1. (P1.27) Let $X(t)$ be a stationary process with zero mean, autocorrelation function $R_X(\tau)$, and power spectral density $S_X(f)$. We are required to find a linear filter with impulse response $h(t)$, such that the filter output has the same statistical characteristics as $X(t)$ when the input is white noise of power spectral density $N_0/2$.

(a) Determine the condition which the impulse response $h(t)$ must satisfy to achieve this requirement.

\[
R_X(\tau) = \frac{N_0}{2} \delta(\tau).
\]

Thus, the condition which $h(t)$ must satisfy is:

\[
R_X(\tau) = \frac{N_0}{2} \int h(t-\tau)h(t)dt = \frac{N_0}{2}[h(t)*h(t)] \quad (1)
\]

(b) What is the corresponding condition on the frequency response $H(f)$ of the filter?

\[
|H(f)|^2 = \frac{2}{N_0} S_X(f) \quad (2)
\]
is the condition which $H(f)$ must provide in order to satisfy the given statistical characteristics.

Notice: We can check that (1) and (2) are two exchangeable forms having the same property, i.e. computing the Fourier transform of (1), we will get (2).

$$S_X(f) = \mathcal{F}[R_X(\tau)] = \mathcal{F} \left[\frac{N_0}{2} \int_{t} h(t-\tau)h(t)dt \right]$$

$$= \frac{N_0}{2} \int_{\tau} \left[\int_{t} h(t-\tau)h(t)dt \right] e^{-j2\pi f\tau}d\tau$$

$$= \frac{N_0}{2} \int_{-\infty}^{\infty} h(t-\tau)e^{-j2\pi f\tau}d\tau \cdot \int_{t} h(t)dt$$

Let $v = t - \tau$,

$$= \frac{N_0}{2} \int_{-\infty}^{\infty} h(v)e^{-j2\pi f(t-v)}(-dv) \cdot \int_{t} h(t)dt$$

$$= \frac{N_0}{2} \int_{-\infty}^{\infty} h(v)e^{j2\pi f\tau}dv \cdot \int_{t} h(t)dt$$

$$= \frac{N_0}{2} H^*(f) \cdot H(f)$$

$$= \frac{N_0}{2} |H(f)|^2$$

2. (P1.29) Assume that the narrowband noise $n(t)$ is Gaussian and its power spectral density $S_N(f)$ is symmetric about the midband frequency f_c. Show that the in-phase and quadrature components of $n(t)$ are statistically independent.

(Solution.)

Since $S_N(f)$ is symmetric about f_c and is an even function, $S_N(f)$ is also symmetric about $-f_c$. Thus, $S_N(f + f_c) = S_N(f - f_c)$, if $-B \leq f \leq B$

where $2B$ is the bandwidth of the narrowband noise $n(t)$.

By applying this relation to eqn(1.102) in Haykin,

$$S_{N_i,N_Q}(f) = 0 \ , \ \text{for } \forall f$$

This implies that the crosscorrelation $R_{N_i,N_Q}(\tau) = E[N_i(t)N_Q(t+\tau)] = 0$ because $S_{N_i,N_Q}(f)$ and $R_{N_i,N_Q}(\tau)$ are a Fourier transform pair.

As mentioned on p.65 of Haykin, $n_i(t)$ and $n_Q(t)$ are jointly Gaussian if $n(t)$ is Gaussian.

In the case of jointly Gaussian random variables, X and Y, if $R_{XY}(\tau) = 0$ (X and Y are uncorrelated), then X and Y are independent.

Thus, $N_i(t)$ and $N_Q(t)$ are statistically independent because $R_{N_i,N_Q}(\tau) = 0$.

2
3. (P2.4) Consider the AM signal

\[s(t) = A_c[1 + \mu \cos(2\pi f_m t)] \cos(2\pi f_c t) \]

produced by a sinusoidal modulating signal of frequency \(f_m \). Assume that the modulation factor is \(\mu = 2 \), and the carrier frequency \(f_c \) is much greater than \(f_m \). The AM signal \(s(t) \) is applied to an ideal envelope detector, producing the output \(v(t) \).

(a) Determine the Fourier series representation of \(v(t) \).

(Solution.)

\[s(t) = A_c[1 + 2 \cos(2\pi f_m t)] \cos(2\pi f_c t) \]

The ideal envelope detector takes the absolute value of its input signal and then passes the result through a lowpass filter. Let \(v(t) \) be the signal resulting from the ideal envelope detector.

\[v(t) = A_c|1 + 2 \cos(2\pi f_m t)| \]

Fig. 1 shows two signals, \(s(t) \) and \(v(t) \).

![Figure 1: s(t) and v(t)](image)

Here, \(v(t) \) is a periodic signal with a period of \(1/f_m \). Thus, we can compute the Fourier series of \(v(t) \). The Fourier series representation of a periodic signal is:

\[v(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi kf_m t} \]

with \(a_k = \int_{-\infty}^{\infty} v(t)e^{-j2\pi kf_m t} dt \)
Since \(v(t) \) is an even function,

\[
a_k = f_m \int_{-1/2f_m}^{1/2f_m} A_c [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt
\]

\[
= 2A_c f_m \int_{0}^{1/2f_m} [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt
\]

\[
= 2A_c f_m \int_{0}^{1/2f_m} [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt
\]

\[
= 2A_c f_m \int_{0}^{1/3f_m} [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt - 2A_c \int_{1/3f_m}^{1/2f_m} [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt
\]

By using \(\int [1 + 2 \cos(2\pi f_m t)] \cos(2\pi k f_m t) dt = \frac{\sin(2\pi k f_m t)}{2\pi k f_m} + \frac{\sin(2\pi (k+1) f_m t)}{2\pi (k+1) f_m} + \frac{\sin(2\pi (k-1) f_m t)}{2\pi (k-1) f_m} \),

\[
a_k = A_c \left[\frac{2 \sin\left(\frac{2}{3}\pi k\right) - \sin(\pi k)}{\pi k} + \frac{2 \sin\left(\frac{2}{3}\pi (k+1)\right) - \sin((k+1))}{\pi (k+1)} + \frac{2 \sin\left(\frac{2}{3}\pi (k-1)\right) - \sin((k-1))}{\pi (k-1)} \right]
\]

(b) What is the ratio of second-harmonic amplitude to fundamental amplitude in \(v(t) \)?

\[a_1 = A_c \left(\frac{1}{3} + \frac{\sqrt{3}}{2\pi} \right)\]

\[a_2 = A_c \left(\frac{\sqrt{3}}{2\pi} \right)\]

The ratio

\[
\frac{a_2}{a_1} = 0.4527
\]

4. (P2.6) Consider a square-law detector, using a nonlinear device whose transfer characteristic is defined by

\[v_2(t) = a_1 v_1(t) + a_2 v_1^2(t)\]

where \(a_1 \) and \(a_2 \) are constants, \(v_1(t) \) is the input, and \(v_2(t) \) is the output. The input consists of the AM wave

\[v_1(t) = A_c [1 + k_a m(t)] \cos(2\pi f_c t)\]

(a) Evaluate the output \(v_2(t) \)

\[v_2(t) = a_1 A_c [1 + k_a m(t)] \cos(2\pi f_c t) + a_2 A_c^2 [1 + k_a m(t)]^2 \cos^2(2\pi f_c t)\]

\[= \frac{a_2 A_c^2}{2} [1 + 2K_a m(t) + K_a^2 m^2(t)] + a_1 A_c [1 + k_a m(t)] \cos(2\pi f_c t)\]

\[+ \frac{a_2 A_c^2}{2} [1 + 2k_a m(t) + K_a^2 m^2(t)] \cos(4\pi f_c t)\]
(b) Find the conditions for which the message signal \(m(t) \) may be recovered from \(v_2(t) \).

(Solution.)

If \(v_1(t) \) is bandlimited, \(f_c \gg f_{v_1,\text{max}} \), then we can filter out all components from \(v_2(t) \) except baseband component by using a low-pass filter. Then the resulting signal, \(v_3(t) \), is:

\[
v_3(t) = \frac{a_2 A_c^2}{2} \left[1 + 2K_a m(t) + K_a^2 m^2(t) \right]
\]

Because both \(m(t) \) and \(m^2(t) \) contribute for \(v_3(t) \), the power ratio between this two components is pertinent to the recovery of \(m(t) \) from \(v_2(t) \).

\[
\frac{K_a^2 m^2(t)}{2K_a m(t)} = \frac{K_a m(t)}{2}
\]

Thus, we have to set \(K_a \) small enough so that \(\frac{K_a m(t)}{2} \ll 1 \).

5. (P2.21) The single-tone modulating signal \(m(t) = A_m \cos(2\pi f_m t) \) is used to generate the VSB signal

\[
s(t) = \frac{1}{2} a A_m A_c \cos[2\pi(f_c + f_m)t] + \frac{1}{2} A_m A_c(1 - a) \cos[2\pi(f_c - f_m)t]
\]

where \(a \) is a constant, less than unity, representing the attenuation of the upper side frequency.

(a) Find the quadrature component of the VSB signal \(s(t) \).

(Solution.)

\[
s(t) = \frac{1}{2} a A_m A_c \cos[2\pi(f_c + f_m)t] + \frac{1}{2} A_m A_c(1 - a) \cos[2\pi(f_c - f_m)t]
\]

\[
= \frac{1}{2} A_m A_c \cos(2\pi f_m t) \cos(2\pi f_c t) + \frac{1}{2} A_m A_c(1 - 2a) \sin(2\pi f_m t) \sin(2\pi f_c t)
\]

Linear modulated signal \(s(t) \) can be represented as:

\[
s(t) = s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t)
\]

Then,

\[
s_Q(t) = -\frac{1}{2} A_m A_c(1 - 2a) \sin(2\pi f_m t)
\]

(b) The VSB signal, plus the carrier \(A_c \cos(2\pi f_c t) \), is passed through an envelope detector. Determine the distortion produced by the quadrature component.

(Solution.)

\[
s(t) + A_c \cos(2\pi f_c t) = A_c \left[\frac{1}{2} A_m \cos(2\pi f_m t) + 1 \right] \cos(2\pi f_c t) + \frac{1}{2} A_m A_c(1 - 2a) \sin(2\pi f_m t) \sin(2\pi f_c t)
\]

Let \(v(t) \) denote the envelope signal.

\[
v(t) = A_c \sqrt{\left[\frac{1}{2} A_m \cos(2\pi f_m t) + 1 \right]^2 + \left[\frac{1}{2} A_m(1 - 2a) \sin(2\pi f_m t) \right]^2}
\]

\[
= A_c \left[\frac{1}{2} A_m \cos(2\pi f_m t) + 1 \right] \cdot \sqrt{1 + \left[\frac{1}{2} A_m(1 - 2a) \sin(2\pi f_m t) \right]^2}
\]
Here, $\left[\frac{1}{2} A_m \cos(2\pi f_m t) + 1 \right]$ is the signal to be delivered and the remaining term is the distortion term. Let $d(t)$ denote the distortion part.

$$d(t) = \sqrt{1 + \left[\frac{1}{2} A_m (1 - 2a) \sin(2\pi f_m t) \right]^2}$$

(c) What is the value of constant a for which this distortion reaches its worst possible condition?

(Solution.)

Assuming $0 \leq a$, $d(t)$ has its maximum at $a = 0$. (a is less than 1)