EE 6885 Statistical Pattern Recognition

Fall 2005
Prof. Shih-Fu Chang
http://www.ee.columbia.edu/~sfchang

Lecture 10 (10/12/05)

- Reading
 - Nearest Neighbor Estimation, Distance Metrics
 - DHS Chap. 4.4-4.5, 4.6
- Midterm Exam
 - Oct. 24th 2005 Monday 1pm-2:30pm (90mins)
 - Open books/notes, no computer
k_n-Nearest-Neighbor

$p_n(x) = \frac{k_i/n}{V_n}$

- For classification, estimate $p(x)$ for each class ω_i
 $p_n(x, \omega_i) = \frac{k_i/n}{V}$
 $p_n(\omega_i | x) = \frac{p_n(x, \omega_i)}{\sum_{j=1}^{n} p_n(x, \omega_j)} = \frac{k_i}{k}$

- Performance bound of 1-nearest neighbor
 $P^* \leq \lim_{n \to \infty} P_n(e) \leq P^*(2 - \frac{c}{c-1} P^*)$

 $P^*(e | x) = 1 - \max_i P(\omega_i | x)$

 $P^* = \int P^*(e | x)p(x)dx$

Deriving the error bound ...

Assume n samples: $(x_1, \theta_1), (x_2, \theta_2), \ldots, (x_n, \theta_n)$

Assume x'_n is the nearest neighbor to x

$P_n(e | x, x'_n) = 1 - \sum_{i=1}^{c} P(\theta = \omega_i, \theta'_n = \omega_j | x, x'_n) = 1 - \sum_{i=1}^{c} P(\omega_i | x)p(\theta | x'_n)$

$\lim_{n \to \infty} P_n(e | x) = \lim_{n \to \infty} \int P_n(e | x, x'_n)p(x'_n)dx'_n = \lim_{n \to \infty} \int P_n(e | x, x'_n)\delta(x'_n - x)dx'_n$

$= \int \left[1 - \sum_{i=1}^{c} P(\omega_i | x)p(\theta | x'_n)\right] \delta(x'_n - x)dx'_n = 1 - \sum_{i=1}^{c} P^2(\omega_i | x)$

$P = \lim_{n \to \infty} P_n(e) = \lim_{n \to \infty} \int P_n(e | x)p(x)dx = \left[1 - \sum_{i=1}^{c} P^2(\omega_i | x)\right]p(x)dx$

- We are interested in relation between P & P^* (the min. error prob.)

 $P^* = \int P^*(e | x)p(x)dx$

 $P(e | x) = 1 - \max_i P(\omega_i | x) = 1 - P(\omega_n | x)$
Deriving the 1-NN error bound (cont.)

- We are interested in relation between P & P^* (the min. error prob.)

\[
P = \int \left[1 - \sum_{i=1}^{c} P^2(\omega_i | x)\right] p(x) dx \quad \text{Suppose we fix } P(\omega_m | x), \text{ i.e., fix } P^*
\]

\[
\sum_{i=1}^{c} P^2(\omega_i | x) \text{ is minimized when } P(\omega_i | x) \text{ are equal when } i \neq m
\]

namely $P(\omega_i | x) = \begin{cases} \frac{P(\omega_m | x)}{c-1} & i = m \\ \frac{1-P(\omega_i | x)}{c-1} & i \neq m \end{cases}$

\[
\Rightarrow \sum_{i=1}^{c} P^2(\omega_i | x) \geq \left(1 - P^*(e | x)\right)^2 + \frac{P^2* (e | x)}{c-1}
\]

\[
\Rightarrow 1 - \sum_{i=1}^{c} P^2(\omega_i | x) \leq 2P^* (e | x) - \frac{c}{c-1} P^2* (e | x)
\]

\[
\Rightarrow \int P^2* (e | x) p(x) dx \geq \left[\int P^* (e | x) p(x) dx\right]^2 = P^*^2
\]

\[
\Rightarrow P = \int \left[1 - \sum_{i=1}^{c} P^2(\omega_i | x)\right] p(x) dx \leq 2P^* - \frac{c}{c-1} P^*^2 \quad \text{Q.E.D.}
\]

K-NN example (Ref. HTF Chap 13)

- Two Classes, data in each class generated by Gaussian Mixtures

\[\text{Cross-validation performance}\]
K-Means Clustering

- Training data from each class

 3 classes from GMM

- For each class, apply K-means clustering

 - Randomly select K prototypes

 - Map samples to the closest prototype (hard decision)

\[x_1, x_2, ..., x_N \text{ samples} \]

\[for \ i = 1, 2, ..., N, \]

\[x_i \rightarrow C_k \text{, if } Dist(x_i, C_k) < Dist(x_i, C_{k'}) , k \neq k' \]

end

- Re-compute the prototypes

Learning Vector Quantization (LVQ)

- Training data from c classes

- Find K prototypes for each class

 \(m_1(j), m_2(j), ..., m_K(j) , \ j = 1, 2, ..., c \)

- Randomly sample data \(x \)

 find the closest prototype \(m_k(j) \)

 if class label of \(x = j \),

 then move prototype \(m_k(j) \) closer to \(x \)

 \[m_k(j) \leftarrow m_k(j) + \varepsilon(x - m_k(j)) \]

 otherwise, move prototype away from \(x \)

 \[m_k(j) \leftarrow m_k(j) - \varepsilon(x - m_k(j)) \]

- Repeat the above step, with the learning rate \(\varepsilon \) decreasing to 0
Comparing LVQ with KNN

Toy problems for comparison

10-dimensional features in the unit hypercube
\[x = \{ x_1, x_2, \ldots, x_{10} \}, \quad x_i \text{uniformly distributed in } [0,1] \]

100 training samples, 1000 test samples

- Easy problem
 \[\text{class label } Y = I(x_i > 0.5) \]

- Difficult problem
 \[\text{class label } Y = I(\text{sign} \left\{ \prod_{i=0}^{3} (x_i - 0.5) \right\} > 0) \]

- What’s the Bayesian Error Rate?
Performance Comparison

- Easy problem
- Difficult problem
- Observations?

Distance Metrics

- Nearest neighbor rules need distance metrics
- Required properties of a metric
 1. non-negativity: \(D(a,b) \geq 0 \)
 2. reflexivity: \(D(a,b) = 0 \) iff \(a = b \)
 3. symmetry: \(D(a,b) = D(b,a) \)
 4. triangular inequality: \(D(a,b) + D(b,c) \geq D(c,a) \)

\[D(a,b) \geq D(c,a) - D(b,c) \]

- Minkowski Metric
 - Euclidean
 - Manhattan
 - \(L_\infty \)

- Tanimono Metric
 - sets of elements
 - Point-point distance not useful

\[D_{\text{tanimono}}(S_1, S_2) = \frac{n_1 + n_2 - 2n_{12}}{n_1 + n_2 - n_{12}} \]

useful in indexing