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Video Event Recognition Using Kernel Methods

with Multilevel Temporal Alignment
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Abstract—In this work, we systematically study the problem of event recognition in unconstrained news video sequences. We adopt
the discriminative kernel-based method for which video clip similarity plays an important role. First, we represent a video clip as a bag
of orderless descriptors extracted from all of the constituent frames and apply the earth mover’s distance (EMD) to integrate similarities
among frames from two clips. Observing that a video clip is usually comprised of multiple subclips corresponding to event evolution
over time, we further build a multilevel temporal pyramid. At each pyramid level, we integrate the information from different subclips
with Integer-value-constrained EMD to explicitly align the subclips. By fusing the information from the different pyramid levels, we
develop Temporally Aligned Pyramid Matching (TAPM) for measuring video similarity. We conduct comprehensive experiments on the
TRECVID 2005 corpus, which contains more than 6,800 clips. Our experiments demonstrate that 1) the TAPM multilevel method
clearly outperforms single-level EMD (SLEMD) and 2) SLEMD outperforms keyframe and multiframe-based detection methods by a
large margin. In addition, we conduct in-depth investigation of various aspects of the proposed techniques such as weight selection in
SLEMD, sensitivity to temporal clustering, the effect of temporal alignment, and possible approaches for speedup. Extensive analysis
of the results also reveals intuitive interpretation of video event recognition through video subclip alignment at different levels.

Index Terms—Event recognition, news video, concept ontology, Temporally Aligned Pyramid Matching, video indexing, earth mover’s
distance.
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INTRODUCTION

VENT recognition from visual cues is a challenging task

because of complex motion, cluttered backgrounds,
occlusions, and geometric and photometric variances of
objects. Previous work on video event recognition can be
roughly classified as either activity recognition or abnormal
event recognition.

For model-based abnormal event recognition, Zhang et al.
[1] propose a semisupervised adapted Hidden Markov
Model (HMM) framework in which usual event models are
first learned from a large amount of training data and
unusual event models are learned by Bayesian adaptation.
In model-based approaches to activity recognition, fre-
quently used models include HMM [2], coupled HMM [3],
and Dynamic Bayesian Network [4]. The work in [5]
modeled each activity with a nominal activity trajectory
and one function space for time warping. To model the
relationship between different parts or regions, object
tracking is usually performed before model learning [2],
[3], [6]. Additionally, these techniques heavily rely on the
choice of good models, which in turn requires sufficient
training data to learn the model parameters.

e D. Xu is with the School of Computer Engineering, Nanyang Technolo-
gical University, 50 Nanyang Avenue, Blk N4, Singapore, 639798.
E-mail: dongxu@ntu.edu.sg.

e S.-F. Chang is with the Department of Electrical Engineering, Columbia
University, 500 W. 120th St. Rm 1312, New York, NY 10027.

E-mail: sfchang@ee.columbia.edu.

Manuscript received 4 Sept. 2007; revised 4 Feb. 2008; accepted 24 Mar. 2008;
published online 20 May 2008.

Recommended for acceptance by |.Z. Wang, D. Geman, |. Luo, and R.M. Gray.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMISI-2007-09-0550.

Digital Object Identifier no. 10.1109/TPAMI.2008.129.

0162-8828/08/$25.00 © 2008 IEEE

Appearance-based techniques extract spatiotemporal
features in the volumetric regions, which can be densely
sampled or detected by salient region detection algorithms.
For abnormal event recognition, Boiman and Irani [7]
proposed extracting an ensemble of densely sampled local
video patches to localize irregular behaviors in videos. For
activity recognition, Ke et al. [8] applied boosting to choose
volumetric features based on optical flow representations.
Efros et al. [9] also used optical flow measurements in
spatiotemporal volumetric regions. Other researchers ex-
tracted volumetric features from regions with significant
local variations in both spatial and temporal dimensions
[10], [11], [12], [13]. Laptev and Lindeberg [11] detected
salient regions by extending the idea of Harris interest point
operators [14] and Dollar et al. [10] applied separable linear
filters for the same objective. Learning techniques such as
support vector machine (SVM) [13] and probabilistic latent
semantic analysis (pLSA) [12] are also combined with the
above representation [10], [11] to further improve perfor-
mance. The performance of appearance-based techniques
usually depends on reliable extraction of spatial-temporal
features and/or salient regions, which are often based on
optical flow or intensity gradients in the temporal dimen-
sion. This makes the approach sensitive to motion, e.g., the
detected interest regions are often associated with high-
motion regions [8].

The extensive works mentioned above have demonstrated
promise for event detection in domains such as surveillance
or constrained live video. However, generalization to less
constrained domains like broadcast news has not been
demonstrated. Broadcast news videos contain rich informa-
tion about objects, people, activities, and events. Recently,
due to the emerging applications of open source intelligence
and online video search, the research community has shown
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Fig. 1. lllustration of temporal matching in (a) SLEMD and (b) multilevel
TAPM.

increasing interest in event recognition in broadcast news
videos. For example, analysts or ordinary users may be
interested in specific events (e.g., a visit of a government
leader and a world trade summit) or general event classes.
To respond to such interests, Large-Scale Concept Ontol-
ogy for Multimedia (LSCOM) ontology [15], [16] has
defined 56 event/activity concepts, covering a broad range
of events such as car crash, demonstration, riot, running,
people marching, shooting, walking, and so on. These
events were selected through a triage process based on
input from a large group of participants, including video
analysts, knowledge representation experts, and video
analysis researchers. Manual annotation of such event
concepts has been completed for a large data set in
TRECVID 2005 [15].

Compared with prior video corpora used in abnormal
event recognition and activity recognition, news videos are
more diverse and challenging due to the large variations of
scenes and activities. Events in news video may involve
small objects located in arbitrary locations in the image
under large camera motions. Therefore, it is difficult to
reliably track moving objects in news video, detect the
salient spatiotemporal interest regions, and robustly extract
the spatial-temporal features.

To address the challenges of news video, Ebadollahi et al.
[17] proposed treating each frame in the video clip as an
observation and applying an HMM to model the temporal
patterns of event evolution. Such approaches are distinct
from most prior event recognition techniques since they
circumvent the need for object tracking. In contrast, holistic
features are used to represent each frame and the focus is on
the modeling of temporal characteristics of events. How-
ever, results shown in [17] did not confirm clear perfor-
mance improvements over a simplistic detection method
using static information in keyframes only. This is perhaps
due to the lack of a large training set required to learn the
model parameters.

In this work, we also adopt holistic representations for
image frames without object tracking or spatiotemporal
interest region detection. We propose using midlevel
concept score (CS) features to abstract visual content in
unconstrained broadcast news video. Each CS is generated
by a semantic concept classifier, which can represent the
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Fig. 2. lllustration of our midlevel concept scores. Scores shown in graph
bars are actual values generated by five concept detectors: anchor,
show, soccer, building, and outdoor.

semantic meaning of the image to some extent, as shown in
Fig. 2 and discussed in detail in Section 2. We also propose a
nonparametric approach in order to circumvent the
problems of insufficient training data for model learning
and to simplify the training process. We investigate how to
efficiently utilize the information from multiple frames, as
well as the temporal information within each video clip.
Inspired by the recent success of the bag-of-words model in
object recognition [18], [19], [20], we first represent one
video clip as a bag of orderless features, extracted from all
of the frames. To handle the temporal variations in different
video clips, we apply the earth mover’s distance (EMD)
[21], referred to as single-level EMD (SLEMD) in this work,
to measure video clip similarity and combine it with SVM
kernel classifiers for event detection. The idea behind EMD
has been used for decades under a variety of names in
probability, statistics, ergodic theory, information theory,
and so on, see [22], [23], [24] for more details. SLEMD
computes the optimal flows between two sets of frames,
yielding the optimal match between two frame sets, as
shown in Fig. 1a.

We also observe that one video clip is usually comprised
of several subclips which correspond to multiple stages of
event evolution. For example, Figs. 3a and 3f show two
news video clips in the Riot class, both of which consist of
distinct stages of fire, smoke, and/or different backgrounds.
Given such multistage structures, it makes sense to extend
the SLEMD mentioned above to multiple scales. Specifi-
cally, we propose a Temporally Aligned Pyramid Matching
(TAPM) framework in which temporal matching is per-
formed in a multiresolution fashion. As shown in Fig. 1b,
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Fig. 3. Conceptual illustration for Temporally Aigned Pyramid Matching. For better viewing, please see the color pdf file, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.129. (a) and (f) Frames from two videos, P and @, from
the Riot class are segmented into multiple subclips. (b) One keyframe for each clip. (c) Ground distance matrix and continuous-value flow matrix
from the SLEMD alignment process. The red circles indicate the locations of the keyframes in the corresponding video clips. The green circles
highlight the problem that one frame may be matched to multiple frames that are far apart. (d) and (e) The EMD distance matrices between the
subclips and their corresponding integer-value flow matrices are shown at level-1 and level-2. In contrast to (c), the first several frames in P can only
be matched to frames within a subclip of the same border color in Q; thus, temporal proximity is preserved.

frames in a subclip (conceptually corresponding to an event
stage) are matched to frames within one subclip in the other
video, rather than spread over multiple subclips in Fig. 1a.
Such constraints may seem to be overrestrictive, but it
explicitly utilizes the temporal information and is experi-
mentally demonstrated to be effective for improving
detection accuracy of several events in Section 5.3. Further-
more, there is no prior knowledge about the number of
stages in an event and videos of the same event may include
a subset of stages only. To address this problem, we
propose fusing the matching results from multiple temporal
scales in a way similar to that used in Spatial Pyramid
Matching (SPM) [18] and Pyramid Match Kernel (PMK) [25]
for object recognition. However, it is worthwhile to point
out that SPM used fixed block-to-block matching in the
spatial domain for scene classification based on the observa-
tion that images from the same scene have similar spatial
configurations. But, in TAPM, the subclips across different
temporal locations may be matched, as shown in Fig. 1b,
which will be explained in detail in Section 4.2.

We conduct comprehensive experiments on the large
TRECVID 2005 database and the experiments demonstrate
that 1) the multilevel matching method TAPM clearly
outperforms SLEMD and 2) SLEMD outperforms basic
detection methods that use one keyframe or multiple
keyframes. To the best of our knowledge, this work and
our initial conference version [26] are the first to system-
atically study the problem of visual event recognition in less
constrained video domains such as broadcast news without
any specific parametric model or object tracking.

2 SceNE-LEVEL CONCEPT SCORE FEATURE

In this work, we adopt holistic features to represent content in
constituent image frames and a multilevel temporal align-
ment framework to match temporal characteristics of various
events. We consider three low-level global features—Grid
Color Moment, Gabor Texture, and Edge Direction Histo-
gram—because of their consistent, good performance re-
ported in TRECVID [27], [28]. For the Grid Color Moment
feature, we extract the first three moments of three channels in
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the CIE Luv color space from each of the 5 x 5 fixed grid
partitions and aggregate the features into a single 225-
dimensional feature vector. For the Gabor Texture feature,
we take four scales and six orientations of the Gabor
transformation and compute their means and standard
deviations, giving a dimension of 48. The Edge Direction
Histogram feature includes 73 dimensions with 72 bins
corresponding to edge directions quantized at five degrees
and one bin for nonedge pixels. For more details about the
low-level global features, please refer to [27], [28]. Note that
similar color, texture, and edge features were frequently used
in TRECVID by other research groups [29], [30], [31], [32].

We also use a large number of midlevel semantic CSs to
abstract visual information. Such a midlevel CS feature has
shown promise for abstracting visual content and signifi-
cantly improving the performance of semantic video
retrieval [33]. To detect the semantic concepts in general
broadcast news videos, we have developed 374 concept
detectors, Columbia374-baseline [33], [34], to detect a
diverse set of semantic concepts. These concepts are
carefully chosen from the LSCOM ontology [15] and are
related to important categories of information in open
source news videos, such as events, objects, locations,
people, and programs. The complete listing of the LSCOM
ontology, the 374 semantic concepts, and their annotations
over the entire set of video shots from the TRECVID 2005
data set (61,901 shots from 137 video programs) can be
found in [15]. In Columbia374-baseline [33], [34], the
training data are from the keyframes of 90 video programs
in the TRECVID 2005 data set. Based on the above three
low-level features, three independent SVMs were trained
and then fused to produce the scores for each concept. Each
image is then mapped to a semantic vector space in which
each element presents a confidence score (or response)
produced by a semantic concept classifier. For more details
about Columbia374-baseline, please refer to [33], [34].

Fig. 2 shows some example images and their responses
from five concept detectors: anchor, snow, soccer, building,
and outdoor. We observe that our midlevel CS feature can
adequately characterize the semantic meaning of an image
to some extent. For example, for the images in the third row,
the responses from concept detectors building and outdoor
are strong, but the responses from the other three detectors
are weak, which reasonably represents the semantic mean-
ing of these images. In this work, we leverage the potential
of large-scale concept detectors and devise effective
mechanisms of event recognition based on such a concept
representation framework. Columbia374 baseline models
have been released to the community [34] with the goal of
fostering innovation in concept detection and enabling the
exploration of the use of a large set of concept detectors for
other tasks (e.g., video search and event recognition).

While it is possible to use other local features, such as term
frequency-inverse document frequency (tf-idf) features [19]
based on SIFT local descriptors [35], we use the above global
features and scene-level CSs because 1) they can be efficiently
extracted over the large video corpus while avoiding the
difficult task of object detection and tracking, 2) they have
been shown to be effective for detecting several concepts in
previous TRECVID experiments [27], [28], [29], [30], [31],
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[32], and 3) they are suitable for capturing the character-
istics of scenes in some events such as Riot, Car Crash,
Exiting Car, and so on. Examples of the dominant scenes for
the Riot class are shown in Fig. 3 and the experimental
results shown in Section 5 also confirm the potential of the
representations.

3 SINGLE-LEVEL EARTH MOVER’S DISTANCE IN
THE TEMPORAL DOMAIN

We represent a video clip as a bag of orderless descriptors
(e.g., midlevel concept scoress) extracted from all of the
constituent frames and we aim to compute the distance
between two sets of points with unequal length. In the
literature, several algorithms (e.g., the Kullback-Leibler
Divergence-based Kernel [36], Pyramid Match Kernel [25],
and EMD [21]) have been proposed. In this work, we apply
the EMD [21] to integrate similarities among frames from
two clips because of its promising performance in several
different applications such as content-based image retrieval
[21], [37], texture classification, and general object recogni-
tion [20]. It is worthwhile to highlight that our framework is
a general framework for event recognition in unconstrained
news video and other techniques, such as [25], [36], may be
combined with EMD to further improve the performance.

In this section, we develop an SLEMD to efficiently
utilize the information from multiple frames of a video clip
for event recognition. We will extend this method to
multiple levels in Section 4. One video clip P can be
represented as a signature: P = {(p1,wy,),--., (Pm,wp, )},
where m is the total number of frames, p; is the feature
extracted from the ith frame, and w), is the weight of the
ith frame. The weight w),, is used as the total supply of
suppliers or the total capacity of consumers in the EMD
method, with the default value of 1/m. p; can be any
feature, such as Grid Color Moment [27] or CS feature [33].
We also represent another video clip @ as a signature:
Q= {(q1,wy),--., (g, w, )}, where n is the total number of
frames and ¢; and w, = 1/n are defined similarly. We note
the same setting was also used in [20], [37] because of its
simplification and efficiency. In news video, it is a
challenging task to handle temporal shifts and duration
variations. With this setting, we observe that one frame at
the beginning of P may be matched to one frame at the end
of @, which indicates that EMD with default normalized
weights can efficiently handle temporal shifts. Also, as
shown in Fig. 3¢, flow values computed with (2) can be
continuous values; therefore, one frame of P may be
matched to multiple frames of @), which indicates that it
can handle duration variations to some extent. Moreover, in
Section 5.2, we demonstrate through experiments that EMD
with the normalized value works better than other possible
weights, e.g., unit weight. The EMD between P and () can
be computed by

it e Jid
- -~ )
2:11 Z?:l fij

where d;; is the ground distance between p; and ¢; (we use
euclidian distance as the ground distance in this work

D(P,Q) (1)
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because of its simplicity and prior success reported in [20],
[37]) and f, ; is the optimal flow that can be determined by
solving the following Linear Programming problem with
the standard Simplex method [21].

flj *argmlnzz.fl] ij

Fij i=1 j=

n m
E fij = min E Wy, , E Wy,
=

m

L<w,1<z<m i <wy, 1 <g<n.
J pi J 455

(2)

f,;j can be interpreted as the optimal match among frames
from two video clips, as shown in Fig. 1a. Since euclidean
distance is a metric and the total weight of each clip is
constrained to be 1, the EMD distance is therefore a true
distance because nonnegativity, symmetry, and the triangle
inequality all hold in this case [21]. Suppose the total
number of frames in two video clips are the same, i.e.,
m = n, then the complexity of EMD is O(m?3log(m)) [21].

Figs. 3a and 3f show all of the frames of the two video
clips P and @ from the Riot class. Fig. 3b shows two
representative keyframes provided by the TRECVID data
set. The ground distance matrix and the flow matrix
between the frames of P and () are shown in Fig. 3¢, in
which the brighter pixels indicate that the values at that
position are larger. In Fig. 3c, we also use the red circles to
indicate the positions of two keyframes. From this, we can
see that the flow (calculated from the EMD process)
between these two keyframes is very small, confirming
that a keyframe-based representation is not sufficient for
capturing characteristics over multiple frames of the same
event class. We also use four green circles in Fig. 3c to
highlight that the neighboring frames from the first stage of
P are matched to distant frames scattered among several
different stages of (). In other words, temporal proximity
and order among frames are not preserved in this SLEMD
method. In Section 4, we will propose a multiresolution
framework to partially preserve the proximity relations.

For classification, we use an SVM because of its good
performance [18], [20], [25], [37]. For a two-class (e.g., Riot
versus non-Riot) case, we use the Gaussian function to
incorporate EMD distance from every pair of training video
clips into the SVM classification framework:

m
;> 0;
i=1

K(P.Q) = cap(~ 5 DP.Q) ). 3)

In the training stage, we set hyperparameter A to xkA,,
where the normalization factor Ay is the mean of the EMD
distances between all training video clips and the optimal
scaling factor s is empirically decided through cross
validation. While no proof exists for the positive definite-
ness of the EMD-kernel, in our experiments, this kernel has
always yielded positive definite Gram matrices. Further-
more, as shown in [20], [37], EMD-kernel works well in
content-based image retrieval and object recognition. In the
testing stage, the decision function for a test sample P has
the following form:

1989
zzjgz(lﬂﬁ}((}%CQO _'a (4)
t

where K(P,Q,) is the value of a kernel function for the
training sample @); and the test sample P, y; is the class label
of Q; (+1 or —1), ¢y is the learned weight of the training
sample @, and b is the threshold parameter. The training
samples with weight a; > 0 are called support vectors. The
support vectors and their corresponding weights are
learned using the standard quadratic programming opti-
mization process or other variations. In this project, we use
tools from libsvm [38] in our implementations.

4 TEMPORALLY ALIGNED PYRAMID MATCHING

We observe that one video clip is usually comprised of
several subclips (subclip partition will be discussed in
Section 4.1), which correspond to event evolution over
multiple stages. For example, in Figs. 3a and 3f, we can
observe that videos from the Riof class may consist of two
stages, involving varying scenes of fire and smoke and
different locations. Recent works such as SPM [18] and
Pyramid Match Kernel [25] have demonstrated that better
results may be obtained by fusing the information from
multiple resolutions according to pyramid structures in the
spatial domain and feature domain, respectively. Inspired
by these works, we propose applying Temporally Con-
strained Hierarchical Agglomerative Clustering (T-HAC) to
build a multilevel pyramid in the temporal domain.
According to the multilevel pyramid structure, each video
clip is divided into several subclips, which may correspond
to distinct stages involved in the evolution process of the
event. From now on, we denote the video clip at level-0 (i.e.,
the original video clip) as P or P and the subclips at level-/
as P\, wherer=1,...,R=2,1=0,...,L — 1 with L as the
total number of levels. For example, as shown in Figs. 3a
and 3f, four subclips at level-2 are denoted as P}, P;, P},
and P}, which are bounded by solid bounding boxes, and
two subclips at level-1 are denoted as P} and P}, which are
bounded by a dashed bounding box.

We also observe that, in broadcast news videos, stages of
two different clips of the same event in general may not
follow a fixed temporal order. To address this problem, we
integrate the information from different subclips with
Integer-value-constrained EMD to explicitly align the
orderless subclips (see Section 4.2). Finally, we fuse the
information from different levels of the pyramid, which
results in the TAPM.

4.1 Temporally Constrained Hierarchical
Agglomerative Clustering

We use Hierarchical Agglomerative Clustering [39] to
decompose a video into subclips. Clusters are constructed
by iteratively combining existing clusters based on their
distances. To incorporate temporal information, we propose
using T-HAC, in which, at each step, we only merge
neighboring clusters in the temporal dimension. More
details are listed in Algorithm 1. Examples of the clustering
results are also shown in Figs. 3a and 3f. We observe that
T-HAC provides a reasonable pyramid structure in the
temporal dimension.
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Algorithm 1. T-HAC.

1. Each frame is initialized as a singleton cluster;

For any two neighboring clusters from the constitu-
ent frames, compute their distance in terms of the
minimum temporal time difference criterion. Then,
the two clusters with the minimal distance are
merged together to form a new cluster and hence
the total number of clusters is reduced by one;

3. This merging procedure continues until the pre-

specified number of clusters is reached.

Later, in Section 5.4, we will experimentally compare the
results from T-HAC with a simple solution for dividing
video clips into different stages, which uniformly partitions
one clip into several subclips. We also analyze the
sensitivity of our framework to the temporal clustering
algorithm by adding random perturbations to the temporal
boundary from T-HAC. We also note that the proposed
framework is general and other clustering algorithms may
be readily incorporated into our framework to replace the
T-HAC clustering method described above. As for deter-
mination of the suitable number of clusters, we conjecture
that there is no single best value and thus propose an
effective method to fuse the subclip matching results from
multiple resolutions (see Section 4.3) in a way similar to that
adopted in SPM for object recognition [18].

4.2 Alignment of Different Subclips

After we build the pyramid structure in the temporal
dimension for two video clips P and @, we need to compute
the distance at each level, i.e., S'(P,Q) at level . First, we
apply (1) to compute the EMD distances between subclips
at level [, ie., D' Figs. 3d and 3e (the left-hand-side
matrices) show examples for P and (@ at level-1 and level-2,
respectively, in which again a higher intensity represents a
higher value between the corresponding subclips. For
example, at level-2, we compute a 4 x 4 EMD distance
matrix with its elements denoted as D?, the EMD distance
between P? and Q? r=1,...,4 and c=1,...,4. If we
assume a uniform partitioning of a video clip into subclips,
the complexity involved in computing level-I distance is
O((27'm)*log(27'm)), which is significantly lower than the
SLEMD (i.e., {=0). Therefore, fusing information from
higher levels does not add significant computational cost to
the overall detection method.

If we follow the same strategy as in SPM [18], which
assumes that the corresponding subregions of any scene
category are well aligned according to their position in the
images, we can take the sum of the diagonal elements of D'
as the level-l distance. However, in Fig. 3d, we observe that
the diagonal elements of D' are very large because the first
stage of P and the last stage of () focus on the fire scene and
the last stage of P and the first stage of () mainly depict
smoke and the nature scene. Thus, it is desirable to align the
subclips shown in Figs. 3a and 3f inversely in the temporal
domain. Similar observations can be found from the EMD
distances at level-2 (a 4 x 4 matrix) in Fig. 3e. In Fig. 4, we
also plot the data distribution in the three-dimensional
space of all of the frames from two subclips of P and @
(both depicting Riot) at level-1 and from other negative
video clips, e.g., videos from other events such as People
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Fig. 4. Projection of image frames of two videos (P and Q) of the same
event Riot into a 3D space via PCA. Note the projected points from two
videos share similar locations centered at two distinct clusters, but the
points from the first and second stages (subclips) are swapped between
the two clusters. The yellow points are from the negative set (i.e., non-
Riot) and thus do not share similar locations with those from the positive
set. For better viewing, please see the color pdf file, which can be found
on the Computer Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TPAMI.2008.129.

Walking, Ground Combat, and so on. The CS feature is
projected into 3D space by Principal Component Analysis
(PCA). In Fig. 4, it is seen that video clips from event Riot
may be comprised of two stages occupying consistent
locations in the 3D space, except that the sequential order of
the two stages may be switched, according to the data
distribution in the 3D space.

To explicitly align the different subclips and utilize the
temporal information, we constrain the linear programming
problem in EMD to an integer solution (i.e., integer program-
ming). Such an integer solution can be conveniently
computed by using the standard Simplex method for Linear
Programming, according to the following Theorem 1.

Theorem 1 [40]. The Linear Programming problem,

R C
argminZZF,.cD,.u, st. 0<F,.<1, Vrc
Fe S (5)
> Fe=1, Yr; Y F.=1, Vg and R=C,

will always have an integer optimum solution when it is solved
with the Simplex method."

More details about the theorem can be found in [40]. We
use the integer-value constraint to explicitly enforce the
constraint that neighboring frames from a subclip are
mapped to neighboring frames in a subclip in the other
video. Without such an integer-value constraint, one
subclip may be matched to several subclips, resulting in a
problem that one frame is mapped to multiple distant

1. This problem can be also formulated as a minimum-weighted bipartite
matching problem [41]. However, the main focus of this work is to propose
a general framework for event recognition in unconstrained news video. To
be consistent with our single-level EMD, we formulate it as an integer-
value-constrained EMD and still use the Simplex method to solve it. Note
tht the computation cost is low in this step because the total number of
parameters is only 4 and 16 at level-1 and level-2, respectively.
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frames (as exemplified by the green circles in Fig. 3c). Note
that noninteger mappings are still permitted at level-0 so
that soft temporal alignments of frames are still allowed
within the video clip at level 0. Similarly to (1), the level-
distance S'(P,Q) between two clips P and @ can be
computed from the integer-value flow matrix F! and the
distance matrix D' by

R C
Zr:l Zc:l FvicDi(
R C
Er:1 Zc:l Fr{(*

where R = C =2' and F}, are 0 or 1.

Again, we take the subclips at level-1 as an example.
According to Theorem 1, we set R = C' = 2and obtaina 2 x 2
integer flow matrix F', as shown in Fig. 3d (the right-hand-
side matrix). From it, we can find that two subclips of P and
@ are correctly aligned (i.e., inversely aligned). Similar
observations at level-2 can be found in the right-hand-side
matrix in Fig. 3e, where we set R = C' = 4. In Figs. 3a and 3f,
the aligned subclips are shown with the same border color.

Similarly to the kernel-based method described in
Section 3, for each level /, we apply (3) to convert level-/
distance S'(P, Q) to its kernel matrix. In the training stage,
we train a level-l SVM model for each level . In the testing
stage, for each test sample P, according to (4), we can obtain
the decision values ¢°(P), ¢*(P), ¢*(P), and so on, from the
SVM models trained at different levels.

SI(Pv Q) =

, (6)

4.3 Fusion of Information from Different Levels

As shown in [18], the best results can be achieved when
multiple resolutions are combined, even when some
resolutions do not perform well independently. In this
work, we directly fuse the decision values ¢/(P), | =
0,...,L—1 from different level SVM models according to
the method suggested in [33], [42]:

L—

: h
A Ve "

—

where h; is the weight for level-l.

In our experiments, we set L =3. We tried two
weighting schemes: 1) the weights suggested in [18] and
[25], ie., equal weights hyg = h; =1 to fuse the first two
levels and diadic weights hyg =h; =1, hy =2 to fuse all
levels and 2) equal weights hy = h; = hy =1 to fuse all
three levels. In Section 5, we will present experimental
results to demonstrate that the results with equal weights
are comparable to or slightly better than the weights
suggested in [18], [25] when fusing all three levels. More
details about TAPM are listed in Algorithm 2.

Algorithm 2. TAPM.

1. Divide video clip P and Q into subclips P! and Q!,
1=1,2,.... L — 1, with T-HAC;

2. Compute the distance S°(P, Q) with (1) and (2) and
then SVM training and testing based on S°(P, Q);

3. Forl=1,2,...,L—1,Do

1) Compute the EMD distances D!, between
subclips with (1) and (2);

1991

2) Compute the integer-value flow matrix F' and
the distance S'(P, Q) with (5) and (6);
3) SVM training and testing based on S'(P, Q);
4. Fuse the information from multiple resolutions
with (7).

5 EXPERIMENTS

We conduct comprehensive experiments over the large
TRECVID 2005 video corpus to compare 1) our SLEMD
algorithm, i.e., TAPM at level-0, with the simplistic detector
that uses a single keyframe and multiple keyframes and
2) multilevel TAPM with the SLEMD method. We also
analyze the effect of the multilevel temporal matching
procedure introduced in Section 4.2 and propose a method
to speed up TAPM without sacrificing classification
accuracy. In addition, we compare our midlevel CS feature
with three low-level features.

We chose the following 10 events from the LSCOM
lexicon [15], [16]: Car Crash, Demonstration Or Protest,
Election Campaign Greeting, Exiting Car, Ground Combat,
People Marching, Riot, Running, Shooting, and Walking. They
are chosen because 1) these events have relatively higher
occurrence frequency in the TRECVID data set [16] and
2) intuitively, they may be recognized from visual cues. The
number of positive samples for each event class ranges from
54 to 877. We also construct a background class (containing
3,371 video clips) that does not overlap with the above
10 events. When training the SVM, the negative samples for
each event comprise the video clips from the other nine
events and the background class. We randomly choose
60 percent of the data for training and use the remaining
40 percent for testing. Since it is computationally prohibitive
to compute the similarities among video clips and train
multiple SVMs with cross validation over multiple random
training and testing splits, we reported the results from one
split. For a performance metric, we use noninterpolated
Average Precision (AP) [43], [44], which has been used as
the official performance metric in TRECVID. It corresponds
to the multipoint AP value of a precision-recall curve and
incorporates the effect of recall when AP is computed over
the entire classification result set. We also define Mean AP
(MAP) as the mean of APs over 10 events.

5.1 Data Set Description and Annotation

We provide additional information about the data set and
the selected event classes in this section. The TRECVID
video corpus is probably the largest annotated video
benchmark data set available to researchers today. Through
the LSCOM effort, 449 semantic concepts have been
manually annotated by a large student group to describe
the visual content in each of the 61,901 subshots. The video
data includes 137 video programs from six broadcast
sources (English, Arabic, and Chinese), covering realistic
and diverse visual content. More than 50 groups partici-
pated in TRECVID 2006 and the top results on high-level
feature extraction were from Tsinghua University [30], the
IBM T.J. Watson Research Center [29], CMU [31], Columbia
University [34], and UCF [32]. The best MAP over
20 selected concepts is 19.2 percent [43].
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TABLE 1
Average Precision (%) at Different Levels of TAPM

| Event Name \ KF-CS \ ME-CS \ L0 (SLEMD) | L1 | L2 | LO+L1 | LO+L1+L2 \ LO+L1+L2-d |
Car Crash 10.5 26.9 39.2 49.2 | 50.5 49.2 51.1 51.0
Demonstration Or Protest 16.0 18.0 21.9 227 | 21.3 23.6 23.6 23.6
Election Campaign Greeting 7.2 8.7 12.7 12.2 | 12.7 13.4 13.9 13.7
Exiting Car 15.6 159 46.2 49.3 | 40.2 51.4 50.7 50.1
Ground Combat 38.8 40.0 41.9 439 | 433 439 44.2 44.1
People Marching 19.5 19.5 214 24,5 | 249 25.7 25.8 25.8
Riot 11.1 15.3 19.9 20.8 | 17.5 22.8 22.7 22.9
Running 78.9 82.1 85.7 83.9 | 853 86.6 86.7 86.6
Shooting 9.6 7.2 9.9 10.7 | 8.6 12.2 10.4 9.9
Walking 37.1 41.3 50.1 52.1 | 524 51.1 52.4 52.8
Mean AP 24.4 27.5 34.9 369 | 35.7 38.0 38.2 38.1

Note that the results of LO are from SLEMD and the results of KF-CS and MF-CS are from the keyframe and multiframe-based algorithms using the
CS features. The last row, referred to as Mean AP, is the mean of APs over 10 events.

Among the annotated concepts, 56 belong to the event/
activity category, 10 of which are chosen as our evaluation set
in this paper. The first version of the LSCOM annotation
labels (available at [15]) were obtained by having the human
annotators look at a keyframe for each subshot in order to
improve throughput in the annotation process. Such a
process is adequate for static concepts (e.g., indoor and
people) but deficient for judging events that involve strong
temporal attributes such as Exiting Car. Hence, in this work,
we have conducted further steps to refine the event labels by
having an annotator view all of the frames in a shot.>

The detailed annotation procedure is described as
follows: Since we did not have the resources to conduct
labeling over the entire corpus (about 80 hours) for the
10 concepts, we prefiltered the shots by using the original
keyframe-based LSCOM annotations [15]. Only shots
receiving a positive label in the keyframe-based annotations
for a given event concept were reexamined. The annotator
reviewed all of the extracted frames to judge the presence/
absence, as well as the start/end boundaries, of the event.
Starting with the shot-level temporal boundaries provided
by NIST, we sampled each positive shot at a rate of
10 frames per second to extract image frames from each
shot. A student who was not involved in the algorithmic
design annotated each shot as positive or negative for a
given event concept by visually inspecting the sequence of
extracted frames. During this process, the annotator also
identified the temporal start/end boundaries of the event,
which may not coincide with the initial shot boundaries
provided by TRECVID.

After refinement, there are 3,435 positive clips in total
over the 10 events. We believe this benchmark set from
broadcast news and our annotation effort nicely comple-
ment the existing video event evaluation sets, which are
usually drawn from the surveillance and meeting room
domains.

2. TRECVID merges a subshot shorter than two seconds with its
previous subshot to form a shot. To be consistent with the TRECVID
evaluation, we refine the event labels at the shot level.

5.2 Single-Level EMD versus Keyframe-Based
Algorithm

We compare our SLEMD algorithm to the keyframe-based
algorithm that has frequently been used in TRECVID [43],
[44]. In this paper, we extract 108-dimensional CS features
from all of the images whose elements are the decision
values of independent SVM classifiers. These SVM classi-
fiers are independently trained using each of the three low-
level features mentioned in Section 2 for detecting the
36 LSCOM:-lite concepts.’

The classical keyframe-based algorithm (referred to as
“KF-CS”) for event recognition only considers information
from one keyframe for each video clip. Namely, they
applied SVM on the kernel matrix computed between the
keyframes of every two clips. The kernel matrix is
calculated by applying the same exponential function as
(3) to convert the euclidean distance computed from the
low-level features or our midlevel CSs. We also report the
results from a late fusion approach with a multiframe-based
representation, referred to as “MF-CS” here. In MF-CS, we
uniformly choose another four frames for each video clip
and then use the same technique as in KF-CS to train four
SVMs. Finally, we fuse the SVM decisions from four frames
and keyframe using (7) with the equal weights.

The experimental results are shown in Table 1, from
which we have the following observations: 1) MF-CS
outperforms KF-CS in most cases, which demonstrates the
importance of utilizing multiple frames instead of just a
single keyframe for event recognition, and 2) the SLEMD
algorithm that considers alignment among multiple frames
achieves much better accuracy than the keyframe and
multiframe-based algorithms KF-CS and MEF-CS. When
comparing SLEMD with MF-CS, the AP for the Exiting
Car event class significantly increases from 15.9 percent to
46.2 percent.

3. The LSCOM-lite lexicon, a preliminary version of LSCOM, includes
the 39 dominant visual concepts present in broadcast news videos, covering
objects (e.g., car and flag), scenes (e.g., outdoor and waterscape), locations
(e.g., office and studio), people (e.g., person, crowd, and military), events
(e.g., people walking or running and people marching), and programs (e.g.,
weather and entertainment). Three of them overlap with our target concepts
of events and thus are not used for our midlevel representations.
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As mentioned in Section 3, it is possible to use other
weights, e.g., unit weight 1 for SLEMD. Here, we compare
SLEMD (also referred to as L0) with the default normalized
weights 1/m and 1/n for two video clips, with LO-Unit-
Weight, in which the weights are fixed at 1. Our experi-
ments demonstrate that LO with normalized weights
significantly outperforms LO-UnitWeight (34.9 percent
versus 20.9 percent). When we compute the distances
between any two subclips at level-l and level-2, we use
the default normalized weights as well.

5.3 Multilevel Matching versus Single-Level EMD

We conduct experiments to analyze the effect of varying the
number of levels used in the temporal alignment process
(TAPM described in Section 4). Table 1 shows the results at
three individual levels—Ilevel-0, level-1, and level-2, labeled
as LO, L1, and L2, respectively. Note that TAPM at level-0 is
equivalent to the SLEMD algorithm. We also report results
using combinations of the first two levels (labeled as LO+L1)
with uniform weights hg = h; = 1, as suggested in [18], [25].
To fuse all three levels, we use nonuniform weights hy =
hy =1 and hy = 2 (referred to as LO+L1+L2-d), which have
been proposed in [18], [25], as well as uniform weights hy =
h1 = hy =1 (labeled as LO+L1+L2).

In Table 1, we observe that methods fusing information
from different levels, LO+L1 and LO+L1+L2, generally
outperform the individual levels, demonstrating the con-
tribution of our multilevel pyramid match algorithm. When
comparing LO+L1+L2 with the level-0 algorithm, i.e.,
SLEMD, the MAP over 10 event classes is increased from
34.9 percent to 38.2 percent. Some event classes enjoy large
performance gains, e.g., the AP for the Car Crash event
increases from 39.2 percent to 51.1 percent. We observe that
videos from Car Crash seem to have better defined and
distinguished temporal structures, which was successfully
captured by TAPM. In our experiments, LO+L1+L2 with
equal weights is usually comparable to or slightly better
than LO+L1+L2-d.

Table 1 also shows the contribution from each individual
level. It is intuitive that the transition from the multiple-
frame-based method to the SLEMD-based method (LO)
produces the largest gain (27.5 percent to 34.9 percent).
Adding information at level-1 (i.e., L1) helps in detecting
almost all events, with the Car Crash class having the largest
gain. Additional increases in the temporal resolution (i.e.,
L1 to L2) result in only marginal performance differences,
with degradation even seen in some events (like Exiting Car,
Riot, and Shooting). A possible explanation is that videos
only contain a limited number of stages because the videos
in our experiments are relatively short (about 44 frames per
video clip). Therefore, the performance using finer temporal
resolutions is not good. Though our multiresolution frame-
work is general, at least for the current corpus, it is
sufficient to include just the first few levels instead of much
higher temporal resolutions. This is consistent with the
findings reported in prior work using SPM for object
recognition [18].

The results in Table 1 also indicate that there is no single
level that is universally optimal for all different events.
Therefore, a fusion approach combining information from
multiple levels in a principled way is the best solution in
practice.
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Fig. 5. Comparison with different temporal boundaries for TAPM at
level-1. From left to right, the event classes are 1: car crash,
2: demonstration or protest, 3: election campaign greeting, 4: exiting
car, 5: ground combat, 6: people marching, 7: riot, 8: running,
9: shooting, and 10: walking.

5.4 Sensitivity to Clustering Method and Boundary
Precision

In Section 4.1, we applied T-HAC to obtain different
subclips. We also take level-1 as an example to analyze
the clustering results from T-HAC. For comparison, we
consider two random perturbations of temporal bound-
aries, referred to as L1-5Per and L1-10Per here, and a
uniform partition, denoted as L1-Uniform. Suppose the
total number of frames in one video clip is n. For
L1-Uniform, the temporal boundary is set as Round(n/2),
where Round(z) is the nearest integer of x. The temporal
boundaries of L1-5Per and L1-10Per are perturbed from
T-HAC, i.e., we move the temporal boundary with the offset
set as Round(0.05n) and Round(0.1n) frames, respectively,
and the moving directions (forward or backward) randomly
decided for different videos.

From Fig. 5, we have the following observations: 1) The
results of L1 based on T-HAC are generally better than the
results from other varied boundaries; therefore, T-HAC is
used as a default method to generate the subclip boundaries
in this work; and 2) for events Car Crash, Exiting Car, People
Marching, and Riot, APs from L1 are significantly better. The
possible explanation is that events like Car Crash and Exiting
Car seem to have better defined and distinguished temporal
structures. Temporal segmentation based on content clus-
tering (as proposed T-HAC) and temporally aligned
matching help in separating the distinct stages and
matching their content.

5.5 The Effect of Temporal Alignment

To verify the effect of temporal alignment on detection
performance, we also conducted experiments to evaluate an
alternative method using temporal pyramid match without
temporal alignment, referred to as L1-NoAlign and
L2-NoAlign for level-1 and level-2, respectively. In such a
detection method, subclips of one video are matched with
subclips of the other video at the same temporal locations in
each level. In other words, only values on the diagonal
positions of the distance matrices shown in Figs. 3d and 3e
are used in computing the distance between two video
clips. The EMD process of finding the optimal flows among
subclips is not applied. In Fig. 6, we observe that APs for the
10 events from L1-NoAlign and L2-NoAlign are generally
worse than those of L1 and L2. Our experimental results
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Fig. 6. Analysis of the temporal alignment algorithm. From left to right,
the event classes are 1: car crash, 2: demonstration or protest,
3: election campaign greeting, 4: exiting car, 5: ground combat, 6: people
marching, 7: riot, 8: running, 9: shooting, and 10: walking. (a) Results
from TAPM at level-1. (b) Results from TAPM at level-2.

showed that such simplification significantly degrades the
event detection performance, with 18.7 percent and
17.8 percent reductions in level-1 and level-2, respectively,
in terms of MAP over 10 events. This confirms that
temporal alignment in each level of the pyramid plays an
important role. We also observe that L1 (or L2) significantly
outperforms L1-NoAlign (or L2-NoAlign) for events Car
Crash and Exiting Car, which have better defined and
distinguished temporal stages than other events from the
definition. The possible explanation is that broadcast
newscasts are quite diverse. For example, videos of Car
Crash may contain diverse scenes related to car crash and
may not always follow certain temporal patterns.

Our results also show that a large portion of the optimal
flow values (right-hand-side matrices in Figs. 3d and 3e) are
indeed located at nondiagonal positions. About 50 percent
of the optimal flows in level-1 and 90 percent in level-2
appear at nondiagonal locations, as shown in Table 2.

5.6 Algorithmic Complexity Analysis and Speedup
We analyze the algorithmic complexity and the average
processing time of TAPM. Suppose the total number of
frames in two video clips are the same, i.e., m = n, then the
complexity of EMD is O(m3log(m)) [21]. If we uniformly
partition video clips into subclips, the complexity involved
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TABLE 2
Percentage (%) of Optimal Flow Values Located
at Nondiagonal Positions for Level-1 and Level-2

[Algorithm [ 1T [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 9 ]10]
[1 50.5 [ 49.0 [ 432[ 45.6 | 48.6 [ 47.7 [ 49.6 [ 48.4 [ 493 [ 48.0 |

[ L2 [87.9 902883 | 889 [ 90.0 [ 90.2 [ 91.7 | 922 [ 90.7 | 91.0 |
From left to right, the event classes are 1: car crash, 2: demonstration or
protest, 3: election campaign greeting, 4: exiting car, 5: ground combat,
6: people marching, 7: riot, 8: running, 9: shooting, and 10: walking.

in computing level-/ distance is O((27'm)*log(2~'m)). There-
fore, TAPM at level-0 is the most time-consuming level.

In our experiments, the total number of training samples
is about 4,000. In Table 3, we report the average processing
time for distance computation between one test sample with
4,000 training samples on a Pentium IV, 2.8 GHz PC with
1 Gbyte of RAM. In Table 3, we observe that the keyframe-
based algorithm is very efficient because only one keyframe
is used for decision, but its classification performance is
poor, as demonstrated in Table 1. While the average
processing times of L1 and L2 are significantly lower than
L0, the speeds of L0, L1, and L2 are still much slower than
the keyframe-based method. In the following, we describe
one possible algorithm for speedup. We note that speed
optimization is not the main focus of this paper and, thus,
the proposed method is intended to demonstrate the
feasibility of speed improvement, rather than achieving
the fastest solution. Since TAPM at level-0 is the most time-
consuming level, we take level-0 as an example. Note that
our algorithm can also be used to speed up TAPM at level-1
and level-2.

Our solution is based on the observation that the
algorithmic complexity of SLEMD depends on the total
number of frames n in each video clip. One straightforward
approach is simply to reduce the total number of frames by
clustering. We test the idea by applying the K-Means
algorithm to abstract the whole set of frames in video
clips P and @ into several clusters. Then, the centroids of
the ith cluster are used to define image sequences p; and ¢;
and w,, and w,, are set as the relative size of the cluster (the
number of frames in the cluster divided by the total number
of frames in P and @). Such reduced image sequences and
weights can then be readily plugged into the same EMD
procedure (i.e., (1) and (2)), with a computational complex-
ity much less than that associated with the original image
sequences. Note that the K-Means clustering method here is
simply used to reduce the number of frames in each level
without considering any temporal constraints. It is not
intended to replace the temporally constrained clustering
process T-HAC used to generate the subclip partitions
needed in higher levels such as L1 and L2. As shown in
Section 5.4, T-HAC plays an important role in obtaining

TABLE 3
Average Processing Time (Seconds) at Different Levels of TAPM

| Algorithm | KF [ L2 | LI

[ LO [ LO-KM20 | LO-KMI5 | LO-KMIO |

| Average Processing Time | 0.002 | 13.693 | 16.225 [ 20.972 |

1700 | 0940 | 0416 |
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Fig. 7. Performance comparison of LO with LO-KM20, LO-KM15, and
LO-KM10. From left to right, the event classes are 1: car crash,
2: demonstration or protest, 3: election campaign greeting, 4: exiting car,
5: ground combat, 6: people marching, 7: riot, 8: running, 9: shooting,
and 10: walking.

adequate subclip boundaries and achieving the overall
accuracies of event recognition.

In the K-Means clustering algorithm, we need to decide the
total number of clusters beforehand. Considering that the
videos in our experiments are relatively short, we investigate
three cluster numbers: 20, 15, and 10. We denote the related
results as L0-KM20, L0-KM15, and LO-KM10, respectively. In
Fig. 7, we observe that the results from L0-KM10, L0O-KM15,
and L0-KM20 are comparable to the original TAPM at level-0
(except for a large performance drop for the Exiting Car
event). Such results are interesting, indicating the temporal
resolution required for event recognition (at least in the
context of broadcast news) can be reduced to some extent
without hurting the event detection accuracy. However, as
shown in Table 3, when comparing temporally subsampled
representations (LO-KM10, 15, 20) with LO, the average
processing time is significantly reduced.

5.7 Concept Score Feature versus Low-Level
Features

Finally, we compare the CS feature with three low-level
global features for event recognition using SLEMD. Note
that, in this comparison, the only difference is that low-level
global features or our midlevel CS features are used to
represent images. As introduced in Section 2, the low-level
global features are Grid Color Moment, Gabor Texture, and
Edge Direction Histogram [27], [28]. Considering that, we
have used 90 video programs from the TRECVID 2005 data
set for training the CS feature. For fair comparison, the test
videos clips for event recognition are only from another
47 video programs in the TRECVID 2005 data set such that
there is no overlap between the test data used in event
recognition and the training data for training the CS feature.
Note that the test video clips for event recognition used in
this experiment are only part of the test data used in the
previous experiments.

We report the fused results from three low-level features
in a late fusion manner, referred to as “SLEMD-3Fuse” here
by fusing the responses from three SVMs based on the
above three low-level features using (7) with equal weights,
which was also used in [33]. In contrast to early fusion
techniques [20], [45], [46], which either concatenate input
feature vectors or average multiple distances or kernels
from different features to generate a single kernel, we
choose late fusion techniques because of their successful use
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Fig. 8. Comparison of our midlevel concept feature (CS) with three low-
level global features (GT-Gabor Texture, EDH-Edge Direction Histo-
gram, and GCM-Grid Color Moment), as well as their fused results.
From left to right, the event classes are 1: car crash, 2: demonstration or
protest, 3: election campaign greeting, 4: exiting car, 5: ground combat,
6: people marching, 7: riot, 8: running, 9: shooting, and 10: walking.

in TRECVID [29], [30], [31], [32], [34]. In addition, the same
fusion technique as in (7) has been found to achieve some of
the top performances in TRECVID by the IBM T.J. Watson

Research Center [29].
We also run several different weights hy, hy, and hj to

fuse three different features and then report the best results
in the test data (referred to as “SLEMD-3Fuse-Para”). In this
work, hi, hs, and hz varied from 0 to 1 with an interval 0.2,
but we excluded a special case, h; = hy = hy =0, which
resulted in 215 combinations. While the parameter tuning
technique mentioned above is not applicable in the real
application, our motivation is to compare our midlevel CS
feature with the best possible fused results from late fusion
rather than developing new feature fusion algorithms.
Feature fusion is still an open problem; please refer to [46]

for recent advances.
We have the following observations from Fig. 8:

1. SLEMD-3Fuse is generally worse than SLEMD-
GCM. A possible explanation is that the results from
SLEMD-EDH are generally poor, which may de-
grade the performance of the equal weights-based
fusion method SLEMD-3Fuse. We also observe that
SLEMD-3Fuse-Para generally achieves better perfor-
mance when compared with the single best feature,
which demonstrates that it is possible to improve the
performance by using feature fusion techniques.

2. Our CS feature generally outperforms the three low-
level features, as well as SLEMD-3Fuse. MAPs over
10 events for SLEMD-CS, SLEMD-3Fuse, SLEMD-
GT, SLEMD-EDH, and SLEMD-GCM are 36.5 per-
cent, 28.3 percent, 29.8 percent, 16.7 percent, and
31.6 percent, respectively.

3. When comparing SLEMD-CS with SLEMD-3Fuse-
Para, MAP also increases from 35.4 percent to
36.5 percent. In addition, SLEMD-3Fuse-Para uses
the test data to choose the best parameter config-
uration, which is not practical in real applications.

4. Our CS feature is relatively robust for all 10 events,
which demonstrates that CSs, fusing the decisions
from 108 independent classifiers, effectively inte-
grate information from multiple visual cues and
abstract the low-level features into a robust midlevel
representation.
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6 CONTRIBUTIONS AND CONCLUSION

In this work, we study the problem of visual event
recognition in unconstrained broadcast news videos. The
diverse content and large variations in news video make it
difficult to apply popular approaches using object tracking
or spatiotemporal appearances. In contrast, we adopt
simple holistic representations for each image frame and
focus on novel temporal matching algorithms. We apply the
SLEMD method to find optimal frame alignment in the
temporal dimension and thereby compute the similarity
between video clips. We show that the SLEMD-based
temporal matching method outperforms the keyframe and
multiframe-based classification methods by a large margin.
Additionally, we propose TAPM to further improve event
detection accuracy by fusing information from multiple
temporal resolutions and explicitly utilizing the temporal
information. We also discuss in depth our algorithm in
terms of weight selection in SLEMD, sensitivity to temporal
clustering, the effect of temporal alignment, and speedup.
To the best of our knowledge, this work and our initial
conference work are the first systematic studies of diverse
visual event recognition in the unconstrained broadcast
news domain with clear performance improvements.

We choose the scene-level CS feature in this work, which
may not be sufficient to represent local characteristics. While
the SIFT feature has been successfully used in object
recognition, it is time consuming to extract SIFT features for
alarge data set. In the future, we will study other efficient and
effective visual features, as well as other text and audio
features. Currently, it is time consuming to compute the
similarities among video clips and train multiple SVMs with
cross validation over one training and testing split. While we
have proposed using K-Means clustering method for speed-
up, we will investigate other efficient algorithms to further
reduce the computational complexity. Moreover, we will
investigate effective techniques to fuse the information from
different features, as well as multiple pyramid levels.
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