage of the BCI annotation to the images that are not processed by BCI

interest detector. This merit is extremely critical because it provides the capability and scalability to

annotating a large collection of images.

Results: Four subjects are drawn from undergraduate and graduate students, staff and faculty

that were not digital media analysts, but were familiar with EEG work. These subjects participated

in the experiments and were instructed to identify three object classes from RSVP presentations.

A total of 12 trials of RSVP presentations are evaluated in terms of average precision (AP), as

shown in Figure 6.5. AP is a performance metric commonly used in information retrieval [140]. It

approximates the area under the precision-recall curve. The experiments show promising results.

For example, the BCI detector achieved 33.73% and BCI-VPM label refinement further improved

to 69.1% for subject A annotating “Dalmatian”. Among the 12 trials of tests, 8 trials achieved
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(a)

(b)

Figure 6.8: The experimental results (top 20 images) of the trial from Subject C on Caltech 101

sequence with OOI as Chandelier/Menorah. a) ranking by interest scores from EEG detector; b)

ranking by scores after label refinement.

significant performance improvement. Even for some tough cases, where the BCI detector only

obtained less than 10% AP, the label refinement process still significantly bootstraps the annotation

accuracy. Figure 6.6, 6.7, and 6.8 showed the top 20 images from the BCI detector and BCI-

VPM label refinement from three different test subjects, where significant precision gain can be

observed. In Figure 6.9, we analyze the precision-recall(PR) curves of one of the successful case

(Subject A annotating “Dalmatian”), which further confirms the efficiency of the proposed BCI-

VPM annotation system.

However, there are some cases, where possibly due to users’ misunderstanding of the OOI or

some uncontrolled distractions, the BCI detector generated very poor performance, typically less

than 7% AP. In those cases, the top ranked images do not contain a majority consistent pattern.

Therefore, the subsequent label refinement process is unable to extract the salient visual patterns.

To analyze the sensitivity of the combined BCI-VPM accuracy to the quality of the front end BCI

detection precision, we further evaluate the effectiveness of the BCI-VPM system with a varying

number of true positive samples contained in the top images (e.g., 20) of the initial EEG-based

ranking. The positive images are randomly drawn from the target category and the negative images

are randomly drawn from the database. Average performances of 200 random runs per category
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Figure 6.9: The performance evaluation on Caltech101 image sequence by Precision-Recall (PR)

curve (the trial of Subject A annotating “Dalmatian”).

and the average results among the three targets are shown in Figure 6.10. The results confirm that

the combined BCI-VPM approach can effectively improve the precision by using the EEG detector

alone. They also confirm the monotonic relationship between the final accuracy and the initial EEG

detection accuracy. For example, the average top-20 precision is improved from 20% to 35% and

from 30% to about 55%. Such performance curves can be used to determine the required accuracy

for the initial EEG component given a target detection performance for the final combined system.

The results can also be used to roughly measure the visual pattern complexity and the difficulty

in re-ranking the three targets - Starfish is more difficult than Chandelier/Menorah, which is in

turn more difficult than Dalmatian. Such ordering matches the intuitive expectation of the relative

complexities of the object classes.
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Subject Method AP-30 AP-60 AP-100 AP-ALL

A EEG score 19.76 15.83 14.9 30.97

BCI-VPM score 50.19 32.65 25.46 37.89

B EEG score 8.76 9.79 9.56 23.71

BCI-VPM score 87.31 63.29 46.07 57.41

C EEG score 12.70 19.58 16.54 29.62

BCI-VPM score 90.82 63.30 41.21 53.66

D EEG score 10.68 11.87 11.75 24.45

BCI-VPM score 91.87 60.62 40.24 52.70

Table 6.1: The performance comparison of annotation performance of EEG interest detector and

the BCI-VPM refined EEG score in terms of average precision of top 30, 60, 100 ranked images

and entire satellite image dataset (the number of pseudo EEG labels l = 30).

6.5.2 Target Annotation in Satellite Imagery

The other type of RSVP image sequence shown to test subjects consists of blocks of chipped images

taken from satellite imagery with each chip potentially containing a target, as shown in Figure 6.3

(a). Among the 1051 samples in the RSVP sequence of satellite imagery, 105 images have a target

“helipad” centered. This sequence is displayed to the subjects with a speed of 10 Hz, i.e. 10

images per second. A total of 4 subjects were tested with single trial of presentation of RSVP.

The performance is evaluated in terms of average precision of the top 30, 60, and 100 and entire

dataset of the BCI interest detector and the final refined results, as shown in Table 6.1. Compared

with the Caltech 101 experiments, Table 6.1 shows much more consistent performance gain for all

trials. The reason lies in that the targets of “helipad” have salient visual clue of “H” symbol, which

easily attracts users’ attention. In addition, the non-target image blocks are very noisy and mostly

unmeaningful, which reduces level of distraction.

Since the value of l is applied for truncating the EEG scores to create initial binary labels, it

is necessary to evaluate the performance using different l. We vary the value of l from 20 to 50
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Figure 6.10: Simulated evaluation of the dependency of the BCI-VPM re-ranking performance (in

terms of top-20 precision) on the performance of the initial EEG detection. Individual curves for

different classes (Dalmatian, Chandelier/Menorah, Starfish) and the average results across three

categories are shown.

and evaluate the performance in terms of mean average precision (MAP) (averaging among four

subjects). As shown in Figure 6.11, a fairly stable performance range is with the value of l in

[30, 50]. As an illustration, Figure 6.12 shows the test results from Subject C. The sub-figure (a)

gives the top 20 image blocks by ranking the original EEG interest scores e and the sub-figure (b)

shows the top 20 images from the ranking of the refined interest score f .

6.6 Comparison with Prior Works and Unique Contribution

Despite the growing interest in BCI, few works can be found in using BCI for image annotation and

search. We summarize the ideas of the prior works and point out the unique contributions of the

work presented in this chapter.

The pioneer system (called Cortically-Couple Computer Vision, C3Vision) using EEG-based

neural measurement in image target detection was first reported in [55], and further elaborated

in [126]. Its RSVP visual presentation paradigm and spatio-temporal discriminant analysis ap-
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Figure 6.11: The Mean Average Precision of top 30, 60, 100, and entire satellite image set using

different numbers of EEG scores as initial labels.

proaches are extended to develop the interest detector in this chapter. Compared to the current

work, it focused on less diverse object classes (e.g., people vs. background) and had not been

combined with the pattern discovery subsystem for label refinement and propagation.

Recently, a supervised learning approach (called Human Aided Computing, HAC) was proposed

in [133] to develop an EEG-based classifier for recognition of distinct objects in images, such as

face vs. no-face, or animals vs. inanimate objects. The proposed method showed performance

improvement when neural response measurements from multiple trials (i.e., same images presented

multiple times) and/or multiple subjects were combined. However, the technique is limited due to

the requirement of predefined object classes and ground truth labels for training the object detectors.

In contrast, our work focuses on robust detection using only single trial EEG signals and scalability

to detection of arbitrary object classes. The only training session is done offline only once per

subject using an object class that is independent of the test targets.

Computer vision component was added to the HAC method (HAC-CV) in [81] to fuse the EEG

signals and the image features in the same target classifier. Multiple trials were used and improved

performance was reported compared to detection using EEG signals alone. Again, the method is

restricted as target classes are predefined, labeled, and trained in a supervised fashion.
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(a)

(b)

Figure 6.12: The experimental results of Subject C on “helipad” target RSVP, showing the top 20

ranked images . a) ranking by original EEG scores; b) ranking by the BCI-VPM refined interest

score.

Other works have also explored the use of fMRI imaging to decode brain state [107][83] [108].

Such approaches enjoy a higher spatial resolution at the cost of lower temporal throughput. In our

work, we focus on the system utilizing a non-invasive continuous recording BCI framework based

on EEG. Table 6.2 lists the comparison between our proposed method and the prior works discussed

above. The key features and unique contributions of the proposed system include:

. Generality: No predefined target classes and annotations are needed.

. Robustness: The combination of BCI and pattern discovery results in greatly improved ac-

curacy in generic object detection.

. High-throughput: Only a small subset of images need to be viewed by the subject via a

single trial setting. The results are automatically propagated over to the rest of images in a

large collection.

In addition, our proposed system can handle rare target classes with a prior as low as 1.8% (as

demonstrated in Section 6.5.1) at a high speed (5-10 images per second).
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System C3Vision HAC HAC-CV BCI-VPM

System Structure pure BCI pure BCI hybrid BCI+CV hybrid BCI+CV

EEG Trials single trial single/multiple trials multiple trials single trial

single subject single/multiple subjects single/multiple subjects single subject

Object Class people vs. face vs. animal face, animal, general object

background animal vs. inanimate and inanimate

Target Frequency 2% 25% 50% ∼ 2%

Manual Labels No Yes Yes No

RSVP Speed 5− 10 HZ 1− 2HZ 1− 2HZ 5− 10HZ

Learning Method unsupervised supervised supervised unsupervised

Table 6.2: Comparison of the existing BCI-based image analysis system, including C3Vision [55],

HAC [133], HAC-CV [81], and our proposed BCI-VPM image annotation system.

6.7 Summary and Discussion

In this chapter, we propose an integrated system that combines neural signal processing for brain

state decoding and content analytics for improving the performance of image retrieval systems.

The brain state decoding subsystem utilizes advanced spatio-temporal analysis of neural response

signals measured by EEG in a single trial setting. The content analytics component implements

the graph-based diffusion method (as described in earlier chapters) that is capable of handling rare

targets, small label size, and noisy conditions. The former has unique power in recognizing generic

target classes, while the latter is suitable for high-throughput processing. The proposed system

explores the synergy of these two subsystems and has shown promising performance in detecting

generic target classes in a high throughput fashion.

Several aspects of the system merit further investigation. First, in the current setting, the sub-

jects are instructed to look for certain object classes during the image viewing session. It will be

interesting to relax this and allow subjects to “lock in” on any object class fitting his/her interest

on the fly without any instructions. This may result in greater ambiguity in users’ expectation and
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perception of targets and less consistent target-specific neural responses. Second, the output of the

graph-based pattern discovery can be used to further assess the quality of the EEG interest detector

and provide a closed-loop feedback mechanism to incrementally update the detector. The re-ranked

images could also be used to adjust the order of image presentation in the RSVP stream in order to

improve sensitivity/specificity of the neural response signals. Prediction results from the updated

neural signal decoder can be used as input to start the graph-based visual pattern mining process

again, forming an iterative loop for continuously enhancing the image target retrieval performance.

Such iterative closed-loop system also offers an excellent framework allowing the study of the in-

teresting issues involved in the co-learning processing between the human vision, the EEG neural

decoder, and the machine learning for image target detection.
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Chapter 7

Conclusions

7.1 Summary and Contributions

This thesis is dedicated to developing advanced semi-supervised learning techniques for the applica-

tions of visual search and retrieval. We focus on two major techniques: bivariate graph transduction

and semi-supervised hashing learning. Both of these methods can be either used for general semi-

supervised learning tasks or incorporated in practical visual search systems. In particular, bivariate

graph transduction aims at improving search accuracy and providing a suitable framework for incor-

porating user feedback, while semi-supervised hashing generates efficient and compact hash codes

for searching large-scale image and video databases.

The main contributions of this thesis include both algorithm design and practical system devel-

opment. Specifically, we developed the following machine learning algorithms:

a. Bivariate Graph Transduction: We developed a novel bivariate regularization framework

for graph-based semi-supervised learning. Such bivariate formulation allows us to treat input

labels as part of the optimization variables and thereby alleviate the issue of label sensitivity.

Theoretically, we proved that this new formulation is equivalent to a constrained Max-Cut

problem. In addition, we designed an efficient solution by alternatively minimizing the cost

function with respect to two variables, i.e. labels and prediction functions, which can be

regarded as a greedy gradient-based Max-Cut solution from the viewpoint of graph cut. Fi-

nally, two advanced extensions, label tuning algorithm and multi-graph transduction, were

developed to achieve even higher performance in real applications.
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b. Semi-Supervised Hashing: Targeting general approximate nearest neighbor search prob-

lems, we proposed a semi-supervised paradigm to learn efficient hash codes which exploit

information of semantic similarity/dissimilarity among the data points. We showed this hash-

ing technique is particularly useful for searching large-scale visual databases since it can

help overcome the well-known semantic gap by leveraging the given information about se-

mantic consistency among a small set of images. Starting from this semi-supervised hash-

ing paradigm, we developed three different methods for generating compact and robust hash

codes, and an extension for producing hashing codes in an unsupervised manner.

To handle real applications, we applied the bivariate graph transduction algorithm and developed

the following image search systems:

1. Interactive Image Search: A general system for interactive image search, named Columbia

TAG (Transductive Annotation by Graph) system, was developed to provide a suitable frame-

work for keeping user annotation in loop and incorporates relevance feedback. The empirical

study demonstrated that this interactive search mode can significantly reduce the workload of

annotation and achieve satisfactory performance with only a few user labels. It can be used

as a fast search system alone, or as a bootstrapping system for developing additional target

recognition tools needed in critical image application domains. For instance, we have ex-

tended the TAG system to microscopic image analysis, which shows promising performance

in rapidly discovering different cellular phenotypes.

2. Automatic Image Search: We apply the bivariate framework to design an automatic mode for

improving web image search. The top returned search results are treated as labeled positive

samples with potential labeling errors. Then the label tuning algorithm, i.e., LDST, is applied

to refine labeled set and propagate label information over the entire image collection. The

experimental results over a collection of Flickr images confirm the significant performance

gain over both text search baselines and other search re-ranking methods.

3. Hybrid Image Search: A unique image search platform was developed through incorporat-

ing the proposed graph transduction approach with an Electroencephalogram (EEG) based

brain computer interface (BCI). This hybrid paradigm marries the strengths of human vision

and machine learning systems in a unique and synergistic way. Extensive experiments over
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satellite imagery and Web images demonstrate the promising results for detecting generic tar-

gets in a high throughput fashion. To the best of our knowledge, this hybrid system is the first

solution for combining human vision and computer vision systems in retrieving image targets

of arbitrary classes.

7.2 Future Work

Despite the exciting results shown in this thesis, there are many open issues associated with the two

developed methods, i.e. bivariate graph transduction and semi-supervised hashing. In the following,

we discuss a few topics for future work.

1. Semi-supervised graph construction: Most work on GSSL has focused on label prediction,

and efforts on graph construction have been relatively limited [74][98], as mentioned in Chap-

ter 2. Most of the current graph construction methods rely on certain heuristic criteria under

an unsupervised setting. It will be desirable to combine the available label information asso-

ciated with the given data to design proper graphs in a semi-supervised fashion, similar to the

way they are used to optimize the label predictions.

2. Kernelized semi-supervised hashing: Kernel methods haven been proved critical for gen-

eral learning problems, such as support vector machines. Previous work demonstrates that

investigating the power of kernel learning can help improve the performance of locality sen-

sitive hashing [63][72][90]. It is no doubt that introducing kernel methods into the proposed

semi-supervised hashing paradigm can increase the capabilities of ANN search beyond the

Euclidian space.

3. Combining hashing and graph-based learning: Hashing and graph-based learning are com-

plementary in terms of scalability and accuracy. Applying hashing techniques can help rapid

construction of large-scale sparse graphs. Efforts for large-scale semi-supervised learning

have started to emerge recently [49][99]. The joint problem of hashing and graph-based

learning remains an exciting, yet unexploited, direction for scaling up semi-supervised clas-

sification methods.



141

Part I

Bibliography



BIBLIOGRAPHY 142

Bibliography

[1] D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs, 2002.

[2] R. K. Ando and T. Zhang. Two-view feature generation model for semi-supervised learn-

ing. In Z. Ghahramani, editor, Proceedings of the 24th international conference on Machine

learning, pages 25–32, Corvalis, Oregon, June 2007. ACM.

[3] A. Argyriou, M. Herbster, and M. Pontil. Combining graph laplacians for semi–supervised

learning. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems 18, pages 67–74. MIT Press, Cambridge, MA, 2006.

[4] A. Argyriou, C. Micchelli, and M. Pontil. Learning convex combinations of continuously

parameterized basic kernels. In Proceedings of the 18th conference on learning theory, pages

338–352. Springer, 2005.

[5] A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with markov ran-

dom walks. In Z. Ghahramani, editor, Proceedings of the International Conference on Ma-

chine learning, pages 49–56, Corvalis, Oregon, USA, June 2007.

[6] F. R. Bach and M. I. Jordan. Learning spectral clustering, with application to speech separa-

tion. The Journal of Machine Learning Research, 7:1963–2001, 2006.

[7] C. Bakal, J. Aach, G. Church, and N. Perrimon. Quantitative Morphological Signatures

Define Local Signaling Networks Regulating Cell Morphology. Science, 316(5832):1753,

2007.



BIBLIOGRAPHY 143

[8] M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory

and practice. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 89–96. MIT Press, Cambridge, MA, 2005.

[9] S. Baluja and M. Covell. Learning to hash: forgiving hash functions and applications. Data

Mining and Knowledge Discovery, 17(3):402–430, 2008.
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Appendix A

b-Matching via Belief Propagation

Given an adjacency matrix K ∈ Rn×n of a graph G = (X,E) with n nodes X and O(n2) edges

E, the maximum weight b-matching problem finds a subgraph of Gb with maximum weight while

constraining the number of edges for each vertex to exactly b. It is a direct generalization of the

maximum weight unipartite matching problem (b = 1) which can be solved by Edmonds’ algo-

rithm in polynomial time O(n3) [43]. In [13], the 1-matching problem was formulated with a

discrete probability distribution and solved by max-product loopy belief propagation (BP) to re-

cover the maximum a posteriori (MAP) assignment in O(n3). In [67], the extension of loopy belief

propagation from 1-matching to b-matching was provided and a proof of convergence in O(bn3)

was included. Furthermore, various implementation issues and changes to the canonical message

passing rules of belief propagation were provided to improve computational efficiency (standard

message passing involves messages of an exponential size) leading to an efficient solution for the

b-matching problem. Here we present an algorithm in the bipartite case where the nodes in the

graph are split into two sets a priori before being b-matched. The extension to the unipartite case is

straightforward simply by modifying the algorithm such that messages are passed between all pairs

of nodes instead of across the bipartition only.

Assume ui and vj are two vertices on the graph and b-matching returns the neighbor vertex

sets N (ui) and N (vj) for ui and vj , respectively. The combinatorial problem in Eq. ( 2.8) can be

written as:

max
N
W(N ) = max

N

n∑
i=1

∑
vk∈N (ui)

Kik +
n∑

j=1

∑
ul∈N (vj)

Klj (A.1)



APPENDIX A. B-MATCHING VIA BELIEF PROPAGATION 162

For each vertex, two random variables are defined as zi ∈ Z and sj ∈ S and zi = N (ui) and

sj = N (vj). Hence we can have the following potential functions:

ϕ(zi) = exp

 ∑
vj∈zi

Kij

 (A.2)

ϕ(sj) = exp

 ∑
ui∈sj

Kij

 (A.3)

ψ(zi, sj) = ¬(vj ∈ zi ⊕ ui ∈ sj). (A.4)

By multiplying the above potential functions and pairwise clique functions, the objective function

for weighted b-matching problem can be formulated as a probability distribution via p(Z, S) ∝

exp(W(N )) [34], where the joint distribution can be expressed as:

p(Z, S) =
1
Z

n∏
i=1

n∏
j=1

ψ(zi, sj)
n∏

k=1

ϕ(zi)ϕ(sj) (A.5)

Max-product message passing on the above distribution is guaranteed to converge to the true max-

imum in O(n3) time on bipartite graphs, the proof provided in [67] is omitted here for brevity. In

practice, convergence is much faster than this worst case. Furthermore, [129] prove that, under mild

assumptions on the matrix K, belief propagation for matching problems can converge in O(n2) for

dense graphs. If the graph is sparse, convergence is typically O(|E|) or proportional to the number

of edges in the graph.
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Appendix B

Multi-Class Graph Transduction as a

Max K-Cut Problem

Here, we briefly described that K-class bivariate graph transduction is equivalent to a Max K-Cut

problem. If the number of classes isK, the label variable Y is a n×K matrix denoting classification

results, where Yij = 1 indicates that vertex xi is associated with label j. Then, we can rewrite the

objective function in Eq. ( 3.8) as

Q(Y) =
1
2
tr

(
Y⊤AY

)
=

1
2

∑
k

Y⊤
.kAY.k (B.1)

Let yk = Y.k is the column vector from Y. Let non-zero elements in yk denote the vertices in

subset Sk, where k = 1, 2, · · · ,K, S1 ∪ S2 ∪ · · · ∪ SK = VA, and Sm ∩ Sn = ∅ if m ̸= n. Then

the above objective function is equivalent to

Q(y1,y2, · · · ,yK) = 1
2

∑
k y⊤

k Ayk =
∑

xi,xj∈Sk
i<j

Aij

=
∑
i<j

Aij −
K−1∑
m=1

K∑
n=m+1

∑
xi∈Sm
xj∈Sn

Aij (B.2)

Therefore the original minimization problem equals to maximize the sum of the weight of the edges

between the disjoint sets Sk, i.e., maximum K-cut problem.

max
K−1∑
m=1

K∑
n=m+1

∑
xi∈Sm
xj∈Sn

Aij (B.3)
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