Administrivia

- main feedback from last lecture
 - everything was pretty clear (eventually)

- Ellen will be away for a while
 - preparing for season 4 tryouts of *Nashville Star*

- sample answers to Lab 1 posted
 - in same directory you got Lab 1 files from

- Lab 2 due Sunday midnight

- Lab 3 out Monday?
The Big Picture

- weeks 1–4: small vocabulary ASR
- weeks 5–8: large vocabulary ASR
 - week 5: language modeling (for large vocabularies)
 - week 6: pronunciation modeling — acoustic modeling for large vocabularies
 - week 7, 8: training, decoding for large vocabularies
- weeks 9–13: advanced topics
The Fundamental Equation of Speech Recognition

\[
\text{class}(x) = \arg \max_\omega P(\omega|x) \\
= \arg \max_\omega \frac{P(\omega)P(x|\omega)}{P(x)} \\
= \arg \max_\omega P(\omega)P(x|\omega)
\]

- \(P(x|\omega)\) — acoustic model
- \(P(\omega)\) — language model
Outline

- Unit I: you do not talk about Unit I
- Unit II: acoustic model training for LVCSR
- Unit III: decoding for LVCSR (inefficient)
 - Unit IV: introduction to finite-state transducers
- Unit V: search (lecture 8)
 - making decoding for LVCSR efficient
Small vocabulary training — Lab 2

- small model
 - 102 HMM states spread over 11 word models
 - 102 12-dimensional Gaussians
 - \(102 \times 12 \times 2 = 2448 \) parameters

- simple training recipe
 - flat start: mean 0, variance 1
 - run a bunch of iterations of Forward-Backward training
 - done!
Acoustic Model Training

What happens when we train more complex acoustic models?

- single Gaussians \Rightarrow Gaussian mixture models (GMM’s)
- isolated speech \Rightarrow continuous speech
- word models \Rightarrow context-dependent (CD) phone models
- 2500 Gaussian parameters \Rightarrow tens of millions of Gaussian parameters
- flat start and FB?
Case Study: Training a Mixture of Two 2-D Gaussians

The Data: real live acoustic features

- front end from lab 1; take first two dimensions; 546 frames
Training a Mixture of Two 2-D Gaussians

Flat start?

- initialize mean of each Gaussian to 0, variance to 1
- what do you think will happen?
Training a Mixture of Two 2-D Gaussians

“At the Mr. O level, symmetry is everything.”

- at the GMM level, symmetry is a bad idea.
Training a Mixture of Two 2-D Gaussians

Random seeding?

- picked 8 random starting points ⇒ 3 different optimum found
- training is not simple even for simple models
Training Hidden Models

(MLE) training of models with hidden variables has local minima

- example: GMM
 - hidden quantity: for each feature vector in training data, which Gaussian in mixture generated it

- example: HMM
 - hidden quantity: alignment; for each frame in training data, which arc generated it
Gradient Descent and Local Minima

FB training does hill-climbing/gradient descent

- finds “nearest” optimum to where you started
- picking a good starting point is key
- chicken and egg problem
Secrets of Acoustic Model Training, Uncovered!

Unit overview

- discuss training process in more depth
- reveal strategies for finding ML parameter estimates for complex models
 - discovered via sweat and tears
 - not true ML estimates, but as close as we can get
 - art, not science
- in practice, training is tortuous multistage process
 - use simpler models to bootstrap more complex models
Aside: Not Truly Maximum Likelihood

- variance flooring
 - don’t let variances go to 0 \(\Rightarrow\) infinite likelihood

- just as LM’s need to be smoothed or regularized
 - so do acoustic models
 - penalize undesirable parameter values/unsmooth models
 - variance flooring is poor person’s regularization
Baby Steps

Let’s start simple and consider more complex models in turn

■ from word models; single Gaussians; isolated words . . .

■ to context-dependent phone models; GMM’s; continuous words
Single Gaussian Word Models, Isolated Word

- Phase 1: Collect underpants
 - initialize all Gaussian means to 0, variances to 1

- Phase 2: Iterate over training data
 - for each word, train associated word HMM ...
 - on all samples of that word in the training data ...
 - using the Forward-Backward algorithm

- Phase 3: Profit!
Single Gaussian Word Models, Isolated Word

Why does this work?

- we believe there’s a huge local minima in the “middle” of the parameter search space
 - with a neutral starting point, we’re apt to fall into it
 - (who knows if this is actually true)

- another perspective
 - the model doesn’t have enough freedom to screw up
 - the only way it can achieve a good likelihood is . . .
 - if the Gaussians for a particular phone (e.g., āh) . . .
 - actually model the acoustic realizations of that phone
Bootstrapping Big Models From Small Models

- how can we train more complex models . . .
 - where flat/random start will almost certainly do poorly?
- start with a model simple enough that a flat start works
- then, can we use this simple model . . .
 - to give us hints on how to seed the parameters of a larger model?
- if so, can iteratively build more and more complex models
- case study: training mixtures of Gaussians
 - recursive mixture splitting
 - k-means clustering
Gaussian Mixture Splitting

- start with single Gaussian per mixture (trained)
- split each Gaussian into two
 - perturb means in opposite directions; same variance
 - train
- repeat until reach desired number of mixture components (1, 2, 4, 8, ...)
 - (discard Gaussians with insufficient counts)
- assumption: \(n \)-component Gaussian mixture gives good hints on how to seed \(2n \)-component Gaussian mixture
Mixture Splitting Example

- train single Gaussian
Mixture Splitting Example

- split each Gaussian in two \((\pm 0.2 \times \bar{\sigma})\)
Mixture Splitting Example

- train, yep
Mixture Splitting Example

- split each Gaussian in two ($\pm 0.2 \times \bar{\sigma}$)
Mixture Splitting Example

- train, yep
Using Mixture Splitting in Acoustic Model Training

- train model where each output distribution is single Gaussian (à la Lab 2)
- split Gaussians in each output distribution simultaneously
- train whole model with FB
- repeat
Another Seeding Method: Use Automatic Clustering

- instead of recursive divide-and-conquer method...

- use clustering algorithm on data to find desired number of cluster centers all at once
 - use cluster centers to seed Gaussian means
 - initialize variances to constant

- (discard Gaussians with insufficient counts)
k-Means Clustering

Simple and effective clustering algorithm

- select desired number of clusters k
- choose k data points randomly
 - use these as initial cluster centers
- “assign” each data point to nearest cluster center
- recompute each cluster center as . . .
 - mean of data points “assigned” to it
- repeat until convergence
\textbf{k-Means Example}

- pick random cluster centers; assign each point to nearest center
\(k\)-Means Example

- recompute cluster centers
\(k\)-Means Example

- assign each point to nearest center
k-Means Example

- repeat until convergence
k-Means Example

- use centers as means of Gaussians; train, yep
The Final Mixtures, Splitting vs. k-Means
Technical Aside: \(k \)-Means Clustering

- when using Euclidean distance to compute “nearest” center . . .
- \(k \)-means clustering is equivalent to . . .
 - seeding \(k \)-component GMM means with the \(k \) initial centers
 - doing “hard” GMM update
 - instead of assigning true posterior to each Gaussian in update . . .
 - assign “posterior” of 1 to most likely Gaussian and 0 to the others
 - keeping variances constant
Using k-Means Clustering in Acoustic Model Training

- for each GMM/output distribution, use k-means clustering . . .
 - on acoustic feature vectors “associated” with that GMM . . .
 - to seed means of that GMM

- huh?
 - how to decide which frames belong to which GMM?
 - we are told which word (HMM) belongs to each training utterance
 - but we aren’t told which HMM arc (output distribution) belongs to each frame

- how can we compute this?
Forced Alignment

- Viterbi algorithm
 - given acoustic model, finds most likely alignment of HMM to data
 - not perfect, but what can you do?

- need existing model to create alignment . . .
 - for seeding means for GMM’s in new model
 - use best existing model you have available!
 - alignment will only be as good as model
Lessons: Training GMM’s

- hidden models have local minima galore!
- smaller models can help seed larger models
 - mixture splitting
 - use \(n \)-component GMM to seed \(2n \)-component GMM
 - \(k \)-means
 - use existing model to provide GMM⇔frame alignment
- heuristics have been developed that work OK
 - mixture splitting and \(k \)-means are comparable
 - but no one believes these find global optima, even for relatively small problems
 - these are not the last word!
Single Gaussians \Rightarrow GMM’s

The training recipe so far

- train single Gaussian models (flat start; many iterations of FB)
- do mixture splitting, say
 - split each Gaussian in two; many iterations of FB
 - repeat until desired number of Gaussians per mixture
Unit II: Acoustic Model Training for LVCSR

What’s next?

- single Gaussians \Rightarrow Gaussian mixture models (GMM’s)
- isolated speech \Rightarrow continuous speech
- word models \Rightarrow context-independent (CI) phone models
- CI phone models \Rightarrow context-dependent (CD) phone models
From Isolated to Continuous Speech

- isolated speech with word models
 - train each word HMM using only instances of that word

- continuous speech
 - don’t have instances of individual words nicely separated out
 - don’t know when each word begins and ends in an utterance

- what to do?
From Isolated to Continuous Speech

Strategy A (Viterbi-style training)

- do forced alignment
 - for each training utterance, build HMM by . . .
 - concatenating word HMM’s for words in reference transcript
 - do Viterbi algorithm; recover best alignment
 - see board

- snip each utterance into individual words
 - reduces to isolated word training

- what are possible issues with this approach?
From Isolated to Continuous Speech

Strategy B

- instead of snipping the concatenated word HMM and snipping the acoustic feature vectors . . .
 - and running FB on each word HMM+segment separately . . .
 - what if we just run FB on the whole darn thing!?

- does this make sense?
 - like having an HMM for each word sequence rather than for each word . . .
 - where parameters for all instances of same word are \textit{tied}
 - analogy: like using phonetic models for isolated speech
 - each word (phone sequence) has its own HMM . . .
 - where parameters for all instances of same phone are tied
Pop Quiz

- To do one iteration of FB, which strategy is faster?
 - Hint: what is the time complexity of FB?
- Which strategy is less prone to local minima?
- In practice, both styles of strategies are used
 - including an extreme version of Strategy A
But Wait, It’s More Complicated Than That!

- reference transcripts are created by humans . . .
 - who, by their nature, are *human* (*i.e.*, fallible)

- typical transcripts don’t contain everything an ASR system wants
 - where silence occurred; noises like coughs, door slams, etc.
 - pronunciation information, *e.g.*, was THE pronounced as DH UH or DH IY?

- how can we correctly construct the HMM for an utterance?
 - where do we insert the silence HMM?
 - which pronunciation variant to use for each word?
 - if have different HMM’s for different pronunciations of a word
that is, the human-produced transcript is incomplete
• how can we produce a more complete transcript?

Viterbi decoding!
• build HMM accepting all word (HMM) sequences consistent with reference transcript
• compute best path/word HMM sequence
Pronunciation Variants, Silence, and Stuff

Where does the initial acoustic model come from?

- train initial model without silence; single pronunciation per word
- use HMM containing all alternatives directly in training (e.g., Lab 2)
 - not clear what interpretation is, but works for bootstrapping
Isolated Speech ⇒ Continuous Speech

The training recipe so far

- train an initial GMM system (Lab 2 stopped here)
 - same recipe as before, except create HMM for each training utterance by concatenating word HMM’s

- use initial system to refine reference transcripts
 - select pronunciation variants, where silence occurs

- do more FB on initial system or retrain from scratch
 - using refined transcripts to build HMM’s
Unit II: Acoustic Model Training for LVCSR

What’s next?

- single Gaussians \Rightarrow Gaussian mixture models (GMM’s)
- isolated speech \Rightarrow continuous speech
- word models \Rightarrow context-independent (CI) phone models
- CI phone models \Rightarrow context-dependent (CD) phone models
Word Models

HMM/graph expansion

- reference transcript

- replace each word with its HMM
Context-Independent Phone Models

HMM/graph expansion

- reference transcript

- pronunciation dictionary
 - maps each word to a sequence of phonemes

- replace each phone with its HMM
Word Models ⇒ Context-Independent Phone Models

Changes

- need pronunciation of *every* word in training data
 - including pronunciation variants
 - THE(01) DH AH
 - THE(02) DH IY
 - listen to data? use automatic spelling-to-sound models?

- how the HMM for each training utterance is created
Word Models ⇒ Context-Independent Phone Models

The training recipe so far

- build pronunciation dictionary for all words in training set
- train an initial GMM system
- use initial system to refine reference transcripts
- do more FB on initial system or retrain from scratch
Unit II: Acoustic Model Training for LVCSR

What’s next?

- single Gaussians \Rightarrow Gaussian mixture models (GMM’s)
- isolated speech \Rightarrow continuous speech
- word models \Rightarrow context-independent (CI) phone models
- CI phone models \Rightarrow context-dependent (CD) phone models
CI \Rightarrow CD Phone Models

- context-independent phone models
 - there are \sim50 phonemes
 - each has a \sim3 state HMM \Rightarrow \sim150 CI HMM states
 - each CI HMM state has its own GMM \Rightarrow \sim150 GMM’s

- context-dependent models
 - each of the \sim150 HMM states now has a set of 1–100 GMM’s attached to it
 - which of the 1–100 GMM’s to use is determined by the phonetic context ...
 - by using a decision tree
 - e.g., for first state of phone AX, if DH to left and stop consonant to right, then use GMM37, else ...
Context-Dependent Phone Models

Notes

- not one decision tree per phoneme, but one per phoneme state
 • better model of reality
 • GMM for first state in HMM depends on left context mostly
 • GMM for last state in HMM depends on right context mostly

- terminology
 • triphone model — look at ±1 phones of context
 • quinphone model — look at ±2 phones of context
 • also, septaphone and 11-phone models
Context-Dependent Phone Models

Typical model sizes

<table>
<thead>
<tr>
<th>type</th>
<th>HMM per word/phone</th>
<th>GMM’s/state</th>
<th>GMM’s</th>
<th>Gaussians</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>per word</td>
<td>1</td>
<td>10–500</td>
<td>100–10k</td>
</tr>
<tr>
<td>CI phone</td>
<td>per phone</td>
<td>1–100</td>
<td>~150</td>
<td>1k–3k</td>
</tr>
<tr>
<td>CD phone</td>
<td>per phone</td>
<td>1–100</td>
<td>1k–10k</td>
<td>10k–300k</td>
</tr>
</tbody>
</table>

- 39-dimensional feature vectors ⇒ ~80 parameters/Gaussian
- Big models can have tens of millions of parameters
Building a Triphone Phonetic Decision Tree

- in a CI model, consider the GMM for a state, e.g., A_H^1
 - this is a probability distribution $p(\vec{x}|A_H^1)$. . .
 - over acoustic feature vectors \vec{x}

- context-dependent modeling assumes . . .
 - we can build better model of acoustic realizations of A_H^1 . . .
 - if we condition on the surrounding phones, e.g., for a triphone model, $p(\vec{x}|A_H^1, p_L, p_R)$

- what do we mean by better model?

- how do we build this better model?
Building a Triphone Phonetic Decision Tree

- what do we mean by better model?
 - maximum likelihood!?
 - the model \(p(\vec{x}|AH_1, p_L, p_R) \) should assign a higher total likelihood than \(p(\vec{x}|AH_1) \) to some data \(\vec{x}_1, \vec{x}_2, \ldots \)

- on what data?
 - all frames \(\vec{x} \) in the training data . . .
 - that correspond to the state/sound \(AH_1 \)

- how do we find this data?
Training Data for Decision Trees

- forced alignment/Viterbi decoding!
- where do we get the model to align with from?
 - use CI phone model or other pre-existing model

<table>
<thead>
<tr>
<th>frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>arc</td>
<td>DH_1</td>
<td>DH_2</td>
<td>AH_1</td>
<td>AH_2</td>
<td>D_1</td>
<td>D_1</td>
<td>D_2</td>
<td>D_2</td>
<td>D_2</td>
<td>AO_1</td>
<td>…</td>
</tr>
</tbody>
</table>
Building a Triphone Phonetic Decision Tree

- build decision tree for A_{H_1} to optimize likelihood of acoustic feature vectors aligned to A_{H_1}
 - predetermined question set
 - see lecture 6 slides, readings for gory details
- the CD probability distribution: $p(\vec{x}|\text{leaf}(A_{H_1}, p_L, p_R))$
 - there is a GMM at each leaf of the tree
 - context-independent \Rightarrow tree with single leaf
Goldilocks and The Three Parameterizations

Perspective

- one GMM per phone state
 - too few parameters; doesn’t model the many allophones of a phoneme

- one GMM per phone state and triphone context ($\sim 50 \times 50$)
 - too many parameters; sparse data issues

- cluster triphone contexts using decision tree
 - each leaf represents a cluster of triphone contexts . . .
 - with (hopefully) similar acoustic realizations that can be modeled with single GMM
 - just right!
Training Context-Dependent Models

OK, let’s say we have decision trees; how to train our new GMM’s?

- how can we seed the context-dependent GMM parameters?
 - *e.g.*, what if we have a CI model?
 - what if we have an existing CD model but with a different tree?

- once you have a good model for a domain
 - can use to quickly bootstrap other models
 - why might this be a bad idea?
Training Context-Dependent Models

HMM/graph expansion
CI \Rightarrow CD Phone Models

The training recipe so far

- build CI model using previous recipe
- use CI model to align training data
 - use alignment to build phonetic decision tree
- use CI model to seed CD model
- train CD model using FB
Whew, That Was Pretty Complicated!

Or not

- adaptation (VTLN, fMLLR, mMLLR)
- discriminative training (LDA, MMI, MPE, fMPE)
- model combination (cross adaptation, ROVER)
- iteration
 - repeat steps using better model for seeding
 - alignment is only as good as model that created it
Things Can Get Pretty Hairy

<table>
<thead>
<tr>
<th>Method</th>
<th>Eval'98 WER (SWB only)</th>
<th>Eval'01 WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus 100-best</td>
<td>36.0%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Consensus 4-gram</td>
<td>37.2%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Consensus</td>
<td>37.2%</td>
<td>34.3%</td>
</tr>
<tr>
<td>ROVER</td>
<td>34.0%</td>
<td>27.8%</td>
</tr>
</tbody>
</table>

Diagram

![Speech Recognition Diagram](image-url)
Unit II: Acoustic Model Training for LVCSR

- take-home messages
 - hidden model training is fraught with local minima
 - seeding more complex models with simpler models helps avoid terrible local minima
 - people have developed recipes/heuristics to try to improve the minimum you end up in
 - no one best recipe
 - training is insanely complicated for state-of-the-art research models

- the good news is . . .
 - I just saved a bunch on money on my car insurance by switching to GEICO
Unit III: Decoding for LVCSR (Inefficient)

\[
\text{class}(x) = \arg \max_{\omega} P(\omega|x)
\]

\[
= \arg \max_{\omega} \frac{P(\omega)P(x|\omega)}{P(x)}
\]

\[
= \arg \max_{\omega} P(\omega)P(x|\omega)
\]

- now that we know how to build models for LVCSR . . .
 - CD acoustic models via complex recipes
 - \(n\)-gram models via counting and smoothing

- how can we use them for decoding?
 - let’s ignore memory and speed constraints for now
Decoding

What did we do for small vocabulary tasks?

- take graph/FSA represent language model
 - *i.e.*, all allowed word sequences

- expand to underlying HMM

- run the Viterbi algorithm!
Decoding

Well, can we do the same thing for LVCSR?

- Issue 1: Can we express an n-gram model as an FSA?

 - yup
\(n \)-Gram Models as HMM’s

- probability assigned to path is LM probability of words along that path
- do bigram example on board
Pop Quiz

- how many states in the FSA representing an n-gram model . . .
 - with vocabulary size $|V|$?
- how many arcs?
Decoding

Issue 2: How can we expand a word graph to its underlying HMM?

- **word models**
 - replace each word with its HMM

- **CI phone models**
 - replace each word with its phone sequence(s)
 - replace each phone with its HMM
Graph Expansion with Context-Dependent Models

- how can we do context-dependent expansion?
 - handling branch points is tricky

- example of triphone expansion

- other tricky cases
 - words consisting of a single phone
 - quiniphone models
Word-Internal Acoustic Models

Simplify acoustic model to simplify graph expansion

- \textit{word-internal} models
 - don’t let decision trees ask questions across word boundaries
 - pad contexts with the \textit{unknown phone}
 - hurts performance (e.g., coarticulation across words)

- in graph expansion, just replace each word with its HMM
Graph Expansion with Context-Dependent Models

Is there a better way?

- is there some elegant theoretical framework . . .
- that makes it easy to do this type of expansion . . .
- and also makes it easy to do lots of other graph operations useful in ASR?
- \Rightarrow finite-state transducers (FST’s)! (Unit IV)
Unit III: Decoding for LVCSR (Inefficient)

Recap

- can do same thing we do for small vocabulary decoding
 - start with LM represented as word graph
 - expand to underlying HMM
 - Viterbi

- how to do the graph expansion? FST’s (Unit IV)

- how to make decoding efficient? search (Unit V)
Overview

- FST’s closely related to finite-state automata (FSA)
 - an FSA is a graph
 - an FST …
 - takes an FSA as input …
 - and produces a new FSA

- natural technology for graph expansion …
 - and much, much more

- FST’s for ASR pioneered by AT&T in late 1990’s
Review: What is a Finite-State Acceptor?

- it has states
 - exactly one initial state; one or more final states
- it has arcs
 - each arc has a label, which may be empty (ϵ)
- ignore probabilities for now
Pop Quiz

- What are the differences between the following:
 - HMM’s with discrete output distributions
 - FSA’s with arc probabilities

- Can they express the same class of models?
What is a Finite-State Transducer?

- it’s like a finite-state acceptor, except . . .
- each arc has two labels instead of one
 - an *input* label (possibly empty)
 - an *output* label (possibly empty)
Terminology

- **finite-state acceptor** (FSA): one label on each arc
- **finite-state transducer** (FST): input and output label on each arc
- **finite-state machine** (FSM): FSA or FST
 - also, *finite-state automaton*

- incidentally, an FSA can act like an FST
 - duplicate label to be both input and output label
How Can We Apply an FST to an FSA?

Composition operation

- perspective: rewriting/transforming token sequences

\[A \circ T \]
Composition

Another example

\[A \]

\[T \]

\[A \circ T \]
Composition

Rewriting many paths at once

\[A \circ T \]
Composition

Formally, if composing FSA A with FST T to get FSA $A \circ T$:

- for every complete path (from initial to final state) in A ...
 - with input labels $i_1 \cdots i_N$ (ignoring ϵ labels) ...

- and for every complete path in T ...
 - with input labels $i_1 \cdots i_N$ and ...
 - with output labels $o_1 \cdots o_M$...

- there is a complete path in $A \circ T$...
 - with input labels $o_1 \cdots o_M$ (ignoring ϵ labels)

- we will discuss how to construct $A \circ T$ shortly
Composition

Many graph expansion operations can be represented as FST’s

- example 1: optional silence insertion in training graphs

\[A \circ T \]
Example 2: Rewriting Words as Phone Sequences

THE(01) DH AH
THE(02) DH IY

A

\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=3.5cm,thick,main node/.style={circle,draw,font\small\bfseries}]

\node[main node] (1) {1};
\node[main node] (2) [right of=1] {2};
\node[main node] (3) [right of=2] {3};
\node[main node] (4) [right of=3] {4};
\node[main node] (5) [right of=4] {5};
\node[main node] (6) [right of=5] {6};

\path[every node/.style={font\small\bfseries}]
(1) edge node {THE} (2)
(2) edge node {DOG} (3)
(3) edge node {THE:DH} (4)
(4) edge node {<\text{epsilon}>:AH} (5)
(5) edge node {<\text{epsilon}>:AO} (6)
(1) edge node {<\text{epsilon}>:IY} (2)
(2) edge node {DOG:D} (3)
(3) edge node {<\text{epsilon}>:G} (4)
end{tikzpicture}

T

\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=3.5cm,thick,main node/.style={circle,draw,font\small\bfseries}]

\node[main node] (1) {1};
\node[main node] (2) [right of=1] {2};
\node[main node] (3) [right of=2] {3};
\node[main node] (4) [right of=3] {4};
\node[main node] (5) [right of=4] {5};
\node[main node] (6) [right of=5] {6};

\path[every node/.style={font\small\bfseries}]
(1) edge node {<\text{epsilon}>:IY} (2)
(2) edge node {<\text{epsilon}>:AH} (3)
(3) edge node {DOG:D} (4)
(4) edge node {<\text{epsilon}>:AO} (5)
(5) edge node {<\text{epsilon}>:G} (6)
end{tikzpicture}

A \circ T

\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=3.5cm,thick,main node/.style={circle,draw,font\small\bfseries}]

\node[main node] (1) {1};
\node[main node] (2) [right of=1] {2};
\node[main node] (3) [right of=2] {3};
\node[main node] (4) [right of=3] {4};
\node[main node] (5) [right of=4] {5};
\node[main node] (6) [right of=5] {6};

\path[every node/.style={font\small\bfseries}]
(1) edge node {DH} (2)
(2) edge node {AH} (3)
(3) edge node {D} (4)
(4) edge node {AO} (5)
(5) edge node {G} (6)
end{tikzpicture}
Example 3: Rewriting CI Phones as HMM’s

\[A \circ T \]

\[\begin{align*}
1 & \rightarrow D \rightarrow 2
\quad & \rightarrow AO \rightarrow 3 \\
2 & \rightarrow <\text{epsilon}> : D1 \rightarrow 1
\quad & \rightarrow <\text{epsilon}> : D2 \rightarrow 3
\quad & \rightarrow <\text{epsilon}> : AO1 \rightarrow 5
\quad & \rightarrow <\text{epsilon}> : AO2 \rightarrow 5
\quad & \rightarrow <\text{epsilon}> : G1 \rightarrow 6
\quad & \rightarrow <\text{epsilon}> : G2 \rightarrow 6
\quad & \rightarrow <\text{epsilon}> : <\text{epsilon}> \rightarrow 7
\end{align*} \]
Computing Composition

- for now, pretend no ϵ-labels
- for every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T$
- create arc from (s_1, t_1) to (s_2, t_2) with label o iff . . .
 - there is an arc from s_1 to s_2 in A with label i
 - there is an arc from t_1 to t_2 in T with input label i and output label o
- (s, t) is initial iff s and t are initial; similarly for final states
- (remove arcs and states that cannot reach both an initial and final state)
- efficient
Computing Composition

Example

\[
A = \begin{align*}
1 & \xrightarrow{a} 2 \\
2 & \xrightarrow{b} 3
\end{align*}
\]

\[
T = \begin{align*}
1 & \xrightarrow{a : A} 2 \\
2 & \xrightarrow{b : B} 3
\end{align*}
\]

\[
A \circ T = \begin{align*}
1,1 & \xrightarrow{A} 2,2 \\
2,2 & \xrightarrow{B} 3,2
\end{align*}
\]

- optimization: start from initial state, build outward
Computing Composition

Another example (see board)

\[
A
\begin{align*}
1 & \rightarrow 2 \\
1 & \rightarrow 3 \\
2 & \rightarrow 3 \\
3 & \rightarrow 2 \\
3 & \rightarrow 1 \\
\end{align*}
\]

\[
T
\begin{align*}
1 & \rightarrow 2 \\
1 & \rightarrow 1 \\
2 & \rightarrow 2 \\
2 & \rightarrow 1 \\
\end{align*}
\]

\[
A \circ T
\begin{align*}
1,1 & \rightarrow 2,2 \\
1,1 & \rightarrow 3,1 \\
2,2 & \rightarrow 3,1 \\
3,1 & \rightarrow 1,2 \\
1,2 & \rightarrow 2,1 \\
2,1 & \rightarrow 3,2 \\
\end{align*}
\]
Composition and ϵ-Transitions

- basic idea: can take ϵ-transition in one FSM without moving in other FSM
 - a little tricky to do exactly right
 - do the readings if you care: (Pereira, Riley, 1997)

\[
A, T
\]

\[
A \circ T
\]
How to Express CD Expansion via FST’s?

- step 1: rewrite each phone as a triphone
 - rewrite AX as DH AX R if DH to left, R to right

- step 2: rewrite each triphone with correct context-dependent HMM for center phone
 - just like rewriting a CI phone as its HMM
 - need to precompute HMM for each possible triphone (≈ 50^3)
 - example on board: CI phones \Rightarrow CD phones \Rightarrow HMM’s
How to Express CD Expansion via FST’s?

\[A \circ T \]

\[\begin{align*}
A & \quad \begin{array}{ccccccc}
1 & x & 2 & y & 3 & y & 4 & x & 5 & y & 6
\end{array} \\
T & \quad \begin{array}{ccccccc}
\text{x_x} & \xrightarrow{x:x_x_x} & \text{x_y} & \xrightarrow{x:y_x_x} & \text{y_x} & \text{y_y} & \xrightarrow{y:y_y_x} & \text{y_y_y} & \text{x_y_x} & \xrightarrow{x:y_y_x} & \text{y_y_y}_x
\end{array} \\
A \circ T & \quad \begin{array}{ccccccc}
1 & x_x_y & 2 & x_y_y & 3 & y_y_x & 4 & y_x_y & 5 & x_y_x & 6
\end{array}
\end{align*} \]
How to Express CD Expansion via FST’s?

Example

- point: composition automatically expands FSA to correctly handle context!
 - makes multiple copies of states in original FSA . . .
 - that can exist in different triphone contexts
 - (and makes multiple copies of only these states)
Unit IV: Introduction to Finite-State Transducers

What we’ve learned so far:

- graph expansion can be expressed as series of composition operations
 - need to build FST to represent each expansion step, *e.g.*,

 \[
 \begin{array}{ccc}
 1 & 2 & \text{THE} \\
 2 & 3 & \text{DOG} \\
 3 & \\
 \end{array}
 \]
 - with composition operation, we’re done!

- composition is efficient

- context-dependent expansion can be handled effortlessly
What About Those Probability Thingies?

- *e.g.*, to hold language model probs, transition probs, etc.

- FSM’s ⇒ *weighted* FSM’s
 - WFSA’s, WFST’s

- each arc has a score or *cost*
 - so do final states

![Diagram showing a weighted finite state automaton](image)
How Are Arc Costs and Probabilities Related?

- typically, we take costs to be negative log probabilities
 - costs can move back and forth along a path
 - the cost of a path is sum of arc costs plus final cost

- if two paths have same labels, can be combined into one
 - typically, use min operator to compute new cost

- operations \((+, \text{min})\) form a semiring (the tropical semiring)
 - other semirings are possible
Which Of These Is Different From the Others?

- FSM’s are equivalent if same label sequences with same costs

![Diagram of FSMs]
Weighted Composition

Just add arc costs

\[A \circ T \]

\[\begin{array}{c}
1 \quad a/1 \\
2 \quad b/0 \\
3 \quad d/2 \\
4/0
\end{array} \]

\[T \]

\[\begin{array}{c}
1/1 \\
\quad a:A/2 \\
\quad b:B/1 \\
\quad c:C/0 \\
\quad d:D/0
\end{array} \]

\[A \circ T \]

\[\begin{array}{c}
1 \quad A/3 \\
2 \quad B/1 \\
3 \quad D/2 \\
4/1
\end{array} \]
Weighted Graph Expansion

- start with weighted FSA representing language model
- use composition to apply FST for each level of expansion
 - scores/logprobs will be accumulated
 - logprobs may move around along paths
 - all that matters for Viterbi is total score of paths
Unit IV: Introduction to Finite-State Transducers

Recap

- WFSA’s and WFST’s can represent many important structures in ASR
- composition can do lots of useful things, including . . .
 - transforming arc labels
 - context-dependent expansion
 - adding in new arc scores
 - restricting the set of allowed paths
Road Map

Where are we going?

- Unit I: you do not talk about Unit I
- Unit II: acoustic model training for LVCSR
- Unit III: decoding for LVCSR (inefficient)
 - Unit IV: introduction to finite-state transducers
- Unit V: search (lecture 8)
 - making decoding for LVCSR efficient
Course Feedback

1. Was this lecture mostly clear or unclear? What was the muddiest topic?

2. Other feedback (pace, content, atmosphere)?