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Abstract—Exploring context information for visual recognition
has recently received significant research attention. This paper
proposes a novel and highly efficient approach, which is named
semantic diffusion, to utilize semantic context for large-scale
image and video annotation. Starting from the initial annotation
of a large number of semantic concepts (categories), obtained
by either machine learning or manual tagging, the proposed
approach refines the results using a graph diffusion technique,
which recovers the consistency and smoothness of the annotations
over a semantic graph. Different from the existing graph-based
learning methods that model relations among data samples, the
semantic graph captures context by treating the concepts as nodes
and the concept affinities as the weights of edges. In particular,
our approach is capable of simultaneously improving annotation
accuracy and adapting the concept affinities to new test data. The
adaptation provides a means to handle domain change between
training and test data, which often occurs in practice. Extensive
experiments are conducted to improve concept annotation results
using Flickr images and TV program videos. Results show con-
sistent and significant performance gain (104+% on both image
and video data sets). Source codes of the proposed algorithms are
available online.

Index Terms—Context, image and video annotation, semantic
concept, semantic diffusion (SD).

I. INTRODUCTION

EMANTIC annotation of large-scale image and video data
has been an important research topic [2]-[7]. The annota-
tion can act as an intermediate step for a wide range of appli-
cations such as image/video content management and retrieval.
For example, once the image/video data are indexed by a large

Manuscript received September 12, 2011; revised January 23, 2012; accepted
February 04, 2012. Date of publication February 15, 2012; date of current ver-
sion May 11, 2012. This work was supported in part by the National 973 Pro-
gram of China under Grant 2010CB327906, by the U.S. National Science Foun-
dation under Grant CNS-0751078, and by the Research Grants Council of the
Hong Kong Special Administrative Region of China under Grant CityU 119709.
The associate editor coordinating the review of this paper and approving it for
publication was Dr. Chun-Shien Lu.

Y.-G. Jiang, Q. Dai, and X. Xue are with the School of Computer Sci-
ence, Fudan University, Shanghai 200433, China (e-mail: ygj@fudan.edu.cn;
xyxue@fudan.edu.cn).

J. Wang is with IBM T. J. Watson Research Center, Yorktown Heights, NY
10598 USA (e-mail: wangjun@us.ibm.com).

C.-W. Ngo is with the Department of Computer Science, City University of
Hong Kong, Kowloon, Hong Kong (e-mail: cwngo@cs.cityu.edu.hk).

S.-F. Chang is with the Department of Electrical Engineering, Columbia Uni-
versity, New York, NY 10027 USA (e-mail: sfchang@ee.columbia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2012.2188038

number of semantic concepts, users may efficiently locate the
content of interest by using textual queries [8].

In the study of image and video annotation, most of the ex-
isting works assign single or multiple concept (class) labels to
a target data set using supervised learning techniques, where
the assignment is often independently done without considering
the interconcept relationship [2], [3], [4], [6], [9], [10]. How-
ever, the concepts do not occur in isolation (e.g., smoke and ex-
plosion—knowing the presence of one concept may provide
helpful contextual clues for annotating other correlated con-
cepts. Motivated by this intuition, several recent research efforts
have been paid for improving annotation accuracy by exploiting
context information, e.g., [11] and [12].

Existing methods for exploring context knowledge, how-
ever, were usually based on computationally expensive machine
learning algorithms [11], [12], limiting their application to large
data sets. In addition, since context (e.g., concept relationships)
is usually learnt from a fully labeled training set, it may not
be accurate when test data are from a domain different from
that of the training data, which often occurs in large-scale
applications. This poses two challenges related to scalability:
the demand for efficient contextual annotation and the need for
domain adaptive learning.

In this paper, we are interested in the problem of efficiently
refining large-scale image and video annotation by exploring se-
mantic context, i.e., the interconcept relationship. Our approach,
which is named semantic diffusion (SD), uses a graph diffusion
formulation to enhance the consistency of concept annotation
scores. The input of our approach can be either soft prediction
scores of individual supervised concept classifiers [e.g., the sup-
port vector machines (SVMs)] or binary manual labels tagged
by Web users. To model the concept relationships, we first con-
struct a weighted graph, which is named semantic graph, where
nodes are the concepts, and edge weights reflect concept corre-
lation. The graph is then applied in SD to refine concept anno-
tation results using a function-level diffusion process to recover
the consistency of the annotation scores with respect to the con-
cept affinities.

In order to alleviate the effect of data domain changes, we
further extend SD to simultaneously optimize the annotation re-
sults and adapt the geometry of the semantic graph according to
the test data distribution. We name this augmented approach as
domain adaptive SD (DASD). Fig. 1 gives an idealized example
of our approach. Fig. 1(a) displays the top five results from an
independent concept detector of desert. By considering the se-
mantic context learnt offline from the manual annotations in a
training data set, Fig. 1(b) shows better results. With the domain
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Fig. 1. Illustration of the proposed SD approach. (a) Top five results of con-

cept desert according to the annotation scores from an existing individual clas-
sifier, where the semantic context was not considered. (b) Refined results by SD.
The subgraph on the left shows two concepts with higher correlations to desert.
Line width indicates graph edge weight. (c) Refined subgraph and top results
by DASD. The graph adaptation process in DASD is able to refine concept re-
lationship, which, in turn, can further improve the annotation accuracy.

adaptation extension, considerable improvement could be fur-
ther obtained [see Fig. 1(c)]. The domain adaptation process is
capable of adapting the already-learnt semantic context to fit the
test domain data characteristics. In this example, it reacts the do-
main-shift-of-context by adapting the affinity of desert and sky.

In addition to offering better performance compared with
existing alternatives for context-based annotation, our proposed
approach holds the following advantages. First, the concept
relationships are novelly encapsulated into a semantic graph,
based on which both SD and DASD, derived from graph
diffusion techniques, are extremely efficient. It requires less
than 1 ms to perform diffusion over tens of concepts for each
image or video shot. Second, our approach is able to perform
batch-mode operation for a large data set that cannot fit into
memory and, therefore, is directly applicable to large-scale
applications. Third, it allows an online update of semantic
context for alleviating the challenging problem of data domain
changes. Additionally, we also investigate the effect of contex-
tual annotation quality on SD result by simulating contextual
annotations at various performance levels. This study is helpful
for learning the upper limit of contexts in visual annotation and
provides insights to answer an open question of “how good are
contextual detectors good enough?”.

The remainder of this paper is organized as follows. We
review related works in Section II. We then define nota-
tions and briefly introduce the graph diffusion technique in
Section III. Our proposed formulation for context-based an-
notation is elaborated in Section IV. Section V describes the
experimental setup, and Section VI presents our experimental
results on image and video annotation. Finally, we conclude in
Section VII.

II. RELATED WORKS

Recent research has yielded many techniques for image and
video annotation, where the main effort has been paid to de-
veloping effective feature representation [13]-[16] and model
learning techniques [5], [9], [10], [17]-[19]. In the following,
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we concentrate our review on the use of context information for
improved annotation, which is the focus of this paper.

Contextual cues have been utilized for object and scene clas-
sification. In [20], Torralba introduced a framework of mod-
eling context based on the correlations between the statistics of
low-level features across an entire image and the objects that it
contains. Along this line, several other approaches also adopted
context information from the correlation of low-level features
within images or semantic categories [21]-[24]. Recently, se-
mantic context such as cooccurrence information was consid-
ered to enforce region-based object recognition in [11], [25],
and [26], where a graphical model was used to achieve the goal.
In addition to cooccurrence, spatial context was utilized in [27]
and [28], where knowledge such as “sky usually appears on top
of grass” was exploited to help label image regions. In [29],
contextual clues were modeled in a hierarchical region tree for
scene understanding. These approaches in [11] and [25]-[29],
however, were tailored for region-based object and scene recog-
nition, where the region segmentation process is usually slow.
In real-life examples, the concepts could cover a wide range of
semantic topics—some of them are depicted by the holistic rep-
resentation of an entire image rather than a region (e.g., outdoor
and meeting). As aresult, the region-based approaches, although
promising, are not applicable in many cases of semantic anno-
tation.

There are also several works focusing on learning context
models from entire images implicitly [10], [13] or explicitly
[12], [30]-[34]. The GIST feature by Oliva and Torralba [13]
models the holistic energy distribution of a scene, and the spatial
pyramid representation by Lazebnik ez al. [10] also generates a
holistic image description. These representations implicitly cap-
ture the semantic context to some extent. The authors of [7],
[12], [30], [31], and [33]-[35] explicitly modeled the relation-
ship of semantic categories and further improved upon the in-
dividual classifiers based on the holistic image descriptors. The
proposed work of this paper belongs to this category. In [30],
Lin et al. proposed a probabilistic model to recognize people,
event, and location by exploring contextual knowledge in the
three groups of categories. In [35], Song et al. proposed an ap-
proach to explore context from object detection/localization for
general object recognition tasks in images. This approach, al-
though very interesting, is too slow for large-scale applications
since detecting objects in images is always a time-consuming
procedure. In [31], Rasiwasia and Vasconcelos constructed a
semantic space to model semantic context using mixtures of
Dirichlet distributions. Based on their contextual models, an
image can be represented by a vector of posterior concept prob-
abilities. In [12], a multilabel learning method derived from
Gibbs random field was proposed to exploit concept relationship
for improving video annotation. Although encouraging results
were observed on a set of 39 semantic concepts, the complexity
of this method is quadratic to the number of concepts. A recent
work by Lu et al. [7] used a contextual kernel method, which has
a cubic complexity. The high complexity prevents both works
to be applied to a larger number of concepts, which is neces-
sary in practice, in order to provide enough semantic filters for
interpreting textual queries and producing satisfactory search
results [8]. In [32], Tang et al. explored concept relationship



3082

context with graph-based semisupervised learning (SSL) for im-
proved concept annotation. In [33], Weng and Chuang proposed
a method to learn the interconcept relationships and then used
a graphical model to improve the concept annotation results. In
[34], a context-based concept fusion method using conditional
random field was proposed, in which supervised classifiers were
iteratively trained to refine the annotation results.

In this paper, we address the problem of context-based refine-
ment of individual concept annotation results. Different from all
the existing works, we formulate context-based semantic anno-
tation as a simple and highly efficient graph diffusion process.
Our formulation has a linear complexity to the number of testing
samples (images or video clips). Particularly, it is also capable
of handling potential domain changes of semantic context be-
tween training and test data, which has not been investigated in
the prior works. This paper extends upon a previous conference
publication [36]. The extensions include new experiments on
Flickr images, analysis on the power of context for visual anno-
tation, and amplified discussions and explanations throughout
the paper.

III. PRELIMINARIES

A. Notations

Let us first define several notations. LetC = {c1.¢2,....¢m}
be a semantic lexicon of m concepts and X = {z;} € R"*¢
be a test data set, where n is the number of samples, and d
is the dimensionality of sample feature. From a training set
{Xtm: Y}, a supervised classifier can be trained for each con-
cept ¢;, where y;, a column vector of Y, is ground-truth labels
of X4, for concept ¢;. The classifier is then applied to the test
set X5 and generates annotation scores g(c¢; ), where g(-) de-
notes an annotation function over the test samples, and g(c;) is
a1 x n score vector. Concatenating the annotation scores of all
the concepts for X4, the annotation function can be written as
9(C) = {g(ci)ti=1,...m € R™*".

Denote W as an m x m concept affinity matrix indicating the
concept relationships in C. Our goal in this paper is to utilize the
semantic context W to refine the annotation score, i.e.,

(1)

where §(C) is the refined annotation function, and ¢(C) denotes
the initial function based on the supervised concept classifiers;
f(+) represents the refinement function, which simultaneously
updates g(C) and adapts W to the test set X4« (if domain adap-
tation is considered).

The semantic graph used in this paper is denoted as G =
(C. E, W), comprising a set of nodes (concepts) together with a
set £ = {e;;  of edges. W, as mentioned above, is the concept
affinity matrix, where each entry W;; indicates the weight of
an edge e;; from nodes ¢; and c;. Define the diagonal node
degree matrix of the graph as D;; = d(¢;) = > ; W;;. Then,
the graph Laplacian is A = D — W, and its normalized version
isL =1-D"'2WD /2,
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B. Graph Diffusion

Graph diffusion is a widely used technique in data smoothing.
Earlier applications of image and video analysis include edge
detection and denoising in images [37], discontinuity detection
in optical flow [38], etc. Graph diffusion is also closely related to
several semisupervised machine learning algorithms [39], [40],
where classification functions are determined based on geom-
etry distribution of data samples in feature space.

Function estimation by graph diffusion rests on the assump-
tion that a studied function g(-) is expected to be smooth with
respect to the manifold geometry of discrete data [41]. With a
definition of a cost function £(g), a smoothed form of the func-
tion ¢(-) can be derived using techniques such as gradient de-
scent, as will be described in our formulation in the next section.

IV. FAST SEMANTIC DIFFUSION

Now, we formulate context-based image/video annotation as
an efficient graph diffusion process. We start by presenting the
construction of the semantic graph G and then describe our for-
mulations of SD.

A. Semantic Graph Construction

Graph is widely used for abstract data representation.
Conventional graph-based methods, such as the popular
graph-based SSL algorithms [39], [40], treat samples as nodes,
and the graph edges are weighted by the sample similarity. The
function to be estimated is usually associated with labels of the
samples. Different from the graph modeling techniques, in our
semantic graph, each concept ¢; in a semantic space is treated
as a node, and an edge e;; denotes the relationship between
concepts ¢; and ¢;.

The semantic graph G is characterized by the relationship be-
tween concepts, i.e., the affinity matrix W. We estimate the
concept relationship using the training set X;,, and its corre-
sponding label matrix Y, where %;; = 1 denotes the presence
of concept ¢; in the sample z;; otherwise, y;; = 0. Based on the
label matrix, one simple way to estimate the concept relation-
ship is to use Pearson product-moment correlation, i.e.,
e (i — i) (e — 115)

(I Xten| — 1) 050

PM(ci,c;) = ()

where ; and o; are the sample mean and standard deviation
(std), respectively, in observing ¢; in the training set Xy,,. The
PM correlation calculated by the above equation can be ei-
ther negative or positive. Since it is not clear which kind of
correlation is more helpful, we construct two undirected posi-
tive-weighted graphs separately.

« Gt = (C.ET,WT) considers positive correlation of the
concepts, i.e., an edge e;; € ET is established when
PM(C{, Cj) > 0 and WJ = P]\/[(Cj, Cj).

« G- = (C,E~, W) considers negative correlation of
the concepts, i.e., an edge ¢;; € £~ is established when
PM(ci,cj) < 0and W, = —PM(c;, c;).
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Fig. 2. Visualization of a fraction of the semantic graph before and after do-
main adaptation. Edge width indicates the degree of correlation between con-
cepts, which is also quantified by the values nearby the edges. (a) Initial con-
cept relationship computed using the manual annotations on TRECVID 2005
training set. (b) Updated concept relationship for TRECVID 2007 test set after
performing graph domain adaptation. (See more descriptions in Section VI-A.)

For simplicity, in most part of this paper, we will use the graph
GT and use G and G interchangeably without specific declara-
tion. G~ will be evaluated later in Section IV-C. Fig. 2(a) visu-
alizes a fraction of the semantic graph GT.

B. SD

Let us now introduce the SD algorithm. Recall that the func-
tion value g(c;) € R*™ on a semantic concept node ¢; de-
notes the concept annotation scores on the test set Xy, and
n = |Xigt| is the total number of test samples. Intuitively, the
overall statistical relationship of the function values g{¢;) and
g(e;) should be consistent with the affinity between the con-
cepts ¢; and c;, i.e., W;;. In other words, strongly correlated
concepts should own (statistically) similar concept annotation
scores. Motivated by this semantic consistency intuition, we
formulate the problem of contextual annotation refinement as
a graph diffusion process and define a cost function on the se-
mantic graph as

2
=15 w, ) o
o 2 ig=1 Vi(e)  +/d(ej) (3)

This function evaluates the smoothness of ¢ over the semantic
graph G. Therefore, reducing the function value of £ makes
the annotation results more consistent with the concept relation-
ships captured by G.

Gradient descending is adopted to gradually reduce the value
of the cost function. Rewriting (3) into matrix formulation, we
have

E(g) = %tr(gTLg) “4)

where L € R™*™ is the graph Laplacian of the semantic graph
. From (4), the gradient of £ with respect to ¢ on the semantic
graph is

Vg€ =Lg. 5)
Now, we can derive the following iterative diffusion process:

8 =8r—1 — )\ng—lg =g;1—ALg,
=(I-AL)ge 1 = (I~ AL)’g: »
= ... = (I - )\L)tgo (6)
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where 0 < A <« 1 is the diffusion step size. Exponentiating the
graph Laplacian with A, we can get

¢ t3
g = (1000 + GO0 - SO0+ g

X

(I —t(AL) + %()\Lt)z - é(ALtf) go- @)

Further omitting the high-order terms, the above cubic form ap-
proximates the exponential diffusion procedure. Instead of iter-
ative diffusion on the initial function value g, (6) and (7) give
the one-step closed-form diffusion operation through applying
the diffusion kernel K; on g, which is defined as

K, = (I— AL)". (8)

Notice that the cost function in (3) has two main fundamental
differences from the existing graph-based SSL techniques
such as [39] and [40]. First, the semantic graph is formed with
concepts as nodes, and consistency is defined in the concept
space. This is in contrast to graph-based SSL, where a node is
a data sample, and smoothness is thus measured in the feature
space. Second, with given label information, graph-based
SSL methods drive label propagation through minimizing
the cost function with either elastic regularization or strict
constraint, e.g., the harmonic function formulation in [40]. Our
cost function aims at recovering the consistency of annotation
scores with respect to the semantic graph. It is minimized
using gradient descending, and this leads to a closed-form
solution for efficient SD. While in graph-based SSL methods,
the optimization procedure commonly involves an expensive
matrix inverse operation. For large-scale applications, compact
representation and efficient optimization are always critical,
and our formulation takes into account both factors.

C. Domain Adaptation

As mentioned in Section I, another challenge related to the
scalability issue is the problem of data domain changes. In other
words, the learnt semantic graph may not completely capture the
contextual relationship of unseen video data. For example, the
concept weapon frequently cooccurs with desert in news videos
due to plenty of events about Iraq war. While such contextual
relationship can be captured in G, misleading annotation will
be generated if applied to documentary videos where such re-
lationship is seldom observed. In this section, we address this
problem by introducing DASD, which is an extension of SD
with a graph adaptation functionality. DASD captures the test
domain knowledge by learning from the responses of g(-) over
the new and previously unseen test data. The initial semantic
graph learnt from training samples is online adapted to the new
test domain.

DASD achieves SD and graph adaptation simultaneously by
reducing the cost function value via alternatively updating g and
the concept affinity. Notice that the symmetric affinity matrix
W indirectly imposes on the diffusion procedure in the form of
normalized graph LaplacianL, = I-D~/2WD /2 = I-W.
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Fig. 3. Example images of a subset of the 81 NUS-WIDE concepts. All the NUS-WIDE images were downloaded from Flickr.com.

Recall the cost function in (4) and express it as a function of W,
ie.,

£(g, W) = %tr(gTLg) - %tr (gT [I _ D*%WD*%} g)
= %tr(ng) - %tr (gTD*%WDfég)

1 1 ~

=5tr(g"g) - ;tr(s" We) ©)

where W is the normalized affinity matrix. Although our goal is

to adapt the concept affinity matrix W, in the diffusion process,

W directly affects the annotation results. Hence, we compute

the partial differential of £ with respect to W instead of W as
o0& T

= —g8 .

oW (19)

We use gradient descent to iteratively modify the normalized
affinity matrix W, i.e.,

~ 5 o€
W, =W, - 8—

‘

=W, , + ﬁgt—lgth

an
t-1
where 0 < 3 < 1 is the step size.

This graph adaptation process, i.e., the refinement of W with
the aim of reducing &, can be intuitively explained as follows.
Remember that g € R"*", where m is the number of con-
cepts, and n is the number of test samples. The dot product
ggl € R"*™ in the above equation implies the pairwise con-
cept affinities predicted by the annotation scores from test do-
main. Thus, the above equation implicitly incorporates new do-
main knowledge into W.

To inject the graph adaptation function into SD, we update
the normalized graph Laplacian as

L=I-W,=1I-W,_;, — Bgi—18/ 1

=L 1 — Ogi18/ 1. (12)

With that, we can derive the following iterative alternating op-
timization procedure:

g =81 — ALy 181

L;=L; (- ﬂgtf1g£1~ (13)

These two equations form the DASD process, which jointly im-
poses the SD of annotation scores and the adaptation of the se-
mantic graph structure.

All the above derivations are based on the positive graph G .
The diffusion and adaptation on G~ can be done in a very similar
manner as G1. Because in G~ the edge weights indicate the
dissimilarity between the nodes (concepts), the graph diffusion
on the negative graph is casted in the way of increasing the cost
function value.

With some similar derivations, we can obtain the following
DASD process on G~ :

g =81+ AL, 181

L, =L, ; +3g18{ . (14)

The source codes of the proposed algorithms SD and DASD
are publicly available online [1].

V. EXPERIMENTAL SETUP

This section outlines our experimental setup. The proposed
SD algorithm is assessed using an image benchmark and three
video benchmarks. In addition to evaluating the proposed ap-
proach under different settings, we also perform simulations to
study the effect of contextual detector quality on SD perfor-
mance. The evaluation plan will be introduced in detail later.

A. Data Sets

We use NUS-WIDE data set [42] as the image annotation
benchmark. NUS-WIDE contains 269 648 Flickr images, which
are divided into a training set (161 789 images) and a test set
(107 859 images). It is manually labeled with 81 semantic con-
cepts/classes, covering a wide range of semantic topics from ob-
jects (e.g., bird and car) to scenes (e.g., mountain and harbor).
Several example images are given in Fig. 3.

The video benchmarks are from NIST! TREC video retrieval
evaluations (TRECVID) 2005-2007 [43]. In total, there are 340
h of video data. The videos are partitioned into shots, and repre-
sentative keyframes are extracted from each shot. As shown in
Table I, the 2005 and 2006 videos are broadcast news from dif-
ferent TV programs in English, Chinese, and Arabic, whereas
the 2007 data set mainly consists of documentary videos in

1U.S. National Institute of Standards and Technology.
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TABLE I
DETAILS OF TRECVID 2005-2007 DATA SETS. THE TOTAL
NUMBER OF VIDEO SHOTS IN EACH DATA SET IS SHOWN IN THE
PARENTHESIS. NOTE THAT THE 160H DATA FROM TRECVID 2005
WAS USED AS TRAINING DATA FOR TRECVID 2006

[ TRECVID- | Data domain | Training set |  Testset |
2005 Broadcast News | 80h (43,873) | 80h (45,765)
2006 Broadcast News - 80h (79,484)
2007 Documentary 50h (21,532) | 50h (22,084)

Dutch. These data sets are suitable for evaluating the perfor-
mance in handling domain changes. The contents of the videos
are also highly diversified, making large-scale video annotation
a challenging task. We use a total of 374 concepts defined in
Large-Scale Concept Ontology for Multimedia (LSCOM) [44].
These concepts are defined according to criteria such as concept
utility, observability, and the feasibility of developing classi-
fiers for them using current technologies. Fig. 4 shows example
keyframes for several concepts frequently evaluated by NIST.

Note that, for both image and video benchmarks, this is a
multilabeling task, which means that each image or video shot
can be labeled with more than one concept.

B. Baseline Annotation and Semantic Graph Construction

To apply the proposed SD algorithm, baseline annotation is
needed. In other words, we need to set the initial value of g(-).
For the Flickr image benchmark, we use original manual tagging
as the baseline annotation. In that case, the initial function value
of g(+) is binary (0/1 value indicating whether a concept was
tagged to an image). While for the video benchmarks, we adopt
some generic semantic concept detectors for baseline annota-
tion. Specifically, we use the publicly available VIREO-3742
[6], which includes SVM models of 374 LSCOM concepts.
These models have been shown in TRECVID evaluations to
achieve near-top performance. Late fusion is used to combine
classifier scores from multiple single-feature SVMs, which are
trained using three individual features: grid-based color mo-
ments, wavelet texture, and bag-of-visual words. Details for ex-
tracting such features can be found in [6] and [45]. Later in this
paper, we will also show the effectiveness of the proposed tech-
nique over different baseline annotation models.

The semantic graph G is primarily constructed based on the
ground-truth labels on the training set of NUS-WIDE and the
training labels provided by LSCOM3 [44], for the image and
video benchmarks, respectively, where the edge weights are cal-
culated by (2). In the experiments, we will also test other alter-
native solutions for graph construction.

In practice, £-NN is commonly used to generate sparse
graphs, which usually lead to better performance [46]. In our
experiments, we empirically keep six strongest edges for each
semantic node and break the remaining connections. In DASD
where graph adaptation is performed, in order to keep the graph
sparse, we round small gradients in the partial differential in
(10) to zero and only keep the largest gradient for each node.

Zhttp://vireo.cs.cityu.edu.hk/research/vireo374/

3LSCOM annotation effort was conducted on broadcast news videos from
TRECVID 2005 training set.
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C. Evaluation Plan

Part 1—SD and DASD: The first set of experiments aims
at extensively evaluating the proposed SD and its domain
adaptive version DASD. Both image and video bench-
marks will be used. We will evaluate a couple of settings
in detail, including key parameters, graph construction
methods, negative concept correlation, and baseline an-
notation models. Speed efficiency (run time) will be also
reported at the end.

Part 2—How good are contextual detectors good enough?
This experiment evaluates contextual diffusion perfor-
mance by varying the quality of the contextual detectors
in order to gain additional insights on the upper limit and
trend of performance gain from contexts in the task of
image and video annotation. We use the training sets of
both image and video benchmarks, where the quality of
contextual detectors is simulated by artificially adding
various levels of noise to the ground-truth annotations of
the contextual concepts.

D. Evaluation Criteria

Following the traditions on both the image and the video
benchmarks, we use average precision (AP) to evaluate the
performance of concept annotation. AP approximates the area
under the precision—recall curve. For TRECVID 2006 and 2007
benchmarks, where complete ground-truth labels are not avail-
able on the test sets, we choose the NIST official measurement
called inferred AP4, which is an estimation of the traditional
AP based on partial labels [47]. To aggregate the performance
over multiple semantic concepts, mean AP or mean inferred
AP (MAP) is adopted.

VI. RESULTS AND DISCUSSIONS

This section discusses experimental results and gives com-
parative studies with the state of the arts.

A. SD and DASD

We first evaluate the performance of SD and DASD, mostly
using the semantic graph G*. G~ is only used in one trial to
study the effect of negative correlation. There are some param-
eters in the proposed method, such as the diffusion step sizes A
and 3. We use empirically determined suitable values for these
parameters and will show the insensitivity of final performance
to particular settings.

Table II summarizes the overall results on both image and
video benchmarks. Note that the baseline annotations were ob-
tained by original Flickr manual tagging and the VIREO-374
detectors, respectively, for the image and video benchmarks.
Since there is no order information among Flickr images tagged
with the same concept, we randomly rank them to form the base-
line—this is repeated ten times to report the mean and std of both
baseline and SD performance. All of the 81 concepts are evalu-
ated over the image benchmark. While for the TRECVID video
benchmarks, NIST selected a subset from the 374 concept pool
each year and provided ground-truth labels on the test set—we
follow this official setting to evaluate the same set of concepts

“http://www-nlpir.nist.gov/projects/tv2006/infAP.html
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TRECVID 2005/2006 (Broadcast News Videos)

TRECVID 2007 (Documentary Videos)

Fig. 4. Example video keyframes of several concepts evaluated in TRECVID 2005-2007. (Left) Examples from broadcast news videos in 2005 and 2006.
(Right) Examples from documentary videos in 2007. Note that appearance of the same concept from the two data domains may be visually quite different.
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Fig. 5. Per-concept performance before and after SD on NUS-WIDE test set (mean APs over the ten runs). SD improves 66 concepts. Among the rest, very few

concepts suffer from significant performance degradation.

TABLE 11
OVERALL PERFORMANCE GAIN (RELATIVE IMPROVEMENT) ON NUS-WIDE
AND TRECVID (TV) 2005-2007 BENCHMARKS. SD: SEMANTIC
DIFFUSION. DASD: DOMAIN ADAPTIVE SEMANTIC DIFFUSION

| | NUS-WIDE [ TV 05 [ TV 06 | TV 07 |
# evaluated concepts 81 39 20 20
Baseline (MAP) [ 0.316 +0.001 | 0.166 0.154 0.099
SD 14.0+0.4% 11.8% | 15.6% | 121%
DASD 9.4+0.3% 11.9% | 175% | 162%

over each year’s test data. From the table, we see that, when
SD is used, MAP gain (relative improvement) is consistently
around 14.0% on NUS-WIDE. For the TRECVID 2005-2007
video benchmarks, MAP is improved by 11.8% to 15.6%. These
results confirm the effectiveness of formulating graph diffusion
for improving image and video annotation accuracy.

Fig. 5 gives per-concept performance of the 81 NUS-WIDE
concepts, and Fig. 6 shows per-concept performance of the 20
evaluated concepts in TRECVID 2006. Our approach consis-
tently improves 66 NUS-WIDE concepts and all the TRECVID
2006 concepts. In addition, among a total of 79 concepts from
TRECVID 2005 to 2007 as reported in Table II, almost all con-
cepts show improvement, except five concepts that have slight
AP drop. For the concepts with performance degradation, one
main reason is that the detector quality of their contextual con-
cepts (i.e., those close to the target concepts according to the
semantic graph) is not as good as that of the target concepts. As
will be discussed in Section VI-B, in this case, it is difficult to
attain performance gain from contextual diffusion.

Due to the video domain change from news to documen-
tary, the semantic graph G constructed from TRECVID 2005
obviously does not fit TRECVID 2007, which requires the

® Semantic Diffusion
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Fig. 6. Per-concept performance before and after SD on TRECVID 2006 test
set. Consistent improvements are observed for all of the 20 semantic concepts.

adaptation of the semantic graph. As shown in Table II, DASD
further boosts the performance on TRECVID 2006 and 2007.
On the other hand, there is no improvement on TRECVID
2005 and NUS-WIDE, which is due to the fact that there is
no domain change in both data sets. Recall that the domain
adaptation process incorporates new domain knowledge by
adjusting concept affinities using the relationships of annota-
tion scores from test domain (cf. Section IV-C). When training
and test data are from the same domain, altering the concept
affinities (initially computed from perfect training labels) using
imperfect annotation scores on test data is apparently not
useful. Note that, although both TRECVID 2005 and 2006 data
sets are broadcast news videos, they were captured in different
years so that the video content changes a lot. We consider
the graph adaptation process as a merit of our approach: It
can automatically refine the semantic geometry to fit the test
data, which will, in turn, help improve the video annotation
performance. One is suggested applying DASD when domain
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TABLE III
PERFORMANCE COMPARISON OF DASD WITH SEVERAL
EXISTING WORKS ON TRECVID BENCHMARKS

Jiang Aytar Weng
etal. [34] | etal [48] | etal. [33] | DASD
2005 2.2% 4.0% N/A 11.9%
2006 N/A N/A 16.7% 17.5%

shift is expected to happen between training and test data. Fig. 2
shows a fraction of the semantic graph, from which we have a
few observations—the adaptation process enhances the affinity
of sky and clouds and breaks the edge between desert and
weapon. The concept weapon frequently cooccurs with desert
scene in TRECVID 2005 broadcast news videos because there
are many events about Iraq war, whereas in the documentary
videos, this is rarely observed.

We compare our approach to three existing works in [33],
[34], and [48] for context-based video annotation. As shown in
Table III, on TRECVID 2005, our approach is able to improve
11.9%. With similar experimental settings, Jiang ef al. reported
performance gains of 2.2% over all 39 concepts and 6.8% over
26 selected concepts [34], and Aytar et al. improved 4% [48)].
Another work on utilizing semantic context for video annota-
tion is by Weng and Chuang [33], who reported a performance
gain of 16.7% over the same VIREO-374 baseline on TRECVID
2006 test set. However, techniques in [33] did not show the do-
main adaptation ability, and they used a graphical model formu-
lation, which is computationally much more expensive than our
approach. In addition, the parameters in [33] were separately
optimized for each of the concepts, whereas we use uniform pa-
rameter settings across all the concepts. We demonstrate a per-
formance gain of 17.5%, which is, to our knowledge, the highest
reported improvement on exploiting semantic context for video
annotation.

Effect of Parameters: Fig. 7 shows the NUS-WIDE and
TRECVID 2006 performance surfaces under different settings.
As can be seen from results on both benchmarks, there is a
tradeoff between the number of iterations and the diffusion step
size A. The finer A is used, the more iterations are needed to
reach the best diffusion performance. This empirical study also
indicates that different A, when combined with, correspond-
ingly, the best iteration number, can lead to fairly consistent
performance. Although NUS-WIDE is very much different
from TRECVID in terms of data characteristics, we see a
very consistent performance trend on both data sets. We also
evaluate the same parameter setting (A = 0.04) over different
data sets, i.e., TRECVID 2005 and 2007, and verified that the
optimal number of iteration (20) always can achieve the best or
close-to-the-best performance.

Compared with SD, DASD has one more parameter, i.e., the
step size of adaptation 3. We set A = (3 in the experiments
for simplicity and found that 20 remains a good choice for the
number of iterations. These findings confirm the performance
stability of the proposed SD and DASD over parameter set-
tings. The same parameters (A = 0.04 and #iteration = 20
for SD; A = 3 = 0.04 and #iteration = 20 for DASD) are
used throughout the experiments in this paper.
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Fig. 7. SD performance on (a) NUS-WIDE test set and (b) TRECVID 2006 test

set under various parameter settings. Performance trends and optimal parameter
values are similar on the two very different benchmarks.

Step Size A

Effect of concept affinity estimation method: The concept
affinities in the semantic graphs are computed based on the
ground-truth training labels in the above experiments. An alter-
native way is to estimate the concept affinities according to the
baseline annotation scores on each benchmark’s test data. Let 7
be the test set and g¢. be the baseline annotation scores of con-
cept ¢; in test image or video shot & (9}2 is a binary vector for the
Flickr image benchmark). Similar to (2), the weight w;; of the

IT1 e Nead
edge (¢, ¢;) can be calculated as w;; = Zk:a(;’l‘;f;f,(f‘? ) ,

where y; and o; are the mean and std of the annotation scores
of ¢;, respectively, in 7. With the new edge weights, we only
consider positive correlations and construct a new graph Gz for
each benchmark.

We rerun SD on NUS-WIDE and TRECVID 2007 test sets
using the corresponding new Gz . The overall performance gains
are 9.2% and 9.3%, respectively, for the image and video bench-
marks, which are lower compared with the results (14.0% and
12.1%, respectively) from using G derived from the golden-la-
beled training sets. Nevertheless, this process is more economic
than the construction of G using the fully labeled training sets.
Manual labeled training data are difficult to obtain in practice,
particularly when the number of concepts is in the order of thou-
sands. Thus, constructing semantic graphs based on initial an-
notation scores (from either noisy manual tagging or machine
learning) is a promising way when fully labeled training sets
are unavailable.

Effect of Negative Correlation: In order to study the effect of
negative correlations, we conduct another experiment on NUS-
WIDE and TRECVID 2007 test sets. When using the negative
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Fig. 8. DASD performance using various baselines on TRECVID 2006 test
set. The text under light and dark blue bars indicates the feature used in the
corresponding baseline detector.

graph G~ alone, the performance gain from SD is 5.9% on the
image benchmark and merely 1.3% on the video benchmark.

When both G and G~ are used (alternatively apply the first
part of (13) and (14), i.e., without graph adaptation), the MAP
gain is 18.1% on NUS-WIDE and 12% on TRECVID 2007. The
result is about the same with that using G alone on TRECVID
(12.1%). On the image benchmark, moderately higher perfor-
mance gain is observed. Based on these results, we conclude
that, although negative correlations captured by G~ may im-
prove the performance, in practice, G alone is preferred for
large-scale applications since it represents a good tradeoff be-
tween performance and speed.

Effect of Baseline Performance: Letus now evaluate the sen-
sitivity of our approach to the performance of baseline detec-
tors from machine learning. This experiment is conducted over
TRECVID 2006 test set. As mentioned in Section V-B, instead
of using fused output of the three SVMs as baseline annotation,
here we adopt the prediction output of each single (and rela-
tively weaker) modality as initial values for function g(-). The
domain adaptive version DASD is then applied to these three
weak baselines, respectively. Results are visualized in Fig. 8.
Apparently, the MAPs of all these weak detectors are consis-
tently and steadily improved with quite high performance gain.
Particularly, it improves the baseline of wavelet texture (MAP
is just 0.036) by 24% (the left dark blue bar). From these results,
we can see that the proposed approach is able to achieve consis-
tently better performance over various baseline detectors, even
for some fairly weak ones.

Speed Efficiency: The proposed approach is extremely effi-
cient. Constructing the semantic graph G using NUS-WIDE and
TRECVID 2005 training sets takes 59 and 284 s, respectively.
The complexity of both SD and its adaptive version DASD is
O(m?n), where m is the number of concepts (normally ranging
from several hundreds to a few thousands), and » is the number
of data samples (usually a large number). Table IV lists the de-
tailed run time on each data set. Take TRECVID 2006—which
contains 79 484 video shots—as an example, the SD algorithm
finishes in just 59 s, and DASD uses 165 s. In other words, run-
ning SD over the 374 concepts for each video shot only takes
1 ms. This is much faster than the existing works in [12], [33],
and [34], in which tens or hundreds of hours are required due to
the expensive training process involved in their methods.

In Web-scale applications, there may be millions of test im-
ages or video shots. Baseline annotation scores (g € R™*"; n
is the number of samples) of data samples in such a huge scale

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 6, JUNE 2012

TABLE IV
RUN TIME ON NUS-WIDE AND TRECVID (TV) 2005-2007 BENCHMARKS.
THE EXPERIMENTS WERE CONDUCTED ON AN INTEL CORE-2
Duo 2.2-GHz PC WiTH 2G RAM

| | NUS-WIDE | TV "05 | TV "06 | TV "07 |

SD 24s 59s 84s 12s
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Fig. 9. SD performance on (a) NUS-WIDE and (b) TRECVID 2005, using
contextual detectors at various performance levels [simulated with varying #;
see (15)]. Baseline annotation can be improved when # ranges from 0 (perfect
context) to 1.4 for NUS-WIDE and 1.8 for TRECVID. The table below each
chart gives MAP performance of the contextual detectors simulated using the
corresponding s on top of each cell.
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cannot be loaded in memory. Since the proposed algorithm dif-
fuses detection scores in each column of g independently [see
eq. (6)], we can get around this scalability issue easily by split-
ting g columnwise into an arbitrary number of smaller matrices
and then by running SD on each of them separately.

B. How Good Are Contextual Detectors Good Enough?

This experiment evaluates contextual diffusion performance
by varying the quality of the contextual detectors. Note that this
study is different from the experiment in Section VI-A-4, where
we have tested SD over different baseline annotation methods.
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Fig. 10. Per-concept performance before and after SD on NUS-WIDE test set using perfect contextual annotations (n = 0).

The main purposes here are to study the effect of contextual
detector reliability on SD (and, potentially, also other contextual
annotation approaches) and to learn the upper limit of context
as auxiliary cues for image and video annotation.

We use NUS-WIDE and TRECVID 20055 benchmarks. In-
stead of using manual tagging (image benchmark) or machine
learning classification (video benchmarks) as baseline annota-
tion of contextual concepts, we adopt ground-truth manual la-
bels. The quality of contextual detectors is then simulated by ar-
tificially adding various levels of noise to the ground-truth anno-
tations. Formally, the simulated contextual concept annotations
are obtained as follows:

Seimu =Bt + 7 1 (15)
where gt € R™*™ is the ground-truth annotation matrix, r €
R™*™ is a randomly generated noise matrix with values in
[—1,1], and 7 is a parameter controlling the degree of noise im-
posed on gt.

During SD, given a target concept ¢;, we use its original base-
line annotation g{¢;) as initial values of the ith row in g, whereas
initial values of the other contextual concepts are all drawn from
corresponding rows of gy - This way, we are able to reach the
scenario that contexts with varying accuracy values (adjusted by
7n) are used for improving a target concept annotated by manual
tagging or machine learning.

Fig. 9 shows the results on the image benchmark NUS-WIDE
and the video benchmark TRECVID 2005, where the bars indi-
cate SD performance using contexts simulated with various 7.
The table below each bar chart gives the performance of the
context detectors simulated with the 7 value on top of each cell.
Since there is a random factor (matrix r) in the generation of
Zsimu, fOr each choice of 7, we repeat the experiment ten times
and compute the mean and std of both contextual detector per-
formance (reported in the tables) and final SD performance (std
shown on top of the bars). From the figure, we see that the std
values are quite small, indicating that the performance is not
sensitive to the randomization of noise matrix r.

As shown in the figure, when perfect context is in use
(n = 0), the MAP performance can be significantly improved
to 0.459 for NUS-WIDE (relative gain 45.3% over the baseline
with a MAP of 0.316). The improvement is even more sig-
nificant for TRECVID 2005, with a MAP gain of 135%. This

STRECVID 2005 is the only data set containing full annotations of all the
374 LSCOM concepts, which allows us to simulate context detectors at various
performance levels.

clearly shows the great potential of context for visual annota-
tion. Fig. 10 further shows the per-concept AP on NUS-WIDE
using perfect context, where the performance of most concepts
is improved very significantly.

Another observation is that SD performance drops approxi-
mately linearly to the amount of noise added. No improvement
is observed when 7 increases to 1.6 (context MAP 0.350) for
NUS-WIDE, which is a bit surprising because an improvement
of 14% was obtained using the manual tagging baseline as con-
text (see Table II), whose MAP is lower than that of the simu-
lated context here (0.316 versus 0.350). This indicates that the
artificial noise added to the simulated contexts affects SD more
significantly than its effect on the context MAP. A similar obser-
vation also holds for the TRECVID 2005 benchmark. Overall,
from the SD performance trend observed in these experiments,
we can conclude that context is likely to be helpful when its an-
notation/detection quality is similar to or better than that of the
target concept baseline before contextual fusion.

VII. CONCLUSION AND DISCUSSION

We have presented a novel and efficient approach, which is
named SD, to exploit semantic contexts for improving image
and video annotation accuracy. The semantic context is em-
bedded in an undirected and weighted concept graph, on top of
which we recover the consistency and smoothness of video an-
notation results using a function-level graph diffusion process.
Extensive experiments on both image and video benchmark data
sets show that the semantic context is powerful for enhancing
annotation accuracy, and the proposed SD algorithm consis-
tently and significantly improves the performance over the vast
majority of the evaluated concepts. Furthermore, an adaptive
version of the proposed algorithm, which is called DASD, is
able to adapt the concept affinity to test data from a different
domain. The experimental results confirm that this adaptive ap-
proach can alleviate the domain-shift-of-context problem and
show further improvement of the annotation accuracy. Addi-
tionally, in the experiments on graph node affinity estimation,
we demonstrated that the semantic graph can be bootstrapped
using initial annotation results from noisy manual tagging or
machine learning, which is very helpful when an exhaustively
labeled training set is not available to construct the semantic
graph.

Another research question we had is “how good are contex-
tual detectors good enough?”’. We conducted a set of experi-
ments to simulate contextual detectors at various performance
levels. We observed that, with perfect contextual detectors, SD
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is able to improve a decent baseline by 45% on the image bench-
mark and 135% on the video benchmark, which, again, signifies
the great potential of contexts in visual annotation. Our answer
to the question is that context is very likely to be helpful when
the quality of contextual detectors is better than or at least on
the same level as the target concept baseline annotation. Since,
in most cases, we have similar baseline and contextual annota-
tion quality, this requirement should not be a bottleneck of con-
text-based image and video annotation.

Currently, our approach models concept affinities using an
undirected graph. This is not always ideal since, in some cases,
the contextual relationship of concepts may be directional (e.g.,
seeing a car indicates the existence of a road but not vice versa).
Therefore, one promising idea for future research is to adopt
a directed graph to model the semantic contexts. In addition,
since not all the concepts can benefit from contextual diffusion,
how to predict which concept detector could be improved from
contextual modeling is another interesting topic that deserves
future investigations.
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