Administrivia

- main feedback from last lecture
 - a little too fast
 - FST’s still unclear
- Lab 2 not graded yet, will be handed back next week
- Lab 3 out, due Sunday after next
Lab 2 Review

- output distributions on states vs. arcs?
 - advantages of either representation?

- computing total likelihood for each word HMM separately vs. using Viterbi algorithm on one big HMM?
 - hint: what about computing Viterbi likelihood for each word HMM separately?
Viterbi algorithm as shortest distance problem

- for arc a, frame t, distance from $(src(a), t)$ to $(dst(a), t + 1)$ is ...
 - $- \log [P(a)P(x_t|a)]$
Viterbi As Shortest Distance Problem

- need to traverse chart in an order such that . . .
 - all chart arcs go from cell traversed earlier . . .
 - to cell traversed later

- loop first through frames, then through states
What if we add skip arcs?

- for skip arc a, distance from $(\text{src}(a), t)$ to $(\text{dst}(a), t)$ is $-\log[P(a)]$
Viterbi As Shortest Distance Problem

Handling skip arcs

- at a given frame, for all skip arcs a, must visit . . .
 - state $src(a)$ before state $dst(a)$

- topologically sort states with respect to skip arcs only
 - then, natural ordering will work

$$\text{for } t \text{ in } [0 \ldots (T - 1)]:$$
$$\text{for } s_{src} \text{ in } [1 \ldots S]:$$

- in practice, may process skip arcs and emitting arcs in separate stages

- recap: beware of skip arcs
Lab 2 Review

- Q: if an HMM were a fruit, what type of fruit would it be?
 - A: a Hidden Markov Banana
Viterbi Algorithm

\[C[0\ldots T, 1\ldots S].vProb = 0 \]
\[C[0, \text{start}].vProb = 1 \]

\textbf{for} \(t \) \textbf{in} \([0\ldots (T-1)] \):
 \textbf{for} \(s_{\text{src}} \) \textbf{in} \([1\ldots S] \):
 \textbf{for} \(a \) \textbf{in} \text{outArcs}(s_{\text{src}}):
 \begin{align*}
 s_{\text{dst}} &= \text{dest}(a) \\
 \text{curProb} &= C[t, s_{\text{src}}].vProb \times \text{arcProb}(a, t) \\
 \text{if} \quad \text{curProb} > C[t+1, s_{\text{dst}}].vProb: \\
 &\quad C[t+1, s_{\text{dst}}].vProb = \text{curProb} \\
 &\quad C[t+1, s_{\text{dst}}].\text{trace} = a
 \end{align*}

(\text{do backtrace starting from} \ C[T, \text{final}] \text{ to find best path})
Forward Algorithm

\[C[0...T,1...S].fProb = 0 \]
\[C[0, start].fProb = 1 \]

for \(t \) in \([0...(T-1)]\):
 for \(s_{src} \) in \([1...S]\):
 for \(a \) in outArcs\((s_{src})\):
 \(s_{dst} = dest(a) \)
 \(curProb = C[t, s_{src}].fProb \times arcProb(a, t) \)
 \(C[t+1, s_{dst}].fProb += curProb \)

\(totProb = C[T, final].fProb \)
Backward Algorithm

\[
C[0 \ldots T, 1 \ldots S].bProb = 0 \\
C[T, \text{final}].bProb = 1 \\
\text{for } t \text{ in } [(T - 1) \ldots 0]: \\
\quad \text{for } s_{src} \text{ in } [1 \ldots S]: \\
\quad \quad \text{for } a \text{ in } \text{outArcs}(s_{src}): \\
\quad \quad \quad s_{dst} = \text{dest}(a) \\
\quad \quad \quad \text{curProb} = C[t + 1, s_{dst}].bProb \times \text{arcProb}(a, t) \\
\quad \quad \quad C[t, s_{src}].bProb += \text{curProb} \\
\quad \quad \quad \text{fbCount} = C[t, s_{src}].fProb \times \text{curProb} / \text{totProb} \\
\quad \quad \quad \text{addCount}(a, t, \text{fbCount})
\]
Gaussian Update

- **occupancy count** $\gamma_{u,t}$ for given arc at frame t of utterance u
 - posterior prob of arc at that frame, *i.e.*, $fbCount$

- collect counts (for each dimension d)

\[
S_0 = \sum_{utt} \sum_{frame} \gamma_{u,t}
\]
\[
S_{1,d} = \sum_{utt} \sum_{frame} \gamma_{u,t} x_{u,t,d}
\]
\[
S_{2,d} = \sum_{utt} \sum_{frame} \gamma_{u,t} x^2_{u,t,d}
\]
Mean Update

\[S_0 = \sum_{utt} \sum_{u} \sum_{frame} \gamma_{u,t} \]

\[S_{1,d} = \sum_{utt} \sum_{u} \sum_{frame} \gamma_{u,t} x_{u,t,d} \]

\[S_{2,d} = \sum_{utt} \sum_{u} \sum_{frame} \gamma_{u,t} x_{u,t,d}^2 \]

\[\mu_d = \frac{\sum_{utt} \sum_{u} \sum_{frame} \gamma_{u,t} x_{u,t,d}}{\sum_{utt} \sum_{u} \sum_{frame} \gamma_{u,t}} = \frac{S_{1,d}}{S_0} \]
Variance Update

\[S_0 = \sum u \sum t \gamma_{u,t} \]

\[S_{1,d} = \sum u \sum t \gamma_{u,t} x_{u,t,d} \]

\[S_{2,d} = \sum u \sum t \gamma_{u,t} x_{u,t,d}^2 \]

- update only diagonal terms \(\Sigma_{d,d} \) in covariance matrix

\[\Sigma_{d,d} = \frac{\sum u,t \gamma_{u,t} (x_{u,t,d} - \mu_d)^2}{\sum u,t \gamma_{u,t}} \]

\[= \frac{1}{S_0} \left[\sum u,t \gamma_{u,t} x_{u,t,d}^2 - 2\mu_d \sum u,t \gamma_{u,t} x_{u,t,d} + \mu_d^2 \sum u,t \gamma_{u,t} \right] \]

\[= \frac{S_{2,d} - 2\mu_d S_{1,d} + \mu_d^2 S_0}{S_0} = \frac{S_{2,d} - \mu_d^2 S_0}{S_0} \]
The Big Picture

- weeks 1–4: small vocabulary ASR
- weeks 5–8: large vocabulary ASR
 - week 5: language modeling
 - week 6: pronunciation modeling
 - week 7: training
 - week 8: FST’s; search
- weeks 9–13: advanced topics
Where Were We? \(\Rightarrow\) LVCSR Decoding

What did we do for small vocabulary tasks?

- graph/FSA representing language model
 - \textit{i.e.}, all allowed word sequences
- expand to underlying HMM
- run the Viterbi algorithm!
Decoding

Well, can we do the same thing for LVCSR?

- **Issue 1:** Can we express an n-gram model as an FSA?
 - yup
Decoding

Issue 2: How can we expand a word graph to its underlying HMM?

- **word models**
 - replace each word with its HMM

- **CI phone models**
 - replace each word with its phone sequence(s)
 - replace each phone with its HMM
Graph Expansion with Context-Dependent Models

- how can we do context-dependent expansion?
 - handling branch points is tricky
- example of triphone expansion
Graph Expansion with Context-Dependent Models

Is there a better way?

- is there some elegant theoretical framework . . .
- that makes it easy to do this type of expansion . . .
- and also makes it easy to do lots of other graph operations useful in ASR?
- ⇒ finite-state transducers (FST’s)!
Outline

- Unit I: finite-state transducers
 - how do we build decoding graphs for LVCSR?

- Unit II: introduction to search

- Unit III: making decoding graphs smaller

- Unit IV: efficient Viterbi decoding

- Unit V: other decoding paradigms
Remix: A Reintroduction to FSA’s and FST’s

The *semantics* of (unweighted) finite-state acceptors

- the meaning of an FSA is the set of strings (*i.e.*, token sequences) it accepts
 - set may be infinite
- two FSA’s are equivalent if they accept the same set of strings
- things that *don’t* affect semantics
 - how labels are distributed along a path
 - invalid paths (paths that don’t connect initial and final states)
- see board
You Say Tom-ay-to; I Say Tom-ah-to

- a finite-state acceptor is . . .
 - a set of strings . . .
 - expressed (compactly) using a finite-state machine

- what is a finite-state transducer?
 - a one-to-many mapping from strings to strings
 - expressed (compactly) using a finite-state machine
The Semantics of Finite-State Transducers

- the meaning of an (unweighted) FST is the string mapping it represents
 - a set of strings (possibly infinite) it can accept
 - all other strings are mapped to the empty set
 - for each accepted string . . .
 - the set of strings (possibly infinite) mapped to
- two FST’s are equivalent if they represent the same mapping
- things that *don’t* affect semantics
 - how labels are distributed along a path
 - invalid paths (paths that don’t connect initial and final states)
- see board
The Semantics of Composition

- for a set of strings A (FSA) . . .
- for a mapping from strings to strings T (FST) . . .
 - let $T(s)$ = the set of strings that s is mapped to
- the composition $A \circ T$ is the set of strings (FSA) . . .

$$A \circ T = \bigcup_{s \in A} T(s)$$

- maps all strings in A simultaneously
Graph Expansion as Repeated Composition

- want to expand from set of strings (LM) to set of strings (underlying HMM)
 - how is an HMM a set of strings? (ignoring arc probs)

- can be decomposed into sequence of composition operations
 - words \Rightarrow pronunciation variants
 - pronunciation variants \Rightarrow CI phone sequences
 - CI phone sequences \Rightarrow CD phone sequences
 - CD phone sequences \Rightarrow GMM sequences

- to do graph expansion
 - design several FST’s
 - implement one operation: composition!
FST Design and The Power of FST’s

- figure out which strings to accept (i.e., which strings should be mapped to non-empty sets)
 - (and what “state” we need to keep track of, e.g., for CD expansion)
 - design corresponding FSA

- add in output tokens
 - creating additional states/arcs as necessary
FST Design and The Power of FST’s

Context-independent examples (1-state)

- 1:0 mapping
 - removing swear words (two ways)

- 1:1 mapping
 - mapping pronunciation variants to phone sequences
 - one label per arc?

- 1:many mapping
 - mapping from words to pronunciation variants

- 1:infinite mapping
 - inserting optional silence
FST Design and The Power of FST’s

- can do more than one “operation” in single FST
- can be applied just as easily to whole LM (infinite set of strings) as to single string
FST Design and The Power of FST’s

How to express context-dependent phonetic expansion via FST’s?

- step 1: rewrite each phone as a triphone
 - rewrite AX as DH AX R if DH to left, R to right

- what information do we need to store in each state of FST?
 - strategy: delay output of each phone by one arc
How to Express CD Expansion via FST’s?

A

1 → x → 2 → y → 3 → y → 4 → x → 5 → y → 6

T

1 → x:x:x:x
2 → x:x:x_y
3 → x_y
4 → x:y_x_x
5 → y_y
6 → y:x_y_y

A ° T

1 → x: y: x: x: y
2 → x: y: y: y
3 → y: y: x: y
4 → y: y: x: y
5 → x: y: x: x: x
6 → x: y: y: x

IBM
ELEN E6884: Speech Recognition
30
How to Express CD Expansion via FST’s?

Example

point: composition automatically expands FSA to correctly handle context!
- makes multiple copies of states in original FSA . . .
- that can exist in different triphone contexts
- (and makes multiple copies of only these states)
How to Express CD Expansion via FST’s?

- step 1: rewrite each phone as a triphone
 - rewrite AX as DH AX R if DH to left, R to right

- step 2: rewrite each triphone with correct context-dependent HMM for center phone
 - how to do this?
 - note: OK if FST accepts more strings than it needs
Graph Expansion

- final decoding graph: $L \circ T_1 \circ T_2 \circ T_3 \circ T_4$
 - L = language model FSA
 - T_1 = FST mapping from words to pronunciation variants
 - T_2 = FST mapping from pronunciation variants to CI phone sequences
 - T_3 = FST mapping from CI phone sequences to CD phone sequences
 - T_4 = FST mapping from CD phone sequences to GMM sequences
- we know how to design each FST
- how do we implement composition?
Computing Composition

Example

\[A \]

\[T \]

\[A \circ T \]

- optimization: start from initial state, build outward
Composition and ϵ-Transitions

- basic idea: can take ϵ-transition in one FSM without moving in other FSM
 - a little tricky to do exactly right
 - do the readings if you care: (Pereira, Riley, 1997)

\[
A, T
\]

\[
A \circ T
\]
What About Those Probability Thingies?

- e.g., to hold language model probs, transition probs, etc.
- FSM’s ⇒ \textit{weighted} FSM’s
 - weighted acceptors (WFSA’s), transducers (WFST’s)
- each arc has a score or \textit{cost}
 - so do final states

![Diagram of weighted finite state machine](image)
Semantics

- Total cost of path is sum of its arc costs plus final cost.

- Typically, we take costs to be negative log probabilities.
 - (Total probability of path is product of arc probabilities.)
Semantics of Weighted FSA’s

The semantics of weighted finite-state acceptors

- the meaning of an FSA is the set of strings (i.e., token sequences) it accepts
 - each string additionally has a cost

- two FSA’s are equivalent if they accept the same set of strings with same costs

- things that don’t affect semantics
 - how costs or labels are distributed along a path
 - invalid paths (paths that don’t connect initial and final states)

- see board
Semantics of Weighted FSA’s

- each string has a single cost
- what happens if two paths in FSA labeled with same string?
 - how to compute cost for this string?
- usually, use \min operator to compute combined cost (Viterbi)
 - can combine paths with same labels into one without changing semantics

- operations $(+, \min)$ form a semiring (the tropical semiring)
 - other semirings are possible
Which Of These Is Different From the Others?

- FSM’s are equivalent if same label sequences with same costs

![Diagram of FSM examples](image-url)
The Semantics of Weighted FST’s

- the meaning of an (unweighted) FST is the string mapping it represents
 - a set of strings (possibly infinite) it can accept
 - for each accepted string . . .
 - the set of strings (possibly infinite) mapped to . . .
 - and a cost for each string mapped to
- two FST’s are equivalent if they represent the same mapping with the same costs
- things that *don’t* affect semantics
 - how costs and labels are distributed along a path
 - invalid paths (paths that don’t connect initial and final states)
The Semantics of Weighted Composition

- for a set of strings A (WFSA) . . .

- for a mapping from strings to strings T (WFST) . . .
 - let $T(s)$ = the set of strings that s is mapped to

- the composition $A \circ T$ is the set of strings (WFSA) . . .

\[A \circ T = \bigcup_{s \in A} T(s) \]

- cost associated with output string is “sum” of . . .
 - cost of input string in A
 - cost of mapping in T
Computing Weighted Composition

Just add arc costs

\[A \circ T \]

- **A**
 - 1 → 2: a/1
 - 2 → 3: b/0
 - 3 → 4: d/2

- **T**
 - 1/1
 - a:A/2
 - b:B/1
 - c:C/0
 - d:D/0

- **A \circ T**
 - 1 → 2: A/3
 - 2 → 3: B/1
 - 3 → 4: D/2
 - 4/1
Why is Weighted Composition Useful?

- probability of a path is product of probabilities along path
 - LM probs; arc probs; pronunciation probs; etc.
- if costs are negative log probabilities . . .
 - and use addition to combine scores along paths and in composition . . .
 - probabilities will be combined correctly
- ⇒ composition can be used to combine scores from different models
Weighted Graph Expansion

- final decoding graph: \(L \circ T_1 \circ T_2 \circ T_3 \circ T_4 \)
 - \(L \) = language model FSA (w/ LM costs)
 - \(T_1 \) = FST mapping from words to pronunciation variants (w/ pronunciation costs)
 - \(T_2 \) = FST mapping from pronunciation variants to CI phone sequences
 - \(T_3 \) = FST mapping from CI phone sequences to CD phone sequences
 - \(T_4 \) = FST mapping from CD phone sequences to GMM sequences (w/ HMM transition costs)

- in final graph, each path has correct “total” cost
Recap

- WFSA’s and WFST’s can represent many important structures in ASR

- graph expansion can be expressed as series of composition operations
 - need to build FST to represent each expansion step, *e.g.*,

 1 2 THE
 2 3 DOG
 3
 - with composition operation, we’re done!

- composition is efficient

- context-dependent expansion can be handled effortlessly
Unit II: Introduction to Search

Where are we?

\[
\text{class}(x) = \arg \max_{\omega} P(\omega|x)
\]

\[
= \arg \max_{\omega} \frac{P(\omega)P(x|\omega)}{P(x)}
\]

\[
= \arg \max_{\omega} P(\omega)P(x|\omega)
\]

- can build the one big HMM we need for decoding
- use the Viterbi algorithm on this HMM
- how can we do this efficiently?
Just How Bad Is It?

- trigram model (e.g., vocabulary size $|V| = 2$)

- $|V|^3$ word arcs in FSA representation
- each word expands to ~ 4 phones $\Rightarrow 4 \times 3 = 12$-state HMM
- if $|V| = 50000$, $50000^3 \times 12 \approx 10^{15}$ states in graph
- PC’s have $\sim 10^9$ bytes of memory
Just How Bad Is It?

- decoding time for Viterbi algorithm
 - in each frame, loop through every state in graph
 - if 100 frames/sec, \(10^{15}\) states . . .
 - how many cells to compute per second?
 - PC’s can do \(\sim 10^{10}\) floating-point ops per second
- point: cannot use small vocabulary techniques “as is”
Unit II: Introduction to Search

What can we do about the memory problem?

- **Approach 1**: don’t store the whole graph in memory
 - pruning
 - at each frame, keep states with the highest Viterbi scores
 - < 100000 active states out of 10^{15} total states
 - only keep parts of the graph with active states in memory

- **Approach 2**: shrink the graph
 - use a simpler language model
 - graph-compaction techniques (w/o changing semantics!)
 - compact representation of n-gram models
 - graph *determinization* and *minimization*
Two Paradigms for Search

- Approach 1: dynamic graph expansion
 - since late 1980’s
 - can handle more complex language models
 - decoders are incredibly complex beasts
 - e.g., cross-word CD expansion without FST’s
 - everyone knew the name of everyone else’s decoder

- Approach 2: static graph expansion
 - pioneered by AT&T in late 1990’s
 - enabled by minimization algorithms for WFSA’s, WFST’s
 - static graph expansion is complex
 - theory is clean; doing expansion in <2GB RAM is difficult
 - decoding is relatively simple
Static Graph Expansion

- in recent years, more commercial focus on limited-domain systems
 - telephony applications, e.g., replacing directory assistance operators
 - no need for gigantic language models

- static graph decoders are faster
 - graph optimization is performed off-line

- static graph decoders are much simpler
 - not entirely unlike small vocabulary Viterbi decoder
Static Graph Expansion

Outline

- **Unit III: making decoding graphs smaller**
 - shrinking n-gram models
 - graph optimization

- **Unit IV: efficient Viterbi decoding**

- **Unit V: other decoding paradigms**
 - dynamic graph expansion revisited
 - stack search (asynchronous search)
 - two-pass decoding
Unit III: Making Decoding Graphs Smaller

Compactly representing \(n \)-gram models

- for trigram model, \(|V|^2\) states, \(|V|^3\) arcs in naive representation

- only a small fraction of the possible \(|V|^3\) trigrams will occur in the training data
 - is it possible to keep arcs only for occurring trigrams?
Compactly Representing N-Gram Models

- can express smoothed n-gram models via backoff distributions

$$P_{\text{smooth}}(w_i|w_{i-1}) = \begin{cases} P_{\text{primary}}(w_i|w_{i-1}) & \text{if } \text{count}(w_{i-1}w_i) > 0 \\ \alpha_{w_{i-1}} P_{\text{smooth}}(w_i) & \text{otherwise} \end{cases}$$

- e.g., Witten-Bell smoothing

$$P_{\text{WB}}(w_i|w_{i-1}) = \frac{c_h(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{MLE}}(w_i|w_{i-1}) + \frac{N_{1+}(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{WB}}(w_i)$$
Compactly Representing N-Gram Models

$$P_{\text{smooth}}(w_i | w_{i-1}) = \begin{cases}
P_{\text{primary}}(w_i | w_{i-1}) & \text{if } \text{count}(w_{i-1}w_i) > 0 \\
\alpha_{w_{i-1}} P_{\text{smooth}}(w_i) & \text{otherwise}
\end{cases}$$
Compactly Representing N-Gram Models

- by introducing backoff states
 - only need arcs for n-grams with nonzero count
 - compute probabilities for n-grams with zero count by traversing backoff arcs
- does this representation introduce any error?
 - hint: are there multiple paths with same label sequence?
 - hint: what is “total” cost of label sequence in this case?
- can we make the LM even smaller?
Pruning N-Gram Language Models

Can we make the LM even smaller?

- sure, just remove some more arcs

- which arcs to remove?
 - count cutoffs
 - *e.g.*, remove all arcs corresponding to bigrams $w_{i-1}w_i$ occurring fewer than 10 times in the training data
 - likelihood/entropy-based pruning
 - choose those arcs which when removed, change the likelihood of the training data the least
 - (Seymore and Rosenfeld, 1996), (Stolcke, 1998)
Pruning N-Gram Language Models

Language model graph sizes

- original: trigram model, $|V|^3 = 50000^3 \approx 10^{14}$ word arcs
- backoff: >100M unique trigrams $\Rightarrow \sim 100$M word arcs
- pruning: keep <5M n-grams $\Rightarrow \sim 5$M word arcs
 - 4 phones/word $\Rightarrow 12$ states/word $\Rightarrow \sim 60$M states?
 - we’re done?
Pruning N-Gram Language Models

Wait, what about cross-word context-dependent expansion?

- With word-internal models, each word really is only ~ 12 states

 ![Diagram of word-internal models]

- With cross-word models, each word is hundreds of states?
 - 50 CD variations of first three states, last three states

 ![Diagram of cross-word models]
Unit III: Making Decoding Graphs Smaller

What can we do?

- prune the LM word graph even more?
 - will degrade performance

- can we shrink the graph further without changing its meaning?
Graph Compaction

- consider word graph for isolated word recognition
 - expanded to phone level: 39 states, 38 arcs
Determinization

- share common prefixes: 29 states, 28 arcs
Minimization

- share common suffixes: 18 states, 23 arcs
Determinization and Minimization

- by sharing arcs between paths...
 - we reduced size of graph by half...
 - without changing semantics of graph
 - speeds search (even more than size reduction implies)

- determinization — prefix sharing
 - produce deterministic version of an FSM

- minimization — suffix sharing
 - given a deterministic FSM, find equivalent FSM with minimal number of states

- can apply to weighted FSM’s and transducers as well
 - e.g., on fully-expanded decoding graphs
Determinization

- what is a deterministc FSM?
 - no two arcs exiting the same state have the same input label
 - no ϵ arcs
 - i.e., for any input label sequence ...
 - at most one path from start state labeled with that sequence

- why determinize?
 - may reduce number of states, or may increase number (drastically)
 - speeds search
 - required for minimization algorithm to work as expected
Determinization

- **basic idea**
 - for an input label sequence, find set of all states you can reach from start state with that sequence in original FSM
 - collect all such state sets (over all input sequences)
 - map each unique state set into state in new FSM
 - by construction, each label sequence will reach single state in new FSM
Determinization

- start from start state
- keep list of state sets not yet expanded
 - for each, find outgoing arcs, creating new state sets as needed
- must follow ϵ arcs when computing state sets
Determinization

Example 2
Determinization

Example 3
Determinization

Example 3, cont’d
Determinization

- are all unweighted FSA's determinizable?
 - *i.e.*, will the determinization algorithm always terminate?
 - for an FSA with s states, what are the maximum number of states in its determinization?
Weighted Determinization

- same idea, but need to keep track of costs
- instead of states in new FSM mapping to state sets \(\{ s_i \} \) . . .
 - they map to sets of state/cost pairs \(\{ s_i, c_i \} \)
 - need to track leftover costs

![Diagram of weighted Determinization](image-url)
Weighted Determinization

- will the weighted determinization algorithm always terminate?
Weighted Determinization

What about determinizing finite-state transducers?

- why would we want to?
 - so we can minimize them; smaller \iff faster?
 - composing a deterministic FSA with a deterministic FSM often produces a (near) deterministic FSA

- instead of states in new FSM mapping to state sets $\{s_i\} \ldots$
 - they map to sets of state/output-sequence pairs $\{s_i, o_i\}$
 - need to track leftover output tokens
Minimization

- given a deterministic FSM...
 - find equivalent FSM with minimal number of states
 - number of arcs may be nowhere near minimal
 - minimizing number of arcs is NP-complete
Minimization

- merge states with same set of following strings (or follow sets)
 - with acyclic FSA’s, can list all strings following each state

<table>
<thead>
<tr>
<th>states</th>
<th>following strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABC, ABD, BC, BD</td>
</tr>
<tr>
<td>2</td>
<td>BC, BD</td>
</tr>
<tr>
<td>3, 6</td>
<td>C, D</td>
</tr>
<tr>
<td>4,5,7,8</td>
<td>ε</td>
</tr>
</tbody>
</table>
Minimization

- for cyclic FSA’s, need a smarter algorithm
 - may be difficult to enumerate all strings following a state

- strategy
 - keep current partitioning of states into disjoint sets
 - each partition holds a set of states that may be mergeable
 - start with single partition
 - whenever find evidence that two states within a partition have different follow sets . . .
 - split the partition
 - at end, each partition contains states with identical follow sets
Minimization

- invariant: if two states are in different partitions . . .
 - they have different follow sets
 - converse does not hold

- first split: final and non-final states
 - final states have ϵ in their follow sets; non-final states do not

- if two states in same partition have . . .
 - different number of outgoing arcs, or different arc labels . . .
 - or arcs go to different partitions . . .
 - the two states have different follow sets
Minimization

<table>
<thead>
<tr>
<th>action</th>
<th>evidence</th>
<th>partitioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>split 3,6</td>
<td>final</td>
<td>{1,2,3,4,5,6}</td>
</tr>
<tr>
<td>split 1</td>
<td>has a arc</td>
<td>{1,2,4,5}, {3,6}</td>
</tr>
<tr>
<td>split 4</td>
<td>no b arc</td>
<td>{1}, {2,4,5}, {3,6}</td>
</tr>
</tbody>
</table>

Diagram:

- Split 3,6
- Split 1
- Split 4

Diagram:

- Split 3,6
- Split 1
- Split 4
Weighted Minimization

- want to somehow normalize scores such that . . .
 - if two arcs can be merged, they will have the same cost
- then, apply regular minimization where cost is part of label
- push operation
 - move scores as far forward (backward) as possible
Weighted Minimization

What about minimization of FST’s?

- yeah, it’s possible
- use push operation, except on output labels rather than costs
 - move output labels as far forward as possible
- enough said

Pop quiz

- does minimization always terminate?
Unit III: Making Decoding Graphs Smaller

Recap

- backoff representation for n-gram LM’s
- n-gram pruning
- use finite-state operations to further compact graph
 - determinization and minimization
- 10^{15} states \Rightarrow 10–20M states/arcs
 - 2–4M n-grams kept in LM
Practical Considerations

- Graph expansion
 - start with word graph expressing LM
 - compose with series of FST’s to expand to underlying HMM

- Strategy: build big graph, then minimize at the end?
 - Problem: can’t hold big graph in memory

- Better strategy: minimize graph after each expansion step
 - Never let the graph get too big

- It’s an art
 - Recipes for efficient graph expansion are still evolving
Where Are We?

■ Unit I: finite-state transducers

■ Unit II: introduction to search

■ Unit III: making decoding graphs smaller
 • now know how to make decoding graphs that can fit in memory

■ Unit IV: efficient Viterbi decoding
 • making decoding fast
 • saving memory during decoding

■ Unit V: other decoding paradigms
Viterbi Algorithm

\[C[0\ldots T, 1\ldots S].vProb = 0 \]
\[C[0, start].vProb = 1 \]
for \(t \) in \([0\ldots (T-1)]\):
 for \(s_{src} \) in \([1\ldots S]\):
 for \(a \) in \(\text{outArcs}(s_{src}) \):
 \(s_{dst} = dest(a) \)
 \(\text{curProb} = C[t, s_{src}].vProb \times \text{arcProb}(a, t) \)
 if \(\text{curProb} > C[t+1, s_{dst}].vProb \):
 \[C[t+1, s_{dst}].vProb = \text{curProb} \]
 \[C[t+1, s_{dst}].trace = a \]
(Do backtrace starting from \(C[T, final] \) to find best path)
Real-Time Decoding

- real-time decoding
 - decoding k seconds of speech in k seconds (e.g., $0.1 \times \text{RT}$)
 - why is this desirable?

- decoding time for Viterbi algorithm, 10M states in graph
 - in each frame, loop through every state in graph
 - say 100 CPU cycles to process each state
 - for each second of audio, $100 \times 10^6 \times 100 = 10^{11}$ CPU cycles
 - PC’s do $\sim 10^9$ cycles/second (e.g., 3GHz P4)

- we cannot afford to evaluate each state at each frame
 - \Rightarrow pruning!
Pruning

- at each frame, only evaluate states with best scores
 - at each frame, have a set of *active* states
 - loop only through active states at each frame
 - for states reachable at next frame, keep only those with best scores
 - these are active states at next frame

for t in $[0 \ldots (T - 1)]$
 for s_{src} in $[1 \ldots S]$
 for a in $\text{outArcs}(s_{src})$
 $s_{dst} = \text{dest}(a)$
 update $C[t + 1, s_{dst}]$ from $C[t, s_{src}]$, $\text{arcProb}(a, t)$
Pruning

- when not considering every state at each frame . . .
 - we may make \textit{search errors}
 - \textit{i.e.}, we may not find the path with the highest likelihood

- tradeoff: the more states we evaluate . . .
 - the fewer the number of search errors
 - the more computation required

- the field of \textit{search} in ASR
 - minimizing search errors while minimizing computation
Basic Pruning

- **beam pruning**
 - in a frame, keep only those states whose logprobs are within some distance of best logprob at that frame
 - intuition: if a path’s score is much worse than current best, it will probably never become best path
 - weakness: if poor audio, overly many states within beam?

- **rank or histogram pruning**
 - in a frame, keep k highest scoring states for some k
 - intuition: if the correct path is ranked very poorly, the chance of picking it out later is very low
 - bounds computation per frame
 - weakness: if clean audio, keeps states with bad scores?

- do both
Pruning Visualized

- active states are small fraction of total states (<1%)
- tend to be localized in small regions in graph
Pruning and Determinization

- most uncertainty occurs at word starts
 - determinization drastically reduces branching at word starts
Language Model Lookahead

- in practice, word labels and LM scores at word ends
 - so determinization works
 - what’s wrong with this picture? (hint: think beam pruning)
Language Model Lookahead

- move LM scores as far ahead as possible
 - at each point, total cost \Leftrightarrow min LM cost of following words
 - *push* operation does this
Historical Note

- in the old days (pre-AT&T-style decoding)
 - people determinized their decoding graphs
 - did the push operation for LM lookahead
 - . . . without calling it determinization or pushing
 - ASR-specific implementations

- nowadays (late 1990’s–)
 - implement general finite-state operations
 - FSM toolkits
 - can apply finite-state operations in many contexts in ASR
Efficient Viterbi Decoding

- saving computation
 - pruning
 - determinization
 - LM lookahead
 - \(\Rightarrow \) process \(\sim 10000 \) states/frame in \(< 1 \times RT \) on PC’s
 - much faster with smaller LM’s or allowing more search errors

- saving memory (e.g., 10M state decoding graph)
 - 10 second utterance \(\Rightarrow 1000 \) frames
 - 1000 frames \(\times \) 10M states = 10 billion cells in DP chart
Saving Memory in Viterbi Decoding

- to compute Viterbi probability (ignoring backtrace) . . .
 - do we need to remember whole chart throughout?

- do we need to keep cells for all states or just active states?
 - depends how hard you want to work

\[
\text{for } t \text{ in } [0 \ldots (T - 1)]: \\
\quad \text{for } s_{\text{src}} \text{ in } [1 \ldots S]: \\
\qquad \text{for } a \text{ in } \text{outArcs}(s_{\text{src}}): \\
\qquad \quad s_{\text{dst}} = \text{dest}(a) \\
\qquad \quad \text{update } C[t + 1, s_{\text{dst}}] \text{ from } C[t, s_{\text{src}}], \ \text{arcProb}(a, t)
\]
Saving Memory in Viterbi Decoding

What about backtrace information?

- need to remember whole chart?

- conventional Viterbi backtrace
 - remember arc at each frame in best path
 - really, all we want are the words

- instead of keeping pointer to best incoming arc
 - keep pointer to best incoming word sequence
 - can store word sequences compactly in tree
Token Passing

- maintain “word tree”; each node corresponds to word sequence
- backtrace pointer points to node in tree . . .
 - holding word sequence labeling best path to cell
- set backtrace to same node as at best last state . . .
 - unless cross word boundary

Diagram:

```
1
  ▼
  THIS
  ▼
  THUD

2
  ▼
  THE

3
  ▼
  DIG

4
  ▼
  DOG

5
  ▼
  ATE
  ▼
  EIGHT

6

7
  ▼
  MAY

8
  ▼
  MY

9
  ▼
  DOG

10

11
```
Saving Memory in Viterbi Decoding

Memory usage

- **before**
 - static decoding graph
 - \((\# \text{ states}) \times (\# \text{ frames})\) cells

- **after**
 - static decoding graph (shared memory) ⇐ the biggie
 - \((\# \text{ (active) states}) \times (2 \text{ frames})\) cells
 - backtrace word tree
Where Are We?

- Unit V: other decoding paradigms
 - **dynamic graph expansion** — saving memory
 - stack search — best-first search
 - two-pass decoding — enable complex models
Two Approaches to Decoding

- Approach 1: dynamic graph expansion
 - don’t store the whole graph in memory
 - only keep parts of the graph with active states in memory
 - can use more complex LM’s

- Approach 2: static graph expansion
 - just shrink the graph
 - use a simpler language model
 - faster
Dynamic Graph Expansion

- how can we store a really big graph such that ...
 - it doesn’t take that much memory, but ...
 - easy to expand any part of it that we need

- observation: composition is associative

\[(A \circ T_1) \circ T_2 = A \circ (T_1 \circ T_2)\]

- observation: decoding graph is composition of LM with a bunch of FST’s

\[G_{\text{decode}} = A_{\text{LM}} \circ T_{\text{wd} \rightarrow \text{pn}} \circ T_{\text{CI} \rightarrow \text{CD}} \circ T_{\text{CD} \rightarrow \text{HMM}}\]

\[= A_{\text{LM}} \circ (T_{\text{wd} \rightarrow \text{pn}} \circ T_{\text{CI} \rightarrow \text{CD}} \circ T_{\text{CD} \rightarrow \text{HMM}})\]
Dynamic Graph Expansion

Computing composition

\[A \circ T \]

\[
\begin{array}{c}
A \\
1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\
1,2 \xrightarrow{1,3} 2,2 \xrightarrow{3,2} 3,1
\end{array}
\]

\[
\begin{array}{c}
T \\
1 \xrightarrow{a:A} 2 \xrightarrow{b:B} 3 \\
1,2 \xrightarrow{2,3} 2,1 \xrightarrow{3,1} 3,3
\end{array}
\]
Dynamic Graph Expansion

- for a graph $G = A \circ T \ldots$
 - easy to calculate outgoing arcs of a state $s_G = (s_A, s_T)$
 \[
 G_{\text{decode}} = A_{\text{LM}} \circ (T_{\text{wd}\rightarrow \text{pn}} \circ T_{\text{CI}\rightarrow \text{CD}} \circ T_{\text{CD}\rightarrow \text{HMM}})
 \]
- idea: just store graphs A_{LM} and $T = T_{\text{wd}\rightarrow \text{pn}} \circ T_{\text{CI}\rightarrow \text{CD}} \circ T_{\text{CD}\rightarrow \text{HMM}}$
 - easy to calculate outgoing arcs of any state in G_{decode}
 - in active state list, each state is represented as pair of states (s_A, s_T)
- instead of storing one big graph, store two smaller graphs
 - minimize each of the smaller graphs
 - other decompositions are possible
 - dynamic graph expansion was really complicated before FSM perspective
Where Are We?

- Unit V: other decoding paradigms
 - dynamic graph expansion
 - stack search
 - two-pass decoding
Stack Search

- Viterbi search — synchronous search
 - extend all paths and calculate all scores synchronously
 - expand states with mediocre scores in case they improve later

- stack search — asynchronous search
 - pursue best-looking path first!
 - if lucky, expand very few states at each frame

- pioneered at IBM in mid-1980’s; first real-time dictation system
- may be competitive at low-resource operating points
 - going out of fashion
Stack Search

- extend hypotheses word-by-word
- use *fast match* to decide which word to extend best path with
 - decode single word with simpler acoustic model
Stack Search

- advantages
 - if best path pans out, very little computation

- disadvantages
 - difficult to decide which path to extend
 - hypotheses are of different lengths in frames
 - in synchronous search, pruning is straightforward
 - may need to recompute the same values multiple times
 - in DP terminology, not evaluating cells in topological order

- point: in practice, have enough compute power for Viterbi
 - fewer search errors
Where Are We?

- Unit V: other decoding paradigms
 - dynamic graph expansion
 - stack search
 - two-pass decoding
What About My Fuzzy Logic 15-Phone Acoustic Model and 7-Gram Neural Net Language Model with SVM Boosting?

- some of the ASR models we develop in research are . . .
 - too expensive to implement in normal (first-pass) decoding

- first-pass decoding
 - find best word sequence from among “all” word sequences

- rescoring
 - find best word sequence from constrained search space
 - namely, best-scoring word sequences from first pass
 - large enough set to hopefully contain “correct” hypothesis
 - small enough set that not too expensive to rescore
Two-Pass Decoding

- for interactive applications, one-pass near-real-time decoding is ideal
 - start processing when audio signal starts, be done soon after audio signal ends

- two-pass decoding generally yields better accuracy
 - 1st pass: decode, but return many likely hypotheses rather than single most likely
 - 2nd pass: choose best of returned hypotheses using more complex models
 - e.g., N-best list rescoring in Lab 3
 - can still be used for interactive apps if 2nd pass really fast
Lattice Rescoring

- first pass: return likely hypotheses as a graph or lattice
 - in Viterbi, store k-best tracebacks at each word-end cell

- can use models that are impractical with first-pass decoding
 - e.g., 5-gram LM’s, sesquiphone phonetic decision trees, etc.

- some techniques need lattices
 - e.g., confidence estimation, consensus decoding, lattice MLLR, etc.
N-Best List Rescoring

- for exotic models, evaluating on lattices may be too slow
 - lattice encodes exponential number of paths (in length of utterance)
 - for some models, computation linear in number of hypotheses

- easy to generate N-best lists from lattices
 - A* algorithm

- harder to judge quality of model used for rescoring in this paradigm
 - first-pass model biases results
Two-Pass Decoding

Recap

- great for doing research
 - generate lattices once
 - lattice/N-best rescoring is cheap
 - reasonable indicator of value of model

- in real-world apps, value less clear
 - performance gain from 2nd pass usually not perceptible by users
 - increases latency
The Road Ahead

- weeks 1–4: small vocabulary ASR
- weeks 5–8: large vocabulary ASR
- weeks 9–12: advanced topics
 - adaptation; robustness
 - discriminative training; ROVER; consensus
 - advanced language modeling
 - audiovisual speech recognition
- week 13: final presentations
Course Feedback

1. Was this lecture mostly clear or unclear? What was the muddiest topic?

2. Comments on lab 2?

3. Other feedback (pace, content, atmosphere)?