Problem Set #2 Solutions

1 Remark: We work under the condition $\Phi_1(t) = X_1(t)/\sqrt{E_b}$, since $||\Phi(t)|| = 1$. (It is a minor typo in the problem that $\Phi_1(t) = X_1(t)/\sqrt{E}$).

a) $\Phi_1(t) = \frac{X_1(t)}{\sqrt{E_b}} = \sqrt{\frac{1}{T}}, 0 \leq t \leq T$

By Gram-Schmidt procedure, we can compute

$$c_{21} = \langle \Phi_1(t), X_2(t) \rangle = \sqrt{\frac{E_b}{2}},$$

and therefore,

$$\Phi_2(t) = \frac{X_2(t) - c_{21}\Phi_1(t)}{||X_2(t) - c_{21}\Phi_1(t)||} = \begin{cases} \sqrt{\frac{1}{T}} & 0 \leq t \leq T/2 \\ -\sqrt{\frac{1}{T}} & T/2 \leq t \leq T. \end{cases}$$

It is easy to compute

$$\rho = \frac{1}{E_b} \int_0^{T/2} \frac{E_b \sqrt{2}}{T} = \frac{\sqrt{2}}{2}.$$

b) Note that $X_1 = \sqrt{E_b}\Phi(t)$, and it is also easy to compute

$$X_2(t) = \sqrt{\frac{E_b}{2}}\Phi_1(t) + \sqrt{\frac{E_b}{2}}\Phi_2(t),$$

therefore, $b_1 = b_2 = \rho\sqrt{E_b}$.

2 Assume that $X(t) = \sum_{i=1}^{\infty} a_i \Phi_i(t), Y(t) = \sum_{i=1}^{\infty} b_i \Phi_i(t)$ and $a = (a_1, a_2, \cdots), b = (b_1, b_2, \cdots)$. We obtain, by using the orthonormality of $\{\Phi_i\}$,

$$d_{X,Y}^2 = \int_0^T (X(t) - Y(t))^2 dt$$

$$= \int_0^T \left[\sum_{i=1}^{\infty} a_i \Phi_i(t) - \sum_{i=1}^{\infty} b_i \Phi_i(t) \right]^2 dt$$

$$= \sum_{i=1}^{\infty} (a_i - b_i)^2 \int_0^T \Phi_i^2(t) dt$$

$$= |a - b|^2.$$
3 Using the fact that \(s_1 \) and \(s_0 \) are two signals with equal unit energy, it is easy to see that

\[
\int_0^T [r(t) - \sqrt{E_1} s_1(t)]^2 dt < \int_0^T [r(t) - \sqrt{E_0} s_0(t)]^2 dt
\]

\(
\Leftrightarrow \int_0^T [r^2(t) - 2r(t)\sqrt{E_1} s_1(t) + E_1 s_1^2(t)] dt < \int_0^T [r^2(t) - 2r(t)\sqrt{E_0} s_0(t) + E_0 s_0^2(t)] dt
\)

\(
\Leftrightarrow \frac{E_1 - E_0}{2} < \int_0^T \sqrt{E_1} r(t) s_1(t) dt - \int_0^T \sqrt{E_0} r(t) s_0(t) dt,
\)

which is the output of the correlation receiver.

4 a) It is easy to check that \(s_1 \) and \(s_0 \) are two orthonormal basis functions. The optimum two-branch correlation receiver is

\[
\begin{align*}
\sqrt{E} s_1(t) & \quad \text{positive} \\
\sqrt{E} s_0(t) & \quad \text{negative}
\end{align*}
\]

b) Suppose that the received signal is \(r(t) = X(t) + n(t) \) where \(X(t) \) is one of the two signals shown in the problem and \(n(t) \) is the white noise. If \(X(t) \) is equal to \(\sqrt{E} s_1 \), then the output of the correlation receiver is

\[
\int_0^T [r(t) + n(t)]\sqrt{E} s_1(t) dt - \int_0^T [r(t) + n(t)]\sqrt{E} s_0(t) dt
\]

\[
= E + \int_0^T \sqrt{E} n(t) s_1(t) dt - \int_0^T \sqrt{E} n(t) s_0(t) dt
\]

\[
\text{define} \quad E + S_1 - S_0,
\]

where \(S_1 \) and \(S_0 \) are two independent Gaussian random variables (please check that the correlation of \(S_1 \) and \(S_0 \) is equal to zero by recalling that \(s_1 \) and \(s_0 \) are two orthonormal basis functions) satisfying

\[
\text{Var}(S_1) = \text{Var}(S_0) = E \int_0^T \int_0^T \mathbb{E}[n(u)n(v)] s_1(u)s_1(v) du dv
\]

\[
= E \int_0^T \int_0^T \mathbb{E}[n(u)n(v)] s_1(u)s_1(v) du dv
\]

\[
= E \int_0^T \int_0^T \frac{N_0}{2} \delta(u-v) s_1(u)s_1(v) du dv
\]

\[
= \frac{EN_0}{2},
\]
therefore, by noting that $S_1 - S_0$ is a Gaussian random variable with variance $\frac{EN_0}{2} + \frac{EN_0}{2} = EN_0$, we can compute the conditional probability

$$P[\text{error}|X(t) = s_1(t)] = P[E + S_1 - S_0 > 0] = Q\left(\sqrt{\frac{E}{N_0}}\right).$$

Using a similar argument, we can calculate

$$P[\text{error}|X(t) = s_0(t)] = Q\left(\sqrt{\frac{E}{N_0}}\right),$$

which implies

$$P[\text{error}] = P[X(t) = s_0(t)]P[\text{error}|X(t) = s_0(t)] + P[X(t) = s_1(t)]P[\text{error}|X(t) = s_1(t)]$$

$$= Q\left(\sqrt{\frac{E}{N_0}}\right).$$

c) The two-branch matched filter for this modulation technique is shown below. Sample at T.

d) Using the same argument as in b), we know that the error probability is $Q\left(\sqrt{\frac{E}{N_0}}\right)$.

![Diagram of the two-branch matched filter](image_url)