Section 1, Test 3 Solutions.

#1. Diodes are ideal.

Find V if $i = 2A$

- $i = -2A$.

a) Assume D_1 on, D_2 off. The circuit becomes:

\[V = iR = (2A)(2k\Omega) = 4kV. \]

Check: $i_{D1} > 0, i_{D1} = 2A$. $V_{D2} = -V = -4kV$, so D_2 is off.

So D_1 is on.

b) Assume D_2 on, D_1 off. The circuit becomes:

\[V = iR = (-2A)(3k\Omega) \quad V = -6kV. \]

Check: $i_{D2} > 0$ so it is on. $V_{D1} = V = -6kV$ so it is off.
#2.

[Diagram of an electrical circuit with labelled components: \(V_i \), \(V_G \), \(V_o \), and \(V_{DD} = 12V \).]

a) Find the value of \(V_G \) required so that, when \(V_i = 0, \ V_o = 4V \).

When \(V_o = 4V \), \(V_R = 12V - V_o = 12V - 4V = 8V \).

\[i_D = \frac{8V}{2k\Omega} = 4mA, \quad V_o = V_{OS}. \]

On the graph, we locate the point \((V_{OS} = 4V, \ i_D = 4mA) \) it is on the \(V_{GS} = 3V \) curve. Since \(V_i = 0, \ V_{CC} = V_{GS} \).

b) With \(V_G \) as found above, and assuming now that \(V_i(t) = 1V \sin(2\pi \cdot 20t) \), find the peak to peak variation of \(V_o \).

We need to use the load line. \(I_D \) is a function of \(V_{OS} \) and \(V_{OS} \). The load line will take this into account.

KVL: \(V_{OS} + R \cdot i_D = V_{DD} \)

\[i_D = \frac{V_{DD} - \frac{1}{R} V_{OS}}{R} = \frac{12V - \frac{1}{2k\Omega} V_{OS}}{2k\Omega} \]

\[i_D = 6mA - \frac{1}{2k\Omega} V_{OS}. \]
Since V_i varies between $+1V$ and $-1V$, V_{GS} varies between $2V$ and $4V$.

Point A: $V_{GS} = 4V$, $i_D = 5mA$, $V_{DS} = 2.3V$.

B: $V_{GS} = 2V$, $i_D = 1mA$, $V_{DS} = 10V$.

$V_o = V_{OS}$, so the peak to peak variation is $10V - 2.3V = 7.7V$.

#3 $D = \overline{A} + \overline{B} + C$

$$\overline{A} + \overline{B} = \overline{AB} \leftarrow \text{NAND}.$$

So now $D = \overline{AB} + C$
4. \(V_i \) appears to be composed of two signals: \(V_i = \sin(2\pi f_1 t) + \sin(2\pi f_2 t) \).

\[f_1 = \frac{1}{1\text{ms}} = 1 \text{kHz} \quad f_2 = 20 f_1 = 20 \text{kHz} \]

At the output, the low frequency component appears nearly unchanged while the high frequency component is greatly reduced. This suggests a low-pass filter.

To find \(R_C \), make the cutoff between 1kHz and 20kHz, say \(f_c = 2 \text{kHz} \).

\[f_c = \frac{1}{2\pi R C} \quad \text{so} \quad R C = \frac{1}{2\pi \times 2000} \]

If \(R = 1k\Omega \), \(C = 80\text{nF} \)

These values are not unique.