Homework Assignment

2nd order Biquad

\[R = 1k \Omega \]
\[C = \frac{1}{2\pi} \mu F \]

1. Transform the circuit into the s-domain

2. Derive \(\frac{V_1}{V_{in}} = H_1(s) \) and \(\frac{V_2}{V_{in}} = H_2(s) \)

3. Draw a pole-zero diagram for \(H_1(s) \) and \(H_2(s) \)

 for Q = \(\frac{1}{8} \); \(Q = \frac{1}{2} \); \(Q = 10 \)

4. Assume \(V_{in}(t) = \cos(\omega t) \)

 Plot \(\left| \frac{V_2}{V_{in}} \right| \) and \(\left| \frac{V_1}{V_{in}} \right| \) vs frequency for \(\omega \): 1 → 10^9 rad/sec

 (use log-log scales)

 for Q = \(\frac{1}{8} \); \(Q = \frac{1}{2} \); \(Q = 10 \).

5. Plot \(\times \left| \frac{V_1}{V_{in}} \right| \) and \(\times \left| \frac{V_2}{V_{in}} \right| \) vs freq for \(\omega \): 1 → 10^9 rad/sec

 (use a linear y-axis and a logarithmic x-axis)