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ABSTRACT
Analysis and detection of complex events in videos require a se-
mantic representation of the video content. Existing video seman-
tic representation methods typically require users to pre-define an
exhaustive concept lexicon and manually annotate the presence of
the concepts in each video, which is infeasible for real-world video
event detection problems. In this paper, we propose an automatic
semantic concept discovery scheme by exploiting Internet images
and their associated tags. Given a target event and its textual de-
scriptions, we crawl a collection of images and their associated tags
by performing text based image search using the noun and verb
pairs extracted from the event textual descriptions. The system first
identifies the candidate concepts for an event by measuring whether
a tag is a meaningful word and visually detectable. Then a concept
visual model is built for each candidate concept using a SVM clas-
sifier with probabilistic output. Finally, the concept models are ap-
plied to generate concept based video representations. We use the
TRECVID Multimedia Event Detection (MED) 2013 as our video
test set and crawl 400K Flickr images to automatically discover
2, 000 visual concepts. We show significant performance gains of
the proposed concept discovery method over different video event
detection tasks including supervised event modeling over concept
space and semantic based zero-shot retrieval without training ex-
amples. Importantly, we show the proposed method of automatic
concept discovery outperforms other well-known concept library
construction approaches such as Classemes and ImageNet by a
large margin (228%) in zero-shot event retrieval. Finally, subjec-
tive evaluation by humans also confirms clear superiority of the
proposed method in discovering concepts for event representation.
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Figure 1: The framework of the proposed concept discovery
approach. Given a target event (e.g., “grooming an animal”)
and its textual definition, we extract noun and verb keywords
and use each noun-verb combination as a query to crawl im-
ages and their associated tags from Flickr. We then discover po-
tential concepts from tags by considering their semantic mean-
ings and visual detectability. We then train a concept model
for each concept based on the Flickr images annotated with the
concept. Applying the concept models to the videos generates
concept-based video representations, which can be used in su-
pervised event modeling over concept space, zero-shot event re-
trieval as well as semantic recounting of video content.

1. INTRODUCTION
Recognizing complex events from unconstrained videos has re-

ceived increasing interests in multimedia information retrieval and
computer vision research communities [12, 28, 30]. By definition,
an event is a complex activity that involves people interacting with
other people and/or objects under certain scene. Compared with hu-
man action recognition which focuses on simple primitives such as
“jumping”, “walking” and “running” [14, 17, 35], event detection is
more challenging since it has to deal with unconstrained videos that
contain various people and/or objects, complicated scenes and their
mutual interactions. For example, a video of “birthday party” may
contain a large number of atomic components including objects like
“cake” and “candle”, actions like “dancing” and “hugging” as well
as scenes like “garden” and “living room”.

The existing event detection works proposed the use of raw audio-
visual features fed into different sophisticated statistical learning
frameworks, and achieved satisfactory performance [13, 25]. How-
ever, these works are incapable of providing any interpretation or
understanding of the abundant semantics presented in a complex
multimedia event. This hampers high-level event analysis and un-
derstanding, especially when the number of training videos is small
or zero. Therefore, a logical and computationally tractable way



is to represent a video depicting a complex event in a semantic
space consisting of semantic concepts related to objects, scenes and
actions, in which each dimension measures the confidence score
of the presence of a concept in the video. Once we have such
concept-based video representations, we will be able to use them
as middle-level features in supervised event modeling or directly
use the scores of the semantic concepts to perform zero-shot event
retrieval [18, 23].

One intuitive approach to generate concept based video repre-
sentation is to manually define a suitable concept lexicon for each
event, followed by annotating the presence/absence of each con-
cept in the videos [18, 22, 23]. Apparently, this approach involves
tremendous manual efforts, and is impractical for real-world event
detection problems regarding a huge number of videos. On the
other hand, the web is a rich source of information with huge num-
ber of images captured for various events under different condi-
tions, and these images are often annotated with descriptive tags
that indicate the semantics of the visual content. Our intuition is
that the tags of Internet images related to a target event should
reveal certain common semantics appeared in the event, and thus
suggest the relevant concepts in the event videos. This stimulates a
challenging research problem which has not been well studied yet:
given a target event (sometimes associated with a textual definition
of the event, such as the textual event kits in TRECVID Multimedia
Event Detection (MED) task [1]), how to automatically discover
relevant concepts from the tags of Internet images, and construct
corresponding concept detection models specifically optimized for
the target events. Since we focus on discovering concepts for pre-
specified events, we term our approach as Event-Driven Concept
Discovery to distinguish it from the work that builds a generic con-
cept library independent of the targets [32]. Figure 1 illustrates the
overall framework of the proposed system.

There are three main challenges in utilizing Internet images and
their associated tags to learn concept models for complex event de-
tection. First, since the tags associated with the Internet images
are provided by general Internet users, there are often tags that are
meaningless or irrelevant to the target event. To ensure the cor-
rectness of concept discovery, our method must choose semantic
meaningful tags as the candidate concepts of the target event. To
address this task, we perform noisy tag filtering by matching each
tag to synsets in WordNet [24].

Moreover, some tags are abstract and not related to visual con-
tents. For example, images with tags "economy" and "science" do
not show consistent visual patterns that can be effectively modeled
by computer vision techniques. Therefore, we employ a visualness
verification procedure to check whether a tag can be visually de-
tected. Only visually related tags are kept as candidate concepts.

The last challenge is that the labels of Internet images are often
very noisy. Directly adopting such images as training samples for
a concept will lead to a poor concept model. To solve this problem,
we turn to a confidence ranking strategy. Given an image anno-
tated with a concept, we first estimate the posterior probability of
the concept’s presence based on its visual closeness to other images
annotated with the same concept. Then we rank all images based
on the probabilities and choose the top ranked ones as the positive
training samples of the concept. Such confidence ranking strategy
is valuable in reducing the influence of noisy labels since it mea-
sures the confidence of the concept’s presence in an image from its
collective coherence with other images.

We will demonstrate both qualitatively and quantitatively that
the proposed concept discovery approach is able to generate accu-
rate concept representations on event videos. Applying the concept
scores as concept representations of videos, our method achieve

significant performance gains when evaluated over various seman-
tic based video understanding tasks including supervised event mod-
eling and zero-shot event retrieval. One major contribution is that
the concepts discovered based on the proposed method achieves
significant performance gains (228% in zero-shot event retrieval)
over concept pools constructed using other well known methods
such as Classemes and ImageNet. We also show that our discov-
ered concepts outperform classic low-level features in supervised
event modeling, and are able to reveal the semantics in a video
over the semantic recounting task.

2. RELATED WORK
Complex event detection in videos has been investigated in liter-

ature. Duan et al. [7] proposed to learn cross-domain video event
classifiers from the mixture of target event videos and source web
videos crawled from Youtube. Tang et al. [31] developed a large
margin framework to exploit the latent temporal structure in event
videos, and achieved good performance on event detection. Natara-
jan et al. [25] exploited multimodal feature fusion by combining
low-level features and available spoken and videotext content asso-
ciated with event videos. Ma et al. [20] proposed to adapt knowl-
edge from other video resources to overcome the insufficiency of
the training samples in small sample video event detection. How-
ever, these works focus on modeling events into sophisticated sta-
tistical models, and cannot reveal the rich semantics in videos.

Some works attempted to accomplish event detection with con-
cept based video representations. Izadinia et al. [11] manually
annotated a number of concepts on event videos, and proposed a
discriminative model that treats the concepts as hidden variables
and models the joint relationship among concepts in a concept co-
occurrence graph. Liu at al. [18] observed concepts in event videos
and defined a concept ontology falling into “object”, “scene”, and
“action”, through which a number of SVM classifiers are trained
as concept detectors to generate concept scores on videos. How-
ever, as aforementioned, all these methods require significant man-
ual efforts, which are inadequate for real-world event detection task
with a large number of videos. In [21], Ma et al. leveraged con-
cepts contained in other video resources to assist detection in event
videos, and proposed a joint learning model to learn concept clas-
sifier and event detector simultaneously. Mazloom et al. [22] first
constructed a concept library with 1, 346 concept detectors by mix-
ing 346 manually defined concepts in TRECVID 2011 Semantic
Indexing Task [2] and 1, 000 concepts from the ImageNet Large
Scale Visual Recognition Challenge 2011 [6], and then discov-
ered the optimal concept subset using a cross-entropy optimiza-
tion. Nevertheless, the concepts in other video resources may not
be relevant to the content of event videos, and produce inaccurate
semantic descriptions on videos. Yang et al. [38] adopted deep
belief nets to learn cluster centers of video clips and treated them
as data-driven concepts. Apparently, such data-driven concepts do
not convey any semantic information, and are not applicable for se-
mantic representation of videos. Differently, we focus on automat-
ically discovering semantic concepts in event videos by exploiting
the Internet images and their tags, which uncovers the semantics in
videos without any manual labors.

Berg et al. [3] introduced a method to automatically discover
concepts by mining text and image data sampled from the Internet.
A text string is recognized as a concept only if the visual recog-
nition accuracy on its associated images is relatively high. Never-
theless, the method merely works on a closed web image set with
surrounding texts, and cannot be applied in concept discovery in
event videos, each of which does not contain any textual descrip-
tion. Yanai et al. [37] adopted a similar idea to discover visual



(a) Attempting a bike trick (b) Birthday party

Figure 2: Concept clouds for two example events, where the size of each concept indicates its TF-IDF value.

related concepts associated with Internet images. Our work is also
related to analyzing videos by leveraging still images. For exam-
ple, Ikizler-Cinbis et al. [10] proposed to learn actions from the
web, which collected images from the Web to learn representations
of actions and used this knowledge to automatically annotate ac-
tions in videos. In contrast, we focus on automatically discovering
concepts from the still images and using them to interpret complex
video semantics, which is more challenging than these prior works.

In terms of building a concept bank library, our work is also re-
lated to the existing concept libraries such as Object Bank [16],
Classemes [32], and Action Bank [29]. However, these libraries
are designed for generic objects or actions, and hence are not di-
rectly relevant to a target event collection at hand. Differently, our
concept library is designed for a set of pre-specified events, which
is more relevant to the target events and could precisely reveal the
semantics of the event videos.

3. DISCOVERING CANDIDATE CONCEPTS
FROM TAGS

In this section, we will present a three-step procedure to discover
candidate concepts for each target event, which can be described in
details as follows:

Step I: Flickr Image Crawling. Given a target event and its
textual event description, we can use NLTK [4] to extract the nouns
and verbs from the event definition sentence. Then we combine a
noun and a verb to form a “noun-verb pair” as a textual query to
perform text-based image search on Flickr. Finally, we downloaded
the retrieved images and their associated tags for each query and
combine them together as the concept discovery pool. Notably,
the images retrieved in this way have higher relevance to the target
event (See Figure 6).

Step II. Noisy Concept Filtering. Given a target event, we can
crawl a number of images and their associated tags belonging to the
same event from Flickr. As aforementioned, the tags are typically
provided by general Internet users, and there are a fair amount of
meaningless words that are irrelevant to the target event. To ensure
that each tag corresponds to a meaningful concept, a tag filtering
process is performed. Specifically, we use WordNet [24] as the
concept lexicon and look up each tag in it. If a tag is matched
successfully to a synset in WordNet, it is regarded as a meaningful
concept. Otherwise, it is removed as a noisy word.

Step III. Concept Visualness Verification. After the filtering
process, the remaining tags are meaningful concepts. Nevertheless,
we notice that some concepts are not visually related. For example,
there might be some images associated with concept “economy”,
but there are no consistent visual patterns within these images since

the concept is highly abstract. Involving such concepts will bring
significant distractions to video representation and degrade the fi-
nal performance. Therefore, we need to verify the visualness of
each concept so that only visually related concepts are included.
To accomplish this, we first treat the images associated with a con-
cept as positive training samples and simultaneously choose images
from the other concepts as negative training samples. Then we split
all training images into two halves and do a 2-fold cross valida-
tion. The performance is measured based on average precision.
Finally, only the concepts with high cross validation performance
are verified as visually related concepts and retained in the concept
library. In order to obtain reliable concept detectors trained with
sufficient number of images, we further remove the concepts that
contain less than 80 training images. Noticed that each discovered
concept is discovered for a specific event, we call the resultant con-
cepts “event-specific concepts”.

Based on the above strategy, we obtain the initial candidate con-
cepts for each target event. Figure 2 shows the concept clouds dis-
covered on two exemplary events, in which the size of the concept
indicates its TF-IDF value, where we treat a set of tags in an event
as a document.

4. BUILDING CONCEPT MODELS
In this section, we present how to choose reliable training images

for each discovered concept, and then introduce how to build the
corresponding concept model.

4.1 Training Image Selection for Each Discov-
ered Concept

To get rid of the noisy and outlier images crawled from the Inter-
net, we use a confidence ranking method to choose reliable training
images. Given a concept c, we can construct the following two im-
age subsets X+ = {xi}mi=1 and X− = {xi}m+n

i=m+1, in which
xi ∈ Rd is the d dimensional feature vector of the i-th image, X+

is a set of m images annotated with concept c, and X− contains
n images annotated without concept c. We adopt a soft neighbor
assignment [9] in the feature space to estimate the confidence of as-
signing the given concept to an image. Particularly, each image xi

selects another image xj as its neighbor with probability p(xi,xj)
and inherits its label from the image it selects. We define the prob-
ability p(xi,xj) using a softmax operator over the entire image set
X = {X+,X−}:

p(xi,xj) =
exp(−‖xi − xj‖2)∑

xk∈X\{xi} exp(−‖xi − xk‖2)
, (1)

where ‖ · ‖ denotes the L2 norm of a vector.
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Figure 3: The top 5 images ranked by our method for some
exemplary concepts.

Based upon this stochastic selection rule, we can calculate the
probability p(xi) that image xi will be classified as positive with
respect to the given concept:

p(c|xi) =
∑

xj∈X+

p(xi,xj). (2)

In the above equation, the confidence score of a concept’s pres-
ence in an image is measured based on its visual closeness with
respect to other images in the same concept category. If an image
has noisy label, it tends to fall apart from the coherent visual pat-
tern of the concept, leading to a small confidence value. Contrarily,
images with correct labels will always comply with the common
visual pattern of the concept, and thus are assigned with high con-
fidence values. We use p(c|xi) to estimate the confidence of image
xi belonging to concept c and select s images with the highest con-
fidence scores as the positive training images for each concept. In
this work, we set s = 2001 and choose t = 1, 900 negative im-
ages from other concepts as the negative training images. Figure 3
shows the top 5 images ranked by our method for some exemplary
concepts. As can be seen, the selected images are highly relevant
to the concepts while maintaining reasonable content diversity.

4.2 Concept Model Training
Given a concept c discovered for an event, suppose we have

an Internet image collection I = {(xi, yi)}s+t
i=1, in which the la-

bel yi ∈ {−1, 1} of each image xi is determined by the con-
fidence score ranking method described in Section 4.1. In this
work, we choose SVM classifier with RBF kernel as our concept
model, in which the kernel function is defined as K(xi,xj) =
exp

(
− d2(xi,xj)/σ

2
)
. Here d(xi,xj) denotes the Euclidean

distance between xi and xj , and σ is the mean distance among
all images on the training image set. We use LibSVM library [5]
as the implementation of our SVM concept model and the optimal
tradeoff parameter for SVM is determined via cross-validation.

4.3 Time Complexity Analysis
The overall complexity of concept model training consists of two

parts: training image selection and concept model training. Specif-
ically, the time complexity on choosing the training images de-
scribed in Section 4.1 isO

(
d(m+n)2

)
, wherem and n are respec-

tively the number of positive and negative images for each concept
and d is the feature dimension. In our experiment implemented
on a MATLAB platform on an Intel XeonX5660 workstation with
3.2 GHz CPU and 18 GB memory, it takes 13.58 seconds to finish
the confidence score calculation when m = 3000, n = 3000 and

1If the images annotated with a concept are less than 200, we di-
rectly utilize all images as positive samples for concept modeling.

d = 2, 659. On the other hand, the time complexity on concept
model training described in Section 4.2 isO

(
d(s+ t)2 +(s+ t)3

)
which includes operations to compute the kernel and perform ma-
trix inversion [5]. In our experiment with s = 200, t = 1, 900
and d = 2, 659, we finish the the training process of a concept
model within 2 minutes on average. Considering the efficiency of
the concept modeling process, our approach is applicable for con-
structing a large-scale concept library consisting of a huge number
of concept models.

5. VIDEO EVENT DETECTION WITH DIS-
COVERED CONCEPTS

After constructing the models for all concepts in an event, we
apply them on videos and adopt their probabilistic outputs as the
concept-based representations, which can be used as an effective
representation for semantic event analysis. In more details, given a
video clip in a target event, we can first generate the concept based
representation on each video frames and then average them as the
final concept representation of the video clip, or we can directly ap-
ply the concept models on the averaged feature of the frames in the
video. The second approach significantly reduces the concept score
generation time and thus is adopted as the concept based video rep-
resentation generation method in this work. There are typically two
scenarios to apply concept based video representations for complex
event detection, which can be discussed as below:

Scenario I: Supervised Event Modeling Over Concept Space.
In this scenario, there are usually a number of labeled positive
and negative training videos associated with a pre-specified event,
and we regard the concept based video representation as high-level
video content descriptors in the concept space for training a clas-
sifier of the target event. Therefore, we expect the concept based
video representation to be discriminative so that the target event
can be easily separated from other events. Given a pre-specified
event detection task consisting of E events, we choose S concepts
with the highest TF-IDF values for each of the E events from their
respective discovered concepts, and concatenate the concept scores
into an E × S dimensional feature vector (In this work, we set
E = 20 and S = 100 and generate a 2, 000-dimensional concept
based video representation for this task). With the concept feature
representation as input, we can train any supervised model as the
event classifier. In this work, we choose binary SVM classifier with
χ2 kernel as our event detection model. In the test stage, we adopt
SVM probabilistic output as the event detection score on each test
video, through which the video retrieval list can be generated.

Scenario II: Zero-Shot Event Retrieval. In this scenario, we
do not have any training videos of the target event, but only di-
rectly use the event query2 to retrieve relevant videos from the large
video archive. Under this setting, the only available information is
the concept scores on the test videos. We term this task zero-shot
event retrieval since the procedure is purely semantic based. Since
each concept has different levels of semantic relevance with respect
to the query event, we use a weighted summation strategy to calcu-
late the detection score of each test video. Given an event query e
comprising of multiple words, we use WordNet [24], a large lexi-
cal database of English words, to estimate the semantic similarity
of two words. The semantic relevance r(e, c) between event e and
concept c is determined as the maximum semantic similarity be-
tween concept c and all words appearing in event query e. We
use a Python API for WordNet in NLTK [4] to calculate the Wu-
Palmer Similarity [36] of two words. For an event and a test video
with concept representation {s1, . . . , sT }, in which each concept
2Event name and keywords extracted from event definition.
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Figure 4: Performance of different methods on supervised event modeling task. CC: Classemes, CIN: ImageNet, CRI: proposed
method without training image selection, CSI: proposed method with training image selection. This figure is best viewed in color.

score si corresponds to the event-specific concept ci, the detection
score of this video with respect to the target event can be estimated
as
∑T

i=1 r(e, ci)si. Finally, the event retrieval result can be gener-
ated by ranking the videos with these weighted summation scores.

6. EXPERIMENT
Our experiment aims to verify the effectiveness of our discov-

ered concepts over the complex video event detection dataset. We
begin with a description of the dataset, and then perform experi-
ments evaluating different aspects of our method.

6.1 Dataset and Feature Extraction
Event Video Set. The TRECVID MED 2013 pre-specified task

consists of a collection of Internet videos collected by Linguis-
tic Data Consortium from various Internet video hosting sites [1].
The dataset contains 32, 744 videos falling into 20 event categories
and the background category. The names of these pre-specified
20 events are respectively “E1: birthday party”, “E2: changing a
vehicle tire”, “E3: flash mob gathering”, “E4: getting a vehicle un-
stuck”, “E5: grooming an animal”, “E6: making a sandwich”, “E7:
parade”, “E8: parkour”, “E9: repair an appliance”, “E10: working
on a sewing project”, “E11: attempting a bike trick”, “E12: clean-
ing an appliance”, “E13: dog show”, “E14: giving directions to a
location”, “E15: marriage proposal”, “E16: renovating a home”,
“E17: rock climbing”, “E18: town hall meeting”, “E19: winning a
race without a vehicle”, “E20: working on a metal crafts project”.
On this pre-specified event detection task in TRECVID MED 2013,
each event is associated with a textual event kit that specifies the
key concepts and detailed process of this event.

Internet Image Set. To collect Internet images, we utilize query
words related to each event to perform image search on Flickr. For
each event, we extract the keywords in the event textual kit and
then try different combinations of any two keywords (typically one
noun and one verb) to perform keyword based image search on
Flickr.com, in which we combine all images from different queries
together as the Internet images for this event. In this way, we down-
loaded 20, 000 images and their associated tags as the pool for con-
cept discovery in each event. Specifically, we perform candidate
concept discovery described in Section 3 and choose 100 potential
concepts from the crawled image set for each event.

Feature Extraction. We extract 2, 659 dimensional classemes
feature [32] as the feature representation of both Internet images
and video frames. Given a video clip, we simply aggregate all
frames of Classemes feature as the video-level feature represen-
tation. Other codebook based features such as SIFT BoW can also
be used as the alternatives in our work.

6.2 Supervised Event Modeling Over Concept
Space (MED EK100)

In this task, we treat the concept based video representations as
feature descriptors for supervised event modeling. We follow the
pre-defined training (7, 787 videos) and test (24, 957 videos) data
split in the pre-specified EK100 task in TRECVID MED 2013 [1]
in our experiment. There are 100 positive training videos and ap-
proximately 50 negative training videos in each event category.
Moreover, both training and test sets contain significant number
of background videos that do not belong to any target category,
making the detection task very challenging. On each event, the Av-
erage Precision (AP), which approximates the area under the preci-
sion/recall curve, is adopted as evaluation metric of event detection.
Finally, we further calculate mean Average Precision (mAP) across
all 20 events as the overall evaluation metric on the entire dataset.

To evaluate the effectiveness of our discovered concept features
in supervised event modeling, we compare the following middle
or low level feature representations: (1) SIFT [19] Bag-of-Word
(BoW). (2) GIST [27] BoW. (3) Gabor [8] BoW. (4) LBP [26]
BoW. (5) Transformed Color Distribution [33] BoW. All the above
five descriptors are densely extracted on grids of 20 × 20 pixels
with 50% of overlap from images. For each type of the extracted
descriptors, we train a codebook with 400 codewords, and parti-
tion each image into 1 × 1 and 2 × 2 blocks for spatial pyramid
matching [15]. Finally, we adopt soft quantization [34] to repre-
sent each image as a 2, 000-dimensional histogram, which has the
same dimension as our concept based video representation and en-
sures a fair comparison. (6) Concepts learned from Random Images
(CRI). Concept models are learned using a randomly chosen subset
of images associated with the concept tag directly without content
consistency filtering as described in Section 4.1. (7) Our proposed
2, 000 Concepts learned from Selected Images (CSI). We use our
method to select reliable training images for concept modeling.

Figure 4(a) illustrates the performance of all the methods on this
task quantitatively. From the results, we can have the following
observations: (1) The concepts generated by our CSI method con-
sistently beats others by a large margin, which demonstrates its ef-
fectiveness in concept based video representation. On some events
where our method is inferior to other baselines, we observe signif-
icant domain difference between Flickr images and MED videos.
We will consider this issue by exploring cross domain adaptation
methods in our future work. (2) The CSI method beats the five
types of low-level features, which implies that our discovered con-
cepts can not only reveal the semantic concepts but also be utilized
as an effective feature description for event discrimination. (3)
The CSI method performs significantly better than the CRI method.
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Figure 5: Performance of different concept-based classifiers for zero-shot event detection task. This figure is best viewed in color.
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CC 
              

CIN 
              

CSI 
              

 “groom” in “grooming an animal” “ring” in “marriage proposal” 

CC 
              

CIN 
              

CSI 
              

 Figure 6: Concept training images form different concept sources. Note that the training images utilized in our method (CSI) not
only contain the concept but also convey context information about the event.

This is due to the fact that the former leverages more reliable train-
ing images than the random images utilized in the latter. This ver-
ifies the soundness of our confidence ranking method in selecting
clean training images for concept modeling. Figure 4(b) shows the
mAP comparisons at variant returned depths (i.e., the number of top
ranked test videos included in the evaluation). From the results, we
can see that our method achieves significant and consistent mAP
improvements over the other methods at variant returned depths.

6.3 Zero-Shot Event Retrieval (MED EK0)
In this task, we directly apply the concept scores to rank the

videos in the archive without leveraging any training video sample.
Similar to Section 6.2, we also adopt AP and mAP as our evalua-
tion metric. The focus of this experiment is to reveal the effective-
ness of the discovered semantic concepts compared with semantic
concepts discovered from other methods. To this end, the follow-
ing concepts generated from different methods will be compared:
(1) Classemes Concepts (CC). We extract the 2, 659-dimensional
classemes concept feature from the videos. Given each event query,
we use the WordNet Wu-Palmer semantic similarity between event

query and the concept names (see Section 5) in Classemes to find
100 most relevant Classemes concepts for this event. (2) Concepts
discovered from ImageNet (CIN) [6]. In this method, we want to
discover concepts for each event from all the concepts in ImageNet.
For each event, we also adopt WordNet to calculate the semantic
similarity between its event query and the concept names in Im-
ageNet, and choose the same number of concepts (100 for each
event) from ImageNet . For each concept, we choose 200 images
from its ImageNet synset as the positive training images and 1, 900
images from other discovered ImageNet concepts as the negative
training images. These images are then fed into a SVM classifier
as the concept model. (3) Concepts learned from Random Images
(CRI), in which we randomly pick up the same number of images
as used in our method as training images for concept modeling. (4)
Our proposed Concepts learned from Selected Images (CSI).

Figure 5(a) shows the per-event performance of all the methods.
In Figure 5(b), we further plot the mAP at different returned depths
for different comparison methods. From the results, we have the
following observations: (1) our CSI method achieves the best per-
formance (with a relative performance gain as high as 228%) over
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Figure 7: Human evaluation of concepts discovered from dif-
ferent sources (Flickr, ImageNet, and Classemes).

most of the events. Since the task is purely semantic based, the
results clearly verify that the concepts discovered by our method
are applicable for semantic based event retrieval. (2) The zero-shot
event retrieval performance is worse than that of supervised event
modeling. This is because that the latter uses training videos to ob-
tain a more sophisticated event model while the former is merely
based on concept score aggregation. (3) Our CSI method performs
much better than Classemes, since most concepts in Classemes are
irrelevant to the events. (4) The CSI method clearly beats the CIN
method. This shows that our concept discovery method is able to
obtain more accurate concept representations to the events than the
concept representations discovered from other lexicon such as Im-
ageNet. The reason may be two-fold: First, the concepts discov-
ered from Flickr images are more relevant to the real-world events
than the general concepts in ImageNet. In fact, our discovered
concepts are the most semantically relevant to the events compar-
ing with the concepts discovered from Classemes and ImageNet,
as illustrated in Table 1. Second, the Flickr images used in train-
ing our concept model contain visual clues of the event, while the
images in ImageNet usually contain clean objects without event
background. Figure 6 illustrates the training images from Flickr
and ImageNet for some concepts. We can see that for the concept
“groom” in event “grooming an animal”, because of the ambiguity
of the word “groom", training images from CC and CIN gener-
ally refer to “bridegroom” while our concept refers to the action
of “grooming an animal". Another example is the concept “ring”
in event “marriage proposal", where training images from CC and
CIN are general “ring" with simple background and do not contain
any context information about marriage proposal.

6.4 Human Evaluation of Concepts
Besides the performance comparison described in the previous

sections, we also design an experiment to ask human subjects to
evaluate the quality of concepts discovered from different sources
including Classemes, ImageNet and our proposed framework using
Flickr images. Details of the experiment are illustrated in Figure 7.

For each evaluation session, we first randomly pick up one event
from the 20 pre-specified events in TRECVID MED 2013, and
generate 100 concepts from each of the three sources (Flickr, Ima-
geNet, Classemes) using the approach described in Section 6.3. In
this step, we rank the 100 concepts from each source in descending
order based on the WordNet semantic similarity between concept
name and event query. Second, from each of the three ranked con-
cept lists, we randomly choose 5 concepts at the same rank posi-
tions, and form three concept subgroups, each of which contains
the sampled 5 concepts. Third, we randomly pick up two concept
subgroups from the three to form a pair and ask a user to judge
which subgroup of 5 concepts is more relevant to the event.

The above procedure is repeated 1, 000 times, through which we
obtain the following statistics about concept quality. (1) Flickr is
better than the other two sources with 81.29% chance. (2) Ima-

E4 getting a vehicle unstuck: blizzard, snow, road, stuck, truck  

E8 parkour: jump, slacklining, free run, acrobatic, gap  

E11 attempting a bike trick: boy, park, BMX, ride, trick 

E19 wining a race without a vehicle: speed, hurdle, athlete, track, stadium 

Figure 8: Semantic recounting for videos from exemplary
events in TRECVID MED 2013: each row shows evenly sub-
sampled frames of an example video and the top 5 relevant con-
cepts detected in the video.

geNet is better than others with 34.19% chance. (3) Classemes is
better than others with a 32.46% chance. From these results, we
can see that our discovered concepts from Flickr images are more
relevant to the events based on subjective evaluation by humans.

6.5 Video Semantic Recounting
For each video of a target event, we rank all the concepts discov-

ered for the event based on their confidence scores and treat the top
ranked concepts as the semantic description of the video content.
Such a procedure is able to reveal the semantic information con-
tained in a video and is thus called video semantic recounting. Fig-
ure 8 shows the recounting result on videos from some exemplary
events in TRECVID MED 2013, in which the top 5 ranked concepts
generated by our method are selected as concepts for each video.
As can be seen, these concepts reveal the semantics contained in
the videos, which verifies the effectiveness of the our discovered
concepts in representing video semantics.

7. CONCLUSION
We have introduced an automatic event driven concept discov-

ery method for semantic based video event detection. Given a tar-
get event, we crawl a collection of Flickr images and their associ-
ated tags related to this event as the concept discovery knowledge
pool. Our method first estimate the candidate concepts present in
the event by measuring the visualness of each concept and its se-
mantic meaning. Then a concept model is constructed for each
candidate concept based on the large margin SVM classifier. Fi-
nally, the individual concept models are applied on the event videos
to generate concept-based video representations. We test our dis-
covered concepts over two video event detection tasks including
supervised event modeling over concept space and zero-shot event
retrieval, and the promising experiment results have demonstrated
the effectiveness of the proposed event-driven concept discovery
method. For future work, we will explore the spatial-temporal con-
cept sequences in dynamic videos and investigate their effective-
ness in complex event detection.



Event Name

Classemes air transportation vehicle, all terrain vehicle, amphibious vehicle, armed person, armored fighting vehicle, armored recovery vehicle,
armored vehicle, armored vehicle heavy, armored vehicle light, command vehicle

ImageNet vehicle, bumper car, craft, military vehicle, rocket, skibob, sled, steamroller, wheeled vehicle, conveyance
Ours tire, car, snow, stick, stuck, winter, vehicle, truck, night, blizzard

Classemes adult animal, animal, animal activity, animal blo, animal body part, animal body region, animal cage, animal container, animal pen,
animal shelter

ImageNet groom, animal, invertebrate, homeotherm, work animal, darter, range animal, creepy-crawly, domestic animal, molter
Ours dog, pet, grooming, cat, animal, bath, cute, canine, puppy, water

Classemes baking dish, cafe place, classroom setting, collection display setting,  cutting device, dish drying rack, food utensil, hair cutting razor,
hdtv set, hole making tool

ImageNet sandwich, open-face sandwich, butty, reuben, ham sandwich, gyro, chicken sandwich, hotdog, club sandwich, wrap
Ours sandwich, food, bread, cooking, cheese, spice, baking, pan, kitchen, breakfast

Classemes clothes iron, landing craft, laundry room, living room, missile armed craft, multi room unit, work environment, work station, steel
mill worker, carpentry tool

ImageNet sport, outdoor game, rowing, funambulism, judo, blood sport, gymnastics, water sport, track and field, outdoor sport
Ours sewing, handmade, embroidery, craft, quilt, fabric, hand, sewing machine, textile, thread

Classemes action on object, animal container, armed person, art object, back yard, bag, bilateral object, box the container, butcher shop, capsule
container

ImageNet appliance, gadgetry, gimbal, injector, mod con, device, musical instrument, acoustic device, adapter, afterburn
Ours kitchen, furniture, washing, bed, sink, divan, spring bed, cleaning, stove, dishwasher

Classemes astronomical observatory building, attached body part, auto part, bar building, body movement event, body of water, building,
building cluster, building security system, cavity with walls

ImageNet rock, uphill, outcrop, whinstone, xenolith, tor, slope, ptyalith, kidney stone, urolith
Ours climbing, rock climbing, bouldering, mountain, sport, hiking, climber, landscape, peak, rope

rock climbing

Concepts Discovered from Different Sources

getting a
vehicle unstuck

grooming an
animal

making a
sandwich

working on a
sewing project

cleaning an
appliance

Table 1: Top 10 concepts discovered form different sources.
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