Scheduling on a Channel with Failures and Retransmissions

Predrag R. Jelenković and Evangelia D. Skiani

Department of Electrical Engineering
Columbia University, NY 10027, USA
{predrag,valia}@ee.columbia.edu

October 6, 2013

Supported by NSF grant 0915784
Outline

1 Introduction
 - Definitions & Notation

2 Main Results
 - First Come First Served
 - Processor Sharing

3 Simulation
 - Example 1: FCFS
 - Example 2: PS

4 Conclusions
Failures & Retransmissions (Restarts)

- High variability ⇒ frequent failures
- Possible solution: Restart the system
- Applications
 - networking e.g. ARQ, HTTP
 - computing

Restarts cause power law delays & possibly zero throughput, even for superexponential files [ALSF’05-, JT’06-]:

\[P[N > n] \sim \Gamma(\alpha + 1)/n^\alpha \]

What is the best job scheduling policy?
Failures & Retransmissions (Restarts)

- High variability \Rightarrow frequent failures
- Possible solution: Restart the system
- Applications
 - networking e.g. ARQ, HTTP
 - computing

Restarts cause power law delays & possibly zero throughput, even for superexponential files [ALSF’05-, JT’06-]:

$$\mathbb{P}[N > n] \sim \Gamma(\alpha + 1)/n^{\alpha}$$ \hspace{1cm} (1)

What is the best job scheduling policy?
Failures & Retransmissions (Restarts)

- High variability ⇒ frequent failures
- Possible solution: Restart the system
- Applications
 - networking e.g. ARQ, HTTP
 - computing

Restarts cause power law delays & possibly zero throughput, even for superexponential files [ALSF’05-, JT’06-]:

\[P[N > n] \sim \Gamma(\alpha + 1)/n^\alpha \]

(1)

What is the best job scheduling policy?
Failures & Retransmissions (Restarts)

- High variability \Rightarrow frequent failures
- Possible solution: Restart the system
- Applications
 - networking e.g. ARQ, HTTP
 - computing

Restarts cause **power law** delays & possibly zero throughput, even for superexponential files [ALSF’05-, JT’06-]:

$$P[N > n] \sim \Gamma(\alpha + 1)/n^\alpha \quad (1)$$

What is the best job **scheduling** policy?
Scheduling & Retransmissions

No known policies optimize the sojourn time tail across BOTH light and heavy-tailed job size distributions.

Optimality

- Subexponential jobs: PS, shortest remaining processing time [ANA’99]
- Superexponential jobs: First come first served [RS’01]

We study two scheduling policies:

1. First Come First Served (FCFS)
2. Processor Sharing (PS)

Question:

How do these policies work under retransmissions?
Scheduling & Retransmissions

No known policies optimize the sojourn time tail across BOTH light and heavy-tailed job size distributions.

Optimality

- Subexponential jobs: PS, shortest remaining processing time [ANA’99]
- Superexponential jobs: First come first served [RS’01]

We study two scheduling policies:

1. First Come First Served (FCFS)
2. Processor Sharing (PS)

Question:
How do these policies work under retransmissions?
Scheduling & Retransmissions

No known policies optimize the sojourn time tail across BOTH light and heavy-tailed job size distributions.

Optimality

- Subexponential jobs: PS, shortest remaining processing time [ANA’99]
- Superexponential jobs: First come first served [RS’01]

We study two scheduling policies:

1. First Come First Served (FCFS)
2. Processor Sharing (PS)

Question:
How do these policies work under retransmissions?
Model of Channel

- Available periods \(\{A_n\}_{n \geq 1} \): i.i.d.
- Unit Capacity

Retransmission Model

- Generic job \(B \in (0, \infty) \)
- if \(B \leq A_n \), success; else, retransmit at period \(A_{n+1} \)

Figure: A failure-prone system.

Figure: Jobs over a system with failures.
Definitions & Notation

Definition 1 (Service Time)

The service time is the total time until a job is successfully served and is denoted as

\[S := \sum_{i=1}^{N-1} A_i + B, \]

where \(N \) is the number of attempts until the successful completion of the job.

Denote the tail distributions of job sizes \(B \) and availability periods \(A \) as

\[\bar{F}(x) = P(B > x) \quad \text{and} \quad \bar{G}(x) = P(A > x) \]
A Simple Scenario

- There are m jobs of size B_i, $i = 1 \ldots m$
- Each job requires S_i time units
- No future arrivals

Job Scheduling:

FCFS vs. PS
Definition 2 (Total Completion Time)

The total completion time is defined as the total time until all the jobs in the queue are successfully served and is denoted as

\[\Theta_m := \sum_{i=1}^{m} S_i, \]

where \(m \) is the total number of jobs in the system and \(S_i \)'s are the service times for each job.

Note: Total completion time without retransmissions → trivial!
\[\Rightarrow \text{Always equal to } \sum_{i=1}^{m} B_i \]
First Come First Served (FCFS)

Theorem 1

If \(\log \bar{F}(x) \approx \alpha \log \bar{G}(x) \) for all \(x \geq 0 \) and \(\alpha > 0 \), and \(\mathbb{E}[A^{1+\theta}] < \infty \) for some \(\theta > 0 \), then

\[
\lim_{t \to \infty} \frac{\log \mathbb{P}[\Theta_m > t]}{\log t} = -\alpha.
\]

Proof [of Theorem 1].

Under the conditions of the Theorem, the result in [JT’06-] yields

\[
\lim_{t \to \infty} \frac{\log \mathbb{P}[S > t]}{\log t} = -\alpha \quad \text{as } t \to \infty,
\]

where \(S \) is the service time of one job if served alone.
Theorem 1

If \(\log \bar{F}(x) \approx \alpha \log \bar{G}(x) \) for all \(x \geq 0 \) and \(\alpha > 0 \), and \(\mathbb{E}[A^{1+\theta}] < \infty \) for some \(\theta > 0 \), then

\[
\lim_{t \to \infty} \frac{\log \mathbb{P}[\Theta_m > t]}{\log t} = -\alpha.
\]

Proof [of Theorem 1].

Under the conditions of the Theorem, the result in [JT’06-] yields

\[
\lim_{t \to \infty} \frac{\log \mathbb{P}[S > t]}{\log t} = -\alpha \quad \text{as} \ t \to \infty,
\]

where \(S \) is the service time of one job if served alone.
Proof [of Theorem 1].

The total completion time is lower bounded by a single job service time:

\[P[\Theta_m > t] \geq P[S_1 > t] \quad \Rightarrow \quad \frac{-\log P[\Theta_m > t]}{\log t} \preceq \alpha. \]

Let \(\bar{S}_i \) be the service time of a job \(i \) when we idle the server after job completion until next failure. Then, the upper bound is

\[P[\Theta_m > t] \leq P\left[\sum_{i=1}^{m} \bar{S}_i > t \right] \leq m P\left[\bar{S}_1 > \frac{t}{m} \right] \]

\[\Rightarrow \quad \frac{-\log P[\Theta_m > t]}{\log t} \succeq \alpha. \]
FCFS

Proof [of Theorem 1].

The total completion time is lower bounded by a single job service time:

\[P[\Theta_m > t] \geq P[S_1 > t] \quad \Rightarrow \quad \frac{-\log P[\Theta_m > t]}{\log t} \lesssim \alpha. \]

Let \(\bar{S}_i \) be the service time of a job \(i \) when we idle the server after job completion until next failure. Then, the upper bound is

\[P[\Theta_m > t] \leq P\left[\sum_{i=1}^{m} \bar{S}_i > t \right] \leq m P\left[\bar{S}_1 > \frac{t}{m} \right] \]

\[\Rightarrow \quad \frac{-\log P[\Theta_m > t]}{\log t} \gtrsim \alpha. \]
Processor Sharing (PS)

Theorem 2

If the hazard function \(-\log \bar{F}(x)\) is regularly varying with index \(\gamma \geq 0\), then, under the conditions of Theorem 1,

i) if \(\gamma \leq 1\), i.e. \(B\) is subexponential or exponential, then

\[
\lim_{t \to \infty} \frac{-\log \Pr[\Theta_m > t]}{\log t} = \alpha,
\]

ii) if \(\gamma > 1\), i.e. \(B\) is superexponential, then

\[
\lim_{t \to \infty} \frac{-\log \Pr[\Theta_m > t]}{\log t} = \frac{\alpha}{m^{\gamma-1}} < \alpha.
\]
Theorem 2

If the hazard function $-\log \bar{F}(x)$ is regularly varying with index $\gamma \geq 0$, then, under the conditions of Theorem 1,

i) if $\gamma \leq 1$, i.e. B is subexponential or exponential, then

$$\lim_{t \to \infty} \frac{-\log \mathbb{P}[\Theta_m > t]}{\log t} = \alpha,$$

ii) if $\gamma > 1$, i.e. B is superexponential, then

$$\lim_{t \to \infty} \frac{-\log \mathbb{P}[\Theta_m > t]}{\log t} = \frac{\alpha}{m^{\gamma-1}} < \alpha.$$
Main Results

Processor Sharing

Idea of the proof (I)

The upper bound is

\[
P[\Theta_m > t] \leq P\left[\sum_{i=1}^m \bar{S}_i > t\right] \leq (1 + \epsilon) \sum_{i=1}^m P[\bar{S}_i > t].
\]

1. If \(\widehat{B}_1 \) is the smallest job, then

\[
P[N_1 > n] = EP\left[\widehat{B}_1 > \frac{A}{m}\right]^n = E \left(1 - \bar{G}(m\widehat{B}_1)\right)^n = E \left(1 - \bar{F}_1(m\widehat{B}_1)^{\frac{1}{\alpha_1}}\right)^n.
\]

2. What is the relationship between \(\bar{F}_1(x) \) and \(\bar{G}(x) \)?

\[
\log \bar{F}_1(x) = \log P[m\widehat{B}_1 > x] = \log \left(\bar{F}(x/m)\right)^m \approx m^{1-\gamma} \log \bar{F}(x).
\]

3. Recalling (\(\star \)),

\[
\frac{-\log P[\bar{S}_1 > t]}{\log t} \quad \xrightarrow{t \to \infty} \quad \frac{\alpha}{m^{\gamma - 1}}
\]

(\(\star \))
Idea of the proof (I)

The upper bound is

$$\mathbb{P}[\Theta_m > t] \leq \mathbb{P}\left[\sum_{i=1}^{m} \bar{S}_i > t \right] \leq (1 + \varepsilon) \sum_{i=1}^{m} \mathbb{P}[\bar{S}_i > t].$$

1. If \hat{B}_1 is the smallest job, then

$$\mathbb{P}[N_1 > n] = \mathbb{E}\mathbb{P}\left[\frac{\hat{B}_1}{m} > A \right]^n = \mathbb{E}\left(1 - \bar{G}(m\hat{B}_1) \right)^n = \mathbb{E}\left(1 - \bar{F}_1(m\hat{B}_1)^{\frac{1}{\alpha_1}} \right)^n$$

2. What is the relationship between $\bar{F}_1(x)$ and $\bar{G}(x)$?

$$\log \bar{F}_1(x) = \log \mathbb{P}[m\hat{B}_1 > x] = \log \left(\bar{F}(x/m) \right)^m \approx m^{1-\gamma} \log \bar{F}(x).$$

3. Recalling (\#),

$$\frac{-\log \mathbb{P}[\bar{S}_1 > t]}{\log t} \xrightarrow{t \to \infty} \frac{\alpha}{m^{\gamma-1}} \quad (\#)$$
Idea of the proof (I)

The upper bound is

\[\mathbb{P}[\Theta_m > t] \leq \mathbb{P}\left[\sum_{i=1}^{m} \bar{S}_i > t \right] \leq (1 + \varepsilon) \sum_{i=1}^{m} \mathbb{P}[\bar{S}_i > t]. \]

1. If \(\bar{B}_1 \) is the smallest job, then

\[\mathbb{P}[N_1 > n] = \mathbb{E}\mathbb{P}\left[\bar{B}_1 > \frac{A}{m} \right]^n = \mathbb{E}\left(1 - \bar{G}(m\bar{B}_1) \right)^n = \mathbb{E}\left(1 - \bar{F}_1(m\bar{B}_1)^{\frac{1}{\alpha_1}} \right)^n. \]

2. What is the relationship between \(\bar{F}_1(x) \) and \(\bar{G}(x) \)?

\[\log \bar{F}_1(x) = \log \mathbb{P}[m\bar{B}_1 > x] = \log \left(\bar{F}(x/m) \right)^m \approx m^{1-\gamma} \log \bar{F}(x). \]

3. Recalling (\(\star \)),

\[\lim_{t \to \infty} \frac{-\log \mathbb{P}[\bar{S}_1 > t]}{\log t} \to \frac{\alpha}{m^{\gamma-1}} \quad (\star) \]
Idea of the proof (II)

4 Similarly, for the 2^{nd} smallest job $\sim 1/t^{\alpha(m-1)^{1-\gamma}}$

5 … and the last one $\sim 1/t^\alpha$

- If $\gamma > 1$ (superexponential), then the lower bound is determined by the minimum power law index ($\alpha m^{1-\gamma} < \ldots < \alpha$)

$$\frac{-\log P[\Theta_m > t]}{\log t} \geq \frac{\alpha}{m^{\gamma-1}}. \quad (1)$$

- Equivalently, if $\gamma \leq 1$ ((sub)exponential), then

$$\frac{-\log P[\Theta_m > t]}{\log t} \geq \alpha. \quad (2)$$
Similarly, for the 2^{nd} smallest job $\sim 1/t^{\alpha(m-1)^{1-\gamma}}$

... and the last one $\sim 1/t^\alpha$

- If $\gamma > 1$ (superexponential), then the lower bound is determined by the minimum power law index ($\alpha m^{1-\gamma} < \ldots < \alpha$)

$$\frac{-\log \mathbb{P}[\Theta_m > t]}{\log t} \gtrsim \frac{\alpha}{m^{\gamma-1}}.$$ \hspace{1cm} (1)

- Equivalently, if $\gamma \leq 1$ ((sub)exponential), then

$$\frac{-\log \mathbb{P}[\Theta_m > t]}{\log t} \gtrsim \alpha.$$ \hspace{1cm} (2)
Simulations

Example 1. FCFS: All job types generate same power law asymptotics

- Service time $S \sim 1/t^2$
- # jobs: $m = 10$

Figure: Logarithmic asymptotics for $\alpha = 2$ under FCFS.
Example 2. PS: The effect of the number of (superexponential) jobs

- $B \sim$ superexponential ($\gamma > 1$)
- Number of jobs: $m = 2$ and $m = 5$, service time with $\alpha = 4$

Figure: Logarithmic asymptotics for $\alpha = 4$ under PS and FCFS discipline.
Queueing: PS could be always unstable

Theorem 3

If jobs are superexponential ($\gamma > 1$), then for any arrival rate $\lambda > 0$ and any $\alpha > 0$, the PS queue is unstable.

- Queueing with retransmissions & scheduling is hard
- More to come in our forthcoming paper…
Queueing: PS could be always unstable

Theorem 3

If jobs are superexponential \((\gamma > 1)\), then for any arrival rate \(\lambda > 0\) and any \(\alpha > 0\), the PS queue is unstable.

- Queueing with retransmissions & scheduling is hard
- More to come in our forthcoming paper…
Conclusions

- **FCFS**: power law of same index for both super/subexponential
- **PS**: new phenomenon - dramatic difference between super/subexponential jobs
- **Queueing**: for superexponential jobs, sharing induces instabilities \rightarrow zero throughput
- **Sharing** is not always good 😞
Conclusions

- FCFS: power law of same index for both super/subexponential
- PS: new phenomenon - dramatic difference between super/subexponential jobs
 - Queueing: for superexponential jobs, sharing induces instabilities \rightarrow zero throughput
- Sharing is not always good 😞
Conclusions

- FCFS: power law of same index for both super/subexponential
- PS: new phenomenon - dramatic difference between super/subexponential jobs
- Queueing: for superexponential jobs, sharing induces instabilities → zero throughput
- Sharing is not always good 😞
Conclusions

- FCFS: power law of same index for both super/subexponential
- PS: new phenomenon - dramatic difference between super/subexponential jobs
- Queueing: for superexponential jobs, sharing induces instabilities → zero throughput
- **Sharing** is not always good 😞
Thank you

Questions?