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This article defines a new hashing task motivated by real-world applications in content-based image retrieval, that is, effective
data indexing and retrieval given mixed query (query image together with user-provided keywords). Our work is distinguished
from state-of-the-art hashing research by two unique features: (1) Unlike conventional image retrieval systems, the input query
is a combination of an exemplar image and several descriptive keywords, and (2) the input image data are often associated with
multiple labels. It is an assumption that is more consistent with the realistic scenarios. The mixed image-keyword query sig-
nificantly extends traditional image-based query and better explicates the user intention. Meanwhile it complicates semantics-
based indexing on the multilabel data. Though several existing hashing methods can be adapted to solve the indexing task,
unfortunately they all prove to suffer from low effectiveness. To enhance the hashing efficiency, we propose a novel scheme
“boosted shared hashing”. Unlike prior works that learn the hashing functions on either all image labels or a single label, we
observe that the hashing function can be more effective if it is designed to index over an optimal label subset. In other words,
the association between labels and hash bits are moderately sparse. The sparsity of the bit-label association indicates greatly
reduced computation and storage complexities for indexing a new sample, since only limited number of hashing functions will
become active for the specific sample. We develop a Boosting style algorithm for simultaneously optimizing both the optimal label
subsets and hashing functions in a unified formulation, and further propose a query-adaptive retrieval mechanism based on hash
bit selection for mixed queries, no matter whether or not the query words exist in the training data. Moreover, we show that the
proposed method can be easily extended to the case where the data similarity is gauged by nonlinear kernel functions. Extensive
experiments are conducted on standard image benchmarks like CIFAR-10, NUS-WIDE and a-TRECVID. The results validate
both the sparsity of the bit-label association and the convergence of the proposed algorithm, and demonstrate that the proposed
hashing scheme achieves substantially superior performances over state-of-the-art methods under the same hash bit budget.
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1. INTRODUCTION

The deluge of visual data explosively aggregated at online information sites brings great challenges
to their storage, indexing and retrieval. In practice many tasks upon such data (e.g., content-based
image retrieval) can be formulated as a nearest neighbor search problem in some well-defined feature
space. An empirical observation is that finding exact nearest neighbors is returning desirable results,
yet computationally expensive. To reduce the complexity, approximate nearest neighbor (ANN) search,
giving a good balance between the performance of multimedia system and computational complexity,
has been proposed and studied intensively in the literature [Bentley 1975; Indyk and Motwani 1998].

Traditional ANN methods are usually based on tree structures like k-D tree [Bentley 1975], which
can achieve efficient search by intelligently eliminating large portions of the search space. However
theoretic analysis shows that the complexity will significantly increase when working with high di-
mensional features [Goodman et al. 2004]. Recently locality sensitive hashing methods (LSH) attract
much attention owing to its theoretic property. These methods find a number of hashing functions,
mapping the high dimensional data into compact binary codes for both efficient storage and search.
In the past decade, various hashing methods are proposed for different scenarios such as unsuper-
vised [Weiss et al. 2008; Gong and Lazebnik 2011; Liu et al. 2011], (semi-)supervised [Mu et al. 2010;
Wang et al. 2010a], kernelized [Kulis and Darrell 2009; Kulis and Grauman 2009; He et al. 2010], and
multiple features [Song et al. 2011; Zhang et al. 2011; Liu et al. 2012b].

Despite the aforementioned progress in hashing based ANN, developing practical hashing methods
for multimedia data still remains a challenging task, due to various complications mainly stemming
from the diverse multimedia semantics. The multimedia data show several important characteristics.

(1) Multiple Categories. The number of semantic categories varies for different image benchmarks and
multimedia tasks. For instance, ImageNet dataset [Deng et al. 2009] contains more than 10,000
object categories, which significantly complicates the visual retrieval operation.

(2) Multiple Labels. An image or video is associated with several semantic labels, as seen in large-
scale image benchmark NUS-WIDE [Chua et al. 2009] and concept-based video set a-TRECVID
[Yu et al. 2012]. Note that the notations “multiple categories” and “multiple labels” have subtle
differences on the possible number of labels associated with each multimedia data. Since multiple
categories can be regarded as a special case of multilabel input, for brevity, we abuse the notation
multiple labels to denote both until otherwise mentioned. It is a nontrivial task to design a new
indexing algorithm to handle the massive data with such rich semantics.

Prior works have already partly shown the power of taking the diverse multimedia semantics into
account during the hashing function construction. For instance, the semi-supervised hashing methods
[Mu et al. 2010; Wang et al. 2010a] take advantages of the relative similarity relationship among data
and obtain a significant performance leap.

Due to the rich semantics contained in each image, the user intension in image retrieval is possibly
ambiguous when only using the image as the query. Recent trends have witnessed more complex, yet
effective search paradigm (e.g., the “image+text” mixed query) that better captures the intention of the
users. Google has released the “search by image” function (http://www.google.com/searchbyimage). The
input of the function is a mixture of a query image and several descriptive textual words. These words,
clarifying the user intention, could be either provided by the users or inferred by the retrieval system.
The final rank of an image is determined by jointly considering two factors: the visual proximity to the
query image, and the match between the image’s surrounding text in the web page and the given query
words. In practice, the additional textual hint greatly helps reduce the ambiguity of the user intention,
and therefore refines the retrieval accuracy. The new image retrieval paradigm as illustrated by the
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 2, Article 22, Publication date: February 2014.
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Table I. Description of Problem Setting
(See text for more explanation.)

Labels Visual Features
Database Data × √
Training Data

√ √
Query

√ √

Fig. 1. We propose a novel learning framework to design compact hashing functions sparsely associated with labels. The left
panel shows several hashing functions learned over multilabel (denoted by different marks with different colors) training data.
Each hashing function is designed especially for only a subset of labels (e.g., function 4 preserves both orange diamond and red
cross labels). The final association between labels and hashing functions is summarized in the table. The right panel shows the
retrieval with a query consisting of an image and two labels. According to the specific query labels, a subset of most effective
hashing functions (function 1, 2, and 3) are selected (note that function 4 will not be chosen since it is not designed for the two
labels in the query).

Google product pioneers a new solution to circumvent the semantic gap, yet also proposes serious
challenges to effective multimedia (typically in multilabel form) indexing.

In this article, we will concentrate on designing a new hashing method for the new search paradigm
over multilabel data. The description of our problem setting is summarized in Table I. There are three
types of data in our system: database data, training data, and queries. We use the notation “database
data” to refer to a large-scale data pool (typically in millions or even larger scale) from which the most
similar images to the query are retrieved. In real-world scenarios such as the Web-sharing images, the
label information for most data is too noisy to be reliable and also often partially missing. To make our
work applicable for generic data, under our problem setting the label information of database data is
assumed to be unavailable. To well model the semantics, a relatively small training set is collected and
manually annotated, which enables training high-quality hashing functions and afterwards applying
these functions to the database data. When it comes to the retrieval stage, we assume that a query is
given as the mixture of the visual feature and a few user-specified labels.

Rare work has been devoted to the new topic in the hashing literature. Though several existing
hashing methods can be applicable after proper modification, they suffer from inferior effectiveness.
Briefly speaking, prior methods either optimize each individual hashing function over all labels [Mu
et al. 2010; Wang et al. 2010b], or select the optimal ones for each label from a large pool of pre-
learned hashing functions [Mu et al. 2011]. Unfortunately, neither of them is the most effective way to
accomplish the interested task in this article. In the problem setting, the query contains a few labels
of interest, and the task somewhat boils down to exploiting hashing functions that are most effective
for those labels. In this article we propose a new hashing scheme for better efficacy. The key idea, as
illustrated in Figure 1, is to pursue each 1-D subspace that best separates only a subset of correlated
labels, rather than all labels or single label. The size of the label subset is adaptively determined.
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Compared with alternative solutions, our proposed scheme shows significant advantages in terms of
both the computational efficiency (fewer active hash bits) and the retrieval accuracy (mainly owing to
the query-adaptive property). In brief, our contributions is threefold.

(1) We propose a new problem (compact hashing for mixed query over multilabel data) and a reason-
able solution with empirical evaluation. It exploits the shared subspaces among the labels to help
index multilabel data. Specifically, each hashing function projects the data onto a 1-D linear sub-
space, where a subset of labels (check Figure 1 for an example) are well separated from other labels.
In this way it sparsifies the association between the hashing functions and labels. The sparsifica-
tion is crucial for improving the multilabel hashing performance since it enables query-adaptive
hashing via label-oriented hash bit selection.

(2) We develop an efficient Boosting-style algorithm to sequentially learn both the hashing functions
and their associated subset of labels (referred to as active labels hereafter). The optimization is
very efficient and converges fast. Moreover, under the same framework our algorithm can be easily
extended to nonlinear kernel hashing.

(3) At the retrieval stage, given the mixture of image and descriptive labels, we design an efficient
mechanism for selecting the most effective hashing functions, based on the learned sparse associ-
ation between the hash bits and labels.

Note that the whole article extends upon a previous conference publication [Liu et al. 2012c] with ad-
ditional exploration on the algorithm generalization (general retrieval mechanism, nonlinear hashing
extension, etc.), detailed analysis of various algorithmic properties (solution sparsity and convergence
rate), and amplified experimental results. The remaining sections are organized as follows. Section 2
reviews related works. In Section 3 we first provide a sketch of the basic idea, and then elaborate on the
algorithm, including the multilabel boosted-shared hashing algorithm, a quadratic complexity method
for optimized label subset selection, and a query-adaptive bit selection method at retrieval stage.
Section 4 analyzes the convergence of the proposed method and its connections to prior research,
and then gives its extension to nonlinear hashing. In Section 5, comprehensive experimental results
demonstrate the properties of the algorithm (e.g., controllable sparsity and convergence rate), and
validate its effectiveness. Finally Section 6 concludes this article.

2. RELATED WORK

The seminal work of Indyk et al. [Indyk and Motwani 1998] attacks the problem of approximate nearest
neighbor retrieval for binary vectors equipped with Hamming distance. The so-called locality-sensitive
property refers to the fact that LSH algorithms embed similar data under specific metric into sim-
ilar codes in Hamming space. They use the data structure of multiple hash tables to accomplish a
constructive proof for the sub-linear complexity. The most important factor in LSH algorithm design
is the underlying metric to gauge data similarity. In the past decade researchers from the theoretic
computer science community have explored hashing on a diverse set of metrics, including lp-norm
(p ∈ (0, 2]) [Datar et al. 2004], Jaccard index [Broder et al. 1998], etc. The idea of LSH is also tailored
for other scenarios, like kernelized hashing [Kulis and Darrell 2009; Mu et al. 2010; He et al. 2010;
Liu et al. 2012b], unsupervised hashing [Weiss et al. 2008; Liu et al. 2011], and (semi-)supervised
hashing [Wang et al. 2010a; Mu et al. 2010; Liu et al. 2012a].

2.1 Existing Hashing Methods

Several state-of-the-art algorithms can be used after proper modification to address the multilabel
hashing problem given the mixed image-keyword query. As aforementioned in Section 1, these methods
can be roughly cast into two categories according to the association between hashing functions and
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 2, Article 22, Publication date: February 2014.
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labels: universal hashing that learns hashing functions universal for all labels, and per-label hashing
that respectively learns hashing functions for each specific label.

Universal Hashing. Several works have been devoted to indexing multicategory image data, which
are also immediately extended for multilabel data. Representative works include kernel-based hashing
with weak supervision [Mu et al. 2010] and semi-supervised hashing [Wang et al. 2010a, 2010b]. The
key idea in these works is pushing same-label samples as close as possible in the hash-bit Hamming
space, and simultaneously maximizing the separation between different semantic labels. The work
of Mu et al. [2010] also supports sparsely-specified pairwise similarity (or dissimilarity) constraints,
which are common in many real-world applications.

Sequential projection learning for hashing (SPLH) [Wang et al. 2010b], one of the most related meth-
ods in the direction, employs the linear hashing function on centered data X = {xi, i = 1, 2, . . . , N}:
hb(x) = sign(wT x). Then a series of data-dependent hashing functions H = {h1, h2, . . . , hB} is sequen-
tially learned in a Boosting-like procedure by maximizing their empirical accuracy on data X:∑

b

∑
(i, j)

Sij · hb(xi)hb(xj) = 1
2

tr
(
Hb(X)SHb(X)T )

, (1)

where Sij = 1 if xi and xj form a nearest neighbor pair with same labels, and Sij = −1 otherwise. S will
be empirically updated by imposing larger weights on pairs violated by the current hashing function.

Due to the semantic diversity, it is difficult to have each hashing function significantly benefit all
labels. However, great efforts desired to learn a good hashing function can be saved if only a small
label subset is targeted. Under the multilabel setting, the targeted label subset also enables query-
adaptive hashing schemes, where hashing function selection depends on the query labels (they are
assumed to be known as in Google search by image).

Per-Label Hashing. The basic idea is bit selection or bit reweighing. It builds a large pool of random
hashing functions and selects a subset of optimal hash bits (possibly reweighing them) for each label.
The selection procedure is independent for different labels, therefore this method is scalable for large
set of labels and extensible to those labels unseen during training. Representative works include the
learned reconfigurable hashing (LRH) [Mu et al. 2011] and the reweighted hashing [Mu et al. 2012].

These methods are effortlessly adaptive to semantic changes by selecting hash bits or adjusting
corresponding weights. However, they will be inefficient when processing the multilabel data using
the over-complete hash bit pool. As aforementioned, for each label a subset of bits is selected from
the large pool of over-complete hash bits, and typically the subsets of different labels seldom heavily
overlap with each other. Therefore the number of bits required to store each sample will show a roughly
linear increase with respect to the number of labels, which is far from being optimal.

2.2 Shared Subspace Learning

Another line of work that is most relevant to our work is shared subspace learning for multilabel data.
Early investigation on shared subspace utilizes the multitask learning framework [Caruana 1997]. The
idea also has been exploited in other applications like the boosted multiclass object detector [Torralba
et al. 2004], which learns the shared feature across different classes. Moreover, with the abundant
multilabel multimedia data, researchers also propose shared subspace learning methods to facilitate
multilabel image classification or annotation. For example, Yan et al. [2007a] proposed a model-shared
subspace boosting method [Friedman et al. 1998] to reduce the information redundancy in the learning
process and Ji et al. [2010] extract the shared structure in multiple categories.

Our work focuses on the query-adaptive hashing over multilabel data by discovering the shared
subspace across different semantics. It is motivated by the label-aided image retrieval paradigm and
significantly reduces the inter-bit redundancy through the idea of shared subspace learning. This work
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can be treated as a flexible and general framework for supervised hashing, under which the typical
methods of prior research SPLH and LRH are two special cases by varying the size of the label sub-
set. As far as we know, this is the first work that comprehensively studies the hashing problem for
multilabel data with mixed image-keyword query.

3. MULTILABEL BOOSTED SHARED HASHING

In this section we elaborate on the proposed multilabel hashing method. As aforementioned, the key
idea is to encourage sparse association between hash bits and labels by exploiting shared subspaces
among the labels. First some notations will be introduced in Section 3.1. To generate compact hash
codes, Section 3.2 presents a formulation in Boosting style. In each boosting round, when the active la-
bels are known, the pursuit of optimal hashing function is shown to boil down to an eig-decomposition
problem, which is efficient to solve. It will further describe a quadratic-complexity strategy to deter-
mine the active labels for each hashing function in Section 3.3. A matching-score based bit selection
method will be proposed for query-adaptive search at the retrieval stage in Section 3.4.

3.1 Notations

Denote 〈xi, li〉 ∈ R
D × {0, 1}L, i = 1 . . . N to be the i-th feature vector together with the corresponding

label vector, where D, N, L are the feature dimension, the numbers of data and labels respectively. Let
li(k) be the k-th element of li. li(k) = 1 reflects that xi is associated with the k-th label. For multilabel
data, the number of nonzero elements is allowed to be more than one.

Hashing functions. We want to learn a series of hashing functions H(B)(·) = [h1(·), h2(·), . . . , hB(·)]T ,
where hb(·) is the b-th hashing function. For tractability we adopt the linear form, that is,

hb(x) = sign (wT x), (2)

where sign(·) is the signum function and w is the normal vector of the hashing hyperplane. We omit
the thresholding parameters by zero-centering the feature vectors.

The hashing vector w is randomly generated in original p-stable distribution based LSH algo-
rithms [Datar et al. 2004]. Recent years have witnessed the generation of compact hash codes by
optimizing w according to specific criterion [Weiss et al. 2008; Wang et al. 2010a; He et al. 2010]. We
propose to use a multilabel graph based learning framework to squeeze the most out of each hash bit
and preserve the neighbor relationships.

Multilabel graph. The multilabel graph characterizes the neighbor relationships of each sample with
respect to each label associated with the sample. It considers two types of nearest neighbors [Yan et al.
2007b], that is, homogeneous neighborhood—nearest neighbors with the same label, and heterogenous
neighborhood—nearest neighbors with different labels. Thus with respect to each label there will be
one graph depicting the two types of neighbor relationships simultaneously. Figure 2 illustrates the
construction of the proposed multilabel graphs for a sample with two labels.

Specifically, for the k-th label, assume that the i-th sample has li(k) = 1. Let N o
k (i) denote its homo-

geneous neighborhood, which comprises the indices of its ko-nearest neighbors of the same label, and
N e

k (i) be the heterogenous neighborhood containing its ke-nearest neighbors of different labels. The
subscript k in N o

k (i), N e
k (i) reflects that they pertain to the graph of the k-th label.

Active label set. One defining feature of the proposed method is the sparse association between hash
bits and the labels. We use the term “active label set” and variable Sb to indicate those labels associated
with the b-th hash bit, namely the b-th hashing function is learned to target at these labels and pre-
serve their neighbor relationships. Figure 7(b) gives such an example on real-world image benchmark
by applying the proposed hashing scheme. We postpone algorithmic details of choosing active labels in
Section 3.3. In the following presentation, Sb is assumed to be known for clarity.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 2, Article 22, Publication date: February 2014.
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Fig. 2. Illustration of multilabel graph construction on the same training data as Figure 1. The sample x in the left sub-figure
has two labels (displayed in blue round and brown diamond), therefore it has outgoing edges in two graphs corresponding to
aforementioned labels respectively. For each label, x is connected to its homogeneous neighbors using solid lines and heteroge-
nous neighbors using dotted lines as shown in the right panel.

3.2 Formulation

Our goal is to optimally learn B hashing functions that can be shared across a label subset. Based on
the multilabel graphs and active label set Sb, we first employ the exponential loss function for all hash
bits on the graphs of Sb.

Exponential-loss oriented cost function. Intuitively, a sample is encouraged to share the same hash
values with its homogeneous neighbors (in other words, small Hamming distance between their hash
codes), and have significant different hash codes compared with its heterogenous neighbors. This like-
lihood can be measured via the following function:

F (B)(xi, xj, k) =
B∑

b=1

β · δ[k ∈ Sb] · hb(xi) · hb(xj), (3)

where k denotes one of the labels that xi is associated with, β is a constant weighted parameter for
each hashing function that controls the convergence rate (more detailed discussion will be given in
next section), and δ(x) is the delta function that returns 1 if x is true, otherwise 0. Obviously the delta
function serves as the gating function on Sb for hash bit selection, which is consistent to the idea
illustrated in Figure 7(b). If we define f (b)(xi, xj, k) = β · δ[k ∈ Sb]hb(xi) · hb(xj) and let F (0)(xi, xj, k) = 0,
then F(xi, xj, k) will be additive. At the b-th iteration it can be written as

F (b)(xi, xj, k) = F (b−1)(xi, xj, k) + f (b)(xi, xj, k). (4)

Following the margin maximization widely adopted in distance metric learning [Yan et al. 2007b;
Weinberger and Saul 2009], we consider the Hamming distance between homogeneous and
heterogenous neighbors, and define the cost function c(xi) on xi and its neighbors:

c(xi) =
∑

∀k,lk(i)=1

⎛
⎝ 1

ko

∑
j∈N o

k (i)

e−F(xi ,xj ,k) + 1
ke

∑
j∈N e

k (i)

eF(xi ,xj ,k)

⎞
⎠ . (5)

Exponential function is adopted in this equation owing to its robustness and the convenience for
incremental update. Let Nk(i) = N o

k (i) ∪ N e
k (i). For conciseness consideration, we ignore the effect of

ko, ke and introduce an auxiliary variable zij that takes value −1 if j ∈ N e
k (i), otherwise 1. The cost

function for all samples can be represented as follows:

J =
N∑

i=1

c(xi) =
N∑

i=1

∑
∀k,lk(i)=1

∑
j∈Nk(i)

e−zij F(xi ,xj ,k) =
∑

(i, j,k)∈I
e−zij F(xi ,xj ,k), (6)

where I denotes the index set of all M valid triple sets (i, j, k) corresponding to all neighbor pairs.
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Taylor expansion and updating rule. Similar to classification, a powerful way to minimize such ex-
ponential loss function is boosting. Following the spirit of the well-known AdaBoost algorithm [Freund
and Schapire 1995; Friedman et al. 1998], the hashing function hb(·), b = 1 . . . B is learned in a sequen-
tial manner. Since F(xi, xj, k) is additive, any binary term in Equation (6) can be simplified as

e−zij F(b)(xi ,xj ,k) = e−zij F(b−1)(xi ,xj ,k) · e−zij f (b)(xi ,xj ,k) = π (b−1)(i, j, k) · e−zij f (b)(xi ,xj ,k), (7)

where the variable π is introduced to maintain the weights over all neighbor pairs. It can be normalized
to be a probabilistic distribution and estimated from previous b − 1 iterations:

π (b)(i, j, k) = 1
T (b)

π (b−1)(i, j, k) · e−zij f (b)(xi ,xj ,k), (8)

where T (b) = ∑
(i, j,k)∈I π (b−1)(i, j, k) · e−zij f (b)(xi ,xj ,k) and π (0)(i, j, k) = 1

M .
From the Taylor expansion, we can further obtain (the following approximation results from aban-

doning high-order terms in Taylor expansion):

e−zij f (b)(xi ,xj ,k) ≈ 1 − zij f (b)(xi, xj, k) + z2
i j

(
f (b)(xi, xj, k)

)2

2
. (9)

After Taylor expansion, the loss of the b-th function on the active label set Sb can be rewritten as

∑
(i, j,k)∈I,k∈Sb

π (b−1)(xi, xj, k) ·
⎛
⎝1 − zij f (b)(xi, xj, k) + z2

i j

(
f (b)(xi, xj, k)

)2

2

⎞
⎠ . (10)

3.3 Optimization

Under the boosting framework, both the optimal active label set Sb and the optimal hashing function
should be learned to minimize the loss in the previous equation. We first present how to find the
optimal hashing function when given Sb.

Optimal hashing function. Given k ∈ Sb and β, since both the variable zij and function f (b)(xi, xj, k)
are discrete, ranging over {−1, 1} and {−β, β}, the equation can be further written as

e−zij f (b)(xi ,xj ,k) ≈ −zij f (b)(xi, xj, k) + const. (11)

We relax the signum function to be continuous following Mu et al. [2010] and Wang et al. [2012],
that is, f (b)(xi, xj, k) = β · sign(wT xi) · sign(wT xj) is relaxed to βwT xixT

j w. The optimization problem for
the b-th iteration is as follows:

min
w

J c = wT

⎛
⎝−

∑
(i, j,k)∈I,k∈Sb

π (b−1)(xi, xj, k) · zij · xixT
j

⎞
⎠ w. (12)

Such a problem can be efficiently solved by eig-decomposition, where w is the eigenvector correspond-
ing to the smallest eigenvalues of −∑

(i, j,k)∈I,k∈Sb
π (b−1)(xi, xj, k) · zij · xixT

j .
Active label set selection. To find the optimal active label set, an intuitive way is to exhaustively

compare all loss functions on possible 2L subsets (recall that L is the number of labels). However, due
to the exponential complexity, it is impractical for large-scale retrieval with a number of labels. We
elaborate on a scalable algorithm for selecting Sb in O(L2) steps instead of O(2L). The scalability to
large label set mainly stems from a greedy selection strategy. At the beginning, the active label set Sb
is initialized to be the label that best minimizes Problem (12), and the optimal w∗ is recorded. At each
following iteration, it expands Sb by adding another label. Thus there are at most L iterations, and in
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 2, Article 22, Publication date: February 2014.
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each iteration J in Equation (6) is calculated using the relaxation in Equation (11) with the temporary
active label set Sb ∪ {k}, k ∈ {1, . . . , L} \ Sb (i.e., totally O(L) attempts in each iteration). The one that
most decreases J is selected, and w∗ is recorded. The procedure is terminated when the gain is below
τ (e.g., τ = 5%) compared with the previous iteration. Totally we need solve Problem (12) less than
O(L2) times. Algorithm 1 lists the selection method.

ALGORITHM 1: Active Label Set Selection.
1: Sb = ∅;
2: while |Sb| <= L do
3: for any un-selected label k ∈ {1, . . . , L} \ Sb do
4: Calculate w∗ by solving Problem (12) with active label set Sb ∪ {k};
5: Calculate the decrease amount of J in Equation (6) with Sb ∪ {k} and w∗;
6: end for
7: Terminate if the decrease is below prespecified threshold τ ;
8: Update Sb = Sb ∪ {k∗} by select the label k∗ with maximal decrease;
9: end while

The proposed selection procedure is quite similar to these of the greedy based sparse coding algo-
rithms like (orthogonal) matching pursuit [Pati et al. 1993] and the active set selection [Lee et al.
2007]. Similar to the aforementioned methods, ours naturally ensures the sparsity of the label-bit as-
sociation. Nevertheless, our method distinguishes from others by adopting different selection criterion
for next sample or label. Particularly, we adopt the neighbor prediction error of hash codes, unlike the
criteria in others’ work (e.g., reconstruction error of sparse codes).

Finally, in the boosting framework, both hashing functions and their active label sets can be learned
sequentially. The whole boosted shared hashing algorithm is shown in Algorithm 2.

ALGORITHM 2: Boosted Shared Hashing.

1: Initialize the weights π (0)(i, j, k) = 1
M for (i, j, k) ∈ I and normalize them to form a probability distribution;

Set F(xi, xj, k) = 0;
2: for b = 1, 2, . . . , B do
3: Learn the active label set Sb and the hashing vector wb using Algorithm 1;
4: Update the weights and normalize them: π (b)(i, j, k) = 1

T (b) π
(b−1)(i, j, k) · e−zij f (b)(xi ,xj ,k);

5: Update F(xi, xj, k) via Equation (4);
6: end for

3.4 The Retrieval Stage

Section 3.3 has presented the algorithms for learning the hashing functions and active label sets,
which encourage sparse association between the hash bits and labels. We denote the learned bit-label
association matrix by A ∈ {0, 1}L×B, whose nonzero elements in the b-th column correspond to the
active label set Sb of the b-th hashing function. When a query (xq, lq) comes, the retrieval task boils
down to selecting a specific number of hash bits from the learned B hash bits.

A straightforward selecting way is to find the associated bits for each query label in lq and then
taking their union. However, this strategy usually fails to rank the candidate bits, especially when
more than the budgeted number of candidates are available. Moreover, the number of associated bits
in matrix A is varying for different labels, which complicates adaptively choosing proper number of
hash bits for the retrieval. To address this nontrivial task, we give an efficient scoring scheme to
assess the match between the query and each bit.
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3.4.1 Retrieval Using Database Labels. Supposing that the query labels come from the labels in
the training set (named database labels), we propose to use a simple matching-score based bit ranking
method for bit selection. A matching score is computed between b-th bit-label association vector A(b)

(b-th column of matrix A) and lq, as follows:

sJ
(
A(b), lq

) = |A(b) ∩ lq|
|A(b) ∪ lq| , (13)

where | · | denotes the number of nonzero elements in a set. ∩, ∪ represent the intersection and union
operations on two sets respectively. Recall that both A(b) and lq are binary vectors. Intuitively, sJ calcu-
lates the common labels between them, penalized by their union. It is known as the Jaccard index in
the hashing literature. The more labels the two binary vectors share, the more confident the hashing
function will be active. Therefore, given a query (xq, lq), the algorithm greedily selects specific number
of hash bits with highest scores from A by sorting the scores sJ(A(b), lq) in descending order.

3.4.2 Retrieval Using Unseen Labels. In practice, it is infeasible for hashing methods to simultane-
ously learn good hash functions for a large number of labels at the training stage, due to both the diffi-
culty of collecting sufficient training data and the complexity of semantic labels. To support those new
labels (named unseen labels) that are unknown when training (one typical scenario is that the data
with unseen labels appear sequentially), we propose a simple, yet efficient scheme to update the re-
trieval system by incorporating the new data based on those learned hashing functions on the database
labels, so that our method can also handle queries with unseen labels. First the correlations between
unseen and database labels are discovered, and then at retrieval stage the database labels that are
highly correlated with the unseen labels are selected as the most proximal semantics for queries, which
will help achieve fast hash function adaption for unseen labels.

Suppose we can collect a small training data set with Lu unseen labels, and in practice Lu might be
much larger than L. Let ωi ∈ R

D, i = 1, . . . , Lu be the statistical mean vector of all the feature vectors
associated with the i-th unseen label, and � ∈ R

D×L be a matrix, whose columns correspond to the
statistical mean vectors of the training data associated with each database label. Motivated by the
idea of sparse subspace clustering [Elhamifar and Vidal 2009] that each data point in certain subspace
should be represented as a linear combination of other points in the same subspace, we formulate and
solve the following problem to learn the correlations between unseen labels and database labels:

min
�≥0

Lu∑
i=1

(‖ωi − �θi‖2
F + λ‖θi‖1

) − μtr
(

�

(
I − 1

Lu
11T

)
�T

)
. (14)

In the first term of the given formulation, � = (θ1, . . . , θLu) ∈ R
L×Lu are the recovery coefficients

for each unseen label, and
∑Lu

i=1(‖ωi − �θi‖2
F) is the reconstructing error, minimizing which leads to

the desirable � that can well reconstruct each ωi of unseen labels using � of all database labels. In
addition, an �1 regularizer on the coefficients is appended to make the correlations between unseen
and database labels sparse. It is noted that different unseen labels possess varied correlations with
the same database label owing to their semantic diversity, which implies a large variance on their
corresponding coefficients. Therefore, the last term intuitively encourages the diversity over different
columns of � by maximizing their variance tr(�(I − 1

Lu
11T )�T ), where I is an identity matrix.

Though the entire objective function is nonconvex due to the last term, it can be recognized as a
Concave-Convex Procedure (CCCP) [Yuille 2002] and efficiently obtains a local optimum by iteratively
solving a series of convex sub-problems. In practice, we use a simple alternating optimization strategy.
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In each iteration, only one column of � is active, and others are kept as known. A local optimum of the
whole problem can be obtained efficiently by iteratively solving quadratic programming.

The learned θi weights the informativeness of each database label for recovering the i-th unseen
label. Given a query containing unseen labels, we can form a query vector lq by selecting the most
informative database labels Sq with largest coefficients. This strategy also works for retrieval using
database labels, where their most correlated database labels will be themselves. With lq, the aforemen-
tioned bit selection method for database label retrieval (see Algorithm 3) can be applied immediately.

ALGORITHM 3: Query-Adaptive Retrieval.
1: for b = 1, 2, . . . , B do
2: Calculate sJ(A(b), lq) for b-th hashing function and query lq according to Equation (13);
3: end for
4: Select budgeted kb hashing functions with highest scores and corresponding hash bits for database images;
5: Generate hash bits for query using selected hashing functions;
6: Retrieve top ranked images using hash-lookup or Hamming ranking.

4. ANALYSIS AND EXTENSION

4.1 Convergence

The proposed algorithm updates the weights on neighbor pairs in each round and sequentially learns
all budgeted hashing functions. It turns out that when setting the additive weighted parameter β

dynamically as Adaboost does, we can guarantee a fast convergence using our boosting-style algorithm.
First let define r(b) = ∑

(i, j,k)∈I,k∈Sb
π (b−1)(i, j, k), which is the sum of all weights on pairs with the

label in Sb. The error rate of b-th bit on these data can be calculated by

ε(b) = 1
r(b)

∑
(i, j,k)∈I,k∈Sb

zij f (b)(xi ,xj ,k)<0

π (b−1)(i, j, k), (15)

and the accuracy rate is ξ (b) = 1 − ε(b) (ξ (b) ≥ ε(b)). By minimizing the loss in (7), we get

β(b) = 1
2

ln

(
ξ (b)

ε(b)

)
. (16)

We adopt the definition of the training error that is very similar to binary classification error:

E =
∑

(i, j,k)∈I
δ
[
zij F (B)(xi, xj, k) ≤ 0

]
. (17)

Following Freund and Schapire [1995], it can be shown that the training error is bounded above by

E ≤ Me− ∑B
b=1 r(b)(

√
ξ (b)−

√
ε(b))2 (18)

with ξ (b) + ε(b) = 1 and r(b) < 1. As the number of learned hashing functions increases, the upper bound
of the training error will decrease monotonically, and guarantee the convergence.

4.2 Connections with Previous Work

As we claimed before, the proposed algorithm serves as a general framework for supervised hashing.
For instance, it has connections to existing algorithms like SPLH [Wang et al. 2010b]. Particularly, by
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setting Rij = −∑
k∈Sb

π (b−1)(xi, xj, k) · zij and Hb(X) = [hb(x1), . . . , hb(xN)]T , the optimization problem in
Equation (12) can be reformulated as

min
w

J c = −
∑

(i, j,k)∈I,k∈Sb

π (b−1)(xi, xj, k) · zij · wT xixT
j w = 1

2
tr

(
Hb(X)RHb(X)T )

. (19)

The formulation is very similar to that of SPLH [Wang et al. 2010b] (see Equation (1)), where we can
also incorporate unsupervised information. Both methods sequentially learn the hashing functions in
a boosting(-like) way. However, there exist two main differences between them:

(1) Since each hashing function in our proposed method only concentrates on a subset of labels, R will
be very sparse. On the contrary, SPLH tries to benefit all labels simultaneously with a dense S in
Equation (1). Sharing bits only across a small number of targeted labels makes our method both
query-adaptive and computationally efficient.

(2) Instead of explicitly updating the matrix R in a heuristic way in SPLH, our method derives the
optimal update from the exponential loss function following Adaboost, and thus guarantees the
convergence. Therefore, compared to SPLH the proposed hashing approach possesses significant
superiorities in terms of both the computational efficiency and the retrieval accuracy.

4.3 Nonlinear Hashing Extension

The optimization problem in (19) can be generalized to handle kernelized data, whose pairwise similar-
ity is gauged by the inner product in specific reproducing kernel Hilbert space. Formally, the hashing
function can be written in the form of

hb(x) = sign(wT ϕ(x)), (20)

where ϕ(·) is a mapping function that can implicitly and nonlinearly up-lifts the feature dimension.
We also abuse the notation w here to denote the hashing vector in the kernel space. The kernel-based
representation potentially improves the data characteristics [He et al. 2012]. Prior research [Kulis and
Darrell 2009; Mu et al. 2010; He et al. 2010; Liu et al. 2011] has indicated that applying such nonlinear
feature map helps learn high-quality hashing functions and achieve better performances.

According to the representer theorem, an optimal solution w of such a problem is in the span of
the training data. It will be computationally expensive to use all training data, and thus we employ
an approach following prior research [Kulis and Grauman 2009; He et al. 2010; Liu et al. 2011] to
represent w as a linear combination of ϕ(x̂i) in kernel space:

w =
Nl∑

i=1

viϕ(x̂i), (21)

where x̂i ∈ R
D, i = 1, . . . , Nl are the landmarks in the feature space, and usually generated by sampling

or clustering. In practice, Nl � N, and is fixed to a proper value from 300 to 1,000 for a tradeoff between
the computation and the accuracy [He et al. 2010; Liu et al. 2011].

Given the kernel function K(xi, xj) = ϕ(xi)T ϕ(xj), we can rewrite the hashing functions using the
kernel definition instead of the explicit nonlinear mapping:

hb(x) = sign

(
Nl∑

i=1

vi K(x, x̂i)

)
. (22)
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Substituting the kernelized hashing function into the optimization problem in Equation (19), we get
the following problem with a kernel matrix K ∈ R

Nl×N between N samples and Nl landmarks:

min
v

J c = 1
2

tr(vT KRKT v). (23)

The optimal v turns to the eigenvector of KRKT corresponding to the smallest eigenvalue, and thus
the whole boosted shared hashing algorithm with adaptive retrieval can be adopted directly.

5. EVALUATION AND RESULTS

In this section we evaluate our proposed boosted-shared hashing (denoted as BSH hereafter) on both
multicategory and multilabel image benchmarks. Specifically, we choose three large-scale image bench-
marks: one multicategory dataset CIFAR-10 [Krizhevsky 2009] (60K images), and two multilabel
benchmarks NUS-WIDE [Chua et al. 2009] (270K images) and a-TRECVID [Yu et al. 2012] (260K
images). In all experiments we follow the widely-used feature types of each dataset. As the preprocess-
ing, feature vectors are all zero-centered and unit-normalized.

Since there is no hashing scheme specially designed for multilabel data, we adopt five state-of-the-
art universal hashing methods: sequential projection learning for hashing (SPLH) [Wang et al. 2010b],
iterative quantization (ITQ) [Gong and Lazebnik 2011], binary reconstruction embedding (BRE) [Kulis
and Darrell 2009], spectral hashing (SH) [Weiss et al. 2008], and random projection based locality
sensitive hashing (LSH) [Datar et al. 2004], and a per-hashing method: learned reconfigurable hashing
(LRH) LRH [Mu et al. 2011] as the baseline algorithms. All methods are properly tailored before they
are applied to the multilabel data. It is well-known that hashing performance heavily relies on the
number of hash bits used for a query. Therefore, towards a fair comparison, all hashing schemes in the
experiments are contrasted with respect to the same budget of hash bits per query.

Following Yan et al. [2007b], the heterogenous neighbor number ke is set twice of the homogeneous
neighbor number ko to compensate the heavy unbalance between the numbers of the two types of
neighbor pairs. In our experiments, ko, ke are set to be 15, 30 respectively without tuning. The regu-
larization parameter in SPLH is critical for its performance, and thus will be tuned before compari-
son. To reduce the effect of randomness, we estimate the performance by averaging 10 independent
runs.

5.1 Retrieval Using Database Labels

We first comprehensively study the proposed hashing for the retrieval scenario using database labels.
Both the multicategory and the multilabel datasets are considered in this experiment.

5.1.1 Multicategory Retrieval. CIFAR-10 is a subset of the 80-million tiny images originally con-
structed for learning meaningful recognition-related image filters whose responses resemble the be-
havior of human visual cortex [Krizhevsky 2009]. The dataset is comprised of 60,000 32 × 32 color
images from 10 semantic categories (e.g., ‘airplane’, ‘frog’, etc.). There are 6,000 images for each cat-
egory, from which 3,000 images are randomly sampled for training the hashing functions. We also
sample 1,000 samples in total as the queries. Regarding the visual features, we extract 384-D GIST
features [Oliva and Torralba 2001] from these images as Mu et al. [2010] and Liu et al. [2012a] did.

Generally, the performance of a hashing scheme is gauged based on various statistics about “good
neighbors.” On CIFAR-10, we define “good neighbors” as those samples from the same category to the
query. In Figure 3(a) and (b), we report the recall performances with 16 and 32 hash bits for each query
in terms of the number of “good neighbors”. It can be observed that both BSH and its kernel version
(KBSH for short, using a gaussian kernel with 500 landmarks generated by k-means clustering on
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Fig. 3. Performances comparison of different hashing schemes on CIFAR-10. (a) and (b) are the recall results using 16 and 32
hash bits per query, and (c) presents the performances with varying numbers of hash bits.

the training data) significantly outperform all universal hashing baselines, and KBSH performs best,
owing to its powerful data representation. For per-label hashing LRH, if we encode each semantic
space of the ten categories of CIFAR-10 using 16 bits, then totally 160 bits are required to store each
image, which is quite close to the total bit budget we used for both KBSH and BSH (i.e., 150 hash
bits). But from Figure 3 we can observe that in this case LRH is much inferior to BSH. Though LRH
might achieve better performance when using more than 48 bits per query, the total number of bits
for indexing becomes much larger than that of (K)BSH. Note that in our experiments we set β = 0.3
without fine tuning. Better hashing performance can be obtained using a more proper β.

It is also important to study the tendency of the performance with respect to the increasing num-
ber of hash bits per query. Figure 3(c) summarizes the mean average precision (MAP) of all methods
using hash bits ranging from 8 to 48. All performances increase as more hash bits are used, but our
proposed scheme is consistently superior to others with more than 8 bits, especially when using the
kernelized extension. Here, compared SPLH that spends 1.1s on learning each hash function, although
BSH consumes more training time (5.3s), it produces more discriminate functions. Moreover, its test-
ing time (2.5 × 10−2 s) is close to that of SPLH. Therefore on the whole, we conclude that BSH and
KBSH can attain significant performance gains over other methods like ITQ in terms of both recall and
precision.

5.1.2 Multilabel Retrieval. We choose the large-scale NUS-WIDE benchmark [Chua et al. 2009] for
the multilabel image retrieval. There are totally 81 tags (hereafter we use the term “tag” and “label”
interchangeably until otherwise mentioned) annotated manually across the entire dataset, and each
image is associated with a varying number of tags. We represent each image by concatenating the pro-
vided features including 500-D SIFT-based bag-of-words feature and 225-D block-wise color moment
feature. These features are widely adopted in image search and classification research [Li et al. 2013].
Furthermore, following Liu et al. [2011] we select 25 most-frequent tags (‘sky’, ‘clouds’, ‘person’, etc.),
each of which has several thousands of associated images. We randomly select 5,000 images to build a
training set and 1,000 images as a query set. In the experiments, we set the regularization parameter
η of SPLH to be 8 × 10−3 after fine tuning. The label matrix S in SPLH is created by summarizing all
the neighbor relationships of different classes.

One defining feature of our work is the new retrieval paradigm with mixed image-keyword queries.
To quantitatively study our proposed solution to this problem, we generate queries from those images
associated with at least one tags. For each query image, one and two tags are randomly selected from
all its tags to form one- and two-label queries (the proposed method is trivially extended to queries
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Fig. 4. Performances of BSH and baselines on NUS-WIDE image benchmark with one- and two-label queries.

with more than two labels). The groundtruth for each query is defined as the set of images that satisfy
two requirements:

(1) The images should be associated with same tags of the query;
(2) Their distances to the query in terms of visual features should be short enough (we use 3,000

nearest neighbors).

Figure 4 shows the performances of our proposed method and five baselines. Suppose kb hash bits
are used for each query, our proposed BSH first learns less than 6kb hash bits, which serve as the
bit pool for query-adaptive bit selection. We study the recall performances in terms of good neighbor
number for one- and two-label queries using 24 and 48 hash bits, presented in Figure 4(a), (b), (d), and
(e) respectively. Figure 4(c) and (f) plot the MAP values under varying hash bits per query. It is noticed
that as the bit number increases, both the recall and precision performances are improved, and our
BSH method outperforms all other baselines in all experiments.

As aforementioned, we adopt the retrieval paradigm that takes the mixture of image and keywords
as the query. It models the user intention more accurately and addresses the problems of conventional
hashing schemes that neglect the multilabel information. An illustrating example from NUS-WIDE is
found in Figure 5, where the image is associated with three tags. Assume the users are only interested
in part of the semantic tags associated with the query image (which is the common case in real-world
image retrieval), conventional hashing schemes tend to fail since they are not query-adaptive. In
Figure 5, we generate two different queries, for instance, “image visual feature + ‘Ocean’ + ‘Sky’”
and “image visual feature + ‘Ocean’ + ‘Person’” for the query image. Top 10 returned images obtained
by different hashing schemes are displayed. Our method is able to select query-adaptive hash bits and
therefore gets more reasonable results matching both the query image and its keywords.
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Fig. 5. An illustrating example of image retrieval using mixed image-keyword query over multilabel data.

5.2 Retrieval Using Unseen Labels

In the following experiments, we evaluate the performance of our hashing method with the adaptive re-
trieval using unseen labels. Here we employ a-TRECVID [Yu et al. 2012], a large-scale image dataset
with more labels than either CIFAR-10 or NUS-WIDE. It is built from the TRECVID 2011 Semantic
Indexing (SIN) annotation set, including 126 fully labeled concepts on 0.26 million images. Each image
is associated with a varying number of concepts.

Following Yu et al. [2012], we extract dense SIFT local features [Vedaldi and Fulkerson 2008] and
quantize them to form 1,500-D spatial pyramid bag-of-words features [Lazebnik et al. 2006; Chatfield
et al. 2011] for each image. The spatial regions are obtained by dividing the image in 1×1 and 2×2 grids
for a total of 5 regions. We select 50 most-frequent concepts that are associated with thousands of
images, of which 25 are randomly used as database labels while the rest as the unseen labels. Again
we compare our method with the five baselines: SPLH, SH, LSH, BRE and ITQ. Similar to NUS-WIDE
experiments, for all methods 5,000 images are sampled as a training set and another 1,000 images as
testing queries. For SPLH, the regularization parameter η is fine tuned to a proper value 1 × 10−3.

We evaluate the mixed image-keyword retrieval paradigm again. Similar to experiments on NUS-
WIDE, our testing set includes two kinds of queries: query images associated with one and two sampled
labels. The groundtruth for each query is required to be semantically and visually similar to the query.
The difference from previous experiments is that the query labels come from unseen labels, rather
than database labels. For our method, we use the retrieval mechanism for unseen labels proposed in
Section 3.4, namely reconstruction coefficients for each unseen label will be learned first, and then the
most relevant database label will be used as a proxy to select the active hashing functions.

In Figure 6 we show comprehensive results for the two kinds of queries: the recall performances
under both 24 and 48 hash bits per query, and MAP scores under varying hash bits. Here we totally
learn 300 hash bits as the hash pool for query-adaptive hash bit selection. It can be observed from the
figure that our method achieves much better performances than other methods using the same number
of hash bits. As unsupervised methods, LSH and SH give the lowest performances, but obtain slight
performance improvements with an increasing number of hash bits. SPLH, utilizing the supervised
information, gives competing performance at first, but then drops below other baselines. One reason
is that SPLH learns the hashing functions only for database labels, and thus loses the discriminative
power for unseen labels. For one-label query, ITQ archives a very satisfying performance. However,
when using more labels in the query, it fails to compete with our BSH. Compared with all baselines,
our method can find good proxy database labels for query labels, and thus is generalized well for
unseen labels. It can be noticed in Figure 6 that the proposed hashing method achieves significantly
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Fig. 6. Performances of BSH and baselines on a-TRECVID image benchmark with one- and two-label queries.

superior and dramatically increasing performances when using long hash codes, owing to both the
label-targeting hashing functions and the adaptive retrieval mechanism.

5.3 Shared Methods

This article has proposed a greedy strategy for active label selection (i.e., forward selection, denoted by
“greedy sharing” in Figure 7(a)), greatly accelerating the exhaustive search which has an exponential
complexity O(2L) (L is the label number). Other native strategies like “all sharing” (i.e., all labels are
selected for each bit), and “random sharing” (i.e., a number of labels are randomly selected for each
bit) are contrasted with “greedy sharing” as the baselines. The “all sharing” strategy has been used
by other conventional hashing schemes [Wang et al. 2010a; Weiss et al. 2008] but differs in the way
to learn the hashing functions. The “random sharing” strategy uniformly samples specific number (we
use 3, the rounded averaged number of active labels using “greedy sharing”) of labels to be active.

We perform experimental comparison on CIFAR-10 among different strategies for active label set
discovery as illustrated in Figure 7. The comparison is based on the recall performance in terms of
the number of good neighbors in top-300 retrieved samples for all strategies. To make it comprehen-
sive, the performances with different hash bits per query (specifically, 8–32 bits) are reported. From
Figure 7(a), it is observed that both “random sharing” and “greedy sharing” outperform “all sharing”,
which indicates that the idea of sparsifying bit-label association is helpful. Moreover, our proposed
“greedy sharing”, greedily exploiting the near-optimal label subset for each hashing function, is shown
to be the best. An example of the learned bit-label association matrix using “greedy sharing” is plot-
ted in Figure 7(b). The white blob indicates that the specific bit and label are associated (see detailed
discussion in Section 5.4.1). Besides “all sharing” and “random sharing,” we also experimented with
other popular alternative like the backward elimination. Compared with “greedy sharing,” the back-
ward elimination leads to more dense associations between labels and bits (5.7 labels share a bit) and
more computation cost (13.3 s for learning a hash function) at the training stage.
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Fig. 7. Sharing hashing functions across “active label set”. (a) Performance comparison of different sharing methods. (b) Illus-
tration of “active label set” learned by the proposed method on CIFAR-10: the horizontal and vertical axes correspond to 30 hash
bits and 10 semantic labels respectively, and the white cells denote the active labels.

Fig. 8. Sparsity and convergence analysis of the proposed algorithm.

5.4 Sparsity and Convergence

5.4.1 Sparsity. The key idea of our method is to sequentially exploit the sparse association between
hashing functions and labels. In Algorithm 1, the size of the active label set Sb is controlled by the
parameter τ , which has a straightforward effect on the sparsity of the bit-label association.

To study the impact of τ , first we introduce the bit sharing rate for each bit: rbs(b) = |Sb|
L , which reflects

how many labels are targeted by the b-th hash bit. According to Algorithm 1, it is easy to conclude that
a large τ will lead to a small Sb and thus a low bit sharing rate, because it terminates the greedy
search process early. We investigate the average sharing rate of all bits as a sparsity measure of the
association: a small average value indicates significant sparsity. Figure 8(a) shows the average of rbs(b)
on CIFAR-10 dataset (10 labels and 100 bits) with respect to different τ . It is obvious that the average
bit sharing rate decreases as τ increases from 1% to 20%. For our algorithm setting where τ = 5%, it
is 0.3614, namely on average 3.614 labels share a bit. Therefore, if we want to use kb = 8 hash bits
for each label on CIFAR-10, totally kb� L

rs
� = 24 hashing functions need to learn. This will significantly

reduce both the storage and computation compared with state-of-the-art query-adaptive methods like
LRH for which at least 80 hashing functions are required.

5.4.2 Convergence. Besides the sparsity, the convergence rate is another important property, espe-
cially for Boosting-style methods. In our algorithm, it is determined by parameter β which is simply set
to a constant value in Algorithm 2 (adaptive β is discussed in Section 4.1). β has effect on the update of
π in each boosting round: a large β amplifies the weights of the mis-seperated neighbor pairs and thus
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 10, No. 2, Article 22, Publication date: February 2014.
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makes the algorithm concentrate on these pairs by selecting the same active labels in the next round.
Similarly, it is highly possible that with a very small β the algorithm acts identically in the successive
rounds, since the weights change quite slightly. To make the learned hashing functions cover all labels
in a few rounds, and thus speedup the convergence, a proper β should be chosen.

We investigate the numbers of hashing functions associated with each label in the first few boosting
rounds. Intuitively we expect a small variance among them, which means that the hashing functions
can uniformly target at all labels within a small total budget. Figure 8(b) shows the variances using
different β in the first 24 rounds on CIFAR-10. The trend is very consistent with our analysis, namely
too small or too large β will lead to similar active label sets and thus unbalanced coverage. According to
our observation, on CIFAR-10 a proper β for a balanced coverage should fall in [0.3, 0.8]. Considering
the training error defined in Equation (17), Figure 8(c) demonstrates a fast convergence with β from
0.3 to 0.8. The error decreases dramatically at first and then tends to keep a steady state, where each
hashing function gives a stable performance on the training data.

6. CONCLUSIONS

In this article, we have attempted to address the mixed image-keyword query adaptive hashing prob-
lem over multilabel images, and proposed a general supervised hashing framework based on boosting.
Learning a hashing function for all data with different semantic similarities is very difficult, while
the proposed method only focuses on the subset of active labels to overcome the difficulty. It exploits
the shared subspaces among related labels and learns the shared hashing functions for these labels
in the boosting procedure. An efficient query-adaptive bit selection method, integrated into this frame-
work for both database and unseen label retrieval, enhances both the adaptivity and the scalability of
the work. As discussed, such framework is considerably robust in terms of sparsity and convergence,
and easily extended to nonlinear hashing. Our experimental results on several standard benchmarks
demonstrate the superiority of the proposed method can achieve better performance than state-of-the-
art methods when using the same budgeted number of hashing functions.
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