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ABSTRACT
Integrated Spatial and Feature Image Systems: Retrieval, Analysis and

Compression
John R. Smith

This thesis presents new methods for integrating spatial and feature information in order to improve
systems for image retrieval, analysis and compression. In particular, this thesis develops and demonstrates
an integrated spatial and feature query paradigm for image retrieval, a general framework for extracting
spatially localized features from images using histogram and binary set back-projections, a system for image
compression and analysis based upon a joint-adaptive space and frequency (JASF) graph, and a representation
of texture based upon spatial-frequency energy histograms.

These techniques are similar in their exploitation of images as two-dimensional, non-stationary signals. The
visually important information within images is often con�ned to spatially localized regions, or is represented
by the spatial arrangements of these regions. By developing processes that analyze and represent images in
this way, we improve our capabilities to develop powerful content-based image retrieval and image compression
systems.

This thesis examines several image system applications, such as image and video storage and retrieval,
content-based image query, adaptive image compression and image analysis. We demonstrate that by using the
proposed integrated spatial and feature approaches, we improve image system performance in each application
over non-integrated methods.
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Chapter 1

Introduction and Motivation

1.1. Visual information retrieval

The tremendous growth in the numbers and sizes of digital image and video collections is making necessary
the development of tools for indexing this unconstrained imagery. In order to provide a system with image
and video search capabilities, content-based visual query (CBVQ) techniques are being developed which index
the visual features of the images [102, 3, 112, 105, 156, 146] and videos [153, 45].

The objectives of CBVQ are, in the absence of image understanding, to obtain and utilize discriminants
that are useful in conducting similarity queries for visual information. Recent e�orts of CBVQ have focused
on a few speci�c visual dimensions, such as color, texture, shape, motion and spatial information. However,
without integrating these visual dimensions, the current content-based techniques have limited capacity to
characterize the content of the visual imagery and to satisfactorily retrieve images.

This thesis presents a powerful enhancement of the recent CBVQ techniques which integrates spatial and
feature information in order to improve systems for image retrieval, analysis and compression. In particular,
we develop several new processes that include:

1. Analysis { a technique for extracting spatially localized color and texture regions from images using
histogram and binary set back-projection,

2. Retrieval { a system for integrating spatial and feature querying of image databases, and

3. Compression { a new data structure and algorithm for analyzing and compressing images, which is
based upon a joint-adaptive space and frequency graph.

These techniques are similar in their exploitation of images as two-dimensional, non-stationary signals. The
visually important information within images is often contained within spatially localized regions, or is rep-
resented by the overall existence and spatial arrangements of these regions. By developing processes that
analyze and represent images in this way, we improve our capabilities to develop powerful content-based
image retrieval and compression systems. This thesis presents several new techniques for integrated spatial
and feature image systems and demonstrates improved performance in various applications.

1.1.1 Why unconstrained imagery?

The type of visual information referred to in this work is considered to be \unconstrained" because it is not
restricted to a particular domain of imagery. As such, we do not utilize any of the domain-speci�c constraints,
which are often components of traditional pattern recognition solutions [40]. The development of systems
that analyze, compress and retrieve unconstrained imagery is extremely relevant due to the enormous amount
of this type of imagery that is accessible and is accumulating.

Consider that everyday we view various forms of visual media, such as television broadcasts, photographs,
graphics, animations and videos. These media are provided and stored increasingly in digital form. For
example, the World-Wide Web (WWW) is one such source for viewing hundreds of gigabytes of digital visual
information [143]. While there is great accessibility to large stores of digital imagery, new systems need to be
developed to better manage, index and search for the visual information.

Since there is no restriction on the content of this visual information, we develop a class of techniques
for image systems which does not depend on the content or domain of imagery. However, the techniques we
propose are applicable in a variety of particular domains of imagery such as satellite images [28, 87, 82, 92],
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medical images [83, 79, 108, 135], environmental images [105] and geographical images [16, 15, 21]. In these
domains, representations of color and texture that are analogous to those for photographic images do exist.
Furthermore, the advantages in providing techniques for spatial and feature analysis of the type de�ned in
this thesis are also clear.

1.1.2 Image and video storage and retrieval systems

We formulate the basic problem that is addressed in this thesis as the search and retrieval of unconstrained
images and videos by using visual features. We consider the framework of the typical image and video storage
and retrieval (IVSR) environment, which is depicted in Figure 1-1.

We assume that the images and videos are stored in a digital form { in a database, digital archive, �le
system or distributed network. We consider collections that contain on the order of 100 to 10,000,000 images
and videos. In the search and retrieval environment, users located on a network (i.e., local area network,
intranet, internet, WWW, or dial-up) search the collections to �nd particular images and videos. Several
example applications of IVSR include:

� stock photography distribution [3],

� Web-based image and video search engines [148, 147, 47, 70],

� on-line publication of multimedia documents [173, 88, 64],

� video-on demand (VOD) [130, 38, 88, 19],

� video editing [96, 95] and video re-purposing [37],

� on-line news, on-line sports and other types of photo-journalism, and so forth.

User

Interface

Database/

Query

Indexing

fv

Feature

Storage

Extraction

CompressionBrowsing/
Retrieval

fv

fv

Network

Figure 1-1: Image and video storage and retrieval.

In a straight-forward implementation of the picture database management system (PDBMS), text, an-
notations, and other attributes and records allow the users to search using information related to the pic-
tures. For example, textual and keyword annotations may include descriptions of the subjects of images,
or a photographer's name, date, and so forth. This meta-data is often stored and accessed by using tradi-
tional relational database management systems (RDBMS) or object-oriented databases (OODB) (for exam-
ple, [21, 16, 15, 161, 28]).

However, this approach provides for limited capacity for retrieving visual information. For one, the
associated meta-data cannot fully describe the contents of the imagery. Very often, the images and videos
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are annotated manually, which is extremely time-consuming and human-resource intensive, especially if the
archive is large. In general, this approach is not scalable to large archives. Furthermore, it does not anticipate
the myriad of ways in which the content of the visual information is of interest to the users.

To enhance this approach, content-based visual query (CBVQ) techniques use the visual features of the
images and videos in the search process. The CBVQ systems extract and index visual features such as
colors [159, 53, 102, 158, 66, 157], textures [117, 51, 92, 118], shapes [72, 135, 169, 85] and motions [137, 13].
The user constructs visual queries using graphical interface tools (for example [71, 151, 142]), or provides
examples of images and videos in order to search for and retrieve the desired items from the archive [3, 45].

Other important components of the system include: image and video compression for e�ciency in storage,
browsing and transmission [149], feature access [93, 17], progressive retrieval [109] and viewing [123], and
the use of icons [22, 37, 162, 148]. The systems may also provide tools for browsing and navigating through
the archive using the visual features [177] and for learning from interaction with the user [97]. For example,
relevance feedback techniques [7, 77] guide the system and the user to the desired visual information.

1.2. Problem de�nitions

The techniques developed in this thesis provide several strategies for computing image queries that specify
the features, sizes and arbitrary spatial layouts of regions, which include both absolute and relative spatial
locations. We also address several special case spatial queries involving adjacency, overlap and encapsulation of
regions. Figure 1-2 summarizes the relationship of these query methods. We demonstrate that the integrated
spatial and feature approach improves image query capabilities over non-spatial, content-based approaches.

CBIQ SQ

abs SQCBRQ rel SQ

SaFe

Figure 1-2: Taxonomy of image query methods: CBIQ = content-based image query, CBRQ = content-based
region query, SQ = spatial query, abs SQ = absolute spatial query, rel SQ = relative spatial query, SaFe =
spatial and feature image query.

1.2.1 Content-based visual query

The objective of content-based visual query (CBVQ) is to e�ciently �nd and retrieve those images from a
database that are most similar to the user's query image. CBVQ is di�erent from a typical database query
in that it entails a similarity search. There are two forms of CBVQ:

� K-nearest neighbor query, which retrieves the K images that are most similar to the query image, and

� range query, which retrieves all images that are within a �xed similarity bound, Df � �f , from the
query image.

The di�erence is subtle, but it impacts both the strategies for computing queries (see Section 4.5.1) and the
interaction with the user. We further distinguish between two uses of CBVQ: content-based image query
(CBIQ) and content-based region query (CBRQ).
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1.2.1.1 Content-based image query

Problem 1 Content-based image query (CBIQ). K-nearest neighbor query. Given a collection C of
N images and a feature dissimilarity function Df , �nd the K images IT 2 C with the lowest dissimilarity,
Df (IQ; IT ), to the query image IQ.

In this case, a query always returns K images, which are typically sorted by lowest dissimilarity to the
query image. The query computation needs to be more thorough than the bounded CBVQ in order to consider
images that are outside of the similarity bounds in providing the K matches.

Problem 2 Bounded content-based image query. Range query. Given a collection C of N images and
a feature dissimilarity function Df , �nd the images IT 2 C such that Df (IQ; IT ) � �f , where IQ is the query
image and �f is a threshold of feature similarity.

In this case, a query returns any number of images depending on the bounds de�ned by the threshold of
feature similarity, �f . The formulation of CBVQ as a bounded similarity search is particularly important in
the investigation of techniques for speeding up the search process. For example, the criteria for evaluating
query speed-up techniques include the requirement that no images from within the similarity bounds are lost
in the search process (no false dismissals, see Section 4.5.1).

We explore both types of CBVQ: unbounded and bounded similarities searches. We note that for any
unbounded query there is an equivalent bounded query with some dissimilarity threshold, which returns only
the top K matches. As such, we will only di�erentiate between the two formulations when necessary.

In order to provide for fast comparison of images, as illustrated in Figure 1-3, the CBVQ system typically
extracts, stores and indexes the features from the images o�-line. For example, color histograms, which
describe the distribution of colors in an image, are pre-computed, stored and used as a basis for measuring
the similarity of images in [45, 3, 145].

Feature
Extraction

Feature
Extraction

D f f q f t,( )

f tf q

query image target image

compare

query features target features

ITIQ

Figure 1-3: Content-based image query (CBIQ).

The dissimilaritymetric is devised to produce small values for similar images and large values for dissimilar
images. However, the performance of this method is limited by the quality of the feature extraction. Color
histograms and other similar globalmeasures of image \content" provide insu�cient information for comparing
images.

The process of CBVQ has been investigated in several recent e�orts: IBM's QBIC project [102], MIT's
Photobook system [112], the Chabot image retrieval system [105], and Virage's commercial image retrieval
system [3]. These systems use feature-based approaches for indexing visual information. QBIC has investi-
gated features such as color, texture and shape. Photobook has investigated texture, shape and facial features.
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QBIC has placed a primary research focus on devising strategies for indexing the features [59]. On the other
hand, Photobook has investigated new methods for representing image features which not only provide for
discrimination of images, but also preserve their semantic information.

When the image database is large and the image feature representations are complex, the exhaustive search
of the database and computation of the image similarities is not expedient. Several recent techniques have been
proposed to speed-up image retrieval. Swain and Ballard [159], Stricker and Orengo [157] and QBIC [102] pre-
compute and utilize only simple and fairly compact image features. Petrakis and Faloutsos [114] and QBIC [44]
use a combination of data reduction techniques and e�cient indexing structures, one such structure being the
R-tree [58], to speed-up image retrieval. QBIC [59] has also investigated e�ective pre-�ltering techniques [59]
for reducing the amount of computations at query time. This thesis also presents two new techniques for
reducing query computation: binary set bounding (BSB) and query optimized distance (QOD) computation.

However, recent approaches for CBVQ have neglected an important criteria for similarity: region and
spatial information and spatial relationships.

1.2.1.2 Content-based region query (CBRQ)

In a content-based region query (CBRQ), the images are compared on the basis of their regions. This di�ers
from the previous formulation of CBVQ in Problem 1, which uses global feature measurements from the
images. However, the CBRQ can be viewed as an extension of CBVQ in that a �rst stage of the query
computes the CBVQ on regions instead of images. Then, the �nal stage of the query determines the images
corresponding to the regions and computes the overall image distance by weighting the region distances.

Problem 3 Content-based Region Query (CBRQ). Given a collection C of N images and feature dis-
similarity function Df , �nd the K best images IT 2 C that have at least R regions such that Df (IRQ ; I

R
T ) � �f ,

where IRQ is the query image with R regions and �f is a threshold of feature similarity.

CBRQ is improved by adding spatial information into the query. As such, the overall dissimilaritymeasure
considers the feature and spatial values of the regions. First, we examine the problem of spatial image query.

1.2.2 Spatial image query

In an e�ort largely di�erent from CBVQ, researchers have developed techniques for spatial indexing which
retrieve images based on the locations of objects [55, 22, 27, 58, 56, 113]. These approaches compare symbolic
images in which the regions or objects have been de�ned a priori, as depicted in Figure 1-4. Spatial indexing
does not incorporate features such as color, texture, shape, and so forth. It is di�cult to extend spatial
indexing to include feature measures of the objects [154].

We distinguish between two types of spatial indexing: relative and absolute. In relative spatial indexing,
images are matched based upon the relative locations of symbols. For example, a relative spatial query may
ask for images in which symbol A is to the left of symbol B. In absolute spatial indexing, images are matched
based upon �xed positions in the images. For example, an absolute spatial query may ask for images in
which symbol A is in the upper left quadrant and symbol B is on the bottom of the image. The two types
of spatial image query are depicted in Figure 1-5. An example query image is given in Figure 1-5(a). The
image in Figure 1-5(c) satis�es the relative spatial requirements of the symbols in the query. The image in
Figure 1-5(b) does not satisfy relative position constraints, but the symbols are close to the absolute positions
speci�ed in the query image.

1.2.2.1 Relative spatial image query

The relative spatial image query is de�ned as follows:

Problem 4 Relative Spatial Query. Given a collection C of N symbolic images, �nd the images IT 2 C

that contain at least R symbols in the same spatial arrangement as the R symbols in the example (query)
symbolic image.

1.2.2.2 Absolute spatial image query

The absolute spatial image query is de�ned as follows:
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query image absolute match relative match
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F
E

D

B

A
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(a) (b) (c)

Figure 1-4: Spatial image query, (a) query image (b) possible absolute spatial match, (c) possible relative
spatial match.

Problem 5 Absolute Spatial Query. Given a collection C of N symbolic images and spatial distance
function Ds, �nd the K best images IT 2 C that have at least R regions such that Ds(I

R
Q ; I

R
T ) � �s, where

IRQ is the query image with R regions and �s is a threshold of spatial distance.

1.2.3 Spatial and feature image query

We introduce a more powerful type of image search system that allows users to 
exibly query for images by
specifying both the visual features and the spatial properties of the desired images. The integrated spatial
and feature querying gives the user control in selecting the regions and attributes that are most important
in determining similarity in a given query. As such, the system accommodates partial matching of images as
determined by the user.

1.2.3.1 Absolute spatial and feature query

The absolute spatial and feature query process integrates absolute spatial querying and content-based region
querying. A recent approach by Stricker and Dimai [157] investigates one form of absolute spatial and feature
querying. Their system divides each image into �ve fuzzy regions and extracts a color moment feature set for
each. In this way, the system provides for querying by the �ve absolute region locations. However, it is not
possible to query for images by specifying either arbitrary regions or the spatial relationships of regions.

Problem 6 Absolute Spatial and Feature Query. Absolute Spatial Query (Problem 5) + CBRQ (Prob-
lem 3).

1.2.3.2 Relative spatial and feature query

The relative spatial and feature query process integrates content-based region querying and relative spatial
querying.

Problem 7 Relative Spatial and Feature Query. CBRQ (Problem 3) + Relative Spatial Query (Prob-
lem 4).

1.2.3.3 Integrated spatial and feature query

We demonstrate in Chapter 7 that integrated spatial and feature image querying provides a powerful method
for image retrieval. However, it is extremely complex in that it requires that several disparate image query
techniques be combined. First, the feature query component requires the assessment of feature similarities of
regions. Second, the spatial query component requires the assessment of the similarities in spatial locations
and sizes of regions. Finally, the system requires that the spatial relationships, such as \above," \below," and
so forth, be resolved. We demonstrate an image query system which solves these problems and integrates the
separate methods into a single system.
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Problem 8 Integrated Spatial and Feature Query (SaFe). Absolute Spatial Query (Problem 6) +
CBRQ (Problem 3) + Relative Spatial Query (Problem 4).

In the integrated spatial and feature query system, regions and their feature and spatial attributes are
�rst extracted from the images. The comparison of the images then considers the similarities of the feature
and spatial attributes of the regions as depicted in Figure 1-5. The overall match score between images is
computed by summing the weighted distances between the best matching regions in terms of spatial locations,
sizes and features. The relative spatial locations of regions in the target images are also compared to those
in the query image to determine the image matches.

B

region
extraction

Q qk{ }=

A C D BA C D

t jqk

region
extraction

query image target image

compare

IQ IT

D qk{ } t j{ },( )

T t j{ }=

C
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B
C

D

spatial
composition

spatial
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Figure 1-5: Integrated spatial and feature query.

1.2.3.4 Survey and related work

Recently developed image retrieval systems (for example, [102, 112, 105, 3]) have not integrated spatial and
feature querying methods. The QBIC system [102] provides querying of whole images (CBIQ) and manually
extracted regions (CBRQ) by color, texture and shape but not by spatial relationships. The Virage system [3]
provides for querying of only image global features such as color, composition, texture and structure. Pass,
Zabih and Miller [110] devised an image retrieval system which considers the spatial adjacency of colors.
Their technique splits the global image histogram into coherent and scattered components. The measure of
color coherence identi�es the existence of connected colored regions. Although the technique improves on
color histogram indexing, it does not support querying by the spatial locations of the color regions.

Jacobs, Finkelstein and Salesin [71] devised a system which uses spatial information and visual features
represented by dominant wavelet coe�cients. Their system allows the user to sketch example images and
provides for improved matching over image distance norms. However, their technique provides for little

exibility in specifying approximate and relative spatial information.

1.2.4 Proposed solutions

In order to fully integrate CBVQ and spatial image query capabilities, we devise an image similarity function
which contains both spatial and feature components. We �rst note that the perceived attributes of an image
consist of both region and image attributes. For example, the region attributes refer to region features, sizes
and spatial locations. The image attributes refer to the number of regions and their spatial arrangement.

In order to quickly process queries, we design the representations for the region attributes such as the
region features, spatial location and size to require minimal computation in matching. The region attributes



8 John R. Smith

are indexed directly to allow for maximal e�ciency in queries. The overall image matches are determined
from the candidate regions retrieved in the region queries.

In this way, a query speci�ed by the user is translated directly into pruning operations on the region
attributes. The image attributes, such as region relative locations and special spatial relations, are resolved
only in the �nal stage of the query. This is because these evaluations have the highest complexity. The
pruning performed by the queries on the regions reduces the number of candidate images and regions that
need to be evaluated at the �nal stages.

1.3. Summary of contributions

We summarize the contributions of this thesis in improving systems for retrieving, analyzing and compressing
images as follows: in this thesis we

1. demonstrate a new integrated spatial and feature query paradigm for image retrieval,

2. develop a new representation of texture based upon texture channel energy histograms, which is sym-
metric to that for color histograms,

3. explore new binary set representations of color and texture and their applications in region extraction
and integrated spatial and feature image retrieval,

4. present two new approaches, binary set bounding (BSB) and query-optimized distance (QOD) compu-
tation, for e�ciently computing feature similarity queries,

5. develop a new general framework for extracting spatially localized features from images using histogram
and binary set back-projections,

6. develop a new system for image compression and analysis based upon a joint-adaptive space and fre-
quency (JASF) graph, which includes:

(a) the development of the theory of partitionable expansions,

(b) the creation of a new framework for developing general tree- and graph-structured signal decom-
positions, which include spatial quad-tree, wavelet packets, the double-tree and the JASF graph,

7. implement several new image and video retrieval prototype systems, which provide for

(a) cataloging of and searching for visual information on the World-Wide Web,

(b) content-based and relevance feedback searching for images, and

(c) integrated spatial and feature image querying.

1.4. Outline of thesis

The thesis is organized as follows (see Figure 1-6): we develop representations of color in Chapter 2 and
texture in Chapter 3. In both visual dimensions, we �rst obtain multiple channel representations of images.
Through processes of transformation and quantization of the channels, we obtain feature spaces for measuring
the color and texture elements, respectively. From these, we obtain the histograms and binary sets. In short,
a color histogram de�nes the distribution of colors and a texture histogram de�nes a distribution of texture
elements. The binary sets de�ne only the selection of colors and texture elements, respectively.

In Chapter 4, we de�ne metrics for discriminating among images using measures of the similarities of color
and texture, respectively. We provide a thorough evaluation of eight distance metrics along the dimensions of
(1) retrieval e�ectiveness in example image queries and (2) query computation e�ciency. We also introduce the
two powerful techniques for computing the feature queries: binary set bounding (BSB) and query optimized
distance (QOD) computation.

In Chapter 5, we investigate the process of extracting color and texture regions from imagery. We present
the histogram back-projection (HBP) procedure for detecting and extracting color and texture regions. We
describe and compare the performance of �ve back-projection algorithms and present some examples of color
and texture back-projection. We also develop a procedure for automatically extracting regions from images
by using a binary set iteration (BSI) and back-projection procedure.
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Figure 1-6: Map outlining the work addressed in this thesis.

In Chapter 6, we present a new system adaptive image compression and image analysis. The joint adaptive
space and frequency (JASF) graph integrates image frequency expansion and segmentation, symmetrically, to
achieve a joint expansion. Using the framework of partitionable expansions, we develop the highly e�cient and
powerful JASF graph-based expansion of images. We demonstrate that the JASF graph improves access to
image features, and improves image compression performance over several recent image-adaptive compression
techniques.

In Chapter 7, we present new prototype systems for computing integrated spatial and feature image
queries. We describe the query processes and index structures used to facilitate the search for images. We
demonstrate that the spatial and feature paradigm improves image retrieval e�ectiveness over non-spatial
content-based approaches.

Finally, in Chapter 8 we present our recently developed systems for visual information retrieval that
demonstrate the image search concepts derived in this thesis: WebSEEk, VisualSEEk, and SaFe. We show
that the integrated spatial (relative and absolute locations) and feature (color and texture) query systems
provide a powerful solution to problems of image and video search and retrieval. We also demonstrate that
these techniques are easily integrated into diverse applications such as one for cataloging images and videos
from the World-Wide Web, and another for integrating visual features and text in the classi�cation, search
and retrieval of images.
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Chapter 2

Representing Color

2.1. Introduction

We present a uni�ed framework for representing the color and texture features. The objectives are to provide
a basis for

1. assessing the similarities of the visual features of images,

2. storing and indexing the visual feature information and

3. extracting the salient regions from images.

We will show that these objectives are accomplished by representing color and texture by histograms. The
histograms provide a measure of the distribution of features inside a region or image. By appropriately
designing the feature spaces in which the histograms are de�ned, the histograms su�ciently represent the
visual dimensions of color and texture and satisfy the above objectives.

In this chapter (for color), and the next chapter (Chapter 3, for texture), we generate and evaluate the
feature spaces for color and texture which allow for representation of color and texture using histograms
and binary sets. For both visual dimensions, we show that candidate feature spaces are generated through
the processes of transformation T and quantization Q of the image data. The design goal is to identify the
transformation and quantization pairs: (Tc; Qc) for color, and (Tt; Qt) for texture that generate perceptually
uniform, complete and compact feature spaces. We also examine the special case of histograms that are
binary. These binary sets are extremely compact and are suitable for representing, storing, indexing (see
Chapter 4) and extracting image features (see Chapter 5).

2.2. Feature representation

In both visual dimensions, color and texture, the image points are initially represented as multi-dimensional
feature points: a color point is de�ned by values in three color channels and a texture point is de�ned by the
energy in nine spatial-frequency (s-f) channels. The feature points are transformed and quantized to generate
feature spaces with 166 colors and 512 texture elements, respectively.

Using these feature elements, we utilize two approaches each for representing color and texture: histograms
and binary sets. Histograms are a distribution of feature elements. Binary feature sets are a selection of feature
elements.

2.3. Related work on color image retrieval

The use of color histograms for image retrieval has been previously explored in [159, 103, 145, 43, 110].
The fundamental elements of this approach include the selection of the color feature space (Tc; Qc) and the
histogram distance metric Dc. There has been no consensus about which color feature space is most suitable
for color histogram-based image retrieval. The problem is a result of the fact there does not exist a universally
accepted color space, and color perception is signi�cantly subjective [175]. Therefore, we have seen a large
variety of color spaces used in practice.

For example, Swain and Ballard [159] utilize an opponent-axis (OPP) color system [4] quantized to 2048
colors in a system for color image retrieval. The IBM QBIC system [103] �rst quantizes the RGB color space
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into 4096 colors (16 levels per each color channel). Then, each color is transformed to the Munsell color space
by the MTM transform [98]. Finally, clustering determines the k best Munsell colors (typically, k = 64).

On the other hand, Pass, Zabih and Miller [110] simply utilize the RGB color space, quantized uniformly
to 64 colors, in their image retrieval system. Finally, Gray [53], to retrieve images, transforms RGB �rst to
CIE-LUV and then partitions the CIE-LUV color space to 512 colors.

In this chapter, we present a framework for selecting and evaluating the color spaces for the purpose of
color histogram-based retrieval. We begin by discussing the basic properties of color and colorimetry.

2.4. Colorimetry

Electromagnetic radiation F (�) in the range of visible light (� 2 f380nm : : :780nmg) is perceived as color
or colored light. It has been veri�ed experimentally that color is perceived through three independent color
receptors which have peak response at approximately, red, green and blue wavelengths, �r = 700nm; �g =
546:1nm; �b = 435:8nm, respectively. By assigning each primary color receptor, k 2 fr; b; gg, a response
function ck(�), visible light of any color F (�), is represented by a linear superposition of the ck(�)'s [104], as
follows: by normalizing ck(�)'s to reference white light W (�) such that

W (�) = cr(�) + cg(�) + cb(�);

F (�) produces the tristimulus responses (R;G;B), such that

F (�) = R cr(�) +G cg(�) + B cb(�): (2.1)

As such, any color can be represented by a linear combination of the three primary colors (R;G;B).

2.5. Color image perception

The perception of color images is a complex process, and we make several simplifying assumptions: we assume
that color is a single pixel process. In this sense, the perception of color is assumed to not be in
uenced by
surrounding colors. We also assume that viewing conditions, such as ambient lighting, viewer adaptation,
viewing distance, and image display quality can be ignored. Generally, it is di�cult to control these parameters
in the diverse application environments that are anticipated for color image retrieval.

2.6. Color space transformation and quantization

The space spanned by the R;G; and B values (see Eq 2.1) is complete in that all colors are represented
as vectors in the 3-D RGB space. We use this space as the starting point for representing color features
in images. We investigate the transformations Tc of RGB and subsequent quantizations Qc that generate
partitioned color spaces with properties of uniformity, completeness, compactness and naturalness. These
spaces allow for image color content to be de�ned by color histograms and color sets.

Property 1 Uniformity. The metric proximity between colors indicates the perceived similarity of colors.

We will see in Chapter 3 that the color-based image comparison utilizes a proximity metric of the color
features. For one, this comparison requires that color proximity is simple to compute. One way to assure
this, is to design the color space transformation such that color proximity is not a function of the position in
color space. The transformation Tc, which is the primary determinant of the uniformity of the color space,
also determines along with quantization Qc, it's completeness and compactness.

Property 2 Completeness. The color space includes all perceptually distinct colors.

It is necessary that the color space is complete in that all perceptually distinct colors are included. Visual
completeness does not guarantee mathematical completeness, however, the converse is true. In general, if
the transformation Tc is invertible, then the un-quantized color space will be complete. In this case, the
quantization Qc will determine the completeness.

Property 3 Compactness. Each color in the color space is perceptually distinct from the other colors.
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In order to restrict the dimensionality of the image color feature representation, or similarly, the number
of colors, the color space is non-redundant or \compact." Mathematically, nonredundancy is assured when
the mapping from RGB is one-to-one or many-to-one. Visually, nonredundancy requires that no two colors
are so similar that they are perceived as identical. In general, selection of quantization Qc will involve a
trade-o� between completeness and compactness.

Property 4 Naturalness. The color space provides for a natural breakdown of colors into the three basic
perceptual attributes of color: brightness, hue and saturation.

The separation of color into components of brightness, hue and saturation are intuitive for the user [68]. The
ease in navigating the color space impacts the user's ability to construct color-based image queries.

1. Brightness. Attribute of visual sensation which corresponds to a color exhibiting more or less light.
Variations range from bright to dim.

2. Hue. Attribute of visual sensation which corresponds to a color appearing similar to one or two of the
perceived colors red, yellow, green and blue.

3. Saturation. Attribute of visual sensation which corresponds to a color exhibiting more or less of its
hue. Saturation allows the judgment to be made of the degree to which a colored light di�ers from an
achromatic light regardless of their brightness.

We design the transformation Tc and quantization Qc to produce a color space that meets these objectives.
These conditions are typically application speci�c. For example, medical and satellite images require di�erent
color spaces than unconstrained imagery, such as color photos, in order to retain uniformity, completeness
and compactness in representing the color features.

We begin by de�ning a color point as a vector in the RGB color space as follows

De�nition 1 Color point, vc. A color point is a vector vc = (r; g; b) in RGB color space.

The transformation Tc and quantization Qc of the RGB color space reorganizes and groups the vectors vc to
create a �nite set of M colors.

2.6.1 Color transformation

The color transformation Tc is an operation on the vectors vc 2 RGB to produce the transformed vectors
wc. The simplest color transformations are linear. For example, from RGB, the color spaces: Y IQ (NTSC
composite color TV standard), Y UV (PAL and SECAM color television standards), Y CrCb (JPEG digital
image standard and MPEG digital video standard) and opponent color space OPP are obtained by linear
transformation [126]. Other color spaces, such as HSV , CIE 1976 (L�a�b�) and CIE 1976 (L�u�v�) are
generated by non-linear transformations. The overall e�ect of color transformation Tc is to produce a new
color space.

Since the RGB color space is continuous, or possibly discrete with a large number of values (i.e., digital
photographs are typically represented in RGB color space discretized to 256 levels per axis, which gives over
1:67 million distinct color points), the color space must be quantized or partitioned into a smaller number of
colors.

2.6.2 Color quantization

Since the color spaces are multi-dimensional, a partitioning of a color space is described by the vector
quantization of the space. In general, a vector quantizer Qc of dimension k and size M is a mapping from a
vector in k-dimensional space into a �nite set C containing M outputs [50]. Thus, a vector quantizer Qc is
de�ned as Qc : <k ! C, where C = (y0;y1; : : : ;yM�1) and ym 2 <k for each m 2 0; 1; : : : ;M � 1. In general,
the set C is called the codebook and has size M . In the case of vector quantization of the color space, k = 3,
and each entry in the codebook ym corresponds to a color point.

Therefore, the codebook C represents the gamut or collection of colors. In this way, a color, which
corresponds to one quantized partition Rm of the color space and is an approximate perceptual unit. This is
distinguished from the transformed color point wc, which is a mathematical vector in the continuous space.
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Associated with the M point vector quantizer is a covering of <k into the M partitions, where each partition
Rm contains all points wc that are assigned the same codeword ym:

Rm = wc 2 <k : Qc(wc) = ym:

From the de�nition of the partitions it follows that they completely cover <k and are non-overlapping:

[
m

Rm = <k and Rm

\
Rn 8m 6= n;

so that the partitions form a complete partitioning of <k.

De�nition 2 Color, with index value m. A unit of color corresponds to a partition Rm and is given by the
set of color points fvcgm that are assigned the same codeword ym in the overall process of transformation and
vector quantization: ym = Qc(Tcvc).

T c
Qc

M B c
M

vc wc

hc sc
ch 0

ch 1

ch 2

ch 0

ch 1

ch 2

Figure 2-1: Transformation (Tc) and quantization (Qc) produce the color feature space in which the color
histograms hc and binary color sets sc are de�ned.

2.7. Color spaces

We now present and evaluate several transformations Tc of the RGB color space which generate new color
spaces. Transformation of RGB is the starting point in designing the appropriate color spaces for de�ning
the color histogram and binary color set representations.

2.7.1 RGB color space

The �rst candidate color space is the RGB color space. However, the RGB space is not perceptually uniform.
As such, the proximity of colors in RGB color space does not indicate color similarity. Since RGB is complete,
other complete color spaces are generated by transforming RGB using Tc, which is not necessarily a linear
transform.

2.7.2 Linear transform color spaces

Several linear color transformations are in wide use for representing, transmitting and broadcasting color
images and videos [68]. Many of these transforms are computed by simple matrix multiplication.

2.7.2.1 OPP color space

The opponent color space (OPP ) is obtained by linear transformation of the RGB color space [4]. There
is evidence that human color vision uses an opponent-color model by which the responses of the R, G and
B cones are combined into two opponent color pathways [101]. The transformation from RGB to OPP is
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obtained by wc = TOPPc vc, where

TOPPc =

2
4 1 1 1
�1 �1 2
1 �2 1

3
5 : (2.2)

The advantage with the OPP color space is that it is obtained easily by TOPPc . The disadvantages are that
it is not uniform or natural. The color distance in OPP color space does not provide a robust measure of
color dissimilarity. One component of OPP is a luminance channel. The two chrominance channels do not
correspond to hue and saturation, but rather to, blue vs. yellow and red vs. green.

2.7.2.2 Linear color transform standards

The Y IQ, Y UV , and Y CrCb linear color transforms have been adopted in recent color picture systems. Each
of these produces a linear transform of RGB which generates one luminance channel and two chrominance
channels. The transformations were designed speci�cally to the parameters of the expected display devices:
Y IQ { NTSC color television, Y UV { PAL and SECAM color television, and Y CrCb { color computer
display. None of these color spaces is uniform. As such, the color distances in these transform color spaces
do not correspond to color dissimilarities.

Y IQ color transform The Y IQ color space was developed for the NTSC composite color TV stan-
dard [101]. The transformation from RGB to Y IQ is obtained by wc = TY IQc vc [131], where

TY IQc =

2
4 0:299 0:587 0:114

0:596 �0:274 �0:322
0:211 �0:523 0:312

3
5 : (2.3)

2.7.2.3 Y UV color transform

The Y UV color space is used in the PAL and SECAM color television standards [101]. The transformation
from RGB to Y IQ is obtained by wc = T Y UVc vc, where

TY UVc =

2
4 0:299 0:587 0:114
�0:147 �0:289 0:436
0:615 �0:515 �0:100

3
5 : (2.4)

2.7.2.4 Y CrCb color transform

The Y CrCb color space is used in the JPEG digital image standard. The transformation from RGB to
Y CrCb is obtained by wc = T Y CrCbc vc, where

T Y CrCbc =

2
4 0:2990 0:5870 0:1140

0:5000 �0:4187 �0:0813
�0:1687 �0:3313 0:5000

3
5 : (2.5)

Although the linear color transforms are simplest, they do not generate natural and uniform color spaces.
We look next, at the Munsell color order system, which was de�ned with the objectives of naturalness,
compactness and completeness.

2.7.3 Munsell color order system

The Munsell color order system [99] was developed to provide a notational system for colors, which organizes
the colors according to natural attributes. Munsell's Book of Color [100] contains 1; 200 samples of color chips,
each assigned a value of hue, saturation and chroma. As such, by De�nitions 1 and 2, each Munsell color chip
corresponds to a color generated by some Tc and Qc of the RGB color space. The chips are arranged such
that unit steps between them are intended to be perceptually equal.

The advantage of the Munsell color order system is that it orders a �nite set of colors by perceptual
similarities over an intuitive three dimensional space. The disadvantages are that the color order system does
not indicate the transformation Tc required from RGB color space or partitioning Qc to produce the set
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of color chips. Although one transformation, named the Mathematical Transform to Munsell (MTM), from
RGB to Munsell HV C has been investigated for image data by Miyahara [98], there does not exist a simple
mapping from color points in RGB color space to Munsell color chips. Munsell was designed to be compact
(1200 perceptually distinct chips) and complete. However, the Munsell color order system does not satisfy
the property of uniformity. The color order system does not provide for the assessment of the similarity of
color chips that are not neighbors.

2.7.4 CIE color spaces

Towards the goal of deriving uniform color spaces, the CIE � in 1976 de�ned the CIE 1976 (L�u�v�) and
CIE 1976 (L�a�b�) color spaces [129]. These are generated by transforming the RGB color space �rst by
linear transformation to the XY Z color space followed by one of two non-linear transformations: to CIE 1976
(L�u�v�) color space or to CIE 1976 (L�a�b�) color space. The �rst linear transformation between RGB and
XY Z is given by 2

4 X
Y
Z

3
5 =

2
4 0:490 0:310 0:200

0:177 0:813 0:011
0:000 0:010 0:990

3
5
2
4 R
G
B

3
5 : (2.6)

The nonlinear transformations from XY Z to CIE 1976 (L�a�b�) and CIE 1976 (L�u�v�), which are given
in [175], are determined by relation to a nominally white object-color stimulus which gives the tristimulus
values Xn; Yn; Zn. In this case, the lightness is given by

L� = 116

�
Y

Yn

�1=3
� 16: (2.7)

The values for u, v and a, b are given as follows:

CIE 1976 (L�u�v�):
u� = 13L�(u0 � u0n)
v� = 13L�(v0 � v0n);

(2.8)

where
u0 = 4X

X+15Y+3Z u0n =
4Xn

Xn+15Yn+3Zn

v0 = 9Y
X+15Y+3Z u0n =

9Yn
Xn+15Yn+3Zn

:
(2.9)

The color distance between two color stimuli is calculated from

�E�

uv = [(�L�)2 + (�u�)2 + (�v�)2]1=2: (2.10)

CIE 1976 (L�a�b�):
a� = 500[( X

Xn
)1=3 � ( Y

Yn
)1=3]

b� = 200[( YYn )
1=3 � ( ZZn )

1=3]:
(2.11)

The color distance between two color stimuli is calculated from:

�E�

ab = [(�L�)2 + (�a�)2 + (�b�)2]1=2: (2.12)

The CIE color spaces represent with equal emphasis, the three color variants that best perceptually
characterize color: hue, lightness and saturation. However, the CIE color spaces are inconvenient due to the
necessary non-linearity in forward and reverse transformations with RGB space.

2.7.5 HSV color space

Another form of the hue, lightness and saturation transform from RGB to HSV is given in [68]. The
transform to HSV is non-linear, but it is easily invertible. The HSV color space is natural and approximately

�Commission Internationale de l'Eclairage
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perceptually uniform. Therefore, we can de�ne a quantization Qc of HSV to produce a collection of colors
that is also compact and complete.

2.7.5.1 HSV transformation

This transformation Tc from RGB to HSV is accomplished through the following equations [68]: let the color
triple vc = (r; g; b) be the to a color point in RGB space and let wc = (h; s; v) be the to the transformed
color point in HSV color space, such that wc = Tc(vc), then Tc is given as follows:

Transformation 1 RGB to HSV For r; g; b 2 [0 : : :1] then Tc gives h; s; v 2 [0 : : :1] as follows

v = max(r; g; b); s =
v �min(r; b; g)

v

let �r =
v � r

v �min(r; b; g)
; �g =

v � g

v �min(r; b; g)
; �b =

v � b

v �min(r; b; g)

6h =

8>>>><
>>>>:

5 + �b if r = max(r; g; b) and g = min(r; b; g)
1� �g if r = max(r; g; b) and g 6= min(r; b; g)
1 + �r if g = max(r; g; b) and b = min(r; b; g)

3� �b if g = max(r; g; b) and b 6= min(r; b; g)
3 + �g if b = max(r; g; b) and r = min(r; b; g)
5� �r otherwise

Transformation 2 HSV to RGB For h; s; v 2 [0 : : :1] then T�1
c gives r; g; b 2 [0 : : :1] as follows

� = 6h� round(6h); !1 = (1 � s) � v;
!2 = (1� (s � �)) � v; !3 = (1� (s � (1� �))) � v

r =

8<
:

v if � = 0 or � = 5
!1 if � = 2 or � = 3
!2 if � = 1
!3 if � = 4

g =

8<
:

v if � = 1 or � = 2
!1 if � = 4 or � = 5
!2 if � = 3
!3 if � = 0

b =

8<
:

v if � = 3 or � = 4
!1 if � = 0 or � = 1
!2 if � = 5
!3 if � = 2

2.7.5.2 HSV quantization

We design the quantization Qc of the HSV color space to produce a compact set of (166) colors. The HSV
color space is cylindrical, as illustrated in Figure 2-2. The long axis represents value: blackness to whiteness.
Distance from the axis represents saturation: amount of color present. The angle around the axis is the hue:
tint or tone. Since hue represents the most signi�cant characteristic of the color, it requires the most �ne
quantization.

In the hue circle, the primaries red, green and blue are separated by 120 degrees. A circular quantization
at 20 degree steps su�ciently separates the hues such that the three primaries and yellow, magenta and cyan
are represented each with three sub-divisions. Saturation and value are each quantized to three levels yielding
greater perceptual tolerance along these dimensions. The quantization Qc provides M = 166 distinct colors
in HSV color space [145].

2.7.5.3 HSV color similarity

Since the HSV color space is nearly perceptually uniform, the similarity of two HSV colors is determined by
their proximity in the HSV color space. The similarity between two colors given by indices mi = (hi; si; vi)
and mj = (hj ; sj; vj) is given by the euclidean distance between the color points in the cylindrical HSV color
space as follows:

ai;j = 1� 1p
5
[(vi � vj)

2 + (si coshi � sj coshj)
2 + (si sinhi � sj sinhj)

2]
1

2 : (2.13)

The normalization by 1=
p
5 gives the similarities: ai;i = 1, and ai;j = 0 for colors indexed by i and j that are

separated by the maximum possible distance in HSV color space.
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Figure 2-2: Transformation Tc from RGB to HSV and quantization gives 18 hues, 3 saturations, 3 values
and 4 grays = 166 colors.

2.7.5.4 Comparisons of color transforms

Table 2.1 summarizes the color transforms. Only the OPP , Y IQ; Y UV , and Y CrCb color spaces are gener-
ated from linear transforms of the RGB color space. The transformation from RGB to HSV is non-linear
but reversible, and it is easily computed using Transformation 1. Of the candidate color spaces, only the
quantized HSV color space satis�es the properties of uniformity, compactness, completeness and naturalness.
The Munsell and CIE color spaces are natural, however, the Munsell color order system is not uniform, while
the CIE color spaces are not compact.

RGB OPP/YIQ/YUV/YCrCb Munsell CIE 166-color HSV
Uniformity No No No Yes Yes
Compactness No No Yes Possible Yes
Completeness Yes Yes Yes Yes Yes
Naturalness No No Yes Yes Yes
Transformation N/A L NL L + NL NL

Table 2.1: Comparisons of color transforms (L = linear, NL = non-linear).

2.8. Representing color image features

Using the 166-color quantized HSV color space, we represent image features by measuring the distribution
of the 166 colors in the image.

2.8.1 Color histograms

The distribution of colors in the image is represented by a histogram. Given a color image I[x; y] which
consists of three color channels I = (IR; IG; IB), the color histogram is given by, where X and Y are the
width and height of the image, respectively,

hc[m] =
X�1X
x:::0

Y�1X
y:::0

�
1 if Qc(TcI[x; y]) = m
0 otherwise

(2.14)

De�nition 3 Color histogram, hc. A color histogram determines the distribution of colors in an image,
region or object.

2.8.2 Color sets

Alternatively, the color content of images or regions is represented more compactly by binary color sets. The
binary color sets are obtained by selecting from the M colors; the overall process is depicted in Figure 2-1.
Let BM be the M dimensional binary space such that each axis in BM corresponds to one color, indexed by
m.
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De�nition 4 Color set, sc. A color set is a binary vector in BM and determines a set of colors fmg in an
image, region or object.

A binary set is equivalent to a thresholded histogram, where each bin is thresholded to two levels. For
example, given threshold �m for color m, a color set is obtained from (see also Figure 2-3)

sc[m] =

�
1 if hc[m] � �m
0 otherwise:

(2.15)

The color set indicates only those colors that are found above threshold levels. However, it works well to
represent regional color. If a color is not well represented in a region { for example, if it is below threshold
�m { it is ignored. In this way, using the binary color set representation, color content is represented by the
set of only the most prominent colors in the region.

3-D Color Histogram Binary Color Set

Tc Qc
M τm, ,

Tc
1–

Qc
M

 
  1–

,

BM
1

1

1

Figure 2-3: Relationship between 3-D RGB color histogram and binary color set.

2.8.3 Color histogram compaction

Since our objective is to represent the color information of regions and images, we examine the characteristics
of the color histograms of typical images and regions. Figure 2-4 compares the energy compaction of the color
histograms for manually extracted image regions to those for full images. We see that the color information
for the regions within the images is de�ned by largely in a few most signi�cant colors. For full images, the
color information is spread out into many colors. This observation provides several directions:

1. to represent regional color, we use compact features sets, such as binary color sets. We investigate the
retrieval e�ectiveness of the binary color sets in Chapter 4.

2. Since regions have few colors, we assume that the areas in images with few colors correspond to regions.
We explore this assumption in the development of an automated system for extracting color regions
from images in Chapter' 5.

Since we will further explore the versatility of the color histogram and binary color sets, we de�ne also a
fast mapping from histograms to the nearest binary sets (BSFM). We use this procedure in Chapter 4 in a
technique for e�ciently computing histogram queries using binary set bounding (BSB).

2.8.4 Binary set fast map (BSFM)

We de�ne an algorithm for determining the nearest binary set to an arbitrary histogram: the binary set
fast map (BSFM). The objective is to �nd the one binary set sc that minimizes the distance to the histogram
hc, that is, such that �c(hc; sc) is minimized. We de�ne �c to be the mean square error metric as follows:

�c(hc; sc) =

vuutM�1X
m=0

(hc[m]� sc[m]

jscj )
2;

where jscj denotes the number of non-zero elements in the binary set sc. The algorithm proceeds as follows:
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Figure 2-4: Compaction of color histogram energy for regions vs. images.

1. the elements in histogram hc are sorted in order of largest value.

2. Starting from the single largest element we generate a binary set of cardinality jscj = 1 that assigns a
value of one to this element, and we compute the error between the histogram and the binary set.

3. The process is then repeated for the �rst two largest elements in the histogram, then the �rst three
largest elements, and so forth, until the collection of nearest binary sets of sizes jscj = 0 : : :M � 1 is
generated.

4. From this collection, the binary set that minimizes the error to the histogram is the nearest binary set.

The procedure is given in detail as follows: let Ms be the mapping that sorts hc[m] such that gc = Mshc
and gc[0] � gc[1] � : : : � gc[M �1]. We also note that hc can also be derived from gc by inverting the sorting
process: hc =M�1

s gc.

Algorithm 1 Fast map to nearest size n binary set
Let rnc be a binary set of cardinality jrnc j = n such that

rnc [m] =

�
1 m < n
0 otherwise

Then, let

�nc (gc; r
n
c ) =

vuutM�1X
m=0

(gc[m]� rnc [m]

n
)2:

The nearest size jscj = n binary set sc to histogram hc is given by sc = M�1
s rnc , where �nc also gives the

distance between sc and histogram hc, that is �nc (gc; r
n
c ) = �c(hc; sc).

The nearest jrnc j = n binary set to sorted histogram gc is given by rnc . By using the inverse mappingM�1
s

that was used to sort hc, the nearest size jscj = n binary set sc to histogram hc is given by sc =M�1
s rnc .

Algorithm 2 Fast map to nearest binary set The overall nearest binary set sc to histogram hc is found
by determining the nearest size jsnc j = n binary sets snc for n = 1 : : :M . The one that provides the minimum
�nc gives the nearest binary set.
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Overall, the algorithm requires M logM operations to sort the histogram hc, M computations of mean
square error and M operations to determine the nearest binary set.

2.9. Summary

In this chapter, we evaluated several transformations (Tc) and quantizations (Qc) of color. The objectives
were to obtain a color feature space in which color histograms are de�ned. We demonstrated that the HSV
color space, quantized to 166 values provides a suitable color space because it is uniform, complete, compact
and natural.

We de�ned the color histograms (hc) as distributions of the HSV colors that appear in an image or
region. We also presented the binary color set representation. Binary color sets (sc) represent only a selection
of colors and provide a compact measure of image and/or region color. We also de�ned a fast algorithm
(BSFM) for computing the nearest binary color set to a color histogram.

Using the content-based image query paradigm, we explore the image retrieval e�ectiveness of the color
histogram and color set representations in Chapter 4. Then, in Chapter 5, we present and evaluate tech-
niques for extracting color regions from images using the color histograms and binary color sets. These
feature extraction and feature query processes are integrated to produce the spatial and color feature query
system described in Chapter 7. However, in the next chapter, we �rst develop the texture histogram and
binary texture set representations of texture that are symmetric with those for color. This allows us to uses
generic methods of feature and region extraction, and feature indexing and querying that are compatible with
representations of both visual dimensions.
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Chapter 3

Representing Texture

3.1. Introduction

The texture representation is symmetric with color in that texture is also de�ned from multiple channels.
The texture images are �rst decomposed into nine spatial-frequency subbands using a wavelet �lter bank
(FB). Then, from the nine subbands, a texture channel generator (TCG) produces the nine channels. As
investigated in Chapter 2 for color, we investigate procedures for transforming (Tt) and quantizing (Qt) the
texture channels to produce a texture element feature space in which to de�ne suitable histogram (ht) and
binary texture set (st) representations of texture.

In this chapter, we present the overall process of representing texture using the texture histograms. We
present the wavelet texture energy feature set and compare it to Gabor �lter-based representations. We also
present experimental evaluations of the wavelet texture feature sets that demonstrate excellent performance in
classifying the standard evaluation-set of Brodatz textures. We then investigate several transformations that
allow for approximate rotation or scale invariance. Finally, we present the process of generating the texture
histogram and binary texture set-based feature spaces that are symmetric to those for color histograms
discussed in Chapter 2.

The objectives of obtaining these representations of texture are to provide systems for measuring the
similarity of textures and extracting texture regions from images. In Chapter 4, we present and evaluate the
various techniques for computing texture similarity using the representations presented here. In Chapter 5,
we present the system for extracting texture regions from images using texture histograms.

3.2. What is texture?

Textures are homogeneous patterns or spatial arrangements of pixels that regional intensity or color alone
does not su�ciently describe. As such, textures have statistical properties, structural properties, or both [60].
They may consist of the structured and/or random placement of elements, but also may be without funda-
mental subunits. For example, Figure 3-1 illustrates the wide variety of textures from the Brodatz collection.
Moreover, due to the diversity of textures appearing in natural images it is di�cult to narrowly de�ne texture.

Texture is an important element to human vision. Texture has been found to provide cues to scene depth
and surface orientation [4]. People also tend to relate texture elements of varying size to a plausible 3-D
surface. Even in graphics systems greater realism is achieved when textures are mapped to the 3-D surfaces.
Texture features have been used to identify contents of ariel imagery such as bodies of water, crop �elds and
mountains [92, 4, 87, 92]. Texture describes the content of many real-world images: for example, clouds,
trees, bricks, hair, fabric all have textural characteristics.

It has been hard to adequately model texture. The substantial body of work on texture has not yet
produced any clear solutions for the problems of texture analysis, classi�cation, segmentation and synthe-
sis [164]. Furthermore, the analysis and extraction of texture in unconstrained imagery, which is the most
di�cult problem, has not yet been su�ciently addressed.

Most research on texture is conducted on the Brodatz [9] texture collection (sixteen Brodatz textures
are illustrated in Figure 3-1), which provides a set of mostly homogeneous texture images. In the Brodatz
collection there is little visible distortion in the images that results from viewing perspective and lighting.
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d001 d056 d095 d020

d014 d006 d003 d004

d087 d005 d111 d066

d011 d103 d049 d015

Figure 3-1: Example textures from the Brodatz texture collection: d001: Woven aluminumwire, d056: Straw
matting, d095: Brick wall, d020: French canvas, d014: Woven aluminum wire, d006:Woven aluminum wire,
d003: Reptile skin, d004: Pressed cork, d087: Sea fan, fossilized with a coral covering, d005: Expanded mica,
d111: Plastic bubbles, d066: Plastic pellets, d011: Homespun woolen cloth, d103: Loose burlap, d049: Straw
screening, d015: Straw.
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In the literature, most techniques for texture analysis are investigated and/or evaluated using Brodatz tex-
tures [160, 116, 89, 118, 30, 125, 61, 10, 92, 23] and are not generally applicable to \unconstrained" images.

The appearance of texture in unconstrained imagery is substantially di�erent from that represented in the
Brodatz set. Textures in these real-world images are distorted by artifacts such as those resulting from non-
uniform lighting, shading and warping in the 3-D space. This makes the problem of texture region extraction
even more di�cult.

We note that recent models of surface re
ectance [4, 91] may prove useful for compensating for lighting and
shading artifacts. Furthermore, texture has proven useful for decoding shapes and perspective projections [4].
Similar techniques may aid in de-warping the texture patterns in images such that orthogonal views (where
� = 90� in Figure 3-2) are obtained. Although texture region extraction is one of the objectives of this work,
we do not focus on these aspects of texture analysis.

For the purpose of this work, we assume that the textures are free from perspective transformation. For
example, as illustrated in Figure 3-2, for one, we assume that the view angle for the textures is perpendicular
to the texture surface (� = 90�). However, the rotation (�) and scale (�) are not restricted, and we explore
texture representations that approximate rotation- or scale-invariance.

texture surface

θ rotation=

ξ scale=

φ view angle=

λ illumination=

to camera

texture surface

to camera

φ

(a) (b)

Figure 3-2: Image formation from texture surface.

3.3. Related work on texture

Recent attempts at modeling texture include random �eld modeling [30, 89, 119, 46], fractal geometry [24],
spatial gray-level dependencies and co-occurrence matrices [52, 60] and spatial-frequency techniques [74, 84,
139, 23], which include, in particular, Gabor �ltering [8, 121, 127].

A comparison of these four classes of texture features was made by Ohanian and Dubes in [106] using small
test collections of natural and arti�cial images. The authors found that co-occurrence matrices performed
best in the experiments, but they acknowledged that performance could be largely in
uenced by optimization
within each texture representation-type. Kundu and Chen report a spatial-frequency technique based upon
the QMF wavelet transform that improves texture image classi�cation performance over spatial gray-level
co-occurrence matrices.

3.4. Related work on texture image retrieval

Several recent content-based image retrieval systems utilize texture feature sets to aid in the retrieval of
images. Within the applications of satellite image retrieval, recent systems by Li and Turek [87] and Ma
and Manjunath [92] use texture to retrieve images based upon the detection of various features of the earth's
terrain.

The IBM QBIC system [103] uses several texture features for the retrieval of photographic images. The
QBIC texture features are based upon some of those proposed in [160], namely, coarseness, directionality and
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contrast. Other texture features in [160] such as linelikeness, regularity and roughness are not used. Both
the whole images and manually identi�ed regions are indexed by texture in the QBIC system.

The Virage system [3] also uses texture measures for photographic image retrieval. In the Virage system,
the texture features describe the whole image, rather than regions of texture within the images.

A uni�ed approach for the characterization of global color, texture and shape was proposed by Caelli and
Reye in [12]. Their objective was to classify objects which have color, texture and shape attributes. In their
experiments, they used hand-written text characters rendered with di�erent color and texture patterns. Their
system was not applied to retrieval of unconstrained images.

Liu and Picard [89, 119] and Francos, Meiri and Porat [46] have investigated the Wold random-�eld model
for modeling texture. The Wold model separates the image into components that correspond, approximately,
to periodicity, directionality and randomness [119]. Liu and Picard have applied Wold feature to segmentation
and retrieval of natural scene images [89].

Gorkani and Picard have investigated a texture measure based upon \dominant perceived orientation"
for sorting photos [51]. The orientation is extracted over levels of a multiresolution steerable pyramid. They
found that this texture feature is successful in classifying scenes as \city" vs. \suburb."

We propose a new representation of texture which is derived from spatial-frequency energy of the texture.
From the energy values, a texture histogram is generated. The texture histogram is used to discriminate
textures and to retrieve images. This approach is compatible with color histogram-based methods for content-
based image systems. Furthermore, since the texture histograms are derived from the QMF wavelet transform,
the features are more directly accessible from wavelet-compressed image representations.

3.5. Representations of texture

As described earlier, the objectives in developing the texture feature set are to provide a basis for (1) as-
sessing the similarities of the texture features in images, (2) storing and indexing texture information and
(3) extracting texture regions from images. In order to develop the texture feature set, we formulate the
representation of texture from a set of channels. This provides an approach that is symmetric with that for
the color feature sets.

The most suitable models are based upon the spatial-frequency (s-f) techniques. For one, the s-f texture
models are also most aligned with the vision process. There is support that mechanisms of early human
vision use receptive �eld units tuned to orientations and s-f's [54, 74]. In particular, models of the human
vision system that use Gabor �lters to model the receptive �elds su�ciently account for psychophysical data
obtained in texture discrimination experiments.

3.5.1 Space/spatial-frequency expansion

A space/spatial-frequency (s/s-f) expansion of the image captures its localized spatial-frequency content. In
general, image s-f transforms attain a joint resolution in space and s-f that is bounded by the uncertainty
principle [36, 171]. By spacing the �lters at octave-band distances, the wavelet �lter bank (FB) provides
dyadic trade-o�s in spatial and s-f resolution. Obtaining a high joint resolution in space and s-f is critical in
texture region extraction where the localization of the texture pattern is important.

Gabor �lters are one s-f technique which has been used to characterize texture by dominant s-fs [8].
Gabor functions measure the localized s-f information at speci�c s-f scales and orientations. One objective
in modeling texture by Gabor functions is to characterize a texture by a single peak scale and orientation
set [8].

Alternatively, Chang and Kuo [23] have used the tree-structured wavelet transform (TSWT) to classify
texture, not by a single narrow subband, but by the overall best wavelet packet basis adapted to each texture.
Feature sets based upon s-fs that use multiple subbands have also been investigated in [74, 84, 106]. We now
look more closely at the Gabor FB and examine their relationship to QMF wavelet FBs.

3.5.2 Gabor Functions

Gabor �lters achieve the theoretical lower bound of the uncertainty principle. They attain maximum joint
resolution in space and s-f bounded by the relations �x � �u � 1

4� and �y � �v � 1
4� where (�x;�y)

gives resolution in space and (�u;�v) gives resolution in s-f. This is highly signi�cant in the process of
texture extraction in which the con
icting objectives of accuracy in texture representation and texture spatial
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localization are important. The Gabor �lter based s-f analysis of texture was explored in [8, 120, 128, 41, 10].
In addition to good performance in texture discrimination and segmentation, the justi�cation for Gabor

�lters is also supported through psychophysical experiments. It has been demonstrated that human texture
segregation results from information corresponding to outputs of s-f channels [5]. Texture analyzers imple-
mented using 2-D Gabor functions have produced a strong correlation between outputs of the 2-D Gabor
FBs with actual human segmentation [128]. Furthermore, the receptive visual �eld pro�les are adequately
modeled by 2-D Gabor �lters [36].

The 2-D Gabor function is a harmonic oscillator, composed of a sinusoidal plane wave of a particular
frequency and orientation, within a Gaussian envelope. The frequency (!), bandwidth (�), location (x0; y0),
and orientation (�) are determined by parameters of the Gabor function. The Gabor function G is de�ned
as follows:

G(x; y; �; !; �; �) = J(x; y; !; �; �) exp

�
(x� x0)

2 + (y � y0)
2

�2�2

�
; (3.1)

where the harmonic oscillator J(x; y; !; �; �) is given by

J(x; y; !; �; �) = sin (![x cos � � y sin �] + �) : (3.2)

Here x0 and y0 specify the center of the Gaussian and � speci�es the standard deviation along both axes.
The frequency of the sinusoidal plane wave is determined by !, and � is the angle of orientation, and � is
the phase of the plane wave. The Gabor �lters are frequency and orientation selective as demonstrated from
Fourier domain analysis. When the phase � = 0, the Fourier transform of the Gabor function is given by

F (u; v) = A

�
exp

�
�
1

2

�
(u � u0)2

�2u
+

v2

�2v

��
+ exp

�
�
1

2

�
(u+ u0)2

�2u
+

v2

�2v

���
; (3.3)

where �u = 1=(2��x), �v = 1=(2��y) and A = 2��x�y. This function gives two lobes in the spatial-frequency
domain, one centered at u0 and another at �u0 [164]. For example, Figure 3-3 illustrates the spatial-frequency
response of a bank of Gabor �lters to sinusoidal inputs (only u0 term is depicted).

θ 45°=
ω 120 Hz=

ωx

ωy

θ 0°=
ω 30 Hz=

(a) (b) (c)

Figure 3-3: Gabor �lter spectrum where contours indicate the half-peak magnitudes of �lters responses. The
Gabor �lter responses to pure sinusoids: (a) � = 0 and ! = 30 and (c) � = 45 and ! = 60, are depicted in
(b).

Gabor functions are used for texture segmentation by tuning the �lters to the image's dominant spectral
information. This entails selection of parameters for frequency, orientation and bandwidth for each �lter.
The selection is highly dependent on the image. In [8] a simple peak-�nding algorithm applied to the power
spectrum was used to guide the choice of �lter frequency. Then, by using the chosen set of Gabor functions,
the image is �ltered. Each point in the image is labeled according to which �lter output gives highest energy
value for the point. The result is that the image is segmented into regions according dominant spectral
information.

There are drawbacks with using the Gabor �lters in practical application. The �rst concerns the conse-
quence that the selection of �lters is image dependent. This process is nontrivial [8]. Otherwise, the accurate
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implementation of a complete Gabor expansion would entail a generally impractical number of �lters. Since
the Gabor functions are not orthogonal, there is a trade-o� between redundancy and completeness in the
design of the Gabor FBs.

Secondly, the application of the �lters to images is not simple. The computation of the �lter coe�cients
is a complex process because the Gabor functions are not orthogonal. Furthermore, discrete versions of the
Gabor function must be obtained in order to be applied to images.

3.5.3 Wavelet expansion

A more practical way to exercise the trade-o� between spatial and s-f resolution, without using Gabor func-
tions, is through the use of a quadrature mirror �lter (QMF) wavelet FB. The QMF wavelet FB produces
octave bandwidth segmentations in s-f. It allows simultaneously for high spatial resolution at high s-f's and
high s-f resolution at low s-f's. Furthermore, the bene�t of using the wavelet tiling for image analysis is
supported by evidence that visual s-f receptors are spaced at octave distances [35].

The QMF approach was investigated by Kundu and Chen [84]. The authors identi�ed several aspects of
the QMF FB as being relevant to texture extraction:

1. ability to achieve perfect reconstruction,

2. outputs that are localized �lters and

3. the decimation of �lter outputs reduces complexity.

In the classi�cation of Brodatz textures by Kundu and Chen, the QMF features performed better than those
proposed by Haralick [60].

3.5.4 QMF �lter bank (FB)

The 2-D QMF FB partitions the 2-D s-f plane such that the image are reconstructed by the partitions
(subbands), see Figure 3-4. Using the QMF �lters, the reconstruction is nearly perfect [75]. The 2-D QMF
wavelet FB produces the particular set of subbands that are spaced at octaves in the 2-D s-f plane.
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Figure 3-4: 2-D QMF �lter bank (FB), (a) s-f plane partitioning, (b) subband interpretation.

Similar to the case for Gabor �lters depicted in Figure 3-3, the 2-D sinusoidal signals produce responses in
the QMF wavelet FB, as illustrated in Figure 3-5. We see that the wavelet FB di�ers from the Gabor FB in
that the granularity in s-f resolution is �xed at octaves in s-f. In orientation, the wavelet transform separates
the texture only into only vertical, horizontal and diagonal subbands.

In a 2-D QMF FB, four �lters are required, H00;H01;H10 and H11 that have mirror-image conjugate
symmetry about their mutual boundaries [174]. For real �lters, this is equivalent to

H01(zx; zy) = H00(zx;�zy)
H10(zx; zy) = H00(�zx; zy)
H11(zx; zy) = H00(�zx;�zy):

(3.4)
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θ 45°=
ω 120 Hz=

θ 0°=
ω 30 Hz=

wavelet image wavelet image

(a) (b) (c) (d)

Figure 3-5: QMF wavelet FB responses to pure sinusoids: (a) � = 0 and ! = 30, (b) wavelet image for (a),
and (c) � = 45 and ! = 60, (d) wavelet image for (c).

The 2-D baseband �lter H00 may be designed to be separable, in which case it is generated from a product
of two identical 1-D QMF �lters [166],

h00(m;n) = h0(m)h0(n): (3.5)

In this case, the four QMF �lters Hij are constructed from

Hij(zx; zy) = Hi(zx)Hj(zy); where j 2 f0; 1g: (3.6)
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Figure 3-6: QMF �lters (a) low pass �lter h0, (b) high-pass �lter h1.

The QMF FB is designed to have no aliasing or phase distortion. By using separable �lters, the QMF FB
is generated from the single �lter kernel H0(z) by Eq. 3.4 and Eq. 3.6. The separable QMF FB approximately
satis�es the following requirement in order to reduce or eliminate amplitude distortion [26], see Figure 3-6.

jH2
0(z)j+ jH2

0(�z)j = 1: (3.7)

In Figure 3-6(a) and (b), the �lters are given for a twelve tap QMF (QMF12a from [75]): Figure 3-6(a)
depicts the low-pass �lter h0 and Figure 3-6(b) depicts the high-pass �lter h1. From the magnitude responses
in Figure 3-7 we can see that Eq. 3.7 is approximately satis�ed; there is only slight ripple in jH2

0(z)j+jH
2
0(�z)j.

3.5.5 Tree structured separable QMF FB

By iterating the four-channel 2-D QMF FB on the output of �lter H00 we obtain a 2-D wavelet FB. The 2-D
QMF wavelet FB is depicted in Figure 3-8. The output of each wavelet �lter channel is produced from a
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Figure 3-7: Magnitude of the frequency responses H0 and H1.

cascade of �lters and downsamplers. For example, the four subbands at depth = 3 in the cascade are given
by

Y00i;00j(zx; zy) =
1

2
[H(3)

00i;00j(z
1=2
x ; z1=2y )X(z1=2x ; z1=2y ) +

H
(3)
00i;00j(�z

1=2
x ;�z1=2y )X(�z1=2x ;�z1=2y )]; (3.8)

where i; j = f0; 1g and

H
(3)
00i;00j(zx; zy) = H0;0(zx; zy)H0;0(z

2
x; z

2
y) Hi;j(z

4
x; z

4
y): (3.9)
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Figure 3-8: 2-D wavelet QMF FB.
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3.5.6 Representing texture by s/s-f energies

The texture features are produced by measuring the energy within the subbands as follows, where the subbands
are numbered as in Figure 3-8,

Sk =
1

MN

M�1X
m

N�1X
n

jyk[m;n]j2; (3.10)

and M and N are the width and height of subband k. By Parseval's relation, Sk = 1
MN

jjYkjj
2. The QMF

wavelet texture energy feature set ft is constructed from the Sk's as follows

ft = (S0;S1; : : : ;Sk): (3.11)

Figure 3-9 illustrates the wavelet transform of a composite of �ve Brodatz textures. We see that the
textures produce di�erent responses in the subbands. The feature set ft captures the energy of the textures
in each of the subbands.

Figure 3-9: Wavelet transformation of a composite image of Brodatz textures.

We demonstrate two important invariance properties of the wavelet texture energy feature set: gray-level
shift invariance and size invariance. We note that rotation and scale invariance is not inherently provided.
We develop transformations Tt in Section 3.7.3 that generate feature sets that are approximately rotation- or
shift-invariant.

3.5.6.1 Gray-level shift invariance

The texture energy feature set is gray-level shift invariant. The gray-level shift transform is de�ned as

I(n)! I(n) + �: (3.12)

In the FB, only h0 has non-zero mean, i.e.,
P

h0(n) 6= 0, and the rest of the �lters have zero mean. Since,P
m hi(m) = 0 for i 6= 0, we have gray-level shift invariance as follows

yi(n) = hi(n) � (I(n) + �)
=

P
m hi(m)I(n �m) + �

P
m hi(m)

=
P

m hi(m)I(n �m) = hi(n) � I(n):
(3.13)

3.5.6.2 Size invariance

The texture energy feature set is size invariant since the energy measure is normalized by the size of the
subband. The elements of the feature set Sk are normalized by M and N , the width and height of the
subband, respectively, in Eq 3.10.
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3.6. Texture classi�cation experiments

We compare texture energy feature sets that are derived from several image transforms besides the QMF
wavelet, including DCT, QMF uniform subband. In the experiments reported here, 112 Brodatz texture
images (512x512) are cut randomly into rectangular pieces (average size 132x132). The texture energy feature
sets are used to classify the cuts to the correct Brodatz texture classes. We use a classi�cation procedure
based upon Fisher discriminant analysis.

Classi�cation rates of over 90% are obtained for both wavelet subband and uniform subband decomposi-
tions. DCT/Mandala-block gives just over 80% classi�cation rate, while simple spatial block features produces
only 34% correct classi�cation.

3.6.1 K-Class discrimination

Fisher discriminant analysis (FDA) derives the optimal linear classi�cation function from the observation data
that describes the set of classes. The FDA constructs linear composites from training features that provide
for maximum average separation among classes. Although the resultant composites are not orthogonal, they
are uncorrelated with each other [39].

FDA is contrasted with principal component analysis (PCA), which is performed on the data covariance
matrix. PCA determines the most signi�cant functions to best represent, not to classify, the data. Since our
goal is classi�cation, we use FDA, which determines the eigenvectors of scatter matrices which describe class
separability. The criteria of class separability is formulated using the following scatter matrices: within-class
(W), between-class (B), and total (T) [48].

The FDA procedure is carried out as follows: let K = the number of classes. Each class k, where

k 2 f0; : : : ;K�1g, has a set of nk observations and provides the length m feature vector as the jth observation
xjk = (x0jk; x

1
jk; : : : ; x

m�1
jk ), where j 2 f0; 1; :::; nk� 1g. Let x be the total mean vector over all observations

and all classes

x =
K�1X
k=0

nkX
j=0

xjk: (3.14)

Then, de�ne tk as follows

tk =

nk�1X
j=0

(xjk � x)t(xjk � x): (3.15)

Then, summing the tk's gives, T =
PK�1

k=0 tk, which is the total-mean-corrected sum-of-squares of cross-
products of observation data.

Let xk be the mean vector over all observations of class k

xk =
nkX
j=0

xjk: (3.16)

Then, de�ne wk as follows

wk =
nk�1X
j=0

(xjk � xk)
t(xjk � xk): (3.17)

Then, summing the wk's gives, W =
PK�1

k=0 wk, which is the within-class sum-of-squares matrix.
Then, B = T�W gives the between-class sum-of-squares and cross-products matrix. The productW�1B

represents the ratio of between-class to within-class sum-of-squares for K classes. This matrix, which is non-
symmetric with rank equal to the minimumof m (the feature vector length) and K�1 (the number of classes
minus one) is used in the eigenvector decomposition as follows: denoting the eigenvalues ofW�1B as �k and
the eigenvectors as ek, we determine which discriminant functions capture the most variation that separates
the classes by expressing each eigenvalue as a percentage of total variance accounted for using

�0k =
�kP
j �j

: (3.18)
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Then, classi�cation follows by using a subset fekj�
0
k � �g of the eigenvectors corresponding to the eigen-

values accounting for the largest total variation. A minimum distance rule is used to assign new observation
data, unclassi�ed texture images, to one of the classes. First, normalizing the eigenvectors, such that,

eti
WPK�1

j=0 nk �K
ei =

�
1 if i = k � s
0 otherwise;

(3.19)

we get Yk = etkX, the kth discriminant, having unit variance, and matrixY with zero covariances. Therefore,
the rule for classi�cation using the appropriate measure of square distance and a subset of ` eigenvectors
follows: allocate x to class k if 8i 6=k,

`�1X
j=0

(ej(x � xk))
2 �

`�1X
j=0

(ej(x� xi))
2: (3.20)

3.6.2 Classi�cation results and discussion

The twenty randomly sized and spaced rectangular cuts were made from each of the 112 Brodatz texture
images to produce 2240 total texture cuts. The training sets SAR was formed by adding A cuts from each
class, A = f2; 3; : : :g. The remaining B = 10 cuts from each class were assigned to test set SBT to evaluate
the texture classi�cation performance. An example of classi�cation using the Brodatz texture experiemntal
set-up is illustrated in Figure 3-10 and 3-11.

We examine several important parameters of the texture energy feature sets and the FDA process that
impacts the texture classi�cation performance.

3.6.2.1 E�ect of the training class size

As the number of texture cuts from each class used for training increases, the classi�cation rate increases, as
indicated in Figure 3-12. As more training cuts are used, FDA produces more accurate discriminant functions.
Good performance is found by using as little as three training textures per class.

3.6.2.2 E�ect of the number of training classes

Figure 3-13 illustrates that the classi�cation performance degrades only slightly when a quarter of the classes
are used for training. In the image database application all possible texture classes are not available to derive
the discriminant functions. Therefore, it is bene�cial when training from only the available textures generates
discriminant functions that perform well in classifying all textures.

3.6.2.3 E�ect of the number of discriminant functions

The discriminant functions that account for the largest separation are indicated by having the largest normal-
ized eigenvalues. By using only a subset of the discriminant functions that su�ciently separates the training
classes, the computation for classi�cation can be reduced.

It is advantageous to �nd feature sets which allow for the highest energy packing possible for classi�cation.
Figure 3-14 shows the results of classi�cation, using most signi�cant subsets of the discriminant functions.
By using only the 5 to 10 most signi�cant discriminants, the peak classi�cation performance is reached.

3.6.2.4 E�ect of the number of features

When correlated features are added to the feature set, FDA removes redundancy and produces a smaller set
of uncorrelated discriminant functions. In general, any feature that provides a measure of class separation
may be included in the feature set. However, there is a trade-o� between classi�cation performance and the
increased computation as more features are added.

In this experiment, both mean absolute value (L1 energy) and variance (L2 energy) of the subbands are
used in the feature sets. Figure 3-15 shows that the overall classi�cation rate increases by using both energy
measures.
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Figure 3-10: Brodatz texture classi�cation experiment, texture cuts.

Figure 3-11: Brodatz texture classi�cation experiment, retrieved texture cuts that best match query texture
cut.
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Figure 3-12: E�ect on classi�cation rate of the class size.
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3.7. Texture element histogram

We now use the texture energy features to derive the representation of texture using texture histograms. The
texture histograms are generated in an overall process that consists of the wavelet �lter back (FB), a texture
channel generator (TCG), transformation Tt, and quantization Qt as illustrated in Figure 3-16.

TCG T t

vt wt

ht st
ch 0

ch 1

ch K-1

FB Qt
N

ch 0

ch 1

ch K-1

B t
N

ch 0

ch 1

ch K-1

Figure 3-16: Generation of texture feature set. The �lter bank (FB) and texture channel generator (TCG)
generate nine texture channels. Transformation Tt and quantization Qt produce the texture feature space in
which texture histograms ht and binary texture sets st are de�ned.

3.7.1 Texture �lter bank (FB)

The wavelet FB and texture channel generator (TCG) system is illustrated in Figure 3-17. The 2-D four
channel FB is iterated twice on the lowest s-f subband. By discarding the DC subband, nine channel subbands
are obtained Yk, where k = f0 : : :8g.

3.7.2 Texture channel generator (TCG)

From each subband Yk a texture channel is generated by computing the energy of the subband, upsampling
and �ltering. First, the energy �k of each point in subband k is computed from

�k[x; y] = jY[x; y]2j: (3.21)

Then, �k is upsampled back to the full size by inserting zeros. The missing points are then �lled-in using
block �lters Bi;j to obtain texture channel Sk. The block �lters perform simple pixel replication, where

Bi;j [x; y] =

�
ij 0 � x < i; 0 � y < j
0 otherwise:

(3.22)

For each point in the image, the process illustrated in Figure 3-17 generates an energy value in each of
the nine channels [141]. This representation is now symmetric with the representation of color (Chapter 2).
Whereas, each point in a color image has values in the three color channels, here, we assign each point in the
image energy values in the nine s/s-f channels.

The overall conversion process for the image to multiple channels is illustrated in Figure 3-18. As shown,
the subbands of the wavelet image are used to generate the nine texture channels. Since the wavelet expansion
of texture gives k = 9 s/s-f channels, a texture point is a 9-D vector. A texture point is de�ned as follows:

De�nition 1 Texture point, vt. A texture point is a vector vt = (S0; S1; : : : ; SK�1) in <
K , where Sk gives

the energy in s/s-f channel k.

By transformation (Tt) and quantization (Qt) of the 9-D s/s-f texture space, the texture points are
reorganized and grouped to create a collection of texture elements. A texture element is generated as follows:
given the texture point vt and the transform Tt, for each vt let the wt be obtained by wt = Ttvt.
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Furthermore, let Qt be a vector quantizer function (de�ned in Section 2.6.2) that maps the vector wt to
one of N codewords indexed by n. Then, n, where n 2 f0 : : :N � 1g, is the index of texture element wt

assigned by the quantizer function and is given by yn = Qt(wt), where yn is the codeword with index n.

De�nition 2 Texture element, with index value n. A texture element is given by the complete set of texture
points fvtgn that are assigned the same index n in the overall process of transformation and quantization:
yn = Qt(Ttvt).

3.7.3 Texture space transformations

Under certain conditions it is desirable to obtain texture feature sets that are invariant to rotation or
scaling. By transformation of the texture points, the features can be made approximately invariant to either
rotation or scaling.

3.7.3.1 Rotation

The approximate rotation-invariance is obtained through the singular transformation TR
t as follows

TR
t =

2
4 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

3
5 : (3.23)

The transformation TR
t compensates for rotation by combining subbands at each scale. Since a rotated

texture generates approximately the same scale energy as the un-rotated texture, TR
t provides approximate

rotation invariance. Figure 3-19 illustrates that the energy is redistributed in the texture channels during
rotation. We see that the wavelet images change with rotation. Table 3.1 shows that the energy within
the same scale is roughly constant in spite of the rotation of the textures. We evaluate the amount of
rotation-invariance provided by examining the performance in classifying rotated Brodatz textures.

rotation (�) S[0] S[1] S[2]

6:11313� 205 1396 919
4:55157� 218 1247 874

�26:0922� 337 1327 893
�18:0881� 253 1471 993
�42:2369� 337 1183 792

Table 3.1: Rotated texture features. Energy is roughly constant within the same scale during rotation.

3.7.3.2 Rotated texture classi�cation experiment

In a classi�cation procedure similar that in Section 3.6., twenty randomly rotated, sized and spaced cuts
were made from each of the 112 Brodatz texture images to produce 2240 total rotated textures. For training
purposes, 10 cuts from each class are held aside. The additional 10 cuts from each class are set aside for
evaluating the classi�cation performance. The rotation transformation TR

t is used to produce feature vector
wt for each rotated texture image

wt = TR
t vt;

which are de�ned in 3-D space, wt 2 <3. The test set of wt's are used in FDA to derive the discriminant
functions for classifying the training set. Overall, the system obtains a correct classi�cation rate of 52:32%
for classifying rotated Brodatz textures using the transformation TR

t of the texture energy feature sets. This
represents a drop in the classi�cation rate from that for unrotated textures (see Section 3.6.). However,
considering the simplicity of the transformation TR

t , the performance is acceptable.
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3.7.3.3 Scaling

The approximate scale-invariance is obtained through the singular transformation TR
t as follows

T S
t =

2
4 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

3
5 (3.24)

The transformation TS
t compensates for scaling by combining subbands across rotations. Since a scaled

texture generates approximately the same rotation energy as the un-scaled texture, TS
t provides approximate

scale invariance. Figure 3-20 illustrates that the energy is redistributed in the texture channels during scaling.
We see that the wavelet images change with scale. Table 3.2 shows that the energy within the same orientation
is roughly constant in spite of the scale of the textures.

scale (�) S[0] S[1] S[2]

2:211 282 49 339
2:118 275 75 414
1:582 365 82 456
1:264 429 96 570
0:986 503 159 596

Table 3.2: Scaled texture features.

3.7.3.4 Scaled texture classi�cation experiment

In a similar classi�cation procedure, twenty randomly scaled, sized and spaced cuts were made from each of
the 112 Brodatz texture images to produce 2240 total scaled textures. The scaled transformation TS

t was
used to produce for feature vector wt for each texture

wt = TS
t vt;

which are de�ned in 3-D space, wt 2 <3. The test set of wt's are used in Fisher Discriminant Analysis
to derive the discriminant function for classifying the training set. Overall, the system obtained a correct
classi�cation rate of 61:82% for classifying scaled Brodatz textures using the transformation TS

t of the texture
energy feature sets. This represents a drop in the classi�cation rate from that for unscaled textures (see
Section 3.6.). However, as for transformation TR

t , considering the simplicity of the TS
t , the performance is

acceptable.

3.7.4 Texture channel quantization

The next design parameter is the quantization Qt of the texture channels. In order to produce a feature
space for de�ning texture histograms and texture sets that is fairly compact, we quantize the texture energy
channels. We investigate a procedure for choosing the quantizers to produce only two reconstruction levels
for each channel. The procedure is easily extended to a greater number of reconstruction levels. We examine
two quantizer design procedures { the Max-Lloyd and median trained quantizer design.

The Max-Lloyd quantizer for each channel is derived to minimize the mean square quantization error
(MSQE) [126]. By treating the texture channel energy as a random variable, the goal of the quantization
design is to produce mappings from texture channel energies to quantized values that minimize the error
in quantization. The process of the quantization is illustrated in Figure 3-21. Given a quantizer input,
represented by a random variable x, the output of the quantizer is x̂. The quantization error is given by x̂�x.

The MSQE-designed quantizer involves minimizing the squared quantization error, as follows

� = E[(x� x̂)2] =

Z du

dl

(x� x̂)2p(x)dx; (3.25)

where the input x ranges from dl to du and p(x) is the probability density function of x [126]. Given that x



40 John R. Smith

ζ = 2.11794 wavelet image subband energies

ζ = 1.58162

ζ = 1.2635

ζ = 0.986101

27

140

62

796

193

203 41

55

659

143

35167

167

230 41

40

145

60

10123

175

246 64

45

464

143

41173

241

333 51

100

1080

203

57186

227

330 92

wavelet image subband energies

wavelet image subband energies

wavelet image
subband energies

wavelet image
subband energies

ζ = 2.21106

(a) (b) (c)

Figure 3-20: Scaled texture energy features: (a) several scalings of the Brodatz texture d035 Lizard skin, (b)
wavelet images (c) L2 subband energy values.



Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression 41

x Q x̂
input output

Figure 3-21: The quantizer Q produces output x̂ for each input x. The quantization error is x̂� x.

is a discrete random variable and p[x] is its discrete-distribution, the error function is given by

� = E[(x� x̂)2] =
duX

x=dl

(x� x̂)2p[x]: (3.26)

The objective of the MSQE quantizer design is to choose a set of decision levels di and reconstruction
levels ri such that Eq 3.26 is minimized. A general tool for obtaining the sets of decision and reconstruction
levels has been given independently by Max and Lloyd and is known as the Max-Lloyd quantizer. We use
the results of the Max-Lloyd quantization design process to obtain the optimal decision and reconstruction
levels for the texture channels.

3.7.4.1 Max-Lloyd texture quantizer design

The Max-Lloyd procedure �nds the optimal MSQE for a given number J of output levels. Here, we consider
J = 2, however, the procedure may be generalized to a greater number of reconstruction levels. We note that
Eq 3.25 can be rewritten as

� = E[(x� x̂)2] =
J�1X
j=0

Z dj+1

dj

(x� rj)
2p(x)dx: (3.27)

To minimize � set @�
@rk

= 0,

@�

@rk
=

@�

@

"Z dk

dk�1

(x� rk�1)
2p(x)dx+

Z dk+1

dk

(x� rk)
2p(x)dx

#

= (dk � rk�1)
2p(dk)� (dk � rk)

2p(dk) = 0: (3.28)

The result gives that input level dk is average of two adjacent output levels rk and rk�1 as follows

dk =
rk + rk�1

2
: (3.29)

Since we are considering here the case that J = 2 (two output levels), we have to �nd only one decision
level d1. Since d1 =

r1+r0
2 , by �nding r0 and r1 to minimize �, the decision level d1 is obtained. Therefore,

we choose r0 and r1 to minimize the MSQE expression for J = 2 as follows

� =
d1X
x=0

(x� r0)
2p[x] +

max(x)X
x=d1+1

(x� r1)
2p[x]; (3.30)

where r1 � r0 and max(x) is the upper bound on the input and x = 0 is the lower bound. To do this, we
measure the distribution p[x] of texture channel energies, and iterate through choices for r0 and r1, picking
those that minimize �.

3.7.4.2 Texture channel quantizers

We use the Brodatz textures to train the quantizers. We generate the texture channels using the texture FB
and texture channel generation process described in Section 3.7.1. The texture channel quantizer training
process is illustrated in Figure 3-22.
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Figure 3-22: Texture channel quantizer training process.

Using the Max-Lloyd quantizer design process to obtain J = 2 output levels, an optimumdecision threshold
is determined for each channel. The histogram of texture channel energies for channel k = 1 is depicted in
Figure 3-24(a). Figure 3-23(b) illustrates the optimal decision level d1 and the reconstruction levels r0 and
r1 for texture channel k = 1 based upon the sample set of Brodatz textures.
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Figure 3-23: Determination of optimal J = 2 output quantizer for texture channel k = 1.

The histogram of texture channel energies for channel k = 8 is depicted in Figure 3-24(a). Figure 3-24(b)
illustrates the optimal decision level d1 and the reconstruction levels r0 and r1 for texture channel k = 8
based upon the sample set of Brodatz textures.

By repeating this procedure on all nine channels, the optimal decision levels are given as follows:

��
512 = (303:7; 357:3; 87:3;642:3;313:4;60:4;517:1;682:7;63:8):

3.7.4.3 Median texture energy quantizer

One alternative to the Max-Lloyd design procedure for choosing the optimal quantization thresholds is to
simply threshold at the median of the texture channel energy distributions. By picking these thresholds, the
optimal decision levels are given as follows:

�m
512 = (104:3; 113:4;40:1;120:6;133:2;33:3; 97:5; 113:4; 18:9):

Overall, since this gives two output levels for each of the nine channels, there is a combination of 29 = 512
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Figure 3-24: Determination of optimal J = 2 output quantizer for texture channel k = 8.

outputs for the nine channels. From this 512-dimensional space, we de�ne texture histograms and texture
sets.

3.7.5 Texture histograms

The texture histograms are analogous to color histograms and are de�ned as follows

De�nition 3 Texture histogram, hc. A texture histogram determines the distribution of texture elements
in an image, region or object.

Given image I[x; y] with nine s/s-f channels, Sk, k 2 f0 : : :8g, the texture histogram is given by

ht[n] =
X
x

X
y

�
1 if Qt(TtS[x; y]) = n
0 otherwise:

(3.31)

The mean texture histograms obtained from 2240 Brodatz texture cuts are illustrated in Figure 3-25. In
Figure 3-25(a) the texture channel quantization was derived from the Max-Lloyd procedure. In Figure 3-
25(b) the texture channel qualtization was derived from the median texture channel energies.

3.7.6 Texture sets

The texture histograms are approximated by binary texture sets, which are de�ned as follows

De�nition 4 Texture set, sc. A texture set is a binary vector in N -dimensional binary space BNt and
determines a set of texture elements fng in an image, region or object.

The mean binary texture sets obtained from 2240 Brodatz texture cuts are illustrated in Figure 3-26. In
Figure 3-26(a) the texture channel qualtization was derived from the Max-Lloyd procedure. In Figure 3-26(b)
the texture channel qualtization was derived from the median texture channel energies.

3.7.7 Texture set example

Figure 3-27(a) illustrates an example of the texture set representation using a K = 3 channel FB. The image
is converted into the three texture channels (S0; S1 and S2) using the FB and TCG. Next, Qt quantizes each
channel into two levels. The quantized texture elements are assigned an index n.

The overall system segments the texture regions in the images as illustrated in Figure 3-27(b). Given that
each of the three channels is thresholded into two levels, eight texture elements are generated (= 23).
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Figure 3-25: Mean texture histograms from 2240 Brodatz texture cuts (a) obtained using Max-Lloyd trained
texture channel quantizers, (b) obtained using median trained texture channel quantizers.
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Figure 3-26: Mean binary texture sets from 2240 Brodatz texture cuts (a) obtained using Max-Lloyd trained
texture channel quantizers, (b) obtained using median trained texture channel quantizers.
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Figure 3-27: Example of texture set representation using a k = 3 channel FB.
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3.8. Summary

In this chapter, we derived new representations of texture based upon histograms of texture elements. The
texture elements are de�ned from the transformation (Tt) and quantization (Qt) of QMF wavelet transform
energies. We presented several experimental evaluations of the wavelet texture feature sets that demonstrate
excellent performance in classifying Brodatz textures. We also investigated several transformations that allow
for approximate rotation (TR

t ) or scale invariance (T
S
t ).

The texture histogram representation satis�es the objectives of (1) providing a representation for image
or regional texture that is compatible with color methods (namely, color histograms), (2) being compatible
with compressed-domain texture extraction techniques (QMF wavelets), and (3) being suitable for region
extraction techniques. In Chapter 5, we explore the process of extracting texture regions from images using
texture histograms. First, in Chapter 4 we present and evaluate several techniques for computing texture
similarity using the representations presented here.

By using the histogram and binary set representations of color (see Chapter 2) and texture we e�ciently
and e�ectively represent color and texture information in images and region. These visual dimensions are
extremely useful for image search and retrieval. When combined with spatial information, the most powerful
system for discriminating images is constructed (as we explore in Chapter 7). We now present techniques for
measuring computing color and texture-based image queries using the histograms and binary sets.
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Chapter 4

Feature Similarity and Indexing

4.1. Introduction

In this chapter, we investigate techniques for computing color and texture similarities using histograms. We
also evaluate strategies for indexing the high-dimensional histograms. The objective of these techniques is to
provide systems for search and retrieval of images by color and texture features.

We �rst evaluate the retrieval e�ectiveness of eight distance metrics for color and �ve distance metrics for
texture in a series of image retrieval experiments. We evaluate these metrics in terms of precision and recall
in retrieving images that are relevant to eight example image queries.

We next present two e�cient strategies for computing histogram queries in large databases of images.
The �rst, query optimized distance (QOD) computation, prioritizes the elements of the computation in the
order of largest signi�cance to the query. By prioritizing the computation in this way, the query is computed
more e�ciently. Furthermore, by stopping the computation process to only approximate the actual histogram
distances, we show that the query response-time is reduced dramatically without signi�cantly decreasing the
retrieval e�ectiveness.

In the second method, binary set bounding (BSB), binary feature set queries are used to pre�lter the
more expensive color histogram queries. We formulate the BSB pre�lter to provide no false dismissals. In
this way, the complete histogram distance needs only to be computed for a fraction of the images in order to
answer the histogram query. We now de�ne the histogram metric space and the eight distance metrics which
are suitable for feature-based image retrieval.

4.2. Histogram space

The features of color (see Chapter 2) and texture (see Chapter 3) are de�ned by histograms. The histograms
depict the distribution of colors and texture elements, respectively, as they appear in images and/or regions.
Since the histograms are discrete distributions, they can be represented as feature vectors in M -dimensional
space, where M is the number of bins in the histogram. We de�ne this <M space as the histogram space HM .

4.2.1 Histogram normalization

In order to compare regions and images of varying size, we introduce the following class of normalizations,
where r = 1; 2,

hr =
h

(
PM�1

m=0 jh[m]jr)1=r
: (4.1)

One e�ect of the normalizations in Eq 4.1 is a reduction in dimensionality of the feature space. Notice that
in Figure 4-1 that the feature points for all two-bin histograms (normalized with r = 1) lie on a single line
segment. That is, given one element of a histogram, the other is determined.

In general, an M -bin histogram normalized with r = 1 lies on an M � 1 dimensional simplex. An M -bin
histogram normalized with r = 2 lies on the non-negative face of an M -dimensional hyper-sphere, which is
illustrated for M = 2 in Figure 4-2.
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Figure 4-1: Feature vector representation of discrete-space, two-bin normalized histograms (r = 1).
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Figure 4-2: Feature vector representation of discrete-space, two-bin normalized histograms (r = 2).

4.2.2 Histogram metric space

The histogram space HM is considered a metric space and the histograms h are points of the space if the
following conditions hold: for every pair of histograms hi;hj there can be found a corresponding number
D(hi;hj), called the distance between points hi and hj, which satis�es the following:

1. D(hi;hi) = 0 (identity),

2. D(hi;hj) � 0 (non-negativity),

3. D(hi;hj) = D(hj ;hi) � 0 (if hi 6= hj) (commutativity/symmetry),

4. D(hi;hk) � D(hi;hj) +D(hj ;hk) (triangle inequality).

4.3. Taxonomy of distance metrics

In this section, we present and evaluate eight metrics (D1 : : :D8) for measuring histogram dissimilarity,
summarized in Table 4.1. The histogrammetrics are evaluated along two dimensions: (1) retrieval e�ectiveness
and (2) distance computation complexity. The second dimension includes the number of operations required
in computing the distance scores. The �rst { retrieval e�ectiveness, provides a measure of the relevance of the
histogram dissimilarity to subjective perceptual image dissimilarity. We evaluate in Section 4.4. the capability
of the histogram distance metrics to retrieve images that are perceptually similar to query images.

4.3.1 Minkowski-form distance

The �rst class of dissimilarity measures is based upon the Minkowski-form distance metric. Let hq and
ht be the query and target histograms, respectively, then

drq;t = (
M�1X
m=0

jhq[m]� ht[m]jr): (4.2)

As illustrated in Figure 4-3, histogram dissimilarity measures with the Minkowski-form (D1;D2; and D3)
neglect to compare similar, but not same, histogram elements. For example, a dark red image is equally
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Metric Description Category

D1 Histogram L1 distance Minkowski-form (r = 1)
D2 Histogram L2 distance Minkowski-form (r = 2)
D3 Binary set Hamming distance Binary Minkowski-form (r = 1)
D4 Histogram quadratic distance Quadratic-form
D5 Binary set quadratic distance Binary Quadratic-form
D6 Histogram Mahalanobis distance Binary Quadratic-form
D7 Histogram mean element distance Non-histogram
D8 Histogram moment distance Non-histogram

Table 4.1: Summary of the eight histogram distance metrics (D1 : : :D8).

dissimilar to a red image as to a blue image. By using measures of histogram element similarity within the
distance computation, we investigate whether the quadratic metrics (D4;D5; and D6) improve histogram
matching.

m

hq[m]

m

ht[m]

Figure 4-3: Minkowski-form distance metrics compare only \like" bins between the histograms.

4.3.1.1 Histogram intersection (D1)

The histogram intersection was investigated for color image retrieval by Swain and Ballard in [159]. Their
objective was to �nd known objects within images using color histograms. When the object (q) size is less than
the image (t) size, and the histograms are not normalized, then jhqj � jhtj. The intersection of histograms
hq and ht is given by:

dq;t = 1�

PM�1
m=0 min(hq[m]; ht[m])

jhqj
; (4.3)

where jhj =
PM�1

m=0 h[m]. Eq 4.3 is not a valid distance metric since it is not symmetric: dq;t 6= dt;q. However,
Eq 4.3 can be modi�ed to produce a true-distance metric by making it symmetric in hq and ht as follows:

d0q;t = 1�

PM�1
m=0 min(hq[m]; ht[m])

min(jhqj; jhtj)
: (4.4)

Alternatively, when the histograms are normalized such that jhqj = jhtj, both Eq 4.3 and Eq 4.4 are true-
distance metrics. It is shown in [159] that when jhqj = jhtj that D1(q; t) = dq;t, and the histogram intersection
is given by

D1(q; t) =
M�1X
m=0

jhq[m]� ht[m]j: (4.5)
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We recognize D1(q; t) as the Minkowski-form metric (Eq 4.2) with r = 1.

4.3.1.2 Histogram euclidean distance (D2)

The euclidean distance is a Minkowski-form metric (Eq 4.2) with r = 2, as follows, given histograms hq and
ht,

D2(q; t) = D22 = (hq � ht)
T (hq � ht) =

M�1X
m=0

(hq [m]� ht[m])2: (4.6)

We decompose D2 as follows
D2(q; t) = hTq hq + hTt ht � 2hTq ht: (4.7)

When jhqj = hTq hq = 1 and jhtj = hTt ht = 1, we have

D2(q; t)� 2 = �2hTq ht: (4.8)

In this decomposition, D2 is computed from the inner product of the query hq and target histograms ht.
This decomposition has implications of e�ciency in computing distances in the histogram database, which
we explore in Section 4.5.4.

4.3.1.3 Histogram cosine distance

Closely related to the euclidean distance metric (D2) is the cosine distance metric. The cosine metric is
commonly used to measure the similarity of text documents [172]. The cosine metric computes the di�erence
in direction, irrespective of vector lengths, where the distance is given by the angle between the two vectors.

Recall that the inner product between vectors hq and ht is given by

hq � ht = hTq ht = jhqjjhtj cos �:

Then, the cosine metric is given as

1� cos � = 1�
hTq ht

jhqjjhtj
: (4.9)

By substituting from Eq 4.6, where jhqj = hTq hq and jhtj = hTt ht, we have

1� cos � = 1�
jhqj+ jhtj � D2

2jhqjjhtj
:

When jhqj = jhtj = 1, the cosine metric reduces to

1� cos � =
D2

2

.
Figure 4-4 illustrates the relationship between the cosine metric and the euclidean distance metric D2.

The cosine metric is not in
uenced by vector length. It gives the same distance result between h0 and h1 in
Figure 4-4(a) as that between h0 and h2 in Figure 4-4(b). However, the euclidean distances di�er in these
cases, that is D2(h0;h1) 6= D2(h0;h2).

4.3.1.4 Binary set Hamming distance (D3)

We also consider the special case when the histograms are approximated by binary sets. Recall that we
presented an algorithm for determining the nearest binary set to an arbitrary histogram in Section 2.8.4. A
binary set s is a binary vector in the M -dimensional binary space, s 2 BM . The binary set Hamming distance
between sq and st is given by, where jsj =

P
m s[m]

D3(q; t) =
jsq � stj

jsqjjstj
: (4.10)
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sq[m]

m
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* ** * *Figure 4-5: Binary set Hamming distance metric (D3) computes the exclusive OR between elements. The
`?'s indicate the positions of bit di�erence.
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Since the vectors are binary, the Hamming distance is determined by the bit-di�erence between the binary
vectors [34]. As illustrated in Figure 4-5, D3 is e�ciently computed using an exclusive OR operator (�)
which sets a one in each bit position where its operands have di�erent bit values, and zero where they are
the same [80],

D3(q; t)jsqjjstj = sq � st: (4.11)

The binary set metric D3 is e�cient to compute, which justi�es its exploration for use in large image database
applications.

4.3.2 Quadratic-form distance

To address the shortcomings of the Minkowski-form distance metrics, we investigate three quadratic-form
distance metrics: D4, D5 and D6. The quadratic-form distance metrics compare all histogram elements, and
weight the inter-element distance by pair-wise weighting factors (see Figure 4-6).

4.3.2.1 Histogram quadratic distance measures (D4)

A quadratic-form distance metric is used in the IBM QBIC system for color histogram-based image re-
trieval [45]. In [102], it is reported that quadratic-form distance metric between color histograms provides
more desirable results than \like-bin" only comparisons between color histograms. The quadratic-form dis-
tance between histograms hq and ht is given by:

D4(q; t) = D42 = (hq � ht)
TA(hq � ht); (4.12)

where A = [aij] and aij denotes the similarity between elements with indexes i and j. The quadratic-form
metric is a true-distance metric when aij = aji (symmetry) and aii = 1.

m

hq[m]

m

ht[m]

aij

Figure 4-6: Quadratic-form distance metrics compare multiple bins between the histograms using similarity
matrix A = [aij].

In a naive implementation, the histogram quadratic distance is computationally more expensive than
the Minkowski-form metrics since it computes the cross-similarity between all elements. We present, in
Section 4.5.4, a strategy to decompose the quadratic-form metrics in a manner similar to that described for
the D2 metric (see Eq 4.8) to improve computation e�ciency.
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4.3.2.2 Binary set quadratic distance (D5)

The quadratic-form distance metric also measures the distance between binary sets. The quadratic-form
distance between two binary feature sets sq and st is given by

D5(q; t) = D52 = (sq � st)
TA(sq � st); (4.13)

By de�ning �q = sTq Asq, �t = sTt Ast and rt = Ast, and since A is symmetric, the quadratic-form binary set
distance is reduced to the following expression

D5(q; t) = �q + �t � 2sTq rt: (4.14)

4.3.2.3 Histogram Mahalanobis distance (D6)

The Mahalanobis distance is a special case of the quadratic-form distance metric in which the transform
matrix is given by the covariance matrix obtained from a training set of histograms, that is A = ��1.
In order to apply the Mahalanobis distance, the histogram feature vectors are treated as random variables
X = [x0; x1; � � � ; xM�1]. Then, the correlation matrix is given by R where R = [rij] and rij = Efxixjg. Here,
Efyg gives the mean of the random variable y. Then, the covariance matrix is given by �, where � = [�2ij]

and �2ij = rij � EfxigEfxjg.
The Mahalanobis distance between histograms is obtained by letting Xq = hq and Xt = ht, which gives

D6(q; t) = D62 = (Xq �Xt)
T��1(Xq �Xt): (4.15)

In the special case when xi are statistically independent, but have unequal variances, � is a diagonal matrix
as follows [163]

� =

2
6664

�20 0
�21

. . .

0 �2M�1

3
7775 :

In this case, the Mahalanobis distance reduces to

D6(q; t) =
M�1X
m=0

(
xq[m]� xt[m]

�m
)2: (4.16)

When xi are not statistically independent, a new coordinate system is obtained in which the components are
statistically independent. This is implemented as a general eigenvalue problem whereby the goal is to obtain
eigenvectors � such that �� = ��. In this case, X is transformed using the eigenvectors such that �Y = X.
Then, the Mahalanobis distance is given by

D6(q; t) =
M�1X
m=0

(yq [m]� yt[m])2

�m
: (4.17)

4.3.3 Non-histogram distance

Finally, we examine two metrics (D7 and D8) which are derived from the image feature channels (i.e., color
and texture) directly. However, the features are obtained from the histograms, which allows for the metrics
to be de�ned from the histograms.

4.3.3.1 Feature channel mean distance (D7)

The channel mean distance (D7) is computed from the mean in each of the feature channels. For example, a
mean color vector v = (r; g; b) is obtained by measuring the mean color in each of the three color channels
(r; g; b). In this case, a suitable distance metric between mean color vectors vq and vt is given by

D7 = D72 = (vq � vt)
T (vq � vt): (4.18)
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Note, that each bin in a color histogram h refers to a point (r; g; b) in the 3-D RGB color space. As such,
v is computed from h by v = Ch, where C has size M � 3, and C[i] gives the (r; g; b) triple corresponding to
histogram bin i. In general, for K feature channels and M histogram bins, C is has size K �M . This allows
us to rewrite Eq 4.18 as

D7(q; t) = (hq � ht)
TCTC(hq � ht): (4.19)

4.3.3.2 Feature channel moment distance (D8)

Similar to the case for the channel mean, other channel moments may be considered, such as variance and
skewness. For example, color moments were explored by Stricker and Orengo for color image retrieval [158].
As in the case for D7, these moments are also computed from the histograms. We de�ne D8 from the variance
of each of the channels in order to compare the retrieval e�ectiveness of color moments to the other metrics.

4.3.4 Distance metric comparison

We now evaluate the performance of the distance metrics by conducting image retrieval experiments. We
demonstrate that the set of metrics o�ers a trade-o� in retrieval e�ectiveness and computational complexity.
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Figure 4-7: Distance metric retrieval e�ectiveness evaluation experiment setup.

4.4. Retrieval e�ectiveness evaluation

We �rst evaluate the histogram distance metrics by conducting image search experiments by color (eight
metrics) and texture (�ve metrics). In the experiment setup, illustrated in Figure 4-7, we generate �ve image
feature databases: (1) the histogram database, (2) the binary set database, (3) the mean element database,
(4) the channel moment database, and (5) the ground-truth database. In the ground-truth database, the
relevancies of each image to each of the queries is established manually. The retrieval e�ectiveness is evaluated
by comparing the results of the queries using the feature databases to the ground-truths.

4.4.1 Image test set

Since no standard image corpus exists for the purpose of evaluating image retrieval methods, a test set of
3; 100 color images was generated for this thesis. The image collection of 3; 100 images was purchased on
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CD-ROM from Expert Software�. Each of the 3; 100 images was inspected and assigned a relevance to each
of the following queries in order to measure the query's retrieval e�ectiveness. In this way, the image test set
and assigned image relevance scores provide a common framework for comparing the image retrieval methods.

4.4.2 Retrieval e�ectiveness

Two metrics for retrieval e�ectiveness are recall and precision. Recall signi�es the proportion of relevant

images in the entire database that are retrieved in the query. Precision is the proportion of the retrieved

images that are relevant to the query [76]. More precisely, let A be the set of relevant items, let B be the set
of retrieved items, and a; b; c and d are given as follows.

� a = retrieved and relevant (detection)

� b = retrieved and not relevant (false alarm)

� c = not retrieved and relevant (miss)

� d = not retrieved and not relevant.

Recall and precision are de�ned by the following conditional probabilities:

recall = P (BjA) = P (A[B)
P (A) = a

a+c

precision = P (AjB) = P (A[B)
P (B) = a

a+b :
(4.20)

The measures of recall and precision require that the relevance to the query of each item in the database
is established ahead of time. For the experiments, this was done for each query by subjectively assigning one
of three values to each image in the database: relevant = 1, partially or marginally relevant = 0:5 and not
relevant = 0. The relevance value corresponds to the probability that the item is relevant to the query.

In each query experiment, the distance (one of D1 : : :D8) between each relevant image (with relevance =
1) and all images in the database is computed. The images are then sorted in order of lowest distance to the
query image. In this order, the recall and precision are measured for each image.

The process is repeated for all the relevant images and an overall average retrieval e�ectiveness is computed
for each distance metric and each query example. This produces just one recall vs. precision curve (i.e., see
curve D1 in Figure 4-10). These experiments are repeated for all distance metrics to provide for comparison.

4.4.3 Color retrieval

We �rst evaluate the retrieval e�ectiveness using color histograms on the test set of 3; 100 color images. The
collection includes images with a variety of subjects, such as cities, nature, animals and transportation. We
�rst examine example color queries: for images of (1) sunsets, (2) pink 
owers, (3) nature scenes with blue
skies and (4) lions.

4.4.3.1 Query 1: Sunsets

In Query 1, the goal is to retrieve images of sunsets. Prior to the trials, the 3; 100 images were inspected,
and 23 were designated to be relevant (to depict sunsets). Each of these images was used in turn to query
the collection. This was repeated for each distance metric. Examples of the retrieved images and plots of the
retrieval e�ectiveness are shown in Figures 4-10 and 4-11.

We see that all metrics are fairly successful at retrieving sunset images, except for D7. Simply using the
mean of each color channel does not su�ciently capture color information in the images. Table 4.2 compares
the retrieval e�ectiveness at several operational values. We see that the quadratic-form metrics D4 and D6
perform well in Query 1. However, the retrieval e�ectiveness for D1 is slightly better. Contrary to statements
in [102], in Query 1 we do not see that the quadratic-form color histogram metrics improve performance
substationally over the Minkowski-form metrics.

�Expert Software, Inc., 800 Douglas Rd., Coral Gables, FL 33134
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23 sunset images D1 D2 D3 D4 D5 D6 D7 D8

# relevant in top 10(20) 6(10) 5(9) 4(6) 5(9) 4(7) 5(9) 2(4) 3(5)
# retrieved to obtain
5(10) relevant ones 8(20) 9(24) 16(46) 9(22) 12(32) 8(21) 29(186) 18(56)

Table 4.2: Query 1: Sunsets. Comparison of eight distance metrics.

4.4.3.2 Query 2: Flowers

The goal of Query 2 is to retrieve images of pink 
owers. Prior to the trials, the 3; 100 images were inspected,
and 21 were designated to be relevant (to depict pink 
owers). Examples of the retrieved images and plots of
the retrieval e�ectiveness are shown in Figures 4-12 and 4-13. Table 4.3 compares the retrieval e�ectiveness
at several operational values. The performance of metrics D1, D2, D4 and D6 is similar. These all provide
excellent image retrieval results, returning, on average, seven pink 
ower images among the �rst ten retrieved.
The binary set Hamming distance metric D3 provides a substantial drop in retrieval e�ectiveness. However,
the binary set quadratic-form metric D5 improves the retrieval e�ectiveness over D3.

21 pink 
ower images D1 D2 D3 D4 D5 D6 D7 D8

# relevant in top 10(20) 6(9) 6(9) 5(6) 6(9) 5(8) 7(10) 2(3) 3(3)
# retrieved to obtain
5(10) relevant ones 7(21) 7(24) 10(62) 7(21) 8(34) 7(18) 48(291) 43(185)

Table 4.3: Query 2: Flowers. Comparison of eight distance metrics.

4.4.3.3 Query 3: Nature

The goal of Query 3 is to retrieve images of nature with blue sky. Prior to the trials, the 3; 100 images
were inspected, and 42 were designated to be relevant (to depict nature with blue sky). Query 3 is the most
di�cult of the color image queries explored here. The test set contains many images with blue colors that
are not from blue skies. Only the fraction of images that contain blue skies are deemed relevant. The other
blue images are considered false alarms when retrieved by the image query methods.

We note that Query 3 is representative of a typical query for unconstrained images. We see that color
information provides only a partial �lter of image semantic content. However, we see in this query that the
color query methods provide di�erent performance in obtaining the images of semantic interest even in this
di�cult image query.

Examples of the retrieved images and plots of the retrieval e�ectiveness are shown in Figures 4-14 and 4-
15. Table 4.4 compares the retrieval e�ectiveness at several operational values. Again, we see that the
performance of metrics D1, D2, D4 and D6 is similar. These require that, on average, approximately 25
images need to be retrieved in order to obtain ten images that depict blues skies. The binary set Hamming
distance metric D3 provides a substantial drop in retrieval e�ectiveness, which is improved only little in the
binary set quadratic-form metric D5.

42 nature images D1 D2 D3 D4 D5 D6 D7 D8

# relevant
in top 10(20) 5(8) 5(8) 3(4) 5(8) 3(5) 5(9) 1(1) 2(3)
# retrieved
to obtain 5(10) 10(25) 10(26) 27(76) 10(26) 20(62) 9(23) 148(462) 33(108)
relevant ones

Table 4.4: Query 3: Nature with blue sky. Comparison of eight distance metrics.

4.4.3.4 Query 4: Lions

The goal of Query 4 is to retrieve images of lions. Prior to the trials, the 3; 100 images were inspected, and 41
were designated to be relevant (to depict lions). Examples of the retrieved images and plots of the retrieval
e�ectiveness are shown in Figures 4-16 and 4-17. Table 4.5 compares the retrieval e�ectiveness at several
operational values. The performance of metrics D1, D2, D4 and D6 is excellent. Using these metrics, on
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average, only 13 to 14 images need to be retrieved in order to obtain ten lions images. With D3 and D5, over
twenty images must be retrieved.

41 lion images D1 D2 D3 D4 D5 D6 D7 D8

# relevant in top 10(20) 7(14) 7(14) 6(9) 7(14) 6(9) 7(13) 5(8) 7(10)
# retrieved to obtain
5(10) relevant ones 6(13) 6(14) 8(26) 6(14) 7(22) 6(14) 8(32) 7(18)

Table 4.5: Query 4: Lions. Comparison of eight distance metrics.

4.4.3.5 Overall color retrieval evaluation

In Query 1 through Query 4, we compared the retrieval e�ectiveness of eight color query methods. We found
that the color histogram query methods provide consistently good performance, regardless of the histogram
distance metric used: D1, D2, D4, or D6. We also found that the quadratic-form metrics D4 and D6 provide
little di�erence in retrieval e�ectiveness from non-quadratic-form metrics D1 and D2. This implies that the
simplest metric (D1) is a good candidate for use in image retrieval applications. These queries also evaluated
the binary color sets. We found that the performance drops with binary sets. However, the simplicity a�orded
by these representations and metrics (D3 and D5) make them viable. Finally, the simple metrics based upon
color channel measurements (D7 and D8) performed consistently poorly and are not su�cient for retrieving
images by color features.

4.4.4 Texture retrieval

Next, we evaluate texture retrieval e�ectiveness using the Brodatz textures [9]. In the Brodatz experiment,
we evaluate �ve distance metrics: D1, D2, D3, D4 and D5. With metric D4, the similaritymatrixA is derived
from the feature correlation matrix obtained by training on 1120 Brodatz texture cuts. We note that the we
investigated D6, the Mahalanobis distance, in the classi�cation of texture in Chapter 3. We also explored, in
Chapter 3, the metrics based upon the texture channels directly, and therefore, investigations of D6, D7 and
D7, are not repeated for texture image retrieval.

4.4.4.1 Query 5: Brodatz textures

In the Brodatz texture retrieval experiment, twenty random cuts (of �xed size, 96 � 96) were made from
each of the 112 Brodatz textures (of size 512� 512) to produce a total 2; 240 texture images. In each of the
following query experiments, all twenty cuts from a class were used to query the collection of 2; 240 Brodatz
texture cuts. The average retrieval e�ectiveness was computed from the twenty queries. We repeated each
set of queries using each of the �ve texture distance metrics.

Query 5.1: Brodatz texture (Brodatz #D4: Pressed cork) In this experiment, images of pressed
cork were used to query the Brodatz collection. The query results are shown in Figure 4-18. We see that
texture histograms perform better than the binary texture sets. Table 4.6 compares the retrieval e�ectiveness
at several operational values. The histogram metrics D1;D2, and D4 perform about equally well. These
return, on average, eight relevant images among the �rst ten retrieved. The binary texture sets return only
�ve to six relevant images among the top ten retrieved.

20 pressed cork texture images D1 D2 D3 D4 D5

# relevant in top 10(20) 8(15) 8(15) 5(9) 8(15) 6(11)
# retrieved to obtain 5(10) relevant ones 6(12) 6(12) 9(22) 6(13) 7(17)

Table 4.6: Query 5.1: Brodatz texture (Brodatz #D4: Pressed cork). Comparison of �ve distance metrics.

Query 5.2: Brodatz texture (Brodatz #D1: Woven aluminumwire) In this experiment, images of
woven aluminumwire were used to query the Brodatz collection. The query results are shown in Figure 4-19.
We see that in this experiment, texture histograms perform much better than the binary texture sets.
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In Query 5.2, the binary set representation does not discriminate the \woven aluminum wire" textures
from the other textures. The reason is that many of the Brodatz textures, including \woven aluminumwire,"
have little energy outside of the DC subband and produce identical (empty) binary texture sets. Table 4.7
compares the retrieval e�ectiveness at several operational values. We found that D1 and D4 require only
twelve images to be returned in order to retrieve ten relevant images. In contrast, D2 requires 16 images to
be returned.

20 woven aluminum wire images D1 D2 D3 D4 D5

# relevant in top 10(20) 8(14) 7(11) 0 8(14) 0
# retrieved to obtain 5(10) relevant ones 6(12) 6(16) > 500 6(12) > 500

Table 4.7: Query 5.2: Brodatz texture (Brodatz #D1: Woven aluminum wire). Comparison of �ve distance
metrics.

4.4.4.2 Overall texture retrieval evaluation

In Query 5.1 and Query 5.2, we compared the retrieval e�ectiveness of �ve texture query methods. We found
that texture histograms perform extremely well for metrics D1, D2 and D4. We found that the binary texture
sets have a undesirable failure mode. When the texture does not contain su�cient spatial-frequency energy
outside of the DC subband, the binary texture set is empty. Since several Brodatz textures produce empty
binary texture sets, the binary texture set representation does not discriminate between them (as shown in
Query 5.2). However, in other cases (i.e., Query 5.1), the binary texture set provides retrieval performance
that is only slightly worse than the texture histogram methods.

4.4.5 Color and texture retrieval

We now compare the visual dimensions of color and texture in retrieving images from the test set of 3; 100
images. In Query 6 through Query 8, we compare histogram metrics D2 and D4 for color with those for
texture. We evaluate the relative e�cacy of color vs. texture in retrieving images of (1) coral, (2) wild cats,
and (3) yellow 
owers.

4.4.5.1 Query 6: Coral

The goal of this query is to retrieve images of coral (which come in a variety of colors). Prior to the trials,
the 3; 100 images were inspected, and 189 were designated to be relevant (to depict coral).

Examples of the retrieved images and plots of the retrieval e�ectiveness using color are shown in Figures 4-
20 and 4-21. We can see that none of the distance metrics perform well since color alone only partially
discriminates among the coral images. We compare the performance of color and texture in Figure 4-22. We
can see that texture discriminates between the coral images di�erently than color. On average, the color
metrics give slightly higher retrieval e�ectiveness than the texture metrics. However, in application, both
visual dimensions can be used in order to provide a more complete system for retrieving images.

4.4.5.2 Query 7: Wildcats

The goal of this query is to retrieve images of wildcats. Prior to the trials, the 3; 100 images were inspected,
and 26 were designated to be relevant (to depict wildcats). Examples of the retrieved images and plots of
the retrieval e�ectiveness using color are shown in Figures 4-23 and 4-24. The color histogram metrics clearly
retrieve the wildcats better than binary color set metrics do. Since the wildcat images do not contain much
color information, the color sets do not su�ciently represent the wildcat images. As a result, the binary color
sets perform poorly in retrieving these images.

We compare the performance of color and texture in Figure 4-25. In this example, color better discrim-
inates among the wildcat images than texture. However, the texture representations capture the texture
information in the wildcat images, such as the spots on the wildcats' heads. These features enable the wildcat
images to be retrieved e�ectively using the texture metrics.
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4.4.5.3 Query 8: Yellow 
owers

The goal of this query is to retrieve images of yellow 
owers. Prior to the trials, the 3; 100 images were
inspected, and 34 were designated to be relevant (to depict yellow 
owers). Examples of the retrieved images
and plots of the retrieval e�ectiveness using color are shown in Figures 4-26 and 4-27. As in the earlier
cases, the color histogram methods perform better than the binary color sets in retrieving the yellow 
owers.
However, many yellow non-
ower images are returned and reduce the e�ectiveness of the color metrics.

We compare the color metrics to texture in Figure 4-28. Texture alone does not satisfactorily retrieve
yellow 
owers. However, texture does retrieve images of 
owers of other colors, as depicted in Figure 4-28.
This query illustrates that color and texture provide complementary representations of the 
ower images.
The texture features characterize the spatial-frequency detail of the 
owers. Color adds discrimination power
in determining the colors in the di�erent 
ower images.

4.4.5.4 Overall color vs. texture retrieval evaluation

In Query 6 through Query 8, we compared the retrieval e�ectiveness of color and texture. We found in these
image retrieval experiments that color is more e�ective than texture. However, texture is still important.
In the case of the wildcat images (Query 7), there is little color in the images. As a result, we found that
the simple binary color set metrics could not discriminate among the wildcat images. However, the texture
metrics were able to retrieve the wildcat images. In the cases when the desired images are de�ned by color
(Query 8, yellow 
owers), color performs much better than texture. However, given the objective of retrieving
images of coral of many colors (Query 6), texture and color perform nearly equally well.

The next important dimension in evaluating the feature distance metrics is the computation required
to answer the queries. We present some of the recent approaches for computing histogram queries such as
pre�ltering and dimensionality reduction, and present two new methods: binary set bounding (BSB) and
query optimized distance (QOD) computation.

4.5. Feature indexing

There is great di�culty in indexing high dimensional feature vectors. For example, traditional indexing
techniques, such as the R-tree [58] are not suited for high-dimensional vector spaces. In general, the objective
of feature indexing techniques is to reduce the amount of data retrieval and computation in order to complete
the similarity search. The overall optimization considers the following criteria (1) computation, (2) data
retrieval (i.e., retrieved disk blocks), (3) misses and (4) false alarms. For example, in some situations, it is
desirable to allow some false matches in order to reduce computation and data retrieval.

Several recent techniques, such as pre�ltering and dimensionality reduction, have been proposed for index-
ing histograms for CBVQ. The pre�ltering divides the similarity search into stages such that the computation
required for evaluation at each subsequent stage increases and the number of candidate feature points de-
creases [59]. Alternatively, feature reduction techniques have been investigated to reduce the computation
and data retrieval in a similarity search, while possibly allowing use of indexing structures.

We propose two new techniques to improve feature indexing: binary set bounding (BSB) and query
optimized distance (QOD) computation. We describe these new techniques and compare them to other
methods based upon pre�ltering and dimensionality reduction.

4.5.1 Pre�ltering

The objective of pre�ltering is to design a distance metric which is inexpensive to compute and can act as
pre�lter, thereby, eliminating the necessity of computing the more expensive distance computation for many
of the images. The problem is posed as follows: design distance metric Dpre such that

Dpre(Q; T ) � Dexp(Q; T ); (4.21)

where Dpre is inexpensive to compute and Dexp is more expensive to compute. If Dpre(Q; T ) satis�es
Eq 4.21, then false dismissals are prevented [83].

We now look at the possibilities of using, in tandem, the distance metrics proposed above in order to
arrange a successful pre�lter.
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4.5.1.1 Quadratic distance bounding

One special case of pre�ltering for quadratic-form distance metrics was proposed in [59]. The basic idea is to
use distance metric D7 as a pre�lter for distance metric D4. It is shown in [59] that for C (in Eq 4.19) and A
(in Eq 4.12) with certain properties (namely, A is positive semi-de�nite) that D4 � �D7 for some constant
�, which is derived from C�1A.

In this case, given a query with a quadratic distance bound � (D4 � �), matches are �rst found such that
D7 � �=�, which guarantees no false dismissals. Then, D4 is computed on this match list to �nd the best
matches.

A naive procedure for computing D4 on a database of size N has a complexity O(NM2), where M is
the dimensionality of the histograms. Quadratic distance bounding requires the computation of D7 on a
database of size N plus a computation of D4 on the smaller subset. This gives the new overall complexity
O(NK +LM2), where K is the dimensionality of the vectors used in D7 and L << N , which is a signi�cant
reduction.

4.5.2 Binary set bounding (BSB)

We de�ne a new e�cient pre�ltering technique based upon binary set bounding (BSB). We found in the image
retrieval experiments (see Section 4.4.) that histogram queries using distance metric D2 provide excellent
retrieval e�ectiveness. However, there are several disadvantages with D2. First, the histograms, which are
M -dimensional vectors, require 
oating-point representation. A signi�cant amount of storage space is needed
for each histogram. This introduces an overhead in the query process in accessing the histograms from disk.
Second, D2 requires O(NM ) 
oating-point multiplications in order to compute the histogram distances, where
N is the size of the database.

On the other hand, the binary set Hamming distance metric D3 does not retrieve images as well as D2
(see Section 4.4.). However, the binary sets are stored with only single-bit representation. An M -dimensional
binary set requires only M bits of storage space. Also, the computation of D3 is extremely simple; it is
computed from the bit-di�erence between histograms.

From these observations, it is natural to try and use the binary set metric D3 to pre�lter the database
to reduce the computations needed for histogram metric D2. The BSB technique provides the strategy for
pre�ltering as follows:

1. the query histogram (hq) is mapped to the nearest binary set (sq), with error �q(hq; sq),

2. the target histograms (htk) are mapped, o�-line, to their nearest binary sets (stk) , with errors �tk(htk ; stk),
and

3. the binary set distance is computed for all target images, D3(q; tk).

4. Given the histogram query threshold D2(q; tk) � � , the primary binary set query selects from the
database only those images where D3(q; tk) � �tk � � + �q. This provides for no false dismissals since
D2(q; tk) � D3(q; tk) + �tk + �q is given by the triangle inequality.

5. Finally, D2 is computed only on the images that have survived the D3 pre�lter stage.

Overall, the BSB pre�lter technique requires O(M logM +M + pM ) operations, where p << N , to compute
the query. The binary set fast map (BSFM) algorithm from Section 2.8.4 determines the nearest binary set
to a histogram, which requires O(M logM +M ) operations. The remaining computation O(pM ) comes from
computing D2 on the surviving p images after pre�ltering by the e�cient bit-di�erence metric D3.

4.5.3 Dimensionality reduction

Another approach is to use dimensionality reduction techniques directly on the set of feature vectors. There
are two methods: data-independent reduction and data-dependent reduction { which requires a set of training
feature vectors. The objectives are to compact the feature vectors in order to reduce disk access, computation
and enable the use of indexing techniques [44, 1, 114].

Techniques for dimensionality reduction for image retrieval include the following, which are evaluated in
Figure 4-8,

� singular value decomposition (\A" = SVD),
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� discrete cosine transform (\B" = DCT),

� principal component analysis (\C" = PCA) and

� histogram sorting { (\D" = HS).

We examine the energy-packing ability of these methods using the 3; 100 color image test set. The plots in
Figure 4-8 depict the mean transformed histograms, where the elements are sorted in order of largest value
(only the �rst 40 dimensions of the 166 element space are depicted).
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Figure 4-8: Results of histogram dimensionality reduction: \A" = DCT, \B" = SVD, \C" = PCA, \D" =
HS (optimal sorting).

The plot for \A" gives the results for SVD { which obtains a unitary transformation of the histograms.
We see that SVD compacts the histogram energy. The plot for \B" gives the results for DCT. In this case, the
DCT of the histograms are �rst computed, then the elements of the mean of the DCT-transformed histograms
are sorted in order of largest coe�cients, giving \B." In this sense, we utilize a data-dependent form of the
DCT. We see that the sorted-DCT trails-o� faster than SVD.

The plot for \C" gives the results for PCA, which generates an eigenvalue decomposition of the histogram
training data. We see that PCA compacts the histogram energy better than DCT and SVD. Finally, the plot
for \D" is obtained by direct histogram sorting (HS), that is by sorting each histogram in order of largest
element and then computing the mean of the optimal sorted training set. We see that HS compacts energy
better than SVD, PCA and DCT methods.

The HS method is not practical for compacting the histograms for storage (we would need to store for each
sorted-histogram also it's inverse sort transform). However, we use this discovery about histogram energy
compaction from HS to derive a new powerful system for computing histogram queries { the query optimized
distance (QOD) computation. The QOD computation method �rst sorts the query histogram (to obtain an
energy compaction of the type depicted in Figure 4-8 { plot \D"), then accesses the elements of the target
histograms in the database in order of largest value in the sorted query histogram.

4.5.4 Query optimized distance (QOD) computation

We present the query optimized distance (QOD) computation technique and show that it is applicable to
both Minkowski-form (Section 4.3.1) and quadratic-form (Section 4.3.2) histogram and binary set distance
metrics.
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4.5.4.1 Quadratic-form QOD computation

We �rst explore the quadratic-form distance metric D4 (Eq 4.12). By precomputing �t = hTt Aht and
�q = hTqAhq and �t = Aht, we have

D4 � �q = �t � 2hTq �t: (4.22)

Let Ms be a permutation matrix that sorts hq in order of largest element (HS). Applying this permutation
also to �t gives, where fq =Mshq and �t =Ms�t,

D4� �q = �t � 2fTq �t; (4.23)

In this way, by �rst sorting the query histogram, the vector elements of �t are accessed in order of decreasing
importance to the query. It is simple to pre-compute �t from the ht for the database. We have now the
following expression for computing D4, where M is the dimensionality of the histograms,

D4M�1 = D4� �q = �t � 2
M�1X
m=0

fq [m]�t[m]: (4.24)

By stopping the summation at a value k < M � 1, we obtain an approximation of D4M�1, such that

D4k � D4k+1 � : : : � D4M+1: (4.25)

As such D4k can be used in a process of bounding similar to that described above for quadratic distance
bounding and BSB. Furthermore, the approximation of D4k to the D4M�1 can be made arbitrarily close, and
can be determined by the system or user in application.

This technique provides for a reduction of complexity in computing D4. We have that nearly 80% of
image color histogram energy is contained in the k � 10 most signi�cant colors (see Figure 2-4). When only
the most signi�cant p colors are used, the complexity is O(M logM + kN + N ). Here, M logM operations
are required to sort the query color histogram and N is the size of the database.
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Figure 4-9: Average retrieval e�ectiveness for 23 queries for sunset images using QOD query method, K166
= all 166 colors, K6 = best 6 colors, K4 = best 4 colors, K2 = best 2 colors, K1 = best color.

To evaluate the impact of the QOD method on retrieval e�ectiveness, we repeat Query 1 (sunset images).
In the experiment, we sort the elements of each query histogram bfhq using HS. We then use only the k most
signi�cant colors (k 2 f1; 2; 4; 6; 166g) to compute the query results. As in Query 1, we use each relevant
image, in turn, to query the image test-set. The average retrieval e�ectiveness from the set of queries is given
in Figure 4-9.
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We make several observations from Figure 4-9. As k increases, the initial retrieval e�ectiveness also
increases, which is expected. That is, the �rst images retrieved are more likely to be relevant. However,
at the point where approximately ten images are retrieved the retrieval e�ectiveness starts to decline as k
increases. We also see that for small values of k, i.e., k = 6, the retrieval e�ectiveness approaches that for
k = 166. These results demonstrate that QOD provides a powerful method for reducing the computation
required to answer the feature-based queries.

4.5.4.2 Binary set quadratic-form QOD computation

The QOD computation technique applies also to the binary set quadratic-form distance metric D5 (Eq 4.14).
Since sq 2 B

M (sq is a binary vector), we have, where rt = Ast,

D5(q; t)� �q = �t � 2
X

8m; where sq [m]=1

rt[m]: (4.26)

Using this QOD computation, we need only to consider the elements of the query binary set where sq [m] = 1
in the computation of the quadratic-form binary set distance D5(q; t).

4.5.4.3 Euclidean-form QOD computation

The euclidean-form QOD computation (of D2) is a special case of the quadratic-form where �q = �t = 1 and
�t = ht. Since �t is constant for the query, the complexity is further reduced to O(M logM + pN ).

4.6. Summary

In this chapter, we presented and evaluated techniques for computing color and texture similarities using
histograms. We presented eight distance metrics and evaluated the retrieval e�ectiveness in experiments of
retrieving images from a test set of images. In summary, we found that the non-quadratic-form metrics (D1
and D2) perform as well as the quadratic form metrics (D4 and D6). We also found that binary sets are an
e�cient and compact alternative to histograms. Retrieval e�ectiveness with binary set metrics (D3 and D5)
is worse than histograms, but examples illustrate that their performance su�ces as a �rst pass query.

We also compared the relative e�cacy of the visual dimensions of color and texture in retrieving images
from the test set. While texture histograms perform well in retrieving Brodatz texture images, color methods
are better than texture methods in retrieving images from the set of \unconstrained" images.

We also presented two new strategies for e�ciently computing the histogram distance queries using binary
set bounding (BSB) and query-optimized distance (QOD) computation. We compared these techniques to
quadratic distance bounding and other feature dimensionality reduction techniques. We note that these
techniques may be combined to provide a powerful solution for e�ciently computing the histogram queries.

In the next chapter, we examine the problem of extracting color and texture regions from unconstrained
imagery. We use the color and texture histograms and binary feature sets in a novel process of region
extraction via histogram back-projection. We demonstrate in Chapter 7 that by extracting the regions from
images and by utilizing spatial and feature attributes in the query process, we improve retrieval e�ectiveness
signi�cantly over the purely feature-based techniques explored in this chapter.
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Chapter 5

Region Extraction

5.1. Introduction

In this chapter, we present a novel system for detecting and extracting color and texture regions. We present
the framework for color and texture histogram back-projection. Histogram back-projection (HBP) determines
the most likely spatial locations of a given histogram within an image. We also de�ne the procedure for
binary set back-projection which identi�es the most likely locations of a given binary set within an image.
We investigate and compare �ve formulations of back-projection.

We also develop a procedure that automatically extracts regions from images by testing candidate binary
sets by performing simple binary set back-projections. The binary set iteration (BSI) procedure automatically
generates single- and multiple-element binary sets for an image in order to extract regions.

These powerful techniques allow us to de�ne an overall strategy for the integrated spatial and feature query
system which includes the automated analysis of the images and extraction of color and texture regions.

5.2. Visual feature extraction

In the image retrieval applications, it is impractical to perform the back-projection or, in general, region
extraction, at the time of the query. Therefore, in order to develop the complete solution for integrated
spatial and feature querying by regions, we consider �rst that prototypal color and texture patterns are
available. Given a collection N with N images and a set L with N color and texture patterns, we back-
project the L patterns onto the N images to generate a region database R with R regions. The process is
illustrated in Figure 5-1.
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Figure 5-1: Strategy for region extraction in the integrated spatial and feature image query system.

The set of color and texture patterns L is generated in a number of ways. One method is to manually
extract example regions from the images in the collection N . Alternatively, �xed block segmentation of the
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images combined with clustering provides examples (centroids) of the typical color and texture patterns in
the image collection. These can be used to form L. Finally, we present a novel approach in Section 5.5. for
generating the set L automatically using binary feature sets.

The set of color and texture prototypes form the visual feature library (VFL) in which each element refers
to a particular visual prototype of color, or texture, or both. Corresponding to each element Lk in the VFL
is a feature type vk (such as color or texture), a histogram hvk, a histogram metric space Hv

k, and a concept
or class !k related to the prototype such that Lk = [vk;h

v
k;H

v
k; !k].

Whereas hvk { the measured feature, or histogram, is drawn from a multidimensional continuum of values,
the variable !k comes from a discrete and �nite set 
 of concepts or classes [133]. To each !k 2 
 a distinct
name is associated, i.e., \grass," \checker board," \sky," \zebra stripes."

The back-projection techniques detect in images, the elements Lk, which are assumed to be given. In
particular, the strategy for region extraction is as follows: for all elements Lk in the VFL, select each and try
to detect (or to verify) it in the image. In this way, the strategy uses a top-down or model-driven approach
to the general problem of recognition [104].

5.2.1 Region extraction strategies

There are many possible strategies for region extraction in CBVQ. The least complex method involves manual
extraction. The images are evaluated by people, and the pertinent information is identi�ed visually. For
example, this approach is explored in the IBM QBIC system [102]. However, the manual extraction of regions
and objects is extremely tedious and time-consuming for large image and video collections. Several recent
techniques have been devised to facilitate the manual region extraction process, such as the use of active
contours and snakes [78, 57] to automatically improve the coarse descriptions of region boundaries that are
obtained manually.

Alternatively, blocks of regions can be extracted by �xed segmentation of the images. This approach was
investigated by Stricker and Dimai for retrieving color images [157]. In their system, the images are divided
into �ve regions. Using this type of segmentation, the authors improved image retrieval performance. However,
in general, it is di�cult to pick the scale and locations at which images should be blocked. Furthermore, �xed
block segmentation is not invariant to shift or scale changes.

A third technique involves image segmentation. Many techniques have been proposed for segmenting
images. Chua, Lim and Pung developed a segmentation technique which uses color pairs [29]. Later, Hsu,
Chua and Pung extended the color pairs technique to perform foreground object color extraction [66]. Celenk
developed an image segmentation technique which performs a clustering of colors [14]. The process determines
simple structures and surfaces. Color histogram thresholding has been investigated extensively for segmenting
color images. Ohta, Kanade and Sakai investigated one recursive histogram thresholding technique to derive
a color space that is most suited for region segmentation [107]. However, the general problem of segmentation
of unconstrained images is poorly de�ned, as we explain shortly.

In order to extract region from images that are used in the spatial and image feature query system, we
propose a new technique which partly employs the HBP method developed by Swain and Ballard [159]. The
authors use HBP to detect known objects within images [159]. HBP was later investigated by Ennesser and
Medioni for devising a system which solves the \Find Waldo" puzzles ([33]) by computer [43].

5.2.1.1 Histogram back-projection

We de�ne HBP as follows:

De�nition 1 Histogram back-projection (HBP). A class of algorithms designed to detect within images

the regions with feature-histograms that are similar a given model histogram hq.

In Swain and Ballard's formulation, HBP determines the most likely location of a speci�c histogram
hq within an image I[x; y] [159]. By back-projecting the quotient of the query histogram and the image
histogram, the location of the query histogram is found. More speci�cally, given query histogram hq and
image histogram ht, 8m20:::M�1 let s[m] = min(hq[m]=ht[m]; 1). Then, replace each point in the image by
the corresponding con�dence score, 8x;y, I0[x; y] = s[k], where k = I[x; y]. After convolving I0[x; y] with a
blurring mask, the location of the peak value corresponds to the most likely location of the model histogram
within the image.
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In small image retrieval applications, the HBP may be computed at the time of query to �nd objects
within images [159, 43]. However, for large collections it is not feasible to compute the back-projection at
time of query. A faster color indexing method is needed.

5.2.1.2 Region extraction in the image collection

We apply the back-projection technique to the problem of image retrieval by pre-computing the back-
projections of elements fLkg onto the images. By processing these back-projections ahead of time, the
system solves the spatial and feature queries without extracting regions at the time of the query.

We begin by establishing the connection between the back-projection method and detection theory. We
show that the back-projection techniques are closely related to those for pattern recognition and signal
detection. However, we demonstrate that, since these approaches are overly constrained, they cannot be
used as a system for region extraction in a collection of unconstrained images. We demonstrate that the
back-projection coupled with the VFL provide a powerful solution for extracting regions in a large collection
of unconstrained images.

We �rst describe the problems addressed by the general techniques of pattern recognition (PR) and image
segmentation (IS). We argue that the frameworks presented for PR and IS are not suited to the problem of
region extraction in the collection of unconstrained images because

1. pattern recognition requires that the set of region classes 
 is determined a priori, and is �xed, j
j = N
for the duration of the application, and

2. the segmentation of unconstrained images is not a well de�ned problem.

In general, it is not possible to determine the ground-truth segmentation from which the results of an image
segmentation can be evaluated.

5.2.2 Pattern recognition

Pattern recognition is the process of inferring the class !k of an observation hvk [133]. There typically exists
a �nite set of K possible classes, 
 = f!0; !1; : : : ; !K�1g, where !k are the classes and 
 is the set of classes.

In a closed-world assumption, the K classes are mutually exclusive and complete [133]. Associated with
each !k is a measurement vector hvk, which is a collection of observations about class !k. In general, the
measurement vector hv de�nes a vector point in the M -dimensional space Hv.

The objective of pattern recognition is to provide the mapping from the hv's into the !'s through a

decision function d(hv) as follows: hv
d
! !.

D23

D54

D2

D12 D6

(a) (b)

Figure 5-2: Pattern recognition is the process of classifying image points into a set of known classes (
). (a)
Brodatz texture composite image, (b) example of labels (!k) assigned by pattern recognition process.

Typically, pattern recognition is accomplished by computing the distance of the unknown pattern to each
class. Then, the unknown pattern is assigned to the nearest class k. This is accomplished as follows, given
the unknown pattern with feature measure hv, allocate hv to class k if 8i6=k, D

v(hv; hvk) � D
v(hv; hvi ), where

Dv is the measure of dissimilarity of the type v features, (i.e., v 2 fcolor, textureg).
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Pattern recognition is not suited for the problem of extracting regions in a collection of unconstrained
imagery because:

1. the set of classes 
 must be determined before hand, and has �xed size. For example, when a new
pattern class is added, the prior results of a pattern recognition procedure are invalidated.

2. The pattern recognition system is limited to using one feature measurement for all classes. It is not
possible to de�ne a texture measure for some classes and a color measure for others.

We contrast pattern recognition with image segmentation, which does not require that the pattern classes
are established a priori.

5.2.3 Image segmentation

Image segmentation is the process of partitioning an image I[x; y] into non-overlapping segments Ri. A
segmentation requires that the set of partitions fRig is non-overlapping and complete as follows

[
Ri = 1 and

\
Ri = 0: (5.1)

R0

R3

R1R4

R2

(a) (b)

Figure 5-3: Image segmentation is the process of segmenting the image into non-overlapping regions. (a)
Brodatz texture composite image, (b) example results of image segmentation.

Image segmentation does not require that the pattern classes are known. In general, the objective is to
separate the image into homogeneous regions [4]. For example, segmentation methods have been developed
that perform �xed block segmentation using spatial quad-trees [155, 69] and region merging [111]. Other
techniques, such as region growing [4], edge detection [81], texture segmentation [11, 67, 73, 86, 127, 176, 41,
24, 25, 138] and color segmentation [90, 122, 165, 14] have also been developed for segmenting images.

However, segmentation is not a well-de�ned problem in the case of unconstrained images. The pursuit of
homogeneous regions is ill-posed for unconstrained images since the de�nition of the term \homogeneous" is
application and domain-dependent. Furthermore, for unconstrained images there is no way of establishing
the ground-truth segmentation in order to evaluate the correctness of any given segmentation fRig.

There are multiple ways to choose the partitions Ri to satisfy the constraints in Eq 5.1. For example,
Figure 5-4 illustrates two ways to segment the Barbara image in order to satisfy Eq 5.1. In our application for
extracting regions from unconstrained images, it is not possible to decide which is more acceptable. Therefore,
we consider that both are acceptable by relaxing the constraints in Eq 5.1.

5.2.4 Region detection

We de�ne the problem of region detection as the determination of the existence and location of a model
within an image. The problem is formulated as follows: given image I[x; y] and model Lk, detect the model
in I[x; y]. The region detection problem is illustrated in Figure 5-5.

The problem of region detection is related to pattern recognition in that model patterns are used. However,
the di�erence is that there is



86 John R. Smith

R0
R1

R2
R4

R5

R3

R1

R2

R6

R5

R0
R0

R7

R4

R9

R8

R10

(a) (b) (c)

Figure 5-4: Demonstration of multiple solutions for image segmentation (a) unsegmented image, (b) segmen-
tation into six regions (b) segmentation into eleven regions.

(a) (b)

Figure 5-5: Region detection is the process of detecting a model pattern within an image. (a) Brodatz texture
composite image, (b) example of the region detected for model pattern = \Cane."
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1. no restriction on the number or collection 
 of models that are used. The complete set of models does
not need to be de�ned a priori.

2. Each model may use a di�erent feature measurement type v. Some model patterns are de�ned in terms
of color and others in terms of texture.

When a library of models is used to extract regions of di�ering patterns from an image, the problem
resembles that for image segmentation: a set of regions Ri are extracted from the image. However, the
di�erence is that, here,

S
Ri � 1 and

T
Ri � 0. That is, the extracted regions may overlap and may not

necessarily completely partition the image.
We now look more closely at the process of region extraction. We propose several HBP algorithms for

extracting regions from images. In order to understand the HBP process, we present the framework of decision
theory. We �rst show that the con�dence HBP algorithm de�ned in [159] is related to the likelihood ratio
test [163].

5.2.4.1 Decision theory framework

The simplest decision theory problem consists of several components: the source, the probabilistic transition
mechanism, the observation space and the decision rule [163].

In our application, the �rst component corresponds to the source that generates the image. The source
consists of the objects in the real-world and the light that is re
ected from the objects into the camera. The
probabilistic transition mechanism corresponds to the light pattern this is probabilistically generated by each
object depicted in the image.

Given a model, we wish to determine the patterns in the image that correspond to the model. We formulate
this as a simple two-hypothesis decision theory problem with the following two classes

H1 : model present

H0 : model not present:

We assume that the probabilistic transition mechanism generates points according to the corresponding two
conditional probability densities: points generated by the model follow prjH1

(RjH1) and other points follow
prjH0

(RjH0).
Given the a priori probabilities for model presence P1 and model absence P0, and cost assignments for

each course of action Cij the expected cost of the risk < is given by

< = C11P1Pr(detect: H1jH1)

+ C01P1Pr(miss: H0jH1)

+ C10P0Pr(false alarm: H1jH0)

+ C00P0Pr(no detect: H1jH1): (5.2)

By minimizing < the likelihood ratio test is obtained by [163], choose H1 when

prjH1
(RjH1)

prjH0
(RjH0)

H1

>
P0(C10 � C00)

P1(C01 � C11)
: (5.3)

In our application, it is di�cult to determine the a priori probabilities and cost assignments Cij. We consider
instead, the conditional probabilities for detection PD and false alarm PF , which are de�ned as follows

PF =

Z
Z1

prjH0
(RjH0) and PD =

Z
Z1

prjH1
(RjH1): (5.4)

By constraining PF , the PD can be maximized, which gives the Neyman-Pearson criterion,

prjH1
(RjH1)

prjH0
(RjH0)

H1

> �: (5.5)

Here, � determines the tradeo� between PF and PD. We now apply this to the detection of regions, where
the conditional probabilities are determined by the feature histograms.
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5.2.4.2 Back-projection framework

In the case of images, the probabilistic transition mechanism generates an observation as each point in the
image. We presented measures for these observations in terms of color in Chapter 2 and texture in Chapter 3.
In this way, the features of regions are represented by histograms (color histograms and texture histograms).
These histograms correspond directly to the transition mechanism probability distributions. That is, a model
Hk generates a histogram hk in accordance to hk = pr;HK (RjHk), where r is the measurement vector.

In the general two-class detection problem, we de�ne the histogram h1 for the model and h0 for non-model.
From this, we reformulate the likelihood detection using the feature histograms as follows

h1
h0

H1

> �: (5.6)

We now present the HBP algorithms, which are variations of Eq 5.6.

5.3. Back-projection algorithms

The HBP process is carried out using the following histograms:

1. model histogram, hq = h1,

2. target image histogram, ht = h0, and

3. local region histogram, hl.

The back-projection systems slide a window through the target image and compute the likelihood that each
image point belongs to the model. The likelihood image is then �ltered to reduce noise. By thresholding at
�, the locations of the model are determined in the image.

We investigate �ve formulations of back-projection: (1) con�dence back-projection, (2) quadratic con�-
dence back-projection, (3) local histogramming, (4) binary set back-projection and (5) single-element back-
projection. The back-projection algorithms consist of several stages: back-projection, smoothing, thresholding
and detection.

5.3.1 Con�dence back-projection (BP1)

Con�dence back-projection was proposed by Swain and Ballard [159]. The con�dence histogram hr is �rst
generated by taking the ratio of the model hq and target histograms ht

hr[m] =
hq[m]

ht[m]
: (5.7)

Each point in the image is assigned a likelihood as follows

let k = I[x; y]; then I0[x; y] = hr [k]: (5.8)

The image I0[x; y] is then smoothed to reduce noise giving I00[x; y] = B[x; y] � I0[x; y], where � gives the 2-D
convolution with blurring �lter B[x; y] as follows

I00[x; y] =
W�1X
w=0

H�1X
h=0

B[x� w; y � h]I0[w; h]: (5.9)

Finally, I00[x; y] is thresholded. The peaks reveal the locations of the detected model hq. One drawback
of BP1 is that the back-projection only compares like-bins. This is similar to the drawback of using the
Minkowski-form metrics for computing histogram distance (see Section 4.3.1). To address this, we develop
BP2 to consider the similarity of each target element ht[m] to all the elements in the model histogram hq.
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5.3.2 Quadratic con�dence back-projection (BP2)

In quadratic con�dence histogram back-projection, hr is generated by taking the ratio of the model hq and
target histograms ht as follows

hr [m] =

P
n hq[m]Am;n

ht[m]
; (5.10)

where Am;n de�nes the similarity of the histogram elements indexed by m and n. Each point in the image is
assigned a likelihood as follows

let k = I[x; y]; then I0[x; y] = hr [k]: (5.11)

The image I0[x; y] is then smoothed to reduce noise and thresholded to reveal the most likely locations of hq.

5.3.3 Local histogramming (BP3)

In local histogramming, the smoothing operation and back-projection steps are combined. In this case, for
each point in the target image I[x; y], a local neighborhood histogram hl is computed and its distance to the
model histogram hq determines whether each image point belongs to the model. De�ne hxyl to be the local
neighborhood histogram for the region Rwh

xy in image I[x; y], centered at point (x; y) with size w � h. Then,
let

I00[x; y] = dq;l(hq;h
xy
l ): (5.12)

BP3 is more robust than BP1 and BP2 since the most e�ective distance metric dq;l may be used (see
Chapter 4).

5.3.4 Binary set back-projection (BP4)

In binary set back-projection, the target image points are assigned 1 or 0 depending on membership in the
model binary set sq where sq 2 B

M . In this way, BP4 is extremely simple as follows

let k = I[x; y]; then I0[x; y] = sq[k]: (5.13)

The image I 0[x; y] is then smoothed to reduce noise and thresholded to reveal the most likely locations of sq.

5.3.5 Single element quadratic back-projection (BP5)

Single element quadratic back-projection combines BP2 and BP4. The target image points are weighted by
similarity to the back-projection element m, where sq [m] = 1 and sq [k] = 0; 8k 6=m such that

let k = I[x; y]; then I0[x; y] = Am;k: (5.14)

The image I 0[x; y] is then smoothed to reduce noise and thresholded to reveal the most likely locations of sq.

5.4. Back-projection region extraction examples

We demonstrate the back-projection methods by detecting models of color and texture in example images.
The results are given in Figures 5-6, 5-7, 5-8 and 5-9.

5.4.1 Color histogram back-projection

Figure 5-6 illustrates the results of color HBP using algorithms (BP1 : : :BP4). The model image depicts
a sample of \yellow grass." The �rst row depicts the back-projection images. The second row depicts the
�ltered images. We see that BP2 improves the detection results over BP1, however, BP3 best determines
the location of the model. The binary set back-projection BP4 detects the model su�ciently well, which
indicates that BP4 has a role as a pre-�lter before a more expensive back-projection, i.e, BP3.
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Model image

BP1 BP2 BP3 BP4

Figure 5-6: Color histogram back-projection comparing methods BP1, BP2, BP3, and BP4 in detection of
yellow grass.

5.4.2 Object detection and histogram back-projection

Figure 5-7 illustrates the results of detecting an object within a crowded image using color HBP. The model
depicts the \Waldo" character. The objective is to \Find Waldo" within the crowded scene. This problem
was motivated by Ennesser and Medioni and was addressed in [43]. The �rst row depicts the back-projection
images. The second row depicts the �ltered images. The \Find Waldo" problem is di�cult because many
false Waldo's are present. In this di�cult detection problem, BP3 clearly gives the best performance. The
others detect the location of Waldo but have several false alarms in addition.

5.4.3 Texture histogram back-projection

Figure 5-8 illustrates the results of texture HBP using algorithms (BP1 : : :BP5). The wavelet images for the
target and model images are also depicted. The �rst row depicts the back-projection images. The second
row depicts the �ltered images. The model image depicts a set of vertical zebra stripes. The objective is to
detect the zebra stripes within the image. We see that all back-projection methods detect the stripes well.
However, again BP3 best determines the location of the model. The binary set back-projection BP4 detects
the model su�ciently well for texture back-projection.

5.4.4 Combining color and texture histogram back-projection

We combine color and texture back-projections results to better detect regions. Figure 5-9 illustrates an
example of combining color and texture back-projection. Neither color or texture alone su�ciently extracts
the 
ower region from the image. However, by combining the individual results, the model is better detected.

5.5. Region extraction systems

We now present systems for automatically generating the VFL's and extracting regions from the images.
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Figure 5-7: Color histogram back-projection comparing methods BP1, BP2, BP3, and BP4 in \Find Waldo".
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Figure 5-8: Texture histogram back-projection comparing methods BP1, BP2, BP3, and BP4 in detection
of zebra stripes.
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Figure 5-9: Combined color/texture back-projection.
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5.5.1 Single-element quadratic back-projection system

The single-element back-projection algorithm BP5 is a special case in that it is suited for detecting only
models with single-element features. We develop a simple process for single-element region extraction by
iterating over single-element histograms. This provides a novel approach for automated region extraction. In
this case, the VFL is generated automatically and adaptively to each image.

For example, we generate �rst, for each image, a histogram ht (color or texture). For each m such that
ht[m] � � we generate a binary set such that sm[m] = 1 and 8i 6=msm[i] = 0. The collection fsmg of binary
sets constructs a VFL for the image.

We then back-project, using BP5, each binary set sm onto the image. The detected regions are extracted
and are made available for integrated spatial and feature querying. The results of two examples of single-color
quadratic back-projection system are illustrated in Figure 5-10 and Figure 5-11.

We consider a generalization of the single-element back-projection system in which single-, and multiple-
element binary sets are back-projected using BP5. In general, we develop a binary set iteration procedure
for generating the VFL adaptively to each image.

5.5.2 Binary set iteration (BSI) system

In the binary set iteration (BSI) and back-projection system, two histograms are created: the target image
histogram ht and a residue histogram hr. We utilize two thresholds for each bin, �t and �r, in the iteration
process as follows: for each m such that ht[m] � �t the single-element back-projection procedure is performed.
Then, the histograms for all the extracted regions are summed to generate h(1). We compute hr = ht�h(1).
Then, for all pairs of elements (m;n) where hr[m] � �r and hr[n] � �r , binary color sets are generated such
that s(m;n)[m] = 1 and s(m;n)[n] = 1 and 8i6=m;nsm[i] = 0. These two-element binary sets are back-projected
using BP2. The process is repeated until 8mhr[m] � �r .

5.6. Summary

We presented a strategy for extracting regions from images in an image collection. By using a visual feature
library (VFL) and the histogram back-projection (HBP) system, the feature elements in the VFL are tested-
in and extracted-from the images. We presented two systems for generating the VFL's automatically using
binary sets.

We also presented and compared �ve algorithms for histogram back-projection and demonstrated their
performance in detecting regions from images. In the color and texture back-projection examples, the
back-projection technique based upon local histogramming (BP3) performs best. However, computation-
ally cheaper methods such as binary set back-projection (BP4) perform su�ciently well in detecting regions
in the example back-projections.

We use the back-projection system and the VFL to develop the overall strategy for the integrated spatial
and feature query system. By using the representations for color and texture presented in Chapters 2 and 3,
the feature similarity measures of Chapter 4 and the region extraction techniques presented here, we have the
tools for developing the complete spatial and feature query system. Before presenting the query process, we
describe next in Chapter 6 a new method for adaptive image analysis and compression. The compression of
images is a key component for storage and transmission in the image systems.
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Figure 5-10: Results of the single color quadratic back-projection system (BP5) for automated region extrac-
tion from the \Baboon" image.
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Figure 5-11: Results of the single color quadratic back-projection system (BP5) for automated region extrac-
tion from the \Stop sign" image.
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Chapter 6

Adaptive Image Analysis and Compression

6.1. Introduction

The transformation of signals is of critical importance in applications of compression, feature extraction and
noise reduction. It provides a re-organization of data by which the signal can be better analyzed, prioritized,
quantized and/or discarded. Recently, algorithms have been proposed, such as those based upon, wavelet
packets [31, 124], quadtree segmentation [136, 132], matching pursuits [94, 6], and the double-tree [62], for
generating bases adaptively to the signal. However, each of these has shortcomings. Wavelet packets do not
adapt to local spatial content. The quadtree provides poor energy compaction. The double-tree provides
an asymmetric adaptation in the space and frequency domains. Matching pursuits compute a sub-optimal
expansion.

In this paper, we present a joint adaptive space and frequency best basis selection method. The joint
adaptive space and frequency (JASF) graph provides a complete and symmetric expansion of an image into
a library of spatially and frequency localized basis elements. By implementing the frequency expansion in
a partitionable-form, any near-redundant terms are prevented, allowing the basis elements to be indexed by
the JASF graph.

The JASF graph provides for (1) the e�cient expansion of the image into a library of basis elements, (2)
detection of the best basis and (3) coding of the best basis. The JASF graph examines exponentially more
bases than previous methods. For example, for a JASF expansion of depth = 6, the JASF graph examines
1020 times as many bases as a double-tree of the same size.

6.1.1 Signal expansion

Signal expansions are produced by linear transforms and/or �lter banks. Fast algorithms make them viable
for practical systems. For example, they are well suited to applications such as real-time video coding, where
both the encoder and decoder need to have low complexity. The constraints allow for little adaptivity in
the signal expansion. As a consequence, �xed transforms such as the discrete cosine transform (DCT) have
become most common for image compression (JPEG) [168] and video compression (MPEG) [49].

However, there are many new applications that support an asymmetric coding model whereby the con-
straints at the encoder and the decoder di�er. For example, in digital image and video library applications the
data is typically encoded once { o�-line, and is stored. Real-time compression is not required and the encoder
does not need to be of low complexity. The compressed data is retrieved later for purposes of analysis [139],
decompression and viewing. The encoded images and videos need to be quickly and cheaply decompressed
and possibly analyzed directly in the compressed domain [17].

In general, digital and image libraries require new and e�cient compression systems that jointly (1)
decrease the code size, (2) lower the visible distortion, and (3) improve access to visual content and image
features [115, 18]. Given these new applications, it is worthwhile to investigate new procedures for the adaptive
compression of images in the design of the image systems.
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6.1.2 Adaptive signal expansions

Recent methods in image compression adaptively decompose the images in order to compact the information.
The purpose is to derive a particular segmentation, transformation or �lter bank that is customized to each
image. In several solutions, tree- and graph- structured expansions are used to generate libraries of basis
elements [31, 124, 170, 62, 140, 144].

In these methods, a basis element is de�ned to consist of one set basis functions that is generated and
coded as a group; each basis element corresponds to one node in the tree or graph. The objective of the
compression algorithm is to identify the best basis which consists of a \complete" set of basis elements that
have the least total coding cost. The completeness constraint enables perfect reconstruction (PR) in the
absence of quantization. The various tree- and graph-expansions di�er in the sizes of their basis element
libraries and/or the number of unique bases they provide.

The two main approaches decompose the images either by frequency, such as wavelet packets (WP), or
spatially, such as quadtree (QT) segmentation. Hybrid approaches such as the double-tree (DT) algorithm
incorporate both segmentation and frequency expansion. However, the symmetric joint space and frequency
expansion of images has not been addressed.

For example, Figure 6-1 illustrates the set of (18) possible time-segmentations and frequency expansions
for a four point 1-D signal. Notice that strategies based upon adaptive segmentation-only or frequency-only
generate only a fraction of the available bases, only �ve bases each. The DT generates a greater number of
bases (14), however, because of the DT's asymmetric treatment of segmentation and frequency expansion, the
DT still misses four bases. The JASF graph generates the complete set of (18) bases. We demonstrate that in
compressing images, the extra bases generated by the JASF graph greatly improve the potential compression.
We describe these four methods in more detail.

w,s,d,g s,d,g w,d,g

d,g g g d,g d,g g g d,gd,g

s,d,g s,d,g w,d,g w,d,g w,d,gs,d,g

Figure 6-1: Example time-frequency bases for a four point 1-D signal. The squares depict the 18 possible
ways to partition the time-frequency plane. The vertical lines correspond to segmentations in time while
the horizontal lines correspond to segmentations in frequency: s = segmentation-only, w = wavelet packet
(WP)-tree, d = double-tree (DT), g = JASF graph.

Wavelet packet (WP)-tree An algorithm for adaptive selection of the best frequency, or wavelet packet
basis was proposed by Coifman, Quake, Meyer and Wickerhauser [31]. The wavelet packet (WP) algorithm
generates a library of orthonormal functions that are derived from a single �lter kernel. The WP algorithm
searches through the basis element library to �nd the best basis for the image [124].

The WP expansion is generated using a tree-structured cascade of �ltering and downsampling operations
(�lter banks). The tree also guides the search for best basis [31, 170, 124]. But, an important drawback of
the WP-tree is that the expansion is performed on the entire image. For example, a WP-tree expansion is
illustrated in Figure 6-2(a). The WP-tree cannot adapt to variations in spatial content in separate regions of
the image { or to non-stationarity.

Spatial quadtrees (QTs) Spatial quadtrees (QT) generate a hierarchy of spatial segmentations of the
image. Figure 6-2(b) depicts an example of QT segmentation. Since the spatial QT can adapt to the di�erent
spatial regions, it better adapts to image non-stationarity than the WP-tree. However, the spatial QT does
not have the same capacity as the WP-tree for compacting the energy of the image into a small set of most
signi�cant elements.
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(a) (b)

Figure 6-2: (a) Wavelet packet (WP)-tree adapts to global frequency, (b) spatial quadtree (QT) adapts to
spatial content. (White lines = frequency expansion, black lines = spatial segmentation)

(a) (b)

Figure 6-3: (a) Double-tree (DT) expansion treats space and frequency asymmetrically, (b) JASF graph
expansion treats space and frequency symmetrically. (White lines = frequency expansion, black lines =
spatial segmentation)
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Double-tree (DT) To address the problem of non-stationarity without sacri�cing energy compaction, the
double-tree (DT) algorithm was proposed by Herley, Kova�cevi�c, Ramchandran and Vetterli [62]. The DT
�nds the best WP basis for a hierarchy of binary segmentations of the signal. The overall best basis search
identi�es the best overall segmentation and best WP basis for the segments.

However, the DT does not exploit the full potential of a joint space and frequency expansion. The
insu�ciency results from the asymmetric treatment of the space and frequency operations in the tree cascades,
as illustrated in the example of a DT expansion of the Barbara image in Figure 6-3(a). Furthermore, we will
show that a \single critical pruning decision" reduces the DT to a WP-tree. We have observed for images
that the DT is most typically pruned into a WP-tree. Therefore, in practice, the DT o�ers no advantage over
the WP-tree.

JASF graph The JASF algorithm treats the space and frequency operations symmetrically in a graph
structured cascade [140, 144]. An example of a JASF graph expansion of the Barbara image is illustrated in
Figure 6-3(b). Both the DT and its dual are embedded in the JASF graph. The JASF graph requires that
the basis functions are modi�ed to generate a partitionable frequency expansion. While this does impact the
frequency expansion, it allows the JASF graph to examine a greater number of bases, and to adapt to the
image in both space and frequency.

6.1.3 Outline

In this paper, we present the JASF graph image expansion and basis selection method. In Section 6.2., we �rst
review the framework for signal expansion using �lter banks. We also develop the theory of \partitionable"
frequency expansions which are fundamental to the JASF graph. In Section 6.3., we present the process
of spatial segmentation of images using spatial QTs. In Section 6.4., we integrate frequency expansion and
segmentation by cascading the \partitionable" �lter banks and spatial QT segmentations. We show that by
using \partitionable" expansions, the generation of the basis library and the reconstruction of the image from
the library elements follows a number of equivalent paths.

In Section 6.5., we show that the JASF graph greatly increases the available number of bases. In Sec-
tion 6.6., we describe the basis selection procedure which consists of selecting elements from the JASF library
via the graph-structure [150]. In Section 6.5.1, we compare the sizes of the various tree- and graph-structured
basis element libraries and number of bases they provide. Finally, in Section 6.7. we demonstrate improved
compression performance using the JASF graph over the WP-tree spatial QT and DT methods.

6.2. Image signal expansion

We �rst consider a 1-D signal, the extension of the 1-D signal expansion to 2-D discrete-space images is
straightforward and will be explained when necessary. We �rst consider that a discrete-time �lter bank
produces a series expansion of a 1-D signal into a set of basis functions.

6.2.1 Series expansion

A series expansion represents the signal using a set of orthonormal basis functions f�kg such that

x[n] =
X
k2Z

h�k; xi�k[n]; n 2 Z: (6.1)

Here h�k[n]; �l[n]i = �[k� l] dictates an orthonormality constraint and the inner product is given by hx; yi =P1
n=�1 x�[n]y[n]. The expansion of x into the set of basis functions f�kg produces the transform coe�cients

X where X[k] = h�k; xi.

6.2.2 Filter bank

A two-channel �lter bank implements an orthonormal expansion when even shifts of the analysis hi and
synthesis gi �lters are related to the basis functions by [167]

h0[2k � n] = g0[n� 2k] = �2k[n]; and

h1[2k � n] = g1[n� 2k] = �2k+1[n]: (6.2)
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In the �lter bank (FB), the inner products for the signal expansion are accomplished using convolutions with
time-shifted, time-reversed versions of a �nite set of basis function prototypes. Furthermore, the two FB
channels (y0; y1) correspond to the odd X[2k + 1] and even X[2k] transform coe�cients

y0[k] = X[2k] and y1[k] = X[2k + 1]: (6.3)

The subbands y0 and y1 are generated by the FB by the analysis frequency expansion matrices H0 and H1,
respectively, as follows, for i = f0; 1g,

yi = Hi[: : : x[0]; x[1] : : : x[N � 1] : : :]T (6.4)

By using �nite impulse response (FIR) �lters of length L, the frequency expansion matricesHi are constructed
from the �lters h0 and h1 as follows, for i = f0; 1g,

Hi =

0
BBBBBBB@

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

hi[L� 1] hi [L� 2] � � � hi[0] 0 � � � 0 0
0 0 hi[L� 1] hi[L� 2] � � � hi[0] 0 0

. . .
.. .

.. .
. . .

.

..
0 0 � � � 0 hi[L� 1] hi[L� 2] � � � hi[0]
.
..

.

..
.
..

.

..
.
..

.

..

1
CCCCCCCA

: (6.5)

Following from Eq. 6.1 and Eq. 6.2, and by similarly de�ning Gi from the gi[m]'s in Eq 6.2, the signal is
resynthesized by x̂ = (G0H0+G1H1)x. The analysis frequency-expansion is orthonormal whenGi = HT

i and
the FB satis�es the following condition of perfect reconstruction (PR) [167], where I is the identity matrix,

G0H0 +G1H1 = I: (6.6)

The two-channel FB is illustrated in Figure 6-4. In the z-domain, the output of the analysis section are the
two subbands, Yi(z), where i = 0; 1, which are given by,�

Y0(z2)
Y1(z2)

�
=

1

2

�
H0(z) H0(�z)
H1(z) H1(�z)

��
X(z)
X(�z)

�
: (6.7)

The signal ~X(z) is reconstructed from subbands Y0(z) and Y1(z) by the synthesis �lters Gi as follows

~X(z) = G0(z)Y0(z
2) + G1(z)Y1(z

2): (6.8)

H1

H0

2

2

X

2

2

G1

G0

+ X̃

Y1

Y0

Figure 6-4: Two-channel �lter bank (FB). Analysis �ltering with Hi and subsampling generate subbands Y0
and Y1. Upsampling and synthesis �ltering with Gi and adding reconstruct ~X = X.

6.2.3 Finite signal expansion

Since images are �nite signals, say size N�N , in order to maintain the PR property of the FB, the frequency-
expansion matricesH0 andH1 must be modi�ed to generate a �nite set of basis functions. This is achieved by
utilizing circular convolution (or equivalently, periodic signal extension) in the �ltering process. The modi�ed
�lters hi and gi are periodically related to the basis functions by

h0 [2k � n] = g0[n� 2k] = �2k[n modN ];

h1 [2k � n] = g1[n� 2k] = �2k+1[n modN ]: (6.9)

The PR condition is retained for the expansion of a �nite signal since Gi =HT
i and G0H0 +G1H1 = I.

For example, for a 1-D time series of length N = 8, and �lters of length M = 4, the subbands y0 and y1
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are generated by0
@ yi[0]

yi[1]
yi[2]
yi[3]

1
A

| {z }
yi

=

0
@ hi[1] hi[0] 0 0 0 0 hi[3] hi[2]

hi[3] hi[2] hi[1] hi[0] 0 0 0 0
0 0 hi[3] hi[2] hi[1] hi[0] 0 0
0 0 0 0 hi[3] hi[2] hi[1] hi[0]

1
A

| {z }
Hi

0
B@

x[0]
x[1]
..
.

x[7]

1
CA

| {z }
x

: (6.10)

The resynthesis of x = x̂ is provided by x̂ =
P1

i=0Giyi =
P1

i=0GiHixi, which gives

0
B@

x̂[0]
x̂[1]
..
.

x̂[7]

1
CA =

1X
i=0

0
BBBBBB@

hi[1] hi[3] 0 0
hi[0] hi[2] 0 0
0 hi[1] hi[3] 0
0 hi[0] hi[2] 0
0 0 hi[1] hi[3]
0 0 hi[0] hi[2]

hi[3] 0 0 hi[1]
hi[2] 0 0 hi[0]

1
CCCCCCA
0
@ yi[0]

yi[1]
yi[2]
yi[3]

1
A : (6.11)

We consider in addition to constraining the basis function set to be �nite, we further constrain the
frequency-expansion matrices to be \partitionable." The partitionable frequency expansion generates, simul-
taneously, an orthonormal expansions of the full signal and of the segments of the signal.

6.2.4 Partitionable expansions

The orthonormal \partitionable" frequency expansion is constructed by concatenating sub-expansions which
are orthonormal over segments of the signal. In general, an orthonormal expansion produced by �lter banks
is not necessarily partitionable, but it may be made partitionable as we explain shortly. Frequency analysis
expansions H0 and H1 that are at least M -partitionable are required in order to produce the JASF graph
expansion of depth M .

6.2.4.1 1-partitionable expansion

We begin by �rst de�ning a 1-partitionable frequency expansion (1-PFE) as follows,

De�nition 1 The frequency expansion matrix H is 1-partitionable if it has only zeros in the upper right and
lower left quadrants.

If the frequency expansion matrix set fH0;H1g generates a 1-PFE then the overall expansion consists of two
independent expansions over the two half-length signals, as we now explain. First, observe that for QMF
�lter banks the frequency expansion matrices Hi, i 2 f0; 1g can be written in the following form [167]

Hi =

�
Ha
i Hb

i

Hb
i Ha

i

�
: (6.12)

We construct the 1-PFE from Hi by Hi = Ha
i +Hb

i as follows:

H
(1)
i =

�
Hi 0
0 Hi

�
=

�
Ha
i +Hb

i 0
0 Ha

i +Hb
i

�
: (6.13)

We now state the following useful results and de�nition: if the original frequency expansion set fH0;H1g
satis�es the condition of perfect reconstruction and orthonormality, that is Ht

0H0 + Ht
1H1 = IN , then the

1-PFE set fH
(1)
0 ;H

(1)
1 g is orthonormal and the set fH0;H1g also generates an orthonormal expansion of

length N=2.

De�nition 2 The frequency expansion (1-PFE) matrix set fH
(1)
0 ;H

(1)
1 g is 1-partitionable and orthonormal

if fH0;H1g satis�es the perfect reconstruction condition. For proof, see A..
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It is also obvious to see that for a FB using length L = 2 �lters, such as the Haar expansion, the Hi

generate a 1-PFE since, Hi = Ha
i and Hb

i = 0, which gives

H
(1)
i =

�
Hi 0

0 Hi

�
=

0
@ hi[1] hi[0] 0 0 0 0 0 0

0 0 hi[1] hi[0] 0 0 0 0
0 0 0 0 hi[1] hi[0] 0 0
0 0 0 0 0 0 hi[1] hi[0]

1
A : (6.14)

6.2.4.2 1-partitionable convolution

The frequency expansion matrices Hi for i 2 f0; 1g can be made 1-partitionable by summing the quadrants
as illustrated in Eq 6.13. This is equivalent to wrapping the �lters at the N=2 boundary (using circular
convolutions with period = N=2) as long as the �lter length L � N=2. This is implemented by �rst segmenting
the length N signal into two half lengthN=2 signals and expanding each separately. In the 1-PFE, the modi�ed

�lters h
(1)
i and g

(1)
i are periodically related to the basis functions by

h
(1)
0 [2k � n] = g

(1)
0 [n� 2k] =

(
�2k[n mod N=2] (2k < N=2 and n < N=2) or

(2k � N=2 and n � N=2)
0 otherwise

h
(1)
1 [2k � n] = g

(1)
1 [n� 2k] =

(
�2k+1[n modN=2] (2k < N=2 and n < N=2) or

(2k � N=2 and n � N=2)
0 otherwise

(6.15)

This assignment of the basis functions gives H(1)
i the required 1-partitionable form. For example, for a set of

length L = 4 �lters, h(1)i ; i 2 f0; 1g, we have

H
(1)
i =

�
Ha
i +Hb

i 0

0 Ha
i +Hb

i

�
=

0
@ hi[1] hi[0] hi[3] hi[2] 0 0 0 0

hi[3] hi[2] hi[1] hi[0] 0 0 0 0
0 0 0 0 hi[1] hi[0] hi[3] hi[2]
0 0 0 0 hi[3] hi[2] hi[1] hi[0]

1
A : (6.16)

It follows that G
(1)
0 H

(1)
0 +G

(1)
1 H

(1)
1 = IN and G0H0 + G1H1 = IN=2, where G

(1)
i = (H

(1)
i )T and Gi = HT

i ,
from the proof in Appendix A..

6.2.4.3 M -partitionable expansions

We extend the 1-PFE to the M -partitionable frequency expansion (M-PFE) as follows:

De�nition 3 A frequency expansion matrix H is M -partitionable if the upper left and lower right quadrants
are (M � 1)-partitionable.

Thus, the M-PFE matrices H(M)
i for i 2 f0; 1g are de�ned recursively by

H
(M)
i =

 
H

(M�1)
i 0

0 H
(M�1)
i

!
: (6.17)

We see that H(M)
i are block diagonal with 2M partitions. For example, a 3-partitionable matrix has the

following form:

H
(3)
i =

0
BBBBBBB@

Hi 0
0 Hi

0

0
Hi 0
0 Hi

0

0

Hi 0
0 Hi

0

0
Hi 0
0 Hi

1
CCCCCCCA

: (6.18)

De�nition 4 The frequency expansion (M-PFE) matrix set fH
(M)
0 ;H

(M)
1 g is M -partitionable and orthonor-

mal if fH0;H1g satisfy perfect reconstruction condition.

We note that the Haar FB implements a (M � 1)-PFE where M is determined from the length of the signal
as follows:

Lemma 5 The Haar �lterbank implements a (M � 1)-PFE where 2M is the length of the signal.

For proof, see Appendix B.
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6.2.4.4 M -partitionable convolution

In general, Hi can be made M -partitionable by wrapping the �lters at the N
M+1

boundaries (circular convo-

lutions with period = N
M+1 ) as long as the �lter length L � N

M+1 . This is equivalent to �rst segmenting the

length N signal into length N
M+1 signals and transforming each separately, then concatenating the results.

The modi�ed �lters h
(M)
i and g

(M)
i are periodically related to the basis functions by

h
(M)
0 [2k� n] = g

(M)
0 [n� 2k] =

(
�2k[n mod N

M+1 ] (2k < N
M+1 and n < N

M+1 ) or

(2k � N
M+1 and n � N

M+1 )

0 otherwise

h
(M)
1 [2k� n] = g

(M)
1 [n� 2k] =

(
�2k+1[n mod N

M+1 ] (2k < N
M+1 and n < N

M+1 ) or

(2k � N
M+1 and n � N

M+1 )

0 otherwise

(6.19)

This gives the M -PFE, H
(M)
i , as follows

H
(M)
i =

0
BBBB@

Hi 0
0 Hi

. . . 0

0
. . . 0

0
. . .

Hi 0
0 Hi

1
CCCCA

| {z }
2M partitions

: (6.20)

It follows that G
(M)
0 H

(M)
0 +G

(M)
1 H

(M)
1 = IN and G0H0 + G1H1 = I

N
M+1 , where Gi = (Hi)

T and G
(M)
i =

H
(M)
i for i 2 f0; 1g.

6.2.4.5 M -partitionable expansion (M-PFE) example

We now examine the implications of using the M-PFE and observe that it alters the frequency expansion from
the non-partitionable expansion that is derived from the same �lter kernel. We examine the following cases
in which a four-tap QMF �lter constructs the frequency expansions. The �lter (QMF4) from [75] is given by

hi = [ ai bi ci di ]; (6.21)

where
a0 = �0:0915 b0 = 0:1585 c0 = 0:5915 d0 = �0:3415
a1 = 0:5915 b1 = �0:1585 c1 = 0:5915 d1 = �0:0915:

(6.22)

The \non-partitionable" frequency expansion matricesHi are generated from Eq 6.21 and are given by, where
i 2 f0; 1g (notice that Hi has the form depicted in Eq 6.12),

Hi =

0
BBBBBB@

ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di
ci di 0 � � � � � � 0 ai bi

1
CCCCCCA : (6.23)

Since, the 4-tap QMF �lters are linear phase, FIR �lters, the hi are nearly orthogonal and closely approximate

the PR condition G0H0 +G1H1 � I, where Gi =HT
i . From Eq 6.21 and Eq 6.15, the 1-PFE matrices H(1)

i
derived from QMF4 are given as

H
(1)
i =

0
BBBBBB@

ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di
ci di 0 � � � 0 ai bi

0

0

ai bi ci di 0 � � �

� � � 0 ai bi ci di 0 � � �

� � � 0 ai bi ci di
ci di 0 � � � 0 ai bi

1
CCCCCCA : (6.24)



Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression 103

We note that by de�ning ai; bi; ci and di as in Eq 6.22, the 1-PFE gives G
(1)
0 H

(1)
0 + G

(1)
1 H

(1)
1 � I, where

G
(1)
i = (H

(1)
i )T . Finally, the 2-PFE matrices H

(2)
i are generated from QMF4 using Eq 6.21 and Eq 6.19,

which gives

H
(2)
i =

0
BBBBBBBBB@

ai bi ci di
ci di ai bi

0
. . .

0
ai bi ci di
ci di ai bi

0
. . .

. . . 0
ai bi ci di
ci di ai bi

0

. . . 0
ai bi ci di
ci di ai bi

1
CCCCCCCCCA

: (6.25)

We still approximate PR from the 2-PFE, since, G(2)
0 H

(2)
0 +G

(2)
1 H

(2)
1 � I, where G(2)

i = (H(2)
i )T .

The frequency expansions generated byHi;H
(1)
i , andH(2)

i , which are all derived from the same nearly-PR
�lter set (Eq 6.21), generate nearly-PR FBs. We now show that the speci�c frequency expansions are altered

in the PFE forms. Let an impulse signal u be given by u[0] = 1 and 8m6=0u[m] = 0. Then, Hi;H
(1)
i , and H

(2)
i

are de�ned as above from the �lter kernel in Eq 6.22, which gives

H0u = ( �0:0915 0 0 0 0 0 0 0:5915 )

H
(1)
0 u = ( �0:0915 0 0 0:5915 0 0 0 0 )

H
(2)
0 u = ( �0:0915 0:5915 0 0 0 0 0 0 )

(6.26)

H1u = ( �0:3415 0 0 0 0 0 0 �0:1585 )

H
(1)
1 u = ( �0:3415 0 0 �0:1585 0 0 0 0 )

H
(2)
1 u = ( �0:3415 �0:1585 0 0 0 0 0 0 ):

(6.27)

We can see that the frequency expansions are modi�ed in H
(1)
i and H

(2)
i . Later, we will see that, although

the PFE matrices change the frequency expansion, they enable the JASF graph to better adapt to the signal.
The overall e�ect is still to improve compression.

6.2.5 Image expansion

The extension of the frequency expansion to images is accomplished using separable transformations of the
rows and columns of the image. This produces a four-channel FB where the output yi;j of channel i; j, where
i; j 2 f0; 1g is given by yi;j = HixH

T
j . The image is resynthesized from the four subbands by

x̂ =
X
i;j

Giyi;jG
T
j =

X
i;j

GiHixH
T
j G

T
j : (6.28)

6.3. Image segmentation

The next building block is segmentation. Segmentation is a process by which all data outside of a particular
range is set to zero, preserving only a segment of the signal.

6.3.1 Binary segmentation

In general, the binary segmentation of a signal x into two half signals w0 and w1 is given by w0 = S0x and
w1 = S1x where

S0 =

�
I 0
0 0

�
and S1 =

�
0 0
0 I

�
: (6.29)

In the case of segmentation of a signal x of length N , we denote w0 = SN0 x and w1 = SN1 x where

SN0 =

�
IN=2 0
0 0

�
and SN1 =

�
0 0
0 IN=2

�
; (6.30)

where SNi has size N
2 �

N
2 and IN=2 is the N

2 �
N
2 identity matrix. The signal is resynthesized by adding

the segments, x̂ = w0 + w1 = SN0 x+ SN1 x. The PR condition is satis�ed since the S0is satisfy the following
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constraint
SN0 + SN1 = IN : (6.31)

The PR binary segmentation system is illustrated in Figure 6-5.

S1

S0

x + x̃

w1

w0

Figure 6-5: Binary segmentation and resynthesis.

6.3.2 Image spatial quadtree (QT) segmentation

The extension of segmentation to images is accomplished using separable segmentation on the rows and
columns of the image. This produces a QT spatial segmentation where segment wi;j, for i; j 2 f0; 1g is given
by wi;j = SixS

T
j . The resynthesis of the image from the four segments is produced by x̂ =

P
i;j2f0;1g yi;j =P

i;j2f0;1gSixS
T
j .

6.4. Combining frequency expansion and segmentation

We now integrate segmentation and PFE to generate the JASF expansion of the image. There are two basic
ways to incorporate segmentation into the FB: (1) before analysis frequency expansion and (2) after analysis
frequency expansion. In general, these are not equivalent for arbitrary FBs. However, by using PFE's in the
FB, an equivalency is guaranteed.

We �rst examine the case of building a expansion by cascading segmentation and frequency expansion to
produce an overall depth = 2 expansion. Then, we illustrate the advantage of using a 1-PFE in the depth =
2 cascade to produce a more compact joint space and frequency expansion.

6.4.1 Non-partitionable expansion cascade

We �rst note that the frequency expansion matrices Hi (from Eq. 6.12) can be separated into four quadrants
using the segmentation operators Sj (from Eq. 6.30). For example, the �rst quadrant of Hi is segmented by�

Hi 0
0 0

�
= S

N=2
0 HiS

N
0 : (6.32)

In general, quadrant j; k 2 f0; 1g of Hi is segmented by

Hjk
i = S

N=2
j HiS

N
k : (6.33)

In the depth = 2 expansion, eight basis elements are generated (Hjk
i 's), which are de�ned by Eq 6.33, since,

i; j; k 2 f0; 1g. From these eight basis elements a variety of expansions and reconstructions of the signal x are
generated, such as

� the two half-signals S0x and S1x from Skx =
P

i

P
jGiH

jk
i x,

� the two signal subbands, H0x and H1x from Hix =
P

j

P
kH

jk
i x,

� the segmented subbands, S
N=2
j Hix, for i; j 2 f0; 1g from S

N=2
j Hix =

P
kH

jk
i x, and

� the frequency expansions of the half-signals, HiS
N
k x, for i; k 2 f0; 1g from HiS

N
k x =

P
jH

jk
i x, and

� the reconstructed signal x from x =
P

i

P
j

P
kGiH

jk
i x.
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=
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These expansions from Eqs 6.33, 6.31 and 6.6 and are summarized in Eq 6.34. The set fHjk
i g, which are

generated from the non-partitionable frequency expansion are of the type of basis elements that are generated
in the time-frequency tree explored in [63].

6.4.2 Partitionable expansion cascade

We now examine the advantage of using 1-PFEs in the depth = 2 expansion. It follows from Eqs 6.33 and 6.13

that ifH(1)
i are 1-PFE because we have SN=2j H

(1)
i SNk = 0 for j 6= k. This given by De�nition 1, which requires

that the upper-right (SN=20 H
(1)
i SN1 = 0) and lower-left (SN=21 H

(1)
i SN0 = 0) quadrants of H(1)

i are zero. This

reduces the number of non-zero basis elements (Hjk
i 's) from eight to four. As a result, Eq. 6.34 takes the

modi�ed form illustrated in Eq. 6.35. In other words, now from only the four basis elements (S
N=2
j H

(1)
i SNj ,

for i; j 2 f0; 1g), the same previous variety of expansions of the signal that were generated from the eight
\non-partitionable" basis elements are formed. Notice that commutativity of segmentation and frequency0
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expansion is now provided using 1-PFE, because for i; j 2 f0; 1g we have,

S
N=2
j H

(1)
i = H

(1)
i SNj = S

N=2
j H

(1)
i SNj : (6.36)

The commutativity of segmentation and 1-PFE allows the graph structure to generate the complete joint
expansion rather than requiring separate tree structures, as in [63], as we see shortly.

6.4.3 Two-step expansion cascades

We �rst look in more detail at the process of integrating the segmentation and frequency expansion in the depth
= 2 cascade. There are four cases that correspond to the four unique, four-step paths that decompose signal
x into four basis elements and reconstruct x as illustrated in Figure 6-6. Since the PR condition of the �lter
bank and segmentation are satis�ed, the following two four-step cascades: F (1) ! S ! S�1 ! (F (1))�1 and
S ! F (1) ! (F (1))�1 ! S�1 reconstruct the signal. We now address the other two cases and demonstrate
that reconstruction is provided regardless of the orders of the segmentation and 1-PFE operations in the
analysis and synthesis paths.
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x w0 w1

y0

y1
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v10 v11

v01

F(1) (F(1))-1
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S-1

F F-1

S

S-1

Figure 6-6: Hybrid cascades with frequency expansion and segmentation (F (1) = fH
(1)
0 ;H

(1)
1 g, and (F (1))�1 =

fG
(1)
0 ;G

(1)
1 g).

6.4.3.1 Case 1: F (1) ! S ! (F (1))�1 ! S�1

S F-1F S-1

v'00

v'10 v'11

v'01

w0 w1x x
y0

y1

Figure 6-7: Hybrid cascade case 1: F (1) ! S ! (F (1))�1 ! S�1.

The FB and segmentation are cascaded such that the orders within the analysis and synthesis cascades are
not mirrors, as depicted in Figure 6-7 and Figure 6-8. First, we see that the two-step cascade F (1) ! S
produces four pieces, v0ij, where i; j 2 f0; 1g given by

v0ij = S
N=2
j yi = S

N=2
j H

(1)
i x: (6.37)

The resynthesis of the original signal by (F (1))�1 ! S�1 is possible because H
(1)
i are 1-PFE. From the

commutativity of segmentation and 1-PFE in Eq 6.36, it follows that v0ij = H
(1)
i SNj . In this case, the signal

is reconstructed by (1) 1-PFE synthesis and (2) adding the appropriate basis elements, as follows,

x̂ =
P

i

P
jG

(1)
i v0ij

= G
(1)
0 v000 +G

(1)
1 v010 +G

(1)
0 v001 +G

(1)
1 v01

= w0 +w1 = (SN0 + SN1 )x = x:

(6.38)

6.4.3.2 Case 2: S ! F (1) ! S�1 ! (F (1))�1

F S-1S F-1

y0

y1

v''00

v''10 v''11

v''01 y0

y1
x xw0 w1

Figure 6-8: Hybrid cascade case 2: S ! F (1) ! S�1 ! (F (1))�1.

By segmenting before the 1-PFE as illustrated in Figure 6-8, the two-step cascade S ! F (1) produces four
pieces, v00ij, where i; j 2 f0; 1g given by

v00ij = H
(1)
i SNj x: (6.39)

The resynthesis of the original signal by S�1 ! (F (1))�1 is possible only because H
(1)
i are are 1-partitionable.

From the commutativity of segmentation and 1-PFE in Eq 6.36 it follows that v00ij = S
N=2
j H

(1)
i . In this case,
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the signal is reconstructed by (1) adding the appropriate basis elements and (2) 1-PFE synthesis, as follows,

x̂ =
P

iG
(1)
i

P
j v

00
ij

= G
(1)
0 (v0000 + v0001) +G

(1)
1 (v0010 + v0011)

= G
(1)
0 y0 +G

(1)
1 y1 = (G

(1)
0 H

(1)
0 +G

(1)
1 H1)x = x:

(6.40)

6.4.4 Multiple step expansion cascades

We generalize to an arbitrary-depth joint expansion. By using k-PFEs, the basis elements are generated by
following any of the number of paths that lead to that node in the JASF graph. For example, in Figure 6-9,

this requires that the frequency expansion F k is carried out with a FB that implements a k-PFE H
(k)
0 and

H
(k)
1 .

FK FK-1 FK-2 F2

...

...

S S S

S S S

S

S

S

S

S

S

F1 F0

K steps

Figure 6-9: K step expansion cascade in space and one step in frequency.

Figure 6-10 illustrates the depth = M , JASF graph which combines segmentations (S) and k-PFEs (F k).
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Figure 6-10: JASF graph combines k-PFE �lter banks (F k = fH
(k)
0 and H

(k)
1 g) and segmentation (S).

6.5. Tree and graph structured expansions

We adopt the following notation to illustrate the tree- and graph-structured expansions: Figure 6-11(a)
summarizes the WP-tree depicted in Figure 6-12, and Figure 6-11(b) summarizes the QT depicted in Figure 6-
13. In other words, in Figure 6-11 each straight-line corresponds to an embedded tree. We look in more detail
at each tree and graph.
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6.5.1 Complexity

We evaluate the tree- and graph-structured expansions in the (1) sizes of the basis element libraries (N ), (2)
the number of bases (B), and (3) the number of over-expansions of the image that are required to generate
the basis element libraries (E). The depth of the trees and graphs are given by D, and � = gives the splitting
factor. The splitting factor determines the number of children nodes produced in a single frequency expansion
or segmentation. For example, both frequency expansion and QT image segmentation produce � = 4 children.

S S SF F F
4 16 641 4 16 641

(a) (b)

Figure 6-11: Using compact notation, (a) WP-tree, and (b) spatial QT, where the numbers (1; 4; 16; : : :) give
the number of nodes (or basis elements) at each level. The number of nodes will be omitted in later �gures.

The number of basis elements in the library (N ), number of unique bases (B), and number of over
expansions (E) that are generated by the tree- and graph-structured expansions are summarized in Table 6.5.1.

Basis element library sizes for 2-D image with � = 4 (splitting factor)
Single-Tree DT Redundant Tree JASF Graph

D Ns Es Bs Nd Ed Bd Nr Er Br Ng Eg Bg

1 1 1 1 1 1 1 1 1 1 1 1 1
2 5 2 2 9 3 3 9 5 3 9 3 3
3 21 3 17 57 6 98 73 21 163 57 6 162
4 85 4 83522 313 10 107 585 85 109 313 10 109

5 341 5 1019 1593 15 1031 4681 341 1036 1593 15 1036

6 1365 6 1078 7737 21 10127 37449 1365 10147 7737 21 10147

6.5.2 Single-trees

Single-tree expansions are generated by the WP-tree and QT. Where N � N is the size of the image, the
single-trees can be grown to arbitrary depth, D � N log2N . The single-tree complexity is given by the
following recursive relations

Ns(D) = 1 + �Ns(D� 1); Ns(0) = 0
Es(D) = 1 + Es(D� 1); Es(0) = 0
Bs(D) = 1 +Bs(D� 1)� ; Bs(0) = 0:

(6.41)

These are derived as follows: Ns { each depth = D tree consists of one node plus � sub-trees of depth =
D � 1. An empty single-tree, D = 0, has no nodes. Es { each level of the tree produces one expansion of the
signal. Bs { each node in the tree can be represented by itself or by its � children. This recursive de�nition
gives Bs.

A single-tree expansion of a 512 � 512 image, of depth D = 5, with � = 4, generates Ns = 341 basis
elements, expands the image Es = 5 times and generates a library of Bs � 1019 bases. We now examine the
two types of single-trees: WP-tree and QT.

6.5.2.1 Wavelet packet (WP)-tree

Arbitrary FBs can be produced by cascading the two-channel FBs. Since the two-channel FB implements an
orthonormal frequency expansion, any cascade is orthonormal since it merely iterates the expansion. In other
words, the impulse responses of the overall �lters and their appropriate shifts also form an orthonormal basis
for l2(z) [167]. The transfer function of an arbitrary cascade of �lters and downsamplers is given by,

Hr(z) =

dr�1Y
k=0

HPr(k)(z
2k); (6.42)

which is followed by downsampling by 2dr . Here dr = depth of the cascade of path r, and Pr(k) 2 f0; 1g is an
indicator function that selects the �lter, H0 or H1, at stage k in the �lter path. For example, the two-channel
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FBs can be cascaded into a tree-structure as depicted in Figure 6-12.

22

H1H0

22

H1H0

H1H0

22

22

H1H0

22

H1H0

22

H1H0

22

H1H0

H000 H001 H010 H011 H100 H101 H110 H111

Figure 6-12: Tree-structured �lter bank (FB).

6.5.2.2 Spatial quad-tree (QT)

The signal is segmented by cascading the binary segmentations in a tree-structure. For example, a full tree
cascade is depicted in Figure 6-13, whereby the leaf nodes of the tree give the segments of the signal. The
overall segmentation, SNr , of a length N signal produced by a path r of arbitrary segmentations is given by
SNr = SNPr where

SNPr;0 =

�
S
N=2
Pr

0
0 0

�
and SNPr;1 =

�
0 0

0 S
N=2
Pr

�
; (6.43)

where Pr(k) 2 f0; 1g is an indicator function that selects segmentation S0 or S1 at stage k of the segmentation
path. PR of the signal from a complete set of arbitrary segments is provided by the recursive relations

SNPr = S
N=2
Pr;0

+ S
N=2
Pr;1

since

SNPr =

"
S
N=2
Pr;0

0

0 S
N=2
Pr ;1

#
: (6.44)

6.5.3 Double-tree (DT)

The insu�ciency of the single-tree adaptive expansions { WP-tree and QT is addressed in [62]. The authors
proposed the DT which combines binary segmentation and WP-trees. As illustrated in Figure 6-14(a), the
DT generates a hierarchy of dyadic segmentations and WP expansions of each segment. Figure 6-14(a) also
illustrates that the DT treats the frequency expansion and segmentation asymmetrically.

For example, the DT does not segment any of the frequency F nodes in the tree. In other words,
segmentation never follows frequency expansion. This limits the number of bases. We see that a single
critical pruning at the root of the DT in which segmentation is not selected reduces the DT to the WP-tree.

6.5.4 Dual double tree (DDT)

The dual of the DT also combines QT and WP-trees. The dual double tree (DDT) is produced by �rst
growing a single WP-tree followed by the segmentation of the WP-tree basis elements. The DDT is depicted
in Figure 6-14(b). The complexities of the DT and DDT are given by the following recursive relations

Nd(D) = Ns(D) + �Nd(D � 1); Nd(0) = 0
Ed(D) = Es(D) + Ed(D � 1); Ed(0) = 0
Bd(D) = 1 +Bs(D � 1)� +Bd(D � 1)� ; Bd(0) = 0:

(6.45)
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Figure 6-13: Tree-structured segmentation.
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Figure 6-14: Asymmetric joint space and frequency expansions (a) DT, (b) DDT
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These are derived as follows: Nd { each depth = D, DT consists of one depth D single-tree plus � DTs of
depth D � 1. An empty DT, D = 0, has no basis elements. Ed { at each level = D in the DT, there is one
depth = D, single-tree and one depth = D�1 DT. Bd { at each node at level = D in the DT, there are three
options for basis selection, (1) prune S and F , which gives only one basis of the node, (2) prune S, which
gives � single-trees of depth = D � 1 that provides Bs(D � 1)� bases, and (3) prune F , which gives � DTs
of depth = D � 1 that provides Bd(D � 1)� bases.

A DT or DDT expansion of a 512� 512 image, of depth D = 5, with � = 4, generates Nd = 1593 basis
elements, expands the image Ed = 15 times and generates a library of Bs � 1031 bases.

6.5.5 Redundant space and frequency tree (RSFT)

As illustrated in Figure 6-14, both the DT and the DDT provide an asymmetric treatment of segmentation
and frequency expansion. In order to produce the symmetric expansion, all nodes in the trees need both
frequency expansion and segmentation. In straightforward implementation, this generates the much larger
tree structure, which is illustrated in Figure 6-15. This redundant space and frequency tree (RSFT) combines
both the DT and the DDT.

F S

a a

bbb c cc

ddd e e e e ef f ffe d

F S

F S

F S

F S F SF S F S

Figure 6-15: Redundant space and frequency tree (RSFT) provides a symmetric expansion in segmentation
and frequency operations.

The complexity of the RSFT is given by the following recursive relations

Nr(D) = 1 + 2�Nr(D� 1); Nr(0) = 0
Er(D) = 1 + 2Er(D � 1); Er(0) = 0
Br(D) = 1 + 2Br(D � 1)�; Br(0) = 0;Br(1) = 1:

(6.46)

These are derived as follows: Nr { each depth = D, RSFT consists of one basis element plus � RSFTs of
depth = D � 1 from the frequency-expansion, plus � RSFTs of depth = D � 1 from the segmentation. An
empty RSFT, D = 0, has no basis elements. Er { each node is expanded by segmentation and frequency
expansion. This gives twice the number of expansions at level = D than level = D � 1. Br { at each node
at level = D in the DT, there are three options for basis selection, (1) prune S and F , which gives only one
basis of the node, (2) prune S, which gives � RSFTs of depth = D � 1 that provides Br(D � 1)� bases, and
(3) prune F , which gives another � RSFTs of depth = D � 1 that provides Br(D � 1)� bases.

A RSFT expansion of a 512�512 image, of depth D = 5, with � = 4, generates Nr = 4681 basis elements,
expands the image Er = 341 times and generates a library of Br � 1036 bases.

6.5.6 Joint adaptive space and frequency (JASF) graph

The redundancy in the RSFT (see Figure 6-16) is removed by using partitionable expansions and the JASF
graph [140]. When the frequency expansion is inherently partitionable (i.e., Haar �lter bank has Hi's which
are already M-PFE), the JASF graph basis library includes all bases attainable by the RSFT. In this case, the
RSFT is clearly redundant in that it generates a larger library than the JASF graph, that is Nr(D) � Ng(D).
When using non-partitionable frequency expansions in the RSFT, there still exists \near-redundancy" in the
RSFT library. We will show that these additional RSFT library elements provide little gain in compression
performance.
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F S

F S F S

FF FS SF SS

Figure 6-16: Example RSFT expansion of an image. In the RSFT, the basis elements generated by the F ! S
branch are approximately equivalent to those generated by the S ! F branch.

Since the output of the S ! F (1) cascade is equivalent to the output of the F (1) ! S cascade, the data
does not need to be produced twice. As illustrated for the image in Figure 6-16, the expansions generated
from the S ! F (1) cascade is the same as that in the F (1) ! S cascade, but the order is di�erent. When the
RSFT is modi�ed to collect the redundant nodes, the JASF graph structure is generated, see Figure 6-17.
Inspection reveals that by using M-PFEs, the DT, Figure 6-14(a), the DDT, Figure 6-14(b), and the JASF
graph, Figure 6-17, have identical basis elements. The JASF graph o�ers the maximum selection from the
basis elements to generate bases.

F3 S

F2 S F2 S

F1 S F1 S F1 S

F0 S F0 S F0 S F0 S

a

cb

e fd

Figure 6-17: The JASF graph provides symmetric expansion in space and frequency, and avoids the \near"
redundancy of the RSFT.

The complexity of the JASF graph is given by the following recursive relations

Ng(D) = Ns(D) + �Ng(D � 1); Ng(0) = 0
Eg(D) = Es(D) + Eg(D� 1); Eg(0) = 0

Bg(D) = 1 + 2Bg(D� 1)� � Bg(D � 2)�
2
; Bg(0) = 0;Bg(1) = 1:

(6.47)

These are derived as follows: Ng { each depth = D, JASF graph consists of one depth = D single-tree, plus
� JASF graphs of depth = D � 1. An empty JASF graph, D = 0, has no basis elements. Eg { at each level
= D in the JASF graph, there is one depth = D single-tree and one DT of depth = D�1. Bg { at each node
at level = D in the DT, there are three options for basis selection, (1) prune S and F , which gives only one
basis of the node, (2) prune S, which gives � JASF graphs of depth = D� 1 that provides Bg(D� 1)� bases,
and (3) prune F , which gives � JASF graphs of depth = D� 1 that provides Bg(D� 1)� bases. The options

(2) and (3) have one JASF graph of depth = D� 2 in common, which requires the reduction by Bg(D� 2)�
2
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bases in the computation.
A JASF graph expansion of a 512� 512 image, of depth D = 5, with � = 4, generates Ng = 1593 basis

elements, expands the image Eg = 15 times and generates a library of Bg � 1036 bases.

6.6. Basis element library

In order to select the elements from the JASF library. the nodes in the JASF graph are analyzed and compared.
Each JASF graph node is indexed by its graph position which de�nes a series of frequency and segmentation
operations that generated that node. Equivalently, each JASF library element is indexed by its location and
size in the space-frequency space. For example, in the 1-D version of the JASF graph, each element (region
in the time-frequency plane) is indexed by (i; j; k; l), where i = time resolution, j = frequency resolution,
k = position in time and l = position in frequency. For images, the JASF graph generates an eight-index
transform: (ix; jx; kx; lx) and (iy; jy; ky; ly), which includes x and y directions in space and frequency.

6.6.1 Basis sets

To generate a basis, the basis elements in the library are selected such that the image can be reconstructed
completely and non-redundantly. Using the indexing notation of the time-frequency plane, this requires that
elements ti;j;k;l's generates the basis fT

�
i;j;k;lg by forming a tiling of the time-frequency plane as follows[
ti;j;k;l2fT�

i;j;k;l
g

ti;j;k;l � l2(z): (6.48)

We can show that this tiling or completeness requirement is satis�ed only ifX
ti;j;k;l2fT�

i;j;k;l
g

2�i�j = 1: (6.49)
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k
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Figure 6-18: Selection of node t1;1;0;1 excludes all darkened nodes from the basis.

If the basis elements do not overlap, Eq 6.49 guarantees that the basis is complete (though possibly over-
complete). To ensure that the basis is non-redundant { no overlap, each basis element included in the basis
necessarily excludes other elements. For example, this is illustrated in Figure 6-18. When basis element
t1;1;0;1 is included in the basis, in order to not overlap with other basis elements, all the darkened elements
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are excluded. This requires that basis element ti;j;k;l is in the basis fT �g if and only if ti0;j0;k0;l0 is not in the

basis fT �g where i0; j0 2 z; k2i
0�i � K < k2i

0�i+1andl2j
0�j � L < l2j

0�j+1.
The restrictions on basis membership are isomorphic to conditions on the JASF graph. In the JASF

graph, a basis is given by a set of terminal nodes in a tree that is embedded in the JASF graph. For example,
Figure 6-19(a) indicates a selection of basis elements from the library (or nodes from the JASF graph) that
generate the tiling (basis) in Figure 6-19(b). By pruning the JASF graph, the selection of basis elements
satis�es the constraints of completeness and non-redundancy.

An example of JASF graph basis selection is depicted in Figure 6-19(a). In this example, the light shaded
nodes are the intermediate nodes in the pruned graph, the dark nodes are the terminal nodes and the unshaded
nodes have been pruned from the graph. The basis is given by the set of terminal nodes. The basis generated
in this example (see Figure 6-19) is not accessible from the WP-tree, the spatial QT, the DT or the DDT.
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Figure 6-19: Example of basis selection which cannot be obtained via the DT or WP-tree. (a) A basis from
dyadic time/frequency library, (b) corresponding time/frequency tiling.

6.6.2 Basis selection

The selection of the basis from the JASF library involves a three-way decision at each node: (1) prune F and
S, (2) prune S, or (3) prune F . This is a simple extension of the fast basis selection algorithm developed
in [31] and [124], which involves a two-way decision at each node: (1) prune, (2) not-prune. The JASF basis
search works as follows:

1. a coding cost (Ji) is assigned to each basis element in the JASF graph basis library (= each node in
the JASF graph).

2. Starting from the root node, recursively, the least cost embedded tree from each node is found by
three-way pruning, select min(Ji;

P
Ji;fk ;

P
Ji;sk).

3. The embedded tree after all pruning gives the basis with the lowest total cost.

6.6.3 Rate-distortion optimization

In order to produce the basis with the lowest total coding cost, a cost function indicates the cost of coding
each node. One restriction is that the cost function is additive [124]. Coifman and Meyer [32] use the entropy
(Ji = Ri) of each node as the cost function. Ramchandran and Vetterli [124] demonstrate that a rate-
distortion cost function is more suited to the compression problem. The two-sided measure (Ji = Ri + �Di)
better matches the goal of �nding the optimal rate-distortion point for compression [124]. We assign the
rate-distortion costs (Ji) to each node in the graph by quantizing using a set of quantizers. This produces
a set of rate-distortion points (Ri; Di) for each node. The procedure for pruning the graph involves the
simultaneous identi�cation of the optimal rate-distortion points (R�i ; D

�
i ) and the pruning decisions. For a

detailed description of the algorithm, refer to [124].
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A brief description follows: the algorithm sweeps through a series of rate-distortion trade-o� values; �.
For each �. the least cost quantizer for each node is selected as the one that minimizes J�i = D�

i +�R�i . Next,
the least cost embedded tree is found by pruning. The total rate

P
R�i is compared to the budget RT . If the

total rate exceeds the budget,
P

Ri � RT , then � is adjusted and the procedure is repeated. The subsequent
values of � are selected using Newton's method. The iteration process converges to the best basis (lowest
distortion) within the constrain of the bit budget RT .

x

x

x

x

xx

*

R

D

−λRi*

Di*

Di* + λRi*

Figure 6-20: Rate-distortion operating points (Ri; Di) and optimal R-D point selection via trade-o� constraint
�.

6.7. Image compression examples

We evaluate the spatial QT, WP-tree, DT, JASF graph and RSFT image expansions by examining their
image compression performance. For each expansion-type, the best basis is selected from the library that
minimizes the rate-distortion coding cost, D + �R, within the constraints of a total bit-rate, RT .

6.7.1 Haar �lter JASF graph

In this example, the two-tap Haar �lter h0 = [1; 1] is used. In this case, all frequency expansions for the WP-
tree, DT, DDT and JASF graph are carried out in a partitionable-form (because the Haar FB is partitionable,
see Appendix B.). The results, depicted in Table 6.1, show improved compression performance by the JASF
graph over spatial QT, WP-tree, and DT methods, and other compression methods such as JPEG and the
Haar wavelet transform. The optimal bases chosen by the JASF graph are not accessible by the spatial QT,
WP-tree, or DT. The best JASF graph basis for the target bit-rate of 0.25 bpp is depicted in Figure 6-21(a).
The encoded images is shown in Figure 6-21(b).

JPEG wavelet spatial WP-tree DT JASF
transform QT graph

0.5 bpp 28.3 db 29.5 db 19.1 db 32.7 db 32.7 db 33.0 db
1.0 bpp 33.1 db 34.6 db 26.5 db 37.1 db 37.1 db 37.7 db
2.0 bpp 38.9 db 40.7 db 34.7 db 43.0 db 43.0 db 43.8 db

Table 6.1: Compression results on the Barbara image using Haar �lter.
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(a) (b)

Figure 6-21: JASF compression, (a) JASF graph basis for Barbara image, (b) reconstructed at 0.25 bpp.

6.7.2 QMF JASF graph

In this example, the twelve-tap QMF �lter (QMF12a) from [75] is used. For the JASF graph, the partitionable-
form frequency expansion matrices are constructed from the QMF12a �lter kernel. The results, depicted in
Table 6.2, show improved compression performance by the JASF graph over the spatial QT, WP-tree and
DT methods. Again, the optimal bases chosen by the JASF graph are not accessible by the spatial QT, WP-
tree or DT. We see also that the JASF graph approximates the performance of the RSFT. The additional
elements in the RSFT library do not provide for signi�cant improvement in compression performance. The
partitionable-form of the frequency expansion does not decrease the image compression performance.

spatial WP DT JASF RSFT
QT tree graph

0.25 bpp N/A 27.9 db 27.9 db 28.4 db 28.4 db
0.5 bpp 19.0 db 32.3 db 32.3 db 32.7 db 32.7 db
1.0 bpp 25.1 db 36.8 db 36.8 db 37.5 db 37.5 db
2.0 bpp 33.1 db 42.9 db 42.9 db 43.8 db 43.8 db

Table 6.2: Compression results on the Barbara image using QMF12a �lter.

6.8. Summary

We presented a new type of adaptive image expansion (JASF graph) and a joint adaptive space and frequency
image basis selection method. The JASF generates an e�cient symmetric expansion by combining \partition-
able" frequency expansion with spatial segmentation. The JASF library provides a greater number of bases
than recent adaptive- wavelet packet, spatial quad-tree and the double-tree methods. Image compression
evaluations demonstrate improved adaptability to the images and improved compression performance using
the JASF graph.
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Chapter 7

Spatial and Feature Query

7.1. Introduction

In this chapter, we present the strategies for computing queries that specify the features, sizes and arbitrary
spatial layouts of regions, which include both absolute and relative spatial locations. The spatial and fea-
ture system integrates content-based querying with spatial query techniques to provide a new paradigm for
searching for images by arrangements of regions.

We also address several special case spatial queries involving adjacency, overlap and encapsulation of
regions. Finally, we evaluate the feature and spatial queries and demonstrate the improved image query
capabilities over non-spatial content-based approaches.

The spatial and feature query system is composed of four sub-systems: (1) the image analysis subsystem,
(2) the query engine, (3) the user-interface and (4) the image database. These sub-systems are combined to
provide a complete solution for the search and retrieval of images. We present the design of the separate
components of the system and evaluate the overall performance.

We demonstrate examples of spatial and feature queries on several databases of images, including symbolic
images, synthetic image and photographic color images [146]. In particular, we demonstrate that the spatial
and feature query paradigm provides a powerful technique for image retrieval and improves performance over
traditional content-based image query systems.

7.1.1 Integrating spatial and feature query

The integrated spatial and feature query method allows users to 
exibly query for images by specifying both
visual features and spatial attributes of the desired images. Most recent content-based image query systems
do not provide both types of querying (for example, [102, 112, 105, 3]).

qo

q1

to

t2 t3

t4

t1

Query Image (K regions) Target Image (L regions)

Q q0 q1,{ }= T t0 t1 t2 t3 t4, , , ,{ }=

Figure 7-1: Matches are found for each query region qk. Target images T that contain matches to all query
regions are candidate image matches.
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The joint spatial and feature image query strategy is summarized in Figure 7-1. The user presents a query
image Q = fq0 : : : qK�1g, which consists of K regions. Each of the regions qk has spatial attributes: ((x; y)),
size ((w; h) and area) and feature attributes: (f ), which are summarized in Table 7.1.

IMID REGID f x y w h area

q0 0 f0 20 50 20 80 1000
q1 1 f1 70 65 50 40 1500

Table 7.1: The REGION table for query image Q = fq0; q1g.

To compute the query, the system compares the query regions to the regions of the target images T in the
database. The system �rst determines the sets of target regions tl that su�ciently match each query region
qk. In this process, the system �nds matches from each query region to possibly several regions in each target
image, as illustrated in Figure 7-1. The target image and its attributes are summarized in Table 7.2.

IMID REGID f x y w h area

t0 0 f0 50 80 100 40 3000
t1 1 f1 25 60 10 55 500
t2 2 f2 35 45 60 50 2000
t3 3 f3 75 55 20 80 1200
t4 4 f4 50 10 100 20 1500

Table 7.2: The REGION table for target image T = ft0; t1; t2; t3; t4g.

After identifying the candidate target regions, they are joined (using a relational Join operation) to
identify the best target images and corresponding con�gurations (pairwise matches of query regions to target
regions). Each target image and con�guration is then assigned an overall match score to the query image. At
this �nal stage, any speci�cation by the user of relative spatial constraints are checked for each target image
using query-time 2-D string projection and 2-D string matching.

In this way, a query speci�ed by the user is translated directly into pruning operations on the region
attributes. The image attributes, such as region relative locations and special spatial relations, are resolved
only in the �nal stage of the query. This is because these evaluations have the highest complexity. The pruning
performed by the queries on the region attributes reduces the number of candidate images and regions that
need to be evaluated at the �nal stage.

In section 7.2., we present the strategy for matching regions that have attributes of absolute location
and size. In section 7.3., we consider the case of matching images with multiple regions that have attributes
of size, absolute and relative locations, which includes cases of special relations between regions. Finally,
in section 7.4.6 we provide an evaluation and present some examples of querying by joint spatial and color
features.

7.2. Region query

In computing matches between regions, we consider the spatial distances and size di�erences between the
query (q) and target (t) regions.

7.2.1 Absolute spatial location

In specifying spatial attributes of the individual regions in the query, we index the centroids and minimum
bounding rectangles of the regions.

7.2.1.1 Fixed query location

The spatial location attributes of regions are determined by the spatial centroid of the region (x; y) and the
width and height (w; h) of the minimum bounding rectangle (MBR) that encapsulates the region. Both the
location and size are useful attributes for discriminating regions. We present techniques for computing the
similarity of the locations and sizes of regions and indexing regions by these attributes.

The spatial distance between region centroids is given by the euclidean distance (illustrated in Figure 7-
2(a)) as follows

dsq;t = [(xq � xt)
2 + (yq � yt)

2]
1
2 : (7.1)
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Figure 7-2: Region spatial distance (a) �xed spatial distance dsq;t, (b) bounded spatial distance ds
0

q;t, where
Rxy determines the valid spatial bounds.

7.2.1.2 Bounded query location

In many situations the user does not care about the exact location of matched regions as long as they fall
within a designated area. In this case, the user is given 
exibility in designating the spatial bounds for
each region in the query within which a target region is assigned a spatial distance of zero. When a target
region falls outside of the spatial bounds, the spatial distance is given by the euclidean distance (illustrated
in Figure 7-2(b)) as follows

ds
0

q;t =

�
0 if (xt; yt) 2 Rxy

dsq;t otherwise.
(7.2)

7.2.1.3 Centroid location spatial access { spatial quad-trees

The spatial quad-tree provides an e�cient structure for indexing the region centroids. The quad-tree provides
quick access to 2-D data points by grouping the regions in buckets [132], as illustrated in Figure 7-3(a). A
query for region at location (xt; yt) is processed by �rst traversing the spatial quad-tree to the nearest buckets.

These buckets are searched exhaustively for the points that minimize dsq;t. In the case that the user
speci�es a bounded spatial query, several buckets are considered such that points within the spatial bounds
are all assigned ds

0

q;t = 0.

x

y spatial centroid bucket

x

y MBR MBR buckets

(a) (b)

Figure 7-3: Spatial indexing techniques, (a) the spatial quad-tree indexes region centroids, and (b) the r-tree
indexes region MBRs (rectangles) by using overlapping buckets.
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7.2.1.4 Rectangle location spatial access { R-trees

The spatial locations of extracted image regions are not su�ciently represented by centroid locations alone.
A 2-dimensional r-tree indexes the regions by their minimum bounding rectangles (MBRs). A MBR is the
smallest vertically aligned rectangle that completely encloses the region. In this way, a spatial query may
specify a search rectangle and the target regions are found that overlap with it, spatially.

The MBRs of the regions are indexed using the r-tree illustrated in Figure 7-3(b). The r-tree provides
a general dynamic structure for indexing k �D rectangles [58], here k = 2. The r-tree, which consists of a
hierarchy of overlapping spatial buckets, is designed to visit only a small number of buckets in the spatial
search [58].

7.2.2 Size

Another important perceptual dimension of the regions is their size, speci�cally in terms of area and spatial
extent. The distance in area between two regions q and t, is given by the absolute distance as follows

daq;t = jareaq � areatj: (7.3)

The width and the height of the MBRs provide for useful comparison of region spatial extents. It is much
simpler than shape information, which we do not utilize in the system, and provides excellent grounds for
discriminating regions by size. The distance in MBR width (w) and height (h) between two regions q and t,
is given by

dmq;t = [(wq � wt)
2 + (hq � ht)

2]
1
2 : (7.4)

7.2.3 Region query strategies

Integrating these approaches, the overall region query consists of computing individual queries on the feature
values, region location, area and spatial extent, as speci�ed by the user.

The single region distance is given by the weighted sum of the feature, location (Eq. 7.1), area (Eq. 7.3)
and spatial extent (Eq. 7.4) distances. The user may also assign a relative weighting �n to each attribute.
For example, the user may weight the size parameter more heavily than feature value and location in the
query. The overall single region query distance between regions q and t is given by

dq;t = �cd
set
q;t + �sd

s
q;t + �ad

a
q;t + �md

m
q;t: (7.5)

We now address the query process and present two approaches for computing the region queries.

7.2.3.1 Relational algebra

We introduce some basic concepts from relational databases in order to describe the image query and region
query processes. The relational model provides for de�ning a structure of the image database. Relational
algebra is a collection of operations that are used to manipulate the relations [42].

In the relational model, data is organized in tables of values. Each column of a table (or attribute)
represents a particular dimension of the data (i.e., age or sex). Each row of the table (or tuple) represents a
collection of related attributes that correspond to one entry in the table (i.e., a person).

More precisely, a relation of size n is denoted by R(A0; A1; : : : ; An�1), where the attributes are Ai for
i = f0 : : :n � 1g. An n-tuple t in the relation R is denoted by t =< v0; v1; : : : ; vn�1 >, where vi is the
value corresponding to attribute Ai [42]. The speci�c operations for querying relational databases include the
Select (�), Project (�), and Join (1) operations.

The Select operation returns the tuples from the relation that have attributes with values that satisfy
the speci�ed conditions. The syntax of the Select operation is �<select condition>(< relation >). The select
condition is made up of boolean clauses that apply conditions to the tuple values. The Project operation
returns only speci�ed attributes from the relation. The syntax of the Project operation is �<attribute list>(<
relation >).

The Join operation is an operation on two relations that combines tuples from both. In general, the Join
of two relations

R(A0; A1; : : : ; An�1) and S(B0; B1; : : : ; Bm�1)
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is denoted by R 1<join condition> S. The result of the Join is a relation Q with n+m attributes

Q(A0; A1; : : : ; An�1; B0; B1; : : : ; Bm�1):

Q has one tuple for each combination of tuples from R and S that satisfy the Join condition.
In particular, the type of Joinwe use is the Natural Join. In this case, the operation: R 1<attribute list> S

returns Q where the tuples in Q correspond to the tuples fromR and S that have attributes from the attribute
list with equal values. In the following discussion, we assume that the Join operations are of the form of the
Natural Join.

7.2.3.2 Relational image database

We structure the image region database using the relation model. This allows for queries to be described
using relational algebra and the Select, Project and Join operations. The region relational table (R =
REGION) is depicted in Table 7.3. Each row or tuple in R gives a region and its attributes. Particular regions
are extracted from R using the Select operation. For example, all regions from a particular image (say, with
IMID = 0001) are returned using the operation �IMID = 0001(R).

IMID REGID f x y area w h

0001 0001 f0 18 63 430 30 15
0001 0002 f1 34 45 968 65 32
0002 0001 f2 76 54 780 53 42
0003 0001 f3 55 12 654 43 55

Table 7.3: The REGION relation with attributes for features f , region centroids (x; y), region sizes area and
widths and heights (w; h) of the minimum bounding rectangles (MBRs).

7.2.3.3 Parallel attribute query strategy

We �rst outline the strategy for processing the region attribute queries using a parallel strategy. For example,
given the single region query: �nd the region that best matches Q = ffq; (xq; yq); areaq; (wq ; hq)g, the query
is processed by �rst computing individual queries for feature, location, size and spatial extent, as illustrated
in Figure 7-4.
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Figure 7-4: Parallel attribute query strategy for a single region query with attributes of feature value, location,
area and spatial extent.

The Join of the region match lists is then computed to obtain the set of common images; the best match
minimizes the total distance. Here, Bxy, Axy andMwh are the search thresholds for location, area and spatial
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extent, respectively, and are set by the system or by the user.
The parallel strategy achieves a performance gain over exhaustive search since it allows for special indexing

structures to be utilized for each attribute of the region. For example, the spatial quad-tree is used to index
the regions by location.

The parallel region query strategy is carried using the following operations, where the expression,

Select � from REGION where < select condition >

is equivalent to the following expression in relational algebra where the � refers to all attributes ��(�<select condition>(REGION)).

FEATURE  Feature query(fq)
LOC  Select � from REGION where (xt; yt) 2 Bxy

SIZE  Select � from REGION where areat 2 Axy

MBR  Select � from REGION where (wt; ht) 2Mwh

CAND  FEATURE 1IMID LOC 1IMID SIZE 1IMID MBR

REGIONMATCH  mindq;t(CAND); (using Eq. 7:5):

7.2.3.4 Pipeline attribute query strategy

We present an alternate strategy for processing the region attribute queries for a single region using a pipeline
query strategy. For example, given the single region query: �nd the region that best matches Q = ffq; (xq; yq);
areaq ; (wq; hq)g, the query is processed by �rst computing the individual query on the feature attributes.
This output is then �ltered by location, then by size and, �nally, by spatial extent, as illustrated in Figure 7-5.
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Figure 7-5: Pipeline attribute query strategy for a single region query with attributes of feature value, location,
area and spatial extent.

The pipeline strategy avoids the computation of the attribute Join required in the parallel strategy.
However, while a special indexing structure may still be used on the feature values, the pipeline strategy
cannot utilize special indexes for the other attributes that follow in the pipeline.

FEATURE  Feature query(fq)
LOC  Select � from FEATURE where (xt; yt) 2 Bxy

SIZE  Select � from LOC where areat 2 Axy

CAND  Select � from SIZE where (wt; ht) 2Mwh

REGIONMATCH  mindq;t(CAND); (using Eq. 7:5):

7.3. Multiple regions query

The overall image query strategy consists of joining the queries on the individual regions in the query image.
The Join, which consists of the Natural Join of the REGIONMATCH tables, identi�es the candidate target
images. For these images, the image match score is computed by adding the weighted region scores.

In the �nal stage, the relative spatial locations that may have been speci�ed in the query are evaluated
using query-time 2-D string projection. A 2-D string comparison determines whether candidate target images
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satisfy the constraints of the relative region placement. The image match process is illustrated in Figure 7-6.
We note that by specifying multiple regions in the query without any spatial relations between regions, the
complexity increases only linearly with the number of query regions.
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Figure 7-6: Overall strategy for computing image matches by joining individual regions queries.

7.3.1 Multiple regions query strategy { absolute locations

For each region in the query positioned by absolute location, the query strategy outlined for single region
query (Section 7.2.3) is carried out, without computing the �nal minimization. These lists are joined and the
best image match minimizes the combined region distance. For example, given the multiple region query:
�nd the image having three regions that best matches Q = fQA; QB; QCg, where Qi = ff iq; (x

i
q; y

i
q); area

i
q;

(wi
q; h

i
q)g gives the query parameters for query region i, the matches are found as follows:

REGA  Single Region Query(QA)
REGB  Single Region Query(QB)
REGC  Single Region Query(QC)
CAND  REGA 1IMID REGB 1IMID REGC
IMAGEMATCH  min�0dQA;T+�1dQB;T+�2dQC;T

(CAND):

The REGIONMATCH relations are Joined to obtain the IMAGEMATCH relation. The best image matches from
IMAGEMATCH minimize the weighted sum of the region distances between the query and target image. An
example of a query that speci�es four regions with absolute locations is illustrated in Figure 7-7. The query
image is given in the upper left. The matches are listed from left to right, and top to bottom in order of
minimum distance to the query image.

7.3.2 Region relative location

Querying by absolute locations cannot be easily extended to include relative locations of regions. For example,
for a target with L regions and a query image with K regions, there are L!=(L � K)!K! possible matches,
each of which has a di�erent distance score. For example, L = 20 and K = 3 requires 1; 140 comparisons. To
circumvent this exhaustive search, we utilize a convenient representation of image spatial relationships and
their comparisons based upon 2-D strings [22].

The 2-D string represents spatial relationships as illustrated in Figure 7-8(a). The 2-D string is a symbolic
projection of the image along the x and y directions [20]. For example, the 2-D string for the image in Figure 7-
8(a) is given as (t0t1 < t2 < t7 < t3 < t6 < t4 < t5; t0 < t5t7 < t6 < t2 < t3t1 < t4), where the symbol `<'
denotes the left-right or bottom-top relation.

Using 2-D strings, the match complexity is reduced to approximately O(L3=K) per target image. Since
we evaluate spatial relationships only at the �nal stage of the query, the complexity is further reduced to
O(L03=K), where L0 is the number of candidate regions in a target image, and L0 < L and L0 ' K. Using
the region Join strategy in Section 7.3., we have L0 = K, which gives a complexity of O(K2).
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Figure 7-7: Symbolic image retrieval { absolute spatial query matches.
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Figure 7-8: 2-D string representation of spatial relationships (a) un-rotated 2-D string, (b) rotated projection.
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7.3.3 Spatial indexing

In order to incorporate relative spatial query into the feature query system, the 2-D strings are generated at
the �nal stage of the query.

7.3.3.1 Query-time 2-D string projection

The 2-D string projection (illustrated in Figure 7-9) is accomplished as follows: given a REGION or IMAGEMATCH
table, the centroid (x; y) attributes are �rst quantized. The quantization, speci�ed by step size �, is deter-
mined by the size of the grid, as depicted in Figure 7-8. From the quantized relation, two new relations are
obtained: SX and SY. For example, SX is obtained by the Select operation on attributes IMID, SYMB, and X

and sorting by IMID and X. The SYMB are then concatenated in sorted order into a `comma delimited' string.
The process is repeated for the SY table and the Y attribute. Finally, SX and SY are Joined to produce the
2-D string relation 2DS.

IMID 2Dstring(X)

2 T,BC,W
IMID REGID SYMB X Y

2 10 B 46 37
2 11 c 46 57
2 12 T 15 3
2 13 W 54 34

IMID 2Dstring(Y)

2 TBW,C

IMID 2Dstring

2 T,BC,W TBW,C

SX

SY

2DS

REGIONTABLE

Figure 7-9: 2-D String projection.

The following algorithm summarizes the 2-D string projection process.

Algorithm 1 2-D String Projection

Q  quantizeX, Y(REGIONTABLE;�)
SX  sortID, SYMB, X(�ID, X(Q))
SY  sortID, SYMB, Y(�ID, Y(Q))
2DS  SX 1ID SY

7.3.3.2 2-D String compare

Given the 2-D string projections from the query imageQ and target images T , the spatial relation constraints
in Q are evaluated in the T 's by a 2-D string comparison. The 2-D strings comparison is carried out using
the 2dcompare function:

Algorithm 2 2-D String Compare 2dcompare(Q, T)

2dcompare(Q; T )  compare(QX ; TX) and compare(QY ; TY ):

The 2-D string comparison is separated into individual X and Y 1-D string comparisons, which are evaluated
using the compare function as follows

Algorithm 3 Compare compare(Q, T). The pseudo-code for the compare function is given in Figure 7-10,
where Q is the query string, T is the target string, NUMQ is the number of buckets in the query string, and
NUMT is the number of buckets in the target string.

The contains function implements a search for a query symbol within one bucket of the target string.
An example of a query that speci�es two regions with relative locations is illustrated in Figure 7-11. The

query image is given in the upper left. The matches satisfy the spatial constraints speci�ed in the query
image, namely, that region A is above and the right of region B.
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let nq = 0

let nt = 0

while nq < NUMQ and nt < NUMT do

if contains(T[nt],Q[nq]) then
nq = nq + 1

endif
nt = nt + 1

end
if nq < NUMQ then

return “NO MATCH”
else

return “MATCH”
endif

function contains(T[nt], Q[nq])

while (i < size(Q[nq]) do

if (substr(T[nt],Q[nq][i])

then return FALSE;
endif

    i = i + 1;
end
return TRUE;

(a) (b)

Figure 7-10: 2-D string compare pseudo-code.

A

B

Figure 7-11: Symbolic image retrieval { relative spatial query matches.
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7.3.4 Special spatial relations

We de�ne several spatial relations that are of particular interest, such as region adjacency, nearness, overlap
and surround. These examples of spatial reasoning are inferred from the 2-D string [20]. Scale invariance is
also provided in the 2-D string, but rotation invariance is not. We introduce a simple extension of the 2-D
string projection and comparison operations that gives some rotation invariance.

7.3.4.1 Adjacency, nearness, overlap and surround

The adjacency of regions is resolved from the 2-D string by determining whether or not other regions exist
between two candidate regions. The nearness of regions is resolved using adjacency in the 2-D string, but since
the 2-D string provides no metric information, it requires an additional computation of the region distance.

Since the 2-D string captures the orthogonal relations of the regions in the image, the conditions of overlap
and surround can also be determined [20]. Overlapping regions require not only the determination of nearness
but also require the evaluation of the overlap of the MBRs of the regions. The case of surround is determined
by unifying sub-goal queries that evaluate regions to the north, south, east and west of the surrounded-by
region.

An example of a \nearness" query that speci�es three regions with relative locations is illustrated in
Figure 7-12. The query image is given in the upper left. By de�ning a coarse grid and placing the three
regions A, B and C in the same bucket, images are retrieved that also have the regions in the same bucket.

A
B

Z

Figure 7-12: Symbolic image retrieval { \nearness" relative spatial query matches.

7.3.4.2 Spatial invariance

Under certain conditions the user may desire invariance in scaling and/or rotation. The 2-D string provides
scale invariance since a change in scale does not change the order of symbols in the string. However, rotation
invariance is not provided in the 2-D string. Therefore, we approximate rotation invariance around the image
center point by providing two projections of each image, one normal projection, and another based upon a
rotation by 45 degrees.

In this case, the 45� rotated 2-D string is extracted by the projecting onto the diagonals of the image
as illustrated in Figure 7-8(b). Image rotation by 90� is provided by swapping the x and y projections as
illustrated in Figure 7-13(a) and (b). Rotation by 45� is detected in the rotated 2-D string as illustrated in
Figure 7-13(a) and (c). Other arbitrary rotations are approximated by either the 0� 2-D string or the 45� or
90� rotated 2-D string.

7.3.5 Multiple regions query strategy { relative locations

To summarize the multiple region query strategy, the resolution of the relative spatial locations is performed
in the �nal stage. For the regions positioned in the query by absolute locations, the location queries from
Section 7.3.1 are performed. For the regions positioned in the query by relative locations, queries on all
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A C
B A

C
B

A

C
B

(a) 0� (b) 90� (c) 45�

Figure 7-13: 2-D strings rotation invariance (a) 0� (A < C < B;ABC), (b) 90� (ABC;A < C < B), (c) 45�

(A < C < B;ABC) with projection onto the rotated axis.

attributes except location (x; y) are performed. Then, the Join of the REGIONMATCH tables is performed to
identify and score the candidate target images.

For each candidate image, the 2-D string is generated by projecting from the centroids of the regions and
is compared to the 2-D string of the query image. This �nal 2-D string comparison operation either validates
the target image or rejects it. Therefore, after the �nal stage, all false alarms from the earlier stages are
removed.

An example of a query that speci�es two regions with both absolute and relative locations is illustrated in
Figure 7-14. The query image is given in the upper left. The matches satisfy the spatial constraints speci�ed
in the query image, namely, that region A is above and the right of region B. We now present some example
multiple region spatial queries using symbolic images, and provide some evaluations.

A

B

Figure 7-14: Symbolic image retrieval { absolute spatial query matches.

7.3.6 Symbolic image retrieval

The spatial queries are formulated graphically using the interface tools illustrated in Figure 7-15 [142]. The
user sketches regions, positions them on the query grid and assigns them attributes of color, size and absolute
location. The user may also assign boundaries for location and size.

7.3.7 Relative spatial query e�ciency

Figure 7-16 reports on the e�ciency of the 2-D string approach in computing relative spatial queries. Figure 7-
16(a) illustrates that the query response time using 2-D strings is approximately linear with the size of the
image database. This follows since we do not utilize an index structure for the 2-D strings.

The IMAGEMATCH table is searched exhaustively using the 2-D compare function. Figure 7-16(b) illustrates
that the observed query response time is approximately constant with the number of query symbols.
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Figure 7-15: SaFe user interface with returned symbolic images.



130 John R. Smith

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

size of database (number of records)

qu
er

y 
re

sp
on

se
 ti

m
e 

(s
ec

s)

2−D String compare (QRT vs. Number records)

2 4 6 8 10 12 14 16 18 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Number of query terms

qu
er

y 
re

sp
on

se
 ti

m
e 

(s
ec

s)

2−D String compare (QRT vs. Number query terms)

(a) (b)

Figure 7-16: Relative spatial query (a) query response time vs. image database size, (b) query response time
vs. number of query symbols.

7.4. Feature query

The power of the spatial and feature query system comes from its capability to integrate content-based
searching with spatial indexing. The process described above provides a framework for computing these
queries. We now examine one speci�c case of spatial and feature querying in which the feature of interest
is color. Query-by-color is one popular method for color image retrieval [3, 45, 105]. By extending query-
by-color to the spatial and color feature paradigm, we create a more powerful system for retrieving color
images. We now describe the process of representing and comparing color features, extracting color regions
and computing color feature queries.

7.4.1 Histogram quadratic distance

Color histograms represent the color features of images (see Chapter 2). The QBIC project uses the histogram
quadratic distance metric for matching images [102]. It measures the weighted similarity between histograms
which provides more desirable results than \like-bin" only comparisons. The quadratic distance between
histograms hq and ht is given by

dhistq;t = (hq � ht)
tA(hq � ht); (7.6)

where A = [ai;j] and ai;j denotes the similarity between colors with indices i and j.

7.4.2 Color sets

Color sets provide a compact alternative to color histograms for representing color information. Their uti-
lization stems from the conjecture that salient regions have not more than a few, equally prominent colors.
The following paragraphs de�ne color sets and explain their relationship to color histograms.

7.4.2.1 Color set distance

We use a modi�cation of the color histogram quadratic distance equation (from Eq. 7.6) to measure the
distance between color sets. The quadratic distance between two color sets cq and ct is given by

dsetq;t = (cq � ct)
tA(cq � ct): (7.7)

Considering the binary nature of the color sets, the computational complexity of the quadratic distance func-
tion may be reduced. We decompose the color set quadratic formula to provide for more e�cient computation
and indexing. By de�ning �q = ctqAcq, �t = cttAct and rt = Act, the color set quadratic distance is given as

dsetq;t = �q + �t � 2ctqrt: (7.8)
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Since cq is a binary vector, we have

dsetq;t � �q = �t � 2
X

8m where cq[m]=1

rt[m]: (7.9)

That is, any query for the most similar color set to cq is easily processed by accessing individually �t and
rt[m]'s, where m 2 0 : : :M � 1, see Table 7.4. As such, �t and rt[m]'s are precomputed, stored and indexed
individually. Notice also that �q is a constant of the query. The closest color set, ct, to cq is the one that
minimizes Eq 7.9.

IMID REGID �� r[0]� r[1]� : : : r[M � 1]�

Table 7.4: The COLORSET relation with attributes for the decomposed quadratic distance equation parameters
�t and rt[m]'s. Denotation by � indicates that a secondary index is built on the attribute in order to allow
range queries to be performed on that attribute.

7.4.3 Color region extraction

In order to extract color regions, we use a color set back-projection technique. We brie
y describe the
technique here. The more detailed presentation is given in Chapter 5. The back-projection process requires
several stages: color set selection, back-projection onto the image, thresholding and labeling. Candidate color
sets are selected �rst with one color, then with two colors, etc., until the salient regions are extracted.

The back-projection of a color set is accomplished as follows: given image I[x; y] and color set c, let k be
the index of the color at image point I[x; y], then generate image B[x; y] by

B[x; y] = c[k]; (binary back-projection): (7.10)

That is, B[x; y] depicts the back-projection of color set c. In order to accommodate color similarity in the
back-projection process, a correlated back-projection image is generated by

B[x; y] = max
j=0:::M�1

(Aj;kc[j]); (correl. back-projection); (7.11)

where Aj;k measures the similarity of colors j and k, which will be discussed in the next section. After
back-projecting the model color set, image B[x; y] is �ltered and analyzed to reveal spatially localized color
regions.

7.4.3.1 Color region information

Information about the regions such as the color set used for back-projection, the spatial location and size
are added to the REGION relation (see Table 7.3) and are subsequently used for queries as explained in the
next sections. While color set selection and back-projection provides one automated technique for extracting
salient color regions from the images, other methods can easily be incorporated into our system. For example,
manually extracted regions and their features can also be added to the REGION relation.

7.4.4 Color set query strategy

We now de�ne the strategy for processing the color set queries, which is an important building block in the
overall color image query process. The color set query compares only the color content of regions or images.
The spatial queries were considered in the previous sections. Given query Q = fcqg, the best match to Q is
target Tj = fctjg, where,

j = argminj(d
set
q;tj

)

= argminj(�tj � 2
P

8m where cq[m]=1 rtj [m]):

A straightforward way to process the query is to compute dsetq;tj
exhaustively for all j using Eq. 7.9. In this

case, the computation of dsetq;tj
requires M 0 + 1 additions per target and no multiplications, where M 0 is the
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number of non-zero colors in cq . This provides for drastic improvement over the original histogram quadratic
form.

The complexity of this approach, where M = size of color set (histogram) and N = number of images
in the database, is O((M 0 + 1)N ), where M 0 << M gives the number of non-zero colors in the query color
set. Compare this to a naive computation of quadratic histogram distance, which is O(M2N ). In QBIC, the
computation is reduced by the technique in [59] to O(M2C +M 00N ), where typically M 00 = 3 and C << N .
We note that the technique in [59] may be combined with the color set technique to further reduce complexity.

Given the query color set: �nd the best match to color set cq, where dsetq;t � � c de�nes the maximum
tolerance for color set distance, the following range queries produce the best match:

MU  Select � from COLORSET where �t � �c � �q

COLm  Select rt[m] from COLORSET where rt[m] �
�q+�t��

c

2
;

8m where cq [m] = 1
CAND  MU 1IMID COLi 1IMID COLj 1IMID � � � 1IMID COLk
COLORMATCH  mindset

q;t
(CAND); (Eq: 7:9):

As this query strategy illustrates, color region matching is accomplished by performing several range
queries on the query color set's colors, taking the Join of these lists and minimizing the sum of attributes in
the joined list. The best match minimizes the color set distance.

Since this strategy merely provides e�cient indexing of the terms in the decomposed quadratic color set
distance equation, the query strategy provides for no false dismissals. The �nal candidate image list has false
alarms which are removed through the �nal minimization which requires only additions in the computation of
dsetq;t . Using a similar indexing strategy for retrieving images using color histograms in a database of 750; 000
images, the computation of the 60 best matches takes less than two seconds [148].

7.4.5 Synthetic color region image retrieval

To test the spatial and color query system, we generated 500 synthetic images by selecting, manipulating and
compositing color regions into synthetic images. Some examples are illustrated in Figure 7-17 and Figure 7-18.
While the synthetic images appear quite di�erent from real images, the composition of regions is still di�cult
to decipher automatically by computer. For example, in the retrieved images in Figure 7-17, the original
composited regions cannot be extracted exactly because of occlusion and aggregation of the regions.

The region library consists of twelve elementary shapes, illustrated at the top of Figure 7-19. To construct
each synthetic image, shapes were selected at random from the library and were randomly rotated, scaled,
colored and composited, as illustrated in Figure 7-19. The control factors, such as color, size, and location of
regions, establish a ground truth database.

The synthetic image query experiment was conducted as follows: 100 synthetic query images were gener-
ated which have from one to three randomly selected regions in each; 500 target images were generated as
described above. For each query image, all of the target images were assigned a similarity score using the
ground truth database and using an exhaustive comparison and distance minimization over all query and
target regions (Query GT).

The target images from each Query GT were sorted by closest distance to the query image. The target
images were assigned a relevance to each query based upon rank in the sorted list as follows:

� if rank = 1 to 5 then relevance = 1,

� if rank = 6 to 10 then relevance = 0:5,

� if rank = 11 to 500 then relevance = 0.

Using the target image relevances obtained from Query GT, the queries were next evaluated using several
methods and compared to the Query GT.

1. In Query Q1, the region indexing and distance computation strategy outlined here was carried out on
the ground truth database.

2. In Query Q2, the same query strategy was carried out on a region database that was generated auto-
matically from the target images using color set back-projection.

3. In Query Q3, the combined color histogram of the query regions was matched to the combined region
color histogram of each target image as the basis for image retrieval.
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Figure 7-17: Example of the absolute location synthetic image queries: query image is top left, retrieved
images from top left to bottom right in order of best match.

Figure 7-18: Example of the relative location synthetic image queries: query image is top left, retrieved
images from top left to bottom right in order of best match.
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Figure 7-19: Generation of synthetic images and ground truth database and process for evaluating e�ectiveness
of joint spatial and color queries.
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Figure 7-20: Average retrieval e�ectiveness of 100 randomly generated queries on database of synthetic images,
with the four query methods de�ned as above.

We see in Figure 7-20 that the spatial and color query strategy (Query Q2) performs much better than
color histograms (Query Q3) in retrieving image matches. We also see that Query Q1 performs better than
Query Q2. The di�erence represents the loss of information in the process of automated region extraction
through color set back-projection. Furthermore, the drop in retrieval e�ectiveness in Queries Q1 and Q2 from
the ground truth Query GT results from the spatial and color indexing strategies.

In computing the similarity between the query and target images in Query GT, all regions in the target are
considered. In this way, some target images are identi�ed as matches even when only two out of three regions
are close matches. These con�gurations are considered only because Query GT conducts an exhaustive search
on all target regions. In the indexing strategy outlined here, candidate target images are required to possess
regions which are all su�ciently close to the query regions. This restriction, which allows the gain in retrieval
e�ciency over exhaustive search, explains the retrieval e�ectiveness drop compared to Query GT.

7.4.6 Color photographic image retrieval

The joint spatial and color queries are formulated graphically, as illustrated in Figure 7-21 [152]. The user
sketches regions, positions them on the query grid and assigns them attributes of color, size and absolute
location. The user may also assign boundaries for location and size. We illustrate the power and 
exibility
of the system over non-spatial techniques.

7.4.6.1 Query 1: Sunsets

The goal of this query is to retrieve images depicting sunsets. Prior to the trials, the 3; 100 images were
inspected, and each was assigned a relevance. The query results are shown in Figure 7-22. The results show
that the integrated spatial and color query system gives better retrieval e�ectiveness than color histogram
and color set-based query methods.

Using the SaFe interface (from Figure 7-21), the SaFe sunset query (denoted by A) speci�es two regions
(outer is orange and inner is yellow) and their spatial layout (top left of Figures 7-22). The best matches
(illustrated on top from left to right) have a similar arrangement of similarly colored regions.

For the color histogram (denoted by B) and color set (denoted by C) queries, the best match sunset image
from A is used as the seed image. Query B is computed using the histogram quadratic distance metric
(Eq 7.6). Query C is computed using the binary set quadratic distance metric (Eq 7.7). The best matches are
illustrated from left to right. We see that the global color queries give the user little control in specifying the
query and more readily returns images that are not desired. The plot in Figure 7-22 shows that the retrieval
e�ectiveness for B and C is much worse that the SaFe query A.
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Figure 7-21: SaFe user interface to the photographic image query system.
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Figure 7-22: Query 1. Sunset image retrievals (A = SaFe query, B = color histograms, C = color sets).
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Figure 7-23: Query 2. Blue sky with greenery image retrievals (A = SaFe query, B = color histograms, C =
color sets).
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7.4.6.2 Query 2: Blue sky images with greenery

The goal of this query is to retrieve images depicting blue sky images with greenery. Prior to the trials, the
3; 100 images were inspected and each was assigned a relevance. The query results are shown in Figure 7-23.

The SaFe sunset query (denoted by A) speci�es two regions (upper is blue and lower is dark green) and
their spatial layout (top left of Figures 7-23). The best matches (illustrated on top from left to right) have a
similar arrangement of similarly colored regions.

For the color histogram (denoted by B) and color set (denoted by C) queries, the best match sunset image
from A is used as the seed image. Query B is computed using the histogram quadratic distance metric
(Eq 7.6). Query C is computed using the binary set quadratic distance metric (Eq 7.7). The best matches
are illustrated from left to right. The plot in Figure 7-23 shows that the retrieval e�ectiveness for the SaFe
query A is much higher than in queries by methods B and C.

7.4.6.3 Pedagogical image queries

We now illustrate the range of possible spatial and color queries. In the �rst example, in Figure 7-24(a),
the query (top) speci�es the absolute location of a single region. The retrieved image (bottom) has the best
match in color and size to the query region and falls within the \zero-distance" bound diagrammed in the
query. In Figure 7-24(b), the query speci�es two regions. The retrieved image has two color match regions
located at the positions in the query image.

In Figure 7-24(c), the query speci�es the spatial relationships of three regions. The retrieved image has
three regions that best match the colors of the query regions and their spatial relationship satis�es that
speci�ed in the query. In Figure 7-24(d), the query speci�es both absolute and relative locations of regions.
In this query, the match to the region positioned by absolute location (top left region in query image) considers
both the color and location of this region. The match to the other regions (bottom two regions in query image)
at �rst considers only the colors of these regions. In the last stage of the query, the spatial relationships of
the regions are evaluated to determine the match.

(a) (b) (c) (d)

Figure 7-24: Example queries (a) region with absolute location, (b) two regions with absolute locations, (c)
multiple regions with relative locations, (d) multiple regions with both absolute and relative locations.

7.5. Summary

We presented a new paradigm for image searching which integrates spatial (region absolute and relative
locations, and size) and feature querying (visual features, i.e., color). Previous content-based query systems
have not provided both types of querying [102, 112, 105, 3]. Since the discrimination of images is only
partly provided by global features, the system instead utilizes image regions and their features, sizes, spatial
locations, and relationships in order to compare images.

In this chapter, we described the process by which image queries are decomposed into independent region
queries. These results are joined to determined candidate target images. The spatial relationships in the
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candidate target images are projected into 2-D string representations. These provide for e�cient validation
of the spatial relationships in the target images compared to the query images.

We demonstrated that by integrating content-based and spatial querying a highly functional query system
is generated which allows for a wide variety of complex spatial and feature queries. We evaluated several
example spatial and color queries on a test-set of synthetic images and a test-set of color photographic images.
We demonstrated that retrieval e�ectiveness improves signi�cantly over purely content-based methods.

In the next chapter, we describe some of the details involving the implementation of the SaFe integrated
spatial and feature image query system. We also describe a related system: VisualSEEk. The VisualSEEK
system demonstrates the color/spatial image query paradigm in addition to other image search methods, such
as, relevance feedback searching and text-based searching. We also present the WebSEEk image and video
search engine. WebSEEk demonstrates the methods of content-based and integrated spatial and feature-based
searching and cataloging of images and videos from the World-Wide Web.
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Chapter 8

Content-based visual query applications

8.1. Introduction

In this chapter we introduce three new prototype applications that demonstrate the powerful techniques for
content-based retrieval developed in this thesis. We �rst present the WebSEEk system, which is a content-
based image and video search engine [148, 147]. WebSEEk consists of three components: (1) a collection
system for cataloging images and videos, (2) an image and video analysis system which extracts and indexes
visual features of the images and videos, and (3) the query system which consists of the query engine, the
search tools, and query results display tools. We demonstrate the performance of the system in cataloging,
indexing and search and retrieval of over one-half million images and videos collected from the World-Wide
Web.

We also present the VisualSEEk color and spatial image query system [151, 146]. VisualSEEk provides
several methods for searching for images including, integrated color and spatial querying, relevance feedback
querying and text-based searching. VisualSEEk also provides a system for clustering the images to facilitate
the annotation process for large collections of images.

Finally, we present the SaFe spatial and feature query system [142]. SaFe is an open-platform for computing
powerful image queries that specify spatial arrangements of objects or regions and region feature properties.
SaFe allows the user to construct a query image that consists of regions constrained by absolute and/or
relative spatial locations. Potential applications of the SaFe system include geographic image systems (GIS),
map retrieval [154], satellite image systems [87, 92] and photographic image databases [3, 45, 145].

8.2. WebSEEk image and video search engine

We �rst describe a system prototype for searching for images and videos on the World-Wide Web. New visual
information in the form of images, graphics, animations and videos is being published on the Web at an
incredible rate. However, cataloging it is beyond the capabilities of current text-based Web search engines.
We describe a complete system by which visual information on the Web is

1. collected by automated agents,

2. processed in both text and visual feature domains,

3. catalogued and

4. indexed for fast search and retrieval.

We introduce an image and video search engine which utilizes both text-based navigation and content-based
technology for searching visually through the catalogued images and videos. Finally, we provide an initial
evaluation based upon the cataloging of over one half million images and videos collected from the Web.

8.2.1 Overview of search engines

A large number of search engines index the plethora of documents on the World-Wide Web. For example,
recent systems such as Lycos, Alta Vista, Infoseek and Excite index Web documents by their textual content.
These systems periodically scan the Web, analyze the documents, and create compact and searchable indexes.
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The user, by entering query terms and/or by selecting subjects, uses these search engines to more easily �nd
the desired Web documents.

Visual information is published on the Web in the form of images, graphics, bitmaps, animations and
videos. As with Web documents in general, the publication of visual information is highly volatile. New
images and videos are added everyday and others are replaced or removed entirely. In order to catalog the
visual information, a highly e�cient automated system is needed that regularly traverses the Web, detects
visual information, processes it and indexes it in such a way to allow for e�cient and e�ective search and
retrieval.

We have developed a prototype image and video search enginey to ful�ll this need [148, 147]. The system
collects images and videos from the Web, catalogs them, and provides tools for searching and browsing.
The system is novel in that it utilizes text and visual information synergically to provide for cataloging and
searching. The complete system possesses several powerful functionalities, namely,

1. automated collection of visual information from the Web,

2. automated image and video subject classi�cation,

3. searching using innovative visual content-based techniques,

4. image and video subject search and navigation, and text-based searching,

5. compact presentation of images and videos for displaying query results,

6. search results lists manipulations such as intersection, subtraction and concatenation, and

7. query modi�cation using content-based relevance feedback.

Recently, several World-Wide Web image search engines have been reported [134, 148, 47, 70]. The
Webseer system from University of Chicago [47] provides a system for searching for images and animations.
The system is novel in that it detects faces within the images and lets the users search by the number of
faces. The Webseer system does not classify the images into subject categories and does not provide for
content-based searching. The Interpix [70] image search engine provides for content-based image searching
using color histograms. The Interpix system has recently been integrated with Yahoo's search engine allowing
for retrieval of images related to some of Yahoo's Web categories.

8.2.2 Image and video collection process

The image and video collection process is conducted by autonomous Web agents or \spiders." The spiders
traverse the Web by following the hyperlinks between documents. They detect images and videos, retrieve
and process them and add the new information to the catalog. The overall collection process, illustrated in
Figure 8-1, is carried out using several distinct modules:

1. the Traversal Spider { assembles lists of candidate Web documents that include images, videos or
hyperlinks to them,

2. the Hyperlink Parser { extracts the Web addresses (URLs) of the images and videos, and

3. the Content Spider { retrieves, analyzes and iconi�es the images and videos.

8.2.2.1 Image and video detection

In the �rst phase, the Traversal Spider traverses the Web looking for images and videos, as illustrated in
Figure 8-2. Starting from seed URLs, the Traversal Spider follows a breadth-�rst search path. It retrieves Web
documents via Hypertext Transfer Protocol (HTTP) and passes the Hypertext Markup Language (HTML)
code to the Hyperlink Parser. In turn, the Hyperlink Parser detects new URLs, encoded as HTML hyperlinks,
and adds them back to the queue of Web documents to be retrieved by the Traversal Spider.

yhttp://www.ctr.columbia.edu/webseek
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The Hyperlink Parser detects the hyperlinks in the Web documents and converts the relative URLs into
absolute addresses. By examining the types of the hyperlinks and the �lename extensions of the URLs,
the Hyperlink Parser assigns each URL to one of several categories: image, video or HTML. The mapping
between �lename extensions and Web object type is given by the Multipurpose Internet Mail Extensions

(MIME) content type labels, as illustrated in Table 8.1.

Extension Type Description
.gif image Compuserve image format
.jpg, .jpeg, .jpe, .j�f, .pjpeg, .pjp image JPEG image format
.qt, .mov, .moov video Quicktime video format
.mpeg, .mpg, .mpr, .mpv, .vbs, .mpegv video MPEG video format
.avi video Microsoft video format
.htm, .html HTML Hypertext markup language

Table 8.1: MIME mapping between extensions and object types.

In the second phase, the list of image and video URLs from the Hyperlink Parser is passed to the
Content Spider. The Content Spider retrieves the images and videos, processes them and adds them to
the WebSEEk catalog. Three important functions of the Content Spider are to

1. extract visual features that allow for content-based techniques in searching, browsing and grouping,

2. extract other attributes such as width, height, number of frames, type of visual data (i.e., photo, graphic,
video, etc.), and so forth, and

3. generate an icon, or motion icon, that su�ciently compacts and represents the visual information to be
used for browsing and displaying query results.

The process of extracting visual features generates a color histogram and a table of extracted color regions
for each image and video. The process is discussed in more detail in Section 8.2.5. The other attributes of the
images and videos populate the WebSEEk database tables, which are de�ned in Section 8.2.3.4. Finally, the
Content Spider generates coarse and highly compressed versions of the images and videos to provide pictorial
data in the query output.

Image and video presentation The image icons are obtained by spatially reducing the original images.
The video icons are generated by reducing the original videos both spatially and temporally. The temporal
reduction is achieved in a two step process: �rst, only one frame is retained per every one second of video.
Next, the key frames of the sequence are identi�ed using automated shot detection [95]. Finally, the video is
re-animated from the key frames and packaged as an animated-GIF �le.

8.2.3 Subject classi�cation process

The utilization of text is essential to the cataloging process. In particular, every image and video on the Web
has a unique Web address (URL) and possibly other HTML tags. This text potentially provides a semantic
description of the corresponding visual information. We process the URLs and HTML tags in the following
ways to index the images and videos:

� extract terms tk's,

� extract directory names dl's,

� map key-terms t�k's to subjects sm's using a key-term dictionaryMkm, and

� map directory names dl's to subjects sm's.

8.2.3.1 Text processing

The images and videos are published on the Web by two distinct methods: inline and reference. The HTML

syntax di�ers in the two cases:
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1. To inline, or embed, an image or video into a Web document, the following code is included in the
document: <img src=URL alt=[alt text]>, where URL gives the relative or absolute address of the
image or video. The optional alt tag speci�es the text that substitutes for the inlined image or video
when the image or video is not displayed.

2. Alternatively, images and videos are referenced from parent Web documents using the following code:
<a href=URL>[hyperlink text]</a>, where the optional [hyperlink text] provides the high-lighted text
that describes the image/video pointed to by the hyperlink.

Term extraction The terms, tk's, are extracted from the image and video URLs, alt tags and hyperlink
text by chopping the text at non-alpha characters. For example, the URL of an image or video has the
following form

URL = http://host.site.domain[:port]/[user/][directory/][file[.extension]]:

Here [...] denotes an optional argument. For example, several typical URLs are

URL1 = http://www.mynet.net:80/animals/domestic-beasts/dog37.jpg;

URL2 = http://camille.gsfc.nasa.gov/rsd/movies2/Shuttle.gif;

URL3 = http://www.arch.columbia.edu/DDL/projects/amiens/slide6b.gif:

Terms are extracted from the directory and file strings using functions Fkey and Fchop where

Fkey(URL) = Fchop(directory/file);

and Fchop(string) gives the set of substrings that are delimited by non-alpha characters. For example,

Fkey(URL1) = Fchop(\animals/domestic-beasts1/dog37")

= \animals," \domestic," \beasts," \dog":

The process of extracting terms produces an overall set of terms ftkg for the image and video collection.
The system indexes the images and videos directly using ftkg. In addition, certain terms, key-terms, t�k's, are
used to map the images and videos to subject classes, as we explain shortly.

Directory name extraction A directory name, dl, is a phrase extracted from the URLs that groups
images and videos by location on the Web. The directory name consists of the directory portion of the URL,
namely, Fdir(URL) = directory. For example, Fdir(URL1) = \animals/domestic-beasts". The process of
extracting directory names produces an overall set of directory names fdlg for the image and video collection.
The directory names are also used by the system to map images and videos to subject classes.

8.2.3.2 Image and video subject taxonomy

A subject class or subject, sm, is an ontological concept that represents the semantic content of an image
or video, i.e., subject = \The Beatles." A subject taxonomy is an arrangement of the set of subject classes

fsmg into a hierarchy, denoted as dfsmg, i.e., \The Beatles" 2 \Rock music" 2 \Music." We are developing
the subject taxonomy for image and video topics; a portion is illustrated in Figure 8-3. When we detect
potentially descriptive terms, such as tk =\dog" or tk =\canine," we add an appropriate subject class, i.e.,
sm =\animals/dogs," to the subject taxonomy.

8.2.3.3 Key-term dictionary

The key-terms, t�k's, are terms that are manually identi�ed to be semantically related to one or more subject
classes, sm's. The key-term dictionary contains the set of key-terms ft�kg and the related subject classes
fsmg. As such, the key-term dictionary provides a set of mappings fMkmg from key-terms to subject classes,
where Mkm : t�k ! sm.

We build the key-term dictionary in a semi-automated process. In the �rst stage, the term histogram for
the image and video archive is computed such that each term tk is assigned a count number fk which indicates
how many times the term appeared. Then, the terms are ranked by highest count fk and are presented in
this order of priority for manual assessment.
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Figure 8-3: Portion of the image and video subject taxonomy dfsmg.

The goal of the manual assessment is to assign quali�ed terms t�k 2 ftkg to the key-term dictionary.
The quali�ed terms should be descriptive and not homonymic. Ambiguous terms make poor key-terms. For
example, the term \rock" is a not a good key-term due to its ambiguity. \Rock" refers to either a large mass
of stone, rock music, a diamond, or several other things. Once a term and its mappings are added to the
key-term dictionary, it is used to assign the images and videos in the collection to subject classes.

term: tk count: fk
image 86380
gif 28580
icon 14798
pic 14035
img 14011

graphic 10320
picture 10026
small 9442
art 8577

key-term: t�
k

count: fk mappingMkm to subject sm

planet 1175 astronomy/planets
music 922 entertainment/music
aircraft 458 transportation/aircraft
travel 344 travel
gorilla 273 animals/gorillas
starwars 204 entertainment/movies/�lms/starwars
soccer 195 sports/soccer

dinosaur 180 animals/dinosaurs
porsche 139 transportation/automobiles/porsches

(a) (b)

Table 8.2: Sample (a) terms and their counts ftk : fkg and (b) key-terms counts ft�k : fkg with subjects sm's
and mappingsMkm : t�k ! sm's. Taken from the assessment of over 500; 000 images and videos.

1 From the initial experiments of cataloging over 500; 000 images and videos, the terms listed in Table 8.2
are a sample of those extracted. Notice in Table 8.2(a) that some of the most frequent terms are not
su�ciently descriptive of the visual information, i.e., terms: \image," \picture." The terms in Table 8.2(b)
unambiguously de�ne the subject of the images and videos, i.e., terms: \aircraft," \gorilla," \porsche."

In a similar process, the directory names dl's are mapped manually to subject classes sm's. In this case, an
entire directory of images/videos may be mapped to one or more subject classes. For example, the directory
dl = \space/planets/saturn" is mapped to subject sm = \astronomy/planets/saturn." Similar to the process
for key-term extraction, the system computes a histogram of directory names fdl : flg and presents it for
manual inspection. The directories that su�ciently group images and videos related to particular topics are
then mapped to the appropriate subject classes.

In Section 8.2.6.1, we demonstrate that these methods of key-term and directory name extraction coupled
with subject mapping provide excellent performance in classifying the images and videos by subject. By
incorporating some results of natural language processing in addition to using visual features, we hope to
further improve and automate the subject classi�cation process.
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8.2.3.4 Catalog database

As described above, each retrieved image and video is processed and the following information tables are
populated:

IMAGES { IMID URL NAME FORMAT WIDTH HEIGHT FRAMES DATE

TYPES { IMID TYPE

SUBJECTS { IMID SUBJECT

TEXT { IMID TERM

FV { IMID COLOR-HISTOGRAM

REGIONS { IMID REGID COLOR-SET X Y WIDTH HEIGHT

where the special (non-alphanumeric) data types are given as follows:

TYPE 2 fColor photo, Color graphic, Video, B/w image, Gray imageg

SUBJECT 2 fSubject classes from taxonomy dfsmg, partially depicted
in Figure 8-3g

COLOR-HISTOGRAM 2 R166 (166-bin histogram)
COLOR-SET 2 B166 (166-element binary set):

The automated assignment of TYPE to the images and videos using visual features is explained in Sec-
tion 8.2.5.3. Queries on the database tables: IMAGES, TYPES, SUBJECTS and TEXT are performed using standard
relational algebra. For example, the query: Give me all records with TYPE = \video", SUBJECT = \news"
and TERM = \basketball" can be carried in SQL as follows:

SELECT IMID

FROM TYPES, SUBJECTS, TEXT

WHERE TYPE = \video" AND SUBJECT = \news" AND TERM = \basketball."

However, content-based queries, which involve table FV and REGIONS, require special processing, which is
discussed in Sections 8.2.4.2 and 8.2.5.

8.2.4 Search and retrieval processes

To retrieve images and videos the user may enter search terms tk's or select an image/video subject sm. The
search process and model for user-interaction is depicted in Figure 8-4. The query for images and videos
produces search results A. For example, Figure 8-5 illustrates the search results for a query for images and
videos related to sm =\nature," that is, A = Query(SUBJECT = \nature"). The user may manipulate, search
or view A.

User

Record

Extraction

User

Viewing

Manipulation

Search/
Ranking

User

A

C

B C

WebSEEk
catalog

Figure 8-4: Search, retrieval and search results list manipulation processes.

8.2.4.1 Search results list manipulation

The results of a prior search may be fed-back to the manipulation module as list C, as illustrated in Figure 8-
4. The user manipulates C by adding or removing records. This is done by issuing a new query that
creates a second, intermediate list A. The user then generates the new list B by selecting one of the
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Figure 8-5: Search results for SUBJECT = \nature."
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following manipulations on C using A, for example, de�ne C = Query(SUBJECT = \nature") and A =
Query(TERM = \sunset"), then

union: B = A[C; i.e., B = Query(TERM = \sunset" or SUBJECT = \nature");
intersection: B = A\C; i.e., B = Query(TERM = \sunset" and SUBJECT = \nature");
subtraction: B = C�A; i.e., B = Query(SUBJECT = \nature" and TERM 6= \sunset");
replacement: B = A; i.e., B = Query(TERM = \sunset");
keep: B = C; i.e., B = Query(SUBJECT = \nature"):

8.2.4.2 Content-based visual query

The user may browse and search the list B using both content-based and text-based methods. In the case
of content-based searching, the output is a new list C, where C � B is an ordered subset of B such that C
is ordered by highest similarity to the image/video selected by the user (as described in Section 8.2.5). The
search and browse operations may be conducted on the input list B or the entire catalog.

For example, C = B ' Bsel, where ' means \visually similar," ranks list B in order of highest similarity
to the selected item Bsel. For example, the following content-based visual query:

C = Query(SUBJECT = \nature") ' Bsel(\mountain scene image");

ranks the \nature" images and videos in order of highest visual similarity to the selected \mountain scene
image." In the example illustrated in Figure 8-6, the query C = B ' Bsel(\red race car"), retrieves the
images and videos from the subject class: SUBJECT = \transportation/automobiles/ferraris" that are visually
similar to the selected image of a \red race car."

Alternatively, the user can select one of the items in the current search results list B and then use it to
search the entire catalog for similar items. For example, C = A ' Bsel ranks list A, where in this case A is
the full catalog, in order of highest visual similarity to the selected item from B.

8.2.5 Content-based techniques

The system provides two methods for content-based searching: (1) by color histograms, and (2) by spatial loca-
tions and arrangements of color regions. We adopted these techniques in order to utilize domain-independent
approaches [146]. The content-based methods developed here for indexing, searching and navigation can be
applied, in principle, to other types of features, such as texture, motion and so forth, and to other application
domains.

8.2.5.1 Global feature query

The color histograms describe the distribution of colors in each image or video. We de�ne the color histograms
as discrete, 166-bin, distributions in a quantized HSV color space [146]. The system computes a color
histogram for each image and video scene, which is used to assess its similarity to other images and video
scenes. The color histograms are also used to automatically assign the images and videos to type classes using
Fisher discriminant analysis, as described in Section 8.2.5.3.

Color histograms dissimilarity Color histograms are used to measure the dissimilarity of the color con-
tents of the images. A histogram dissimilarity metric determines the dissimilarity between a query histogram
and a target histogram [45, 3]. In order to achieve high e�ciency in the color histogram query process, we
utilize the technique of query optimized distance (QOD) computation. This technique provides both e�cient
indexing, retrieval of target histograms and computation of the histogram dissimilarities. In the QOD tech-
nique, the retrieval of candidate target images is prioritized in the order of the most signi�cant colors in the
query histogram.

We have found that setting the \color signi�cance" threshold adaptively to select only the 80 � 90%
most signi�cant colors in the query histogram decreases query time dramatically without degrading retrieval
e�ectiveness. By using the e�cient QOD computation method, we are able to greatly reduce the query
processing time, as demonstrated in Section 8.2.6.3.
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Figure 8-6: Content-based visual query results for images/videos ' \red race car".
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8.2.5.2 Integrated spatial and color query

While color histograms are useful for indexing images by global color, a signi�cant aspect of discriminating
among images depends on the sizes, spatial locations and relationships of objects or regions within the images.
Therefore, we developed a system for querying by spatial locations and arrangements of color regions [146].
With this integrated spatial and feature image query engine, the user graphically constructs a query by placing
color regions on a query grid, as illustrated in Figure 8-7.

The similarity between the query image and each target image is computed by assessing the similarities of
the spatial locations, colors and sizes of the regions in the query and target images. The integrated spatial and
features system provides greater power and 
exibility in querying for images than the color histogram-based
methods [146]. We found that retrieval e�ectiveness improves substantially using this method.

8.2.5.3 Automated type assessment

By training on samples of the color histograms of images and videos, we developed a process of automated
type assessment using Fisher discriminant analysis (FDA). FDA constructs a series of uncorrelated linear
weightings of the color histograms that provide for maximum separation between training classes [48]. New
color histograms are automatically assigned to nearest Type 2 fcolor photo, color graphic, video, b/w image,
gray imageg class [148].

In Section 8.2.6.2, we show that this approach provides for excellent performance in automatically clas-
sifying the images and videos into these broad type classes. We hope to increase the number of type classes
and improve the type-classi�cation system by incorporating other visual features such as spatial and color
region information into the classi�cation process.

8.2.5.4 Relevance feedback

The user best determines from the results of a query which images and videos are relevant and not relevant.
The system can use this information to reformulate the query to better retrieve the images and videos the
user desires [77]. Using the color histograms, relevance feedback is accomplished as follows: let Ir = frelevant
images/videosg and In = fnon-relevant images/videosg as determined by the user. The new query vector
hk+1q at round k + 1 is generated by

hk+1q = jj�hkq + �
X
i2Ir

hi � 

X
j2In

hjjj; (8.1)

where jj � jj indicates normalization. The new images and videos are retrieved using hk+1q . One formulation
of relevance feedback assigns the values � = 0, and � = 
 = 1, which weights the positive and negative
examples equally. The process of selecting the example images for content-based relevance feedback searching
is illustrated in Figure 8-8(a). A simpler form of relevance feedback allows the user to select only one positive
example in order to iterate the query process. In this case, � = 
 = 0, � = 1, jIrj = 1 and jInrj = 0 gives the
new query vector directly from the selected image/video's color histogram, hIr as follows, h

k+1
q = hIr .

8.2.5.5 Histogram manipulation

The system also provides a tool for the user to directly manipulate the image and video color histograms
to formulate the search. Using the histogram manipulation tool, illustrated in Figure 8-8(b), the user may
select one of the images or videos from the results and display its histogram. The user can then modify the
histogram by adding or removing colors. The modi�ed histogram is then used to conduct the next search.
The new query histogram hk+1q is generated from a selected histogram hs by adding or removing colors, which
are denoted in the modi�cations histogram hm,

hk+1q = jjhs+ hmjj: (8.2)

8.2.6 Evaluation

In the initial trials, the system has catalogued 513; 323 images and videos from 46; 551 directories at 16; 773
Web sites. The process required several months, and was performed simultaneously with the development
of the user application. Overall the system has catalogued over 129 Gigabytes of visual information. The
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Figure 8-7: WebSEEk utilizes the SaFe integrated spatial and feature image search tools. SaFe �nds the
images which contain similar regions in similar spatial arrangements to the query.
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Figure 8-8: Relevance feedback search allows user to select both positive and negative examples.
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local storage of information, which includes coarse versions of the data and color histogram feature vectors,
requires approximately 2 Gigabytes.

8.2.6.1 Subject classi�cation evaluation

The cataloging process assigned 68:23% of the images and videos into subject classes using key-term and
directory name mappings. To evaluate the subject classi�cation system we assessed the classi�cation rates for
several subject classes. The results are summarized in Table 8.3. The classi�cation performance is excellent;
the system provides a classi�cation precision of approximately 92%. For this assessment we chose nine classes,
depicted in Table 8.3, at random from the subject taxonomy of 2128 classes. We established the ground-truth
by manually verifying the subject of each image and video in the nine test sets.

We observed that errors in classi�cation result from several occurrences:

1. the key-terms de�ned by the WebSEEk system are sometimes used out of context by the publishers of
the images or videos,

2. the system relies on some ambiguous key-terms, i.e., t�k =\madonna" and

3. the semantics of the images and videos change when viewed outside of the context of their Web sites.

For example, in this last category the precision of subject class sm =\animals/possums" is low, as depicted in
Table 8.3, because �ve out of the nine items are not images or videos of possums. These items were classi�ed
incorrectly because the key-term \possum" appeared in the directory name. While some of the images in that
directory depict possums, others depict only the forests to which the possum are indigenous. When viewed
outside of the context of the \possum" Web site, the images of forests are not expected to be in the class
\animals/possums."

Subject # Sites Count Rate

art/illustrations 29 1410 0:978
entertainment/humour/cartoons/da�yduck 14 23 1:000
animals/possums 2 9 0:444
science/chemistry/proteins 7 40 1:000
nature/weather/snow/frosty 9 13 1:000
food 403 2460 0:833
art/paintings/pissarro 3 54 1:000
entertainment/music/mtv 15 87 0:989
horror 366 2454 0:968

Table 8.3: Rates of correct subject classi�cation (precision) for random set of classes.

8.2.6.2 Type classi�cation evaluation

The precision of the automated type classi�cation system is summarized in Table 8.4. For this evaluation,
the training and test samples consist of 200 images from each type class. We found the automated type
assessment for these �ve simple classes is excellent. The system provides a classi�cation precision of 95%. In
future work, we will extend WebSEEk to include a larger number of classes, including new type classes, such
as Fractal images, Cartoons, Faces, Art paintings and subject classes from the subject taxonomy.

Type Rate
Color photo 0:914
Color graphic 0:923
Gray image 0:967
B/w image 1:000

Table 8.4: Rates of correct automated type classi�cation.
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8.2.6.3 E�ciency

Another important factor in the image and video search system is the speed at which user operations and
queries are performed. In the initial system, the overall e�ciency of various database manipulation operations
is excellent, even on the large catalog (> 500; 000 images/videos). In particular, the good performance of
the content-based visual query methods is provided by the strategy for indexing the 166-bin color histograms
described in Section 8.2.5.1. For example, the system identi�es the N = 60 most similar visual scenes in the
catalog of 513; 323 images and videos to a selected query scene in only 1:83 seconds.

We nest describe the VisualSEEk prototype image database system. VisualSEEk demonstrates the
color/spatial search method in the retrieval of color photographic images. VisualSEEK also has components
for text-based searching, \power" annotation of images and content-based relevance feedback searching.

8.3. VisualSEEk color/spatial image query system

VisualSEEk is an image database system that provides tools for searching, browsing and retrieving images.
VisualSEEk is novel in that the user queries for images by specifying color regions and their spatial locations.
We describe the VisualSEEk color/spatial image query processes, the relevance feedback color search system
and the text-based search and annotation methods. We demonstrate that the relevance feedback retrieval and
annotation components have critical roles in the VisualSEEk system. For example, by clustering the images
by color, the annotation process is greatly accelerated. Finally, we demonstrate the query methods and show
some example queries.

The goal of the VisualSEEk project is to implement a CBVQ system that provides e�cient and e�ective
retrieval of images [151]. The VisualSEEk project emphasizes several objectives in order to improve image
retrieval functionality:

1. automated extraction of localized regions and colors from images [145],

2. querying by both color and spatial information [146],

3. fast indexing and retrieval, and

4. the design of highly functional user tools.

We developed the VisualSEEk client application in Java to allow for maximum functionality, client platform
independence and accessibility on the World-Wide Web.

8.3.1 System design

The VisualSEEk system consists of several components, as illustrated in Figure 8-9: (1) the user tools, (2)
the query server, (3) the image retrieval server, (4) the image archive, (5) the meta-data database and (6)
the index �les.
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Figure 8-9: VisualSEEk client-server architecture.
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These components construct the three distinct modules of the VisualSEEk system: (1) the client applica-
tion, (2) the network and communication application and (3) the server application. The client application
consists of a suite of Java applets that execute within the World-Wide Web browser. The VisualSEEk applet
collects the query from the user and sends the query string to the server via the common gateway interface
(CGI) using the hypertext transfer protocol (HTTP) as depicted in Figure 8-10. The HTTP client-server
system handles VisualSEEk's communication via the World-Wide Web. The CGI component of the HTTP
executes the VisualSEEk query programs on the server machine.
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Figure 8-10: Data 
ow between client and server applications in the VisualSEEk system.

8.3.1.1 Client application

The client application provides query tools that allow the user to construct a query by diagramming color
regions on a query grid. The user assigns the regions attributes of spatial location, size and color, as illustrated
in Figure 8-11(a). The user may also assign boundaries for the locations and sizes of the regions.

Figure 8-11(a) depicts an example query that speci�es three regions - blue, green and light blue, and their
locations and sizes. The results of this VisualSEEk query are illustrated in Figure 8-11(b). We see that this
particular query retrieves images of under-water scenes and nature with blue skies and trees.

8.3.1.2 Server application

The server application computes the queries that are sent by the client application. The server application
�rst parses the query string and decodes the number of regions and their sizes, colors and locations. Next, it
generates a \mock-up" image that depicts the regions speci�ed by the user in the query. This image is sent
to the client application to be displayed as the �rst element in the query results page (see top of results page
in Figure 8-11(b)). Then, the query server computes the query and �nds the images that contain the best
matches to the query regions.

The query program generates its output in the hypertext markup language (HTML) that displays the
results of the query to the user. The HTML output includes thumbnail images that depict the images found
in the query. The output also includes the distance scores for each retrieved image to the query image. When
the user selects a thumbnail image, the system retrieves the full-size image from the image server.

8.3.2 Relevance feedback queries

After the system �nds the matches and returns the thumbnail images, as illustrated in Figure 8-11(b), the
user has several options: (1) select images for full retrieval and viewing, (2) modify the query and try again
and (3) select images for relevance feedback queries. In a relevance feedback query, VisualSEEk searches the
database for the best matches to the selected image from the prior query results. The relevance feedback
query tools allow the user to select from several global similarity metrics such as: global color, color regions,
global texture, and joint color and texture. Figure 8-12 illustrates an example relevance feedback query using
global color features of a selected image from Figure 6(a). The images displayed in Figure 8-12(b) have the
most similar color content to selected image.
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(a.) (b.)

Figure 8-11: An example VisualSEEk query that speci�es (a) three color regions - blue, green and light blue,
and their locations and sizes, and (b) the query results.

(a.) (b.)

Figure 8-12: Relevance feedback query. (a) Images selected at random from the database, and (b) the results
of a color-query using the image in (a) third down on the left.
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(a.) (b.)

Figure 8-13: Image annotation process. (a) Individual image annotation. (b) \Power" annotation allows
groups of similar images to be annotated at once.

(a.) (b.)

Figure 8-14: Text and color-searching. (a) The text-based search using keyword \lion" yields only two
matches. (b) The color search using one lion image from (a) �nds many more images of lions.
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8.3.3 Image annotation

The VisualSEEk system also provides tools for annotating images individually and in groups. The annotation
interface, illustrated in Figure 8-13(a), allows the user to assign text to the images. The user adds new
annotations by entering keywords into the entry boxes corresponding to the images. VisualSEEk also provides
a system for annotating the images in groups.

By clustering images from the database by color, the user annotates them in groups, which signi�cantly
reduces the time and e�ort required to annotate the archive. For example, the �rst image, which depicts an
ocean scene, see Figure 8-13(a), is selected for \power" annotation. The system searches the database for
similar images and returns them to the user. Many of the returned images have a similar content to the selected
image (see in Figure 8-13 that several of these depict ocean scenes). The user now assigns annotations, as
appropriate, to the group of images, thereby speeding-up the process of annotating the images in the database.

8.3.4 Text-based searching

Text-based searching is still an important component of the image retrieval systems. Although text alone
is only partially for image retrieval, text-searching combined with content-based techniques improves query
capabilities. For example, given that some of the images are annotated, a user �nds some matches in a
text-based search. If the text-based search is partially successful, the user selects some of the matches to seed
the relevance feedback queries.

For example, say that only two of the many images of lions from the database have been annotated with
the term \lion." By conducting a text-based search using the term \lion," the system �nds only these two
images, as illustrated in Figure 8-14(a). However, many images of lions remain in the archive and are not
retrieved because they have not been annotated with the term \lion." By selecting one of the returned lion
images and by issuing a relevance feedback query, the system �nds many of the remaining images of lions, as
illustrated in Figure 8-14(b).

8.3.5 Color/spatial image query

The VisualSEEk system provides many useful components of an image retrieval system: the color/spatial
tools, relevance feedback search system, \power annotation" capability and text-based searching. However,
the color/spatial query system is designed speci�cally for querying by the locations, sizes and colors of image
regions. In order to extend the integrated spatial and feature image query paradigm to other features, such
as texture, and to incorporate more powerful spatial indexing techniques, we developed the SaFe image query
system.

8.4. SaFe spatial and feature query system

We brie
y describe the SaFe system for querying for images by spatial and feature attributes. The SaFe
spatial and feature image query system integrates content-based techniques with spatial querying in order to
search for images by arrangements and visual features of regions.

8.4.1 System design

The system is composed of four sub-systems: (1) the image analysis subsystem, (2) the query engine, (3) the
database and (4) the user-interface, as illustrated in Figure 8-15. These sub-systems are combined to provide
a complete solution for the search and retrieval of images.

8.4.2 Image query process

The spatial and feature image query process provides a powerful tool for image retrieval. However, it is
extremely complex in that it requires that several disparate image query techniques be seamlessly integrated.
First, the SaFe query system requires the assessment of feature similarities. Content-based systems, such as
those proposed by [102, 3, 159], provide techniques for comparing visual features such as color, texture and
shape. In Chapter 4, we explored several techniques for querying by visual features which, which are used in
SaFe to compare the visual features of images and regions.

Second, the SaFe query system requires the assessment of the similarities in spatial locations and sizes.
Third, the system requires that the spatial relationships, such as \above" and \below," can be resolved.
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user
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Figure 8-15: SaFe system architecture. Major subsystems are UI = user-interface, IA = image analysis
subsystem, QE = query engine and DB = image database.

Finally, the system requires that all of these separate query tools are integrated into a single system. We
investigated these systems for spatial querying and integrated spatial and feature image querying in detail in
Section 7.

8.4.3 SaFe image query examples

In the SaFe system, the spatial queries are formulated graphically, as illustrated in Figure 8-16. The user
sketches image regions, positions them on the query grid and assigns them properties of color, size and
absolute location. The user may also assign boundaries for location and size. For example, in Figure 8-16, the
query consists of two color regions - light blue and purple, which are positioned on the query grid. The query
is constrained to return images that contain regions with colors similar to these, and in similar locations. The
relative spatial constraint is not selected for this query.

The matches are illustrated from left to right, and from top to bottom, in order of closest distance to
the query image. These synthetic images were used as a color-region image test-set in order to evaluate the
retrieval e�ectiveness of the SaFe image query system in Section 7.

The SaFe system also provides a powerful platform for retrieving color photographic images, as illustrated
in Figure 8-17. In this example, the user speci�es two color regions - top is blue and bottom is green. The best
matching images contain blue and green regions in locations similar to those depicted on the query grid. We
demonstrated in Section 7.4.6 that the SaFe queries for \unconstrained" photographic color images improve
retrieval e�ectiveness signi�cantly over previous content-based techniques.

8.5. Summary

We introduced three new prototype systems that demonstrate the techniques for image retrieval developed in
this thesis. The WebSEEk system catalogs and indexes the visual information on the Web [147]. WebSEEk is
an advanced content-based image and video search engine for the World-WideWeb. The system automatically
collects the images and videos and catalogs them using both the textual and visual information. WebSEEk
is very easy to use and provides great 
exibility and functionality for searching and browsing for images and
videos on the Web. In the initial implementation, the system has catalogued more than one half million
images and videos.

Because the discrimination of images is only partly provided by global features such as color histograms,
we developed the VisualSEEk and SaFe image systems. VisualSEEk extracts and indexes the single color
region from images [146]. The user searches for color images by specifying the locations of the color regions.
VisualSEEk also provides systems for clustering and annotating images, and for iterating the query process
through relevance feedback queries.

Finally, SaFe is an integrated spatial and feature image query system. SaFe utilizes image regions and
their features, sizes, spatial locations, and relationships in order to compare images [152]. This integration of
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Figure 8-16: SaFe image retrieval of synthetic color-region images.
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Figure 8-17: SaFe image retrieval of \unconstrained" color photographs.
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content-based and spatial querying provides for the highly functional image query systems which allow for a
wide variety of integrated spatial and feature queries.
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Chapter 9

Conclusion and future directions

9.1. Conclusion

This thesis developed several new techniques for integrating spatial and feature information in order to
improve systems for image retrieval, analysis and compression. The visually important information within
images is often contained within spatially localized regions, or is represented by the overall existence and
spatial arrangements of these regions. By developing processes that analyze and represent images in this way,
we improve our capabilities to develop powerful content-based image retrieval and compression systems. This
thesis presented several new techniques for integrating spatial and feature image analyses and representations,
and demonstrated improved performance in image systems applications.

Recent e�orts in image retrieval applications have focused on indexing a few speci�c visual dimensions of
the images, such as color, texture, shape, motion and spatial information [102, 3, 112, 105, 156, 146]. However,
without integrating these visual dimensions, the current content-based techniques have limited capacity to
satisfactorily retrieve images.

Similarly, recent e�orts in image compression have designed techniques for adapting to either the image
frequency spectrum [32, 170, 124] or spatial information [136, 155, 132] in order to compact the images.
However, by integrating spatial and frequency methods, we design algorithms which better adapt to the
image content and improve compression.

This thesis developed new techniques to solve these problems which are similar in their exploitation of
images as two-dimensional, non-stationary signals. In particular, we developed new processes that

1. Image retrieval { demonstrated a new integrated spatial and feature query paradigm for image re-
trieval. Previous e�orts in image database systems have developed either feature-based approaches [159,
53, 102, 157, 51] or spatial-symbolic image retrieval methods [55, 22, 27, 113]. This thesis developed a
new method which represents images by spatially localized regions. The features (color and texture)
and spatial attributes (region size and location) de�ne the set of properties of the regions. The images
are compared by assessing the numbers of-, arrangements and feature properties of regions. We pre-
sented techniques for computing these complex image queries and demonstrated improved e�ectiveness
in image retrieval applications.

2. Image analysis { We developed a framework for extracting spatially localized features from images
using histogram and binary set back-projections. The automated extraction of regions from \uncon-
strained" imagery is not successfully accomplished using current methods of pattern recognition [133, 40]
and image segmentation [155, 67, 73, 86, 90, 14]. The di�culty results from the inability to de�ne either
the complete set of region models or patterns a priori, or establish the ground-truth segmentations
for \unconstrained" images. We developed a new approach for extracting color and texture regions
by back-projecting the feature-histograms onto the images. We also developed a process by which the
regions are extracted automatically by testing back-projections of binary feature sets. This approach
represents a departure from traditional \constrained-domain" methods, however, we demonstrated that
when combined with the integrated spatial and feature query paradigm, a powerful automated image
indexing and retrieval system is developed.

3. Image compression { We developed a new system for compressing and analyzing images by decom-
posing the images into spatially and frequency localized basis elements. We developed a theory of
\partitionable" frequency expansions which enable spatial segmentation and frequency expansion to be
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integrated into a single graph-structured decomposition of the images [144, 150]. The joint adaptive
space and frequency (JASF) graph improves image compression performance over previous adaptive
image expansion techniques (such as those in [62, 32, 124]).

This thesis also developed a new representation of texture based upon texture channel energy histograms.
Unlike other representations of texture [30, 89, 46, 60, 74, 84], the texture histograms allow the image indexing
techniques developed for color histograms to be compatible with the representation of texture.

We also explored representations of color and texture using binary feature sets. We demonstrated ad-
vantages in e�ciency in computing feature similarities, region extraction and integrated spatial and feature
image retrieval. We presented a new approach for bounding histogram queries (BSB) by computing instead
binary set queries. We presented another e�cient approach for computing feature similarity queries using a
query-optimized distance (QOD) computation. We demonstrated that these techniques increase the e�ciency
of feature-based image retrieval systems.

Finally, several new prototype image systems have been developed for this thesis { WebSEEk, VisualSEEk
and SaFe, to provide test-beds for exploring new methods of image retrieval. These prototype systems
demonstrate the proposed techniques for integrating spatial and feature techniques for images developed in
this thesis. They also demonstrate other interesting techniques for automatically cataloging images and videos,
content-based relevance feedback searching, \power" annotation, and integrated text and content-based image
searching.

9.2. Future directions

Many di�cult problems in image systems remain to be investigated. The explosive proliferation of \un-
constrained" digital imagery in the form of images, graphics, and videos, due to the improved accessibility
of computer technology and the main-stream acceptance of the World-Wide Web as a viable medium for
publishing, advertising and communicating has created an immediate need for e�cient and e�ective tools for
cataloging, indexing, managing, compressing and searching for the \unconstrained" visual information. A
signi�cant gap remains between the ability of computers to analyze images and videos at the feature-level
(colors, textures, shapes) compared to the inability at the semantic-level (objects, scenes, people, moods,
artistic value). Closing this gap by improving technologies for image understanding would certainly improve
the image search and retrieval systems.

However, the solution of this \large" problem (involving vision, cognition, subjectivity) remains distant
while much of the current technology consists of solutions to \small" problems (for example, image segmen-
tation [111], color constancy [65], shape from texture [4], video shot detection [2], and so forth).

However, there are new opportunities to climb the semantic ladder in today's diverse media environments.
For example, as demonstrated in a small capacity by the WebSEEk system [148], the World-Wide Web
facilitates the intersection of the previous separate technologies of natural language processing, automated
image analysis, learning systems and information retrieval. There is great hope that at these new points of
\intersection" of diverse technologies and application environments, new solutions to the problems of visual
information management will be found.

9.3. Afterword

As a �nal note, we outline one possible step in this direction, which develops a system for decoding image
semantics from color regions. In this problem we �rst de�ne and annotate a set of region templates, which
consist of regions with spatial and feature properties. These may be obtained by learning from interaction
with users in the process of image retrieval, or be generated manually to provide an object database. We
also de�ne an image template dictionary, which assigns names to images that are de�ned by arrangement
of regions. These can be developed in a variety of ways in di�erent applications, for example, from textual
information in the closed captioning of broadcast video, from text on Web pages surrounding the images, or
from embedded text within images.

Given these pieces, we design an algorithm which automatically chooses the best image name for an
unknown image by decomposing the image into spatially localized region. The algorithm picks the set of
region templates that most likely matches those in the unknown image, given the constraints of the image
template dictionary. We suggest that the Viterbi algorithm provides one possible tool for solving problems
that are formulated in this framework.
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