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ABSTRACT
Where in the world are pictures of cute animals or ancient
architecture most shared from? And are they equally senti-
mentally perceived across different languages? We demon-
strate a series of visualization tools, that we collectively call
SentiCart, for answering such questions and navigating the
landscape of how sentiment-biased images are shared around
the world in multiple languages. We present visualizations
using a large-scale, self-gathered geodata corpus of >1.54M
geo-references coming from over 235 countries mined from
>15K visual concepts over 12 languages. We also highlight
several compelling data-driven findings about multilingual
visual sentiment in geo-social interactions.

CCS Concepts
•Information systems→Geographic information sys-
tems; Multimedia databases; Data mining; Web in-
terfaces; •Human-centered computing → Visualiza-
tion; •Applied computing → Psychology; Sociology;

Keywords
affective computing; geodata; multilingual; visual affect; sen-
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1. INTRODUCTION
How geographically diverse are our sentiments in social

multimedia? And specifically, how diverse (or localized)
are our sentiments in the images and concepts we use ev-
eryday along linguistic and geographical lines? Following
trends of other fields, the advent of high-volume and weakly-
supervised data are driving increased interest in large-scale
sentiment studies in affective computing. These two data
properties, sometimes referred to as “volume” and “verac-
ity” respectively, are key elements of any Big Data problem.
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Figure 1: Example globe visualizations of geograph-
ical data from sentiment-biased images around the
world in SentiCart by language and semantics.

In this work, we focus on unpacking another tenant of “Big
Affective Computing” that deals with the multi-faceted or
multimodal nature of visual affect data (i.e. “variety”). We
build on the recent work of [6] which presented a Multilin-
gual Visual Sentiment Ontology (MVSO) consisting of >15K
sentiment-biased visual bi-concepts and >7.3M images over
12 different languages. Though it is only a small sampling of
web image content, it represents the largest affect-biased un-
constrained image dataset from multiple languages to date.
The goal of [6] was to expand affective variety by introducing
cultural diversity, accomplishing this via language diversity.
We believe that language is only one of many signals to cap-
ture multicultural visual sentiment ; and geographical data
(geodata) is another signal not previously explored for vi-
sual sentiment understanding, to the best of our knowledge.
Since any one language may be spoken across a multitude
of countries and with varying density, to truly understand
visual sentiment around the world, geodata is a necessary
complement to the language dimension. Here, to assist the
study of visual sentiment variety in geodata, we developed a
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visualization system called SentiCart to chart the landscape
of multilingual visual sentiment around the world.

Contextualizing social multimedia with explicit location
or implicit geographical metadata has been a topic of re-
search interest for over a decade [1][5][7]. Among the first
for digital photography, [10] presented several frameworks
for location tag acquisition, geo-referencing and image me-
dia browsing interfaces. In computer vision, [12] used geo-
tagged photos to assist visual landmark detection over about
20M images. In [4] and [8], Twitter posts are used to study
geographic sentiment and music preference differences, re-
spectively, while in [9], Twitter and Flickr posts are analyzed
spatiotemporally to map out social visual interests. These
geographical information systems (GIS) each lack a multi-
lingual, visual grounding, or sentiment biasing component
we seek here.

One close relative to our system is [11] where a large-scale
collection of >1.5M facial expression videos sourcing from
over 94 countries was presented. Subjects were shown one
of about 8K online videos as stimuli and their reactions were
captured via a web camera. Although there is a wide variety
in originating locations of subjects, this study focuses more
on region-based differences rather than cultural differences.
In addition, [11] also relies on explicit sentiment in facial
expression videos as a form of sentiment feedback while we
use weakly supervised semantic cues for sentiment.

In [6], an ontology of 15,630 visual concepts coming from
12 different languages was presented along with accompany-
ing social photos and metadata called Multilingual Visual
Sentiment Ontology (MVSO). Each visual concept in the
ontology is semantically structured and sentimentally biased
using a construct called adjective-noun pairs (ANPs). The
noun component provides a visual grounding to the concept
and the adjective defines a sentimental attribute, e.g. fluffy
dog or abandoned railroad. MVSO aimed at gathering cul-
turally diverse visual concepts for studying sentiment and
emotion in social multimedia; however, the ontology only
strikes at one aspect of cultural diversity: language. We
augment the work in [6] by also incorporating geographical
data signals toward multicultural affect research.

The contributions of our work include: (1) an intuitive, in-
teractive and fluid browsing visualization system called Sen-

tiCart for uncovering geographical insights in visual senti-
ment data, (2) an implementation using large-scale visual
sentiment geographical data with over 1.54M geo-references
covering 237 countries, and (3) the public release of this ge-
ographical data over a multilingual ontology.

2. GEODATA ACQUISITION
In order to collect geo-localization data for social pho-

tos, we use a combination of two multi-source methods –
one with high reliability, but low coverage and another with
lower reliability, but higher coverage. We root our geodata
collection and analysis on top of MVSO [6] because of pub-
licly available auxiliary data streams that can be mined from
the same social media platform, i.e. Flickr. The multilingual
nature of the data also lends itself toward being geographi-
cally spread, and the large-scale nature of over 7.3M images
maximizes our opportunity to also study language and cul-
ture together on a significant geographic scale.

2.1 GPS Coordinate Data
Global positioning system (GPS) geo-localization provides

Language #ANPs #Georefs Language #ANPs #Georefs
Arabic 22 99 Italian 3,184 206,315
Chinese 395 11,553 Persian 10 92
Dutch 315 16,292 Polish 67 3,873
English 4,407 707,846 Russian 95 2,014
French 2,241 163,193 Spanish 3,241 259,138
German 717 38,544 Turkish 137 1,933

Table 1: Number of GPS-based geo-references (geo-
refs) collected from MVSO [6] images by language.
Since not every visual concept (ANP) had images
with GPS data, we also show the number of remain-
ing ANPs with at least one geo-referenced image.

highly reliable latitude-longitude coordinates (usually within
several meters worst-case depending on satellite-receiver pre-
cision) and may be encoded in image headers of some digital
photos. In November 2015, we queried the Flickr API1 over
the entire MVSO corpus [6] of 7,368,364 images and acquired
GPS coordinate data for 1,410,892 images. The remain-
ing images were either not GPS-tagged or privacy permis-
sions were not granted for public querying. The top three
languages with GPS-tagged images in order are: Persian
(32.24%), French (25.35%) and Italian (24.40%). Although
the largest language by image count is English (4,049,507),
it only had a 17.48% coverage in GPS-tagged images.

2.2 Metadata-inferred Location Data
In most social media platforms, including our setting on

Flickr, users can and do often provide image title and de-
scriptions to add additional context for their media posts.
Locations are commonly found in these user metadata be-
cause they provided a concrete grounding for where an event
or memory took place. For geo-localization though, this
data can often be very uninformative, e.g. user input text
like “our new house,” as well as arbitrary, e.g. “Little Rock”
could refer to a literal small rock in the image content or
a town in Arkansas, USA. These two streams of user text
from title and description offer greater coverage of images
than depending on the presence of GPS data, but introduces
noise is less reliable in localizing. As result, when GPS data
is available, we always use it to geo-localize a given image
regardless of user-provided metadata. Otherwise, we pre-
fer automatically extracted locations in the image title over
those in descriptions.

Using image metadata streams, we extracted location fields
by performing named entity recognition (NER) [2] on user-
provided text. We translated all text into English2 and used
only English NER models. We note that translation allowed
us to get a higher recall of tagged locations compared to
native-language NER models due to the frequency at which
users posted descriptions with mixed languages, e.g. an im-
age title “Small Alley in 香港”. We extracted metadata-
inferred locations for all languages with under 100K GPS-
tagged images to bolster their geo-reference count.

We applied NER-tagged locations as queries to Google
Maps’ Geocoding API3 to retrieve latitude-longitude coordi-
nates as well as to filter incorrect NER detections or ambigu-
ous locations. Since geocoding queries can be region-biased,
we performed multiple searches over all relevant country

1https://www.flickr.com/services/api
2https://translate.google.com
3https://developers.google.com/maps
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Figure 2: Example visualizations in SentiCart of multilingual visual sentiment around the world show the
main landing page along with a classic flat world map view, here on the French sub-corpus, and 3D globe
visualizations of visual sentiment. The colorful globe shows country-colored sentiment for the English sub-
corpus and adjacent cards show additional display modes in SentiCart along source, semantics and language.

code top-level domains (ccTLDs) per language according to
official ICANN listings, e.g. .pl for Polish was included, .ir
for Persian, .ru for Russian, etc. This increased the likeli-
hood that matches were found in regions that speak the tar-
get language and also gave queries as many chances to suc-
ceed overall as there were ccTLDs per language, e.g. “Main
Street”; for example, we queried across over 10 different
ccTLDs for Arabic given the diversity of regions it is spoken
in. When multiple named locations were detected by NER,
we queried for geocodes in descending string length order
taking the first query that succeeded. And when multiple
geocoding results matched, e.g. the query “Gulf Coast” can
match to “Gulf Coast Airport, Tivoli, TX”, “Gulf Coast,
Missouri City, TX” and “Gulf Coast, Naples, FL”, we se-
lected one at random only if all matches came from the
same country, and otherwise, omitted the query result al-
together for its ambiguity. We also ruled out geo-references
to continents, e.g. “South America,” and large bodies of wa-
ter, e.g. “Mediterranean Sea,” for being too broad for our
setting. If all queries failed to geocode an image, we deter-
mined that the image lacked sufficient information needed
to localize.

Language #Locs(T) #Georefs(T) #Locs(D) #Georefs(D)
Arabic 318 102 1,317 137
Chinese 27,631 9,110 179,407 28,579
Dutch 8,537 3,344 73,315 13,848
German 23,867 13,947 207,630 52,159
Persian 124 49 545 140
Polish 4,048 854 23,222 2,721
Russian 2,731 1,168 20,586 3,539
Turkish 4,235 734 28,890 2,781

Table 2: Number of named locations (locs) recog-
nized and geo-references (georefs) coded from user-
provided title (T) and description (D) metadata
in MVSO [6] images by language. Only new geo-
references counts are given, i.e. #Georefs columns
are mutually exclusive with each other and also mu-
tually exclusive to GPS-tagged images in Table 1.

On the subset of eight languages we extracted metadata-
inferred geo-references for, a total of 133,212 new geodata
points were extracted compared to 74,400 GPS coordinates

(i.e. in relative, 79.05% greater image coverage). The com-
bination of GPS and metadata-inferred geodata accounted
for 20.96% of the total 7,368,364 images in the MVSO [6]
image dataset.

The geographical data we collected and web visualizations
can be accessed at http://www.ee.columbia.edu/ln/dvmm/
senticart and a video showcasing the functionality of Sen-

tiCart can be accessed at https://youtu.be/cI-2llSErSo.

3. VISUAL AFFECT GEOVISUALIZATION
In order to better understand visual sentiment around the

world in SentiCart, we developed two interactive visualiza-
tions. One visualization is a flat, point-wise, low-interaction
view of geodata points. The lower interactivity in this visu-
alization allowed for batch processing and thus precise local-
ization to geodata points at our large input scale. The other
visualization is a three-dimensional, fluid, high-interaction
globe of geo-references. This visualization allowed us to
quickly and easily compare across data modalities and also
gives us an additional dimension along which to interact
with the geodata. The two modes of visualization provide
a trade-off in exploring geographical distributions of visual
sentiment. In Figure 2, we show examples from our visual-
izations. For the flat world map view, our interface matches
many other canonical map interfaces but scales to hundreds
of thousands of geodata points by linking with Google Fu-
sion Tables [3]. The interface allows for a zoomable, albeit
flat view of the data and can render elements like political
borders without burdening usability.

For the 3D globe view, we enable fast and fluid browser-
based rendering using WebGL and a base globe library4.
To maintain low-latency interaction in this rendering, we
reduced the resolution of the geo-references by performing
geohashing, where latitude-longitude coordinates are hashed
into geodesic spatial bins and where hash lengths, or preci-
sions, correspond directly to geographical distances. In our
visualization and scale of 1,544,104 geo-references, we found
that quantizing coordinates to within 19.55 km (or 12.14
mi), which corresponds to 10 hash bits for both latitude and
longitude, provided the best latency-to-resolution visualiza-
tion trade-off on most modern browsers and machines. The

4https://www.chromeexperiments.com/globe

http://www.ee.columbia.edu/ln/dvmm/senticart
http://www.ee.columbia.edu/ln/dvmm/senticart
https://youtu.be/cI-2llSErSo
https://www.chromeexperiments.com/globe


added dimension of the 3D globe visualization compared to
the flat world map, also allowed us to visualize the sentiment
magnitudes at given geo-localization points. Since we per-
form geohashing, to aggregate sentiment in a given spatial
bin, we take the weighted average of the image sentiment
values from adjective-noun pairs.

In the globe view, we provide multiple slice views of the
ontology and geodata we collected. We can visualize senti-
ment by language around the world and easily compare re-
gional differences. On the surface of the globe, bar heights
correspond to sentiment strengths scaled [0, h ∈ R] where
colors represent positive or negative (usually red/“hot” and
blue/“cool”). In addition, since we had multiple sources for
our geodata, we can visualize each source’s geographical ori-
gins to compare localization consistency. We also enable vi-
sualization along ANP clusters using the ontology structure
in MVSO [6] where ANPs were gathered into semantically
coherent groups, e.g. we can visualize geodata and sentiment
of images in the multilingual cluster “old town square.”

Given our geodata visualizations, we highlight several pre-
liminary insights from the geo-social data we collected using
Multilingual Visual Sentiment Ontology [6] imagery. One
striking, but in retrospect, intuitive phenomena we observed
about geodata in [6] is that despite its focus on multilingual
breadth, most language’s geodata were not as geographically
constrained as we expected. In fact, while there were indeed
geo-references that originated from countries where the pri-
mary language was the same as the corresponding language
source, there were also a sizable number of geo-references
that originated from regions outside. We hypothesize that
because MVSO collected its imagery from a social multi-
media platform, the phenomena is due to photo tourism –
that is, photos are geographically tagged in countries that
users are just visiting and when posting on social media,
they unsurprisingly still use their native tongue to describe
the image. As an example, many images from the Chinese
ontology branch actually geo-localized to locations in Japan
with ANP tags such as 古建築 (ancient architecture)5. Yet,
it is unclear how pervasive this tourism phenomena is in [6]
and whether it is stronger in some languages than others,
e.g. geo-references for the Spanish ANP for tropical land-
scape (paisaje tropical) mostly localized to places in Mexico,
Brazil, Spain and Colombia as one might expect.

In general, we found that geo-localizations for many mul-
tilingual ANP clusters and their sentiments coincided with
intuition. For example, clusters referring to bodies of water
like seas and lagoons did mostly geo-localize along coast-
lines and were composed of positive sentiment ANPs. Some
weather-related clusters like rainy day and cloudy landscape
tended to be geographically diverse and overwhelmingly neg-
ative in sentiment across languages. In some cases, where
geo-references did not occur was also telling, e.g. the ANP
cluster stray cat had fewer points in Asia than Western coun-
tries, likely owing to more domesticated cats in the West.

4. CONCLUSIONS
We presented a fluid and interactive visualization system

called SentiCart for visual sentiment geodata, implemented
with 1.54M latitude-longitude points over more than 235
countries originating from visual concepts across 12 lan-

5Despite these two cultures sharing character sets, we veri-
fied from image metadata text that users did use Chinese.

guages. We aggregated geodata from multiple sources in-
cluding native GPS tagging as well as automatically ex-
tracted geo-references from image metadata using natural
language processing and geocoding. Two modes of visualiza-
tion were demonstrated in SentiCart: a flat world map view
and a 3D globe view. We also presented evidence that the
multilingual ontology presented in [6] is affected by photo
tourism, and suggest that this is consistent with social mul-
timedia and language usage phenomena. Overall, SentiCart
has provided concrete visual confirmation that multicultural
visual sentiment is a deeply geographic-dependent entity as
much as it is a semantically-dependent one.

In the future, we seek to expand our geo-reference cover-
age by training our own or applying higher fidelity native
language NER models and incorporate implicit signals from
user profiles to better localize social photos. We also plan to
make our sentiment scores more fine-grained and accurate.
In addition, we will investigate using geodata for regularizing
the training of models for culture and language prediction.

5. ACKNOWLEDGMENTS
We would like to thank Miriam Redi, Mercan Topkara,

Nikolaos Pappas and Tao Chen from the MVSO team for
their support and insightful discussions. We especially thank
Nikolaos Pappas for providing English metadata translations
for our implicit location extraction.

6. REFERENCES
[1] L. Backstrom, E. Sun, and C. Marlow. Find me if you can:

Improving geographical prediction with social and spatial
proximity. In WWW, 2010.

[2] J. R. Finkel, T. Grenager, and C. Manning. Incorporating
non-local information into information extraction systems
by gibbs sampling. In ACL, 2005.

[3] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen,
J. Madhavan, R. Shapley, and W. Shen. Google Fusion
Tables: Data management, integration, and collaboration
in the cloud. In ACM SOCC, 2010.

[4] M. Hao, C. Rohrdantz, H. Janetzko, U. Dayal, D. A. Keim,
L.-E. Haug, and M.-C. Hsu. Visual sentiment analysis on
Twitter data streams. In IEEE VAST, 2011.

[5] R. Ji, Y. Gao, W. Liu, X. Xie, Q. Tian, and X. Li. When
location meets social multimedia: A survey on vision-based
recognition and mining for geo-social multimedia analytics.
ACM TIST, 6(1), 2015.

[6] B. Jou, T. Chen, N. Pappas, M. Redi, M. Topkara, and
S.-F. Chang. Visual affect around the world: A large-scale
multilingual visual sentiment ontology. In ACM MM, 2015.

[7] J. Luo, D. Joshi, J. Yu, and A. Gallagher. Geotagging in
multimedia and computer vision - A survey. Multimedia
Tools and Applications, 51(1), 2011.

[8] J. L. Moore, T. Joachims, and D. Turnbull. Taste space
versus the world: An embedding analysis of listening habits
and geography. In ISMIR, 2014.

[9] V. K. Singh, M. Gao, and R. Jain. Social pixels: Genesis
and evaluation. In ACM MM, 2010.

[10] K. Toyama, R. Logan, A. Roseway, and P. Anandan.
Geographic location tags on digital images. In ACM MM,
2003.

[11] T. Vandal, D. McDuff, and R. E. Kaliouby. Event
detection: Ultra large-scale clustering of facial expressions.
In FG, 2015.

[12] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier,
A. Bissacco, F. Brucher, T.-S. Chua, and H. Neven. Tour
the world: Building a web-scale landmark recognition
engine. In CVPR, 2009.


	Introduction
	Geodata Acquisition
	GPS Coordinate Data
	Metadata-inferred Location Data

	Visual Affect Geovisualization
	Conclusions
	Acknowledgments
	References

