Lecture 6: Music analysis and synthesis

1. Music and nonspeech
2. Music synthesis techniques
3. Sinewave synthesis
4. Music analysis
5. Transcription

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/

Columbia University Dept. of Electrical Engineering
Spring 2003
1. **Music & nonspeech**

 - **What is ‘nonspeech’?**
 - according to research effort: a little music
 - in the world: most everything

 ![Diagram]

 - **Origin**
 - natural
 - man-made
 - **Information content**
 - low
 - wind & water
 - high
 - speech
 - music
 - animal sounds
 - contact/collision
 - machines & engines
 - attributes?
Sound attributes

- **Attributes suggest model parameters**

- **What do we notice about ‘general’ sound?**
 - psychophysics: pitch, loudness, ‘timbre’
 - bright/dull; sharp/soft; grating/soothing
 - sound is not ‘abstract’:
 - tendency is to describe by source-events

- **Ecological perspective**
 - what matters about sound is ‘what happened’
 →our percepts express this more-or-less directly
Aside: Sound textures

- **What do we hear in:**
 - a city street
 - a symphony orchestra

- **How do we distinguish:**
 - waterfall
 - rainfall
 - applause
 - static

- **Levels** of ecological description...
Motivations for modeling

- **Describe/classify**
 - cast sound into model because want to use the resulting parameters

- **Store/transmit**
 - model implicitly exploits limited structure of signal

- **Resynthesize/modify**
 - model separates out interesting parameters
Analysis and synthesis

- **Analysis is the converse of synthesis:**

- **Can exist apart:**
 - analysis for classification
 - synthesis of artificial sounds

- **Often used together:**
 - encoding/decoding of compressed formats
 - resynthesis based on analyses
 - *analysis-by-synthesis*
Outline

1 Music and nonspeech

2 Music synthesis techniques
 - Framework
 - Historical development

3 Sinewave synthesis

4 Music analysis

5 Transcription

elements?
2 Music synthesis techniques

- **What is music?**
 - could be anything → flexible synthesis needed!

- **Key elements of conventional music**
 - instruments
 → note-events (time, pitch, accent level)
 → melody, harmony, rhythm
 - patterns of repetition & variation

- **Synthesis framework:**
 - **instruments:** common framework for many notes
 - **score:** sequence of (time, pitch, level) note events

![Musical notation example]
The nature of musical instrument notes

- Characterized by instrument (register), note, loudness/emphasis, articulation...

Distinguish how?
Development of music synthesis

- **Goals of music synthesis:**
 - generate realistic / pleasant new notes
 - control / explore timbre (quality)

- **Earliest computer systems in 1960s**
 (voice synthesis, algorithmic)

- **Pure synthesis approaches:**
 - 1970s: Analog synths
 - 1980s: FM (Stanford/Yamaha)
 - 1990s: Physical modeling, hybrids

- **Analysis-synthesis methods:**
 - sampling / wavetables
 - sinusoid modeling
 - harmonics + noise (+ transients)

others?
Analog synthesis

- The minimum to make an ‘interesting’ sound

- Elements:
 - harmonics-rich oscillators
 - time-varying filters
 - time-varying envelope
 - modulation: low frequency + envelope-based

- Result:
 - time-varying spectrum, independent pitch
FM synthesis

- Fast frequency modulation \rightarrow sidebands:

$$\cos(\omega_c t + \beta \sin(\omega_m t)) = \sum_{n=-\infty}^{\infty} J_n(\beta) \cos((\omega_c + n\omega_m)t)$$

 - a harmonic series if $\omega_c = r \cdot \omega_m$

- $J_n(\beta)$ is a Bessel function:

\Rightarrow Complex harmonic spectra by varying β

$$\omega_c = 2000\text{Hz}$$
$$\omega_m = 200\text{Hz}$$

what use?
Sampling synthesis

- **Resynthesis from real notes**
 → vary pitch, duration, level

- **Pitch:** stretch (resample) waveform

- **Duration:** loop a ‘sustain’ section

- **Level:** cross-fade different examples

 - need to ‘line up’ source samples
Outline

1. Music and nonspeech
2. Music synthesis techniques
3. Sinewave synthesis (detail)
 - Sinewave modeling
 - Sines + residual ...
4. Music analysis
5. Transcription
3 Sinewave synthesis

- If patterns of harmonics are what matter, why not generate them all explicitly:
 \[s[n] = \sum_k A_k[n] \cos(k \cdot \omega_0[n] \cdot n) \]
 - particularly powerful model for pitched signals

- Analysis (as with speech):
 - find peaks in STFT \(|S[\omega,n]| \) & track
 - or track fundamental \(\omega_0 \) (harmonics / autoco)
 & sample STFT at \(k \cdot \omega_0 \)
 \[\rightarrow \] set of \(A_k[n] \) to duplicate tone:

- Synthesis via bank of oscillators
Steps to sinewave modeling - 1

- The underlying STFT:

\[X[k, n_0] = \sum_{n=0}^{N-1} x[n + n_0] \cdot w[n] \cdot \exp(-j \frac{2\pi kn}{N}) \]

What value for \(N \) (FFT length & window size)?
What value for \(H \) (hop size: \(n_0 = rH, r = 0, 1, 2... \))?

- STFT window length determines freq. resol’n:

\[X_w(e^{j\omega}) = X(e^{j\omega}) \ast W(e^{j\omega}) \]

- Choose \(N \) long enough to resolve harmonics
 \(\rightarrow 2-3x \) longest (lowest) fundamental period
 - e.g. 30-60 ms = 480-960 samples @ 16 kHz
 - choose \(H \leq N/2 \)

- \(N \) too long \(\rightarrow \) lost time resolution
 - limits sinusoid amplitude rate of change
Steps to sinewave modeling - 2

- Choose candidate sinusoids at each time by picking peaks in each STFT frame:

- Quadratic fit for peak:

 \[y = ax(x-b) \]

 + linear interpolation of unwrapped phase
Steps to sinewave modeling - 3

- **Which peaks to pick?**
 Want ‘true’ sinusoids, not noise fluctuations
 - ‘prominence’ threshold above smoothed spec.

- **Sinusoids exhibit stability...**
 - of amplitude in time
 - of phase derivative in time
 →compare with adjacent time frames to test?
Steps to sinewave modeling - 4

• ‘Grow’ tracks by appending newly-found peaks to existing tracks:
 - ambiguous assignments possible

• Unclaimed new peak
 - ‘birth’ of new track
 - backtrack to find earliest trace?

• No continuation peak for existing track
 - ‘death’ of track
 - or: reduce peak threshold for *hysteresis*
Resynthesis of sinewave models

- After analysis, each track defines contours in frequency, amplitude $f_k[n], A_k[n]$ (+ phase?)
 - use to drive a sinewave oscillators & sum up

$A_k[n] \cdot \cos(2\pi f_k[n] \cdot t)$

- ‘Regularize’ to exactly harmonic $f_k[n] = k \cdot f_0[n]$
Modification in sinewave resynthesis

• **Change duration by warping timebase**
 - may want to keep onset unwarped

• **Change pitch by scaling frequencies**
 - either stretching or resampling envelope

• **Change timbre by interpolating params**
Sinusoids + residual

- Only ‘prominent peaks’ became tracks
 - remainder of spectral energy was noisy?
 → model residual energy with noise

- How to obtain ‘non-harmonic’ spectrum?
 - zero-out spectrum near extracted peaks?
 - or: resynthesize (exactly) & subtract waveforms
 \[e_s[n] = s[n] - \sum_k A_k[n] \cos(2\pi n \cdot f_k[n]) \]
 .. must preserve phase!

- Can model residual signal with **LPC**
 → flexible representation of noisy residual
Sinusoids + noise + transients

- Sound represented as sinusoids and noise:
\[s[n] = \sum_k A_k[n] \cos(2\pi n \cdot f_k[n]) + h_n[n] \ast b[n] \]

Parameters are \(\{A_k[n], f_k[n]\}, h_n[n] \)

- Separate out abrupt transients in residual?
\[e_s[n] = \sum_k t_k[n] + h_n[n] \ast b[n] \]
- more specific → more flexible
Outline

1. Music and nonspeech
2. Music synthesis techniques
3. Sinewave synthesis
4. Music analysis
 - Instrument identification
 - Pitch tracking
5. Transcription
Music analysis

• What might we want to get out of music?
• **Instrument identification**
 - different levels of specificity
 - ‘registers’ within instruments
• **Score recovery**
 - transcribe the note sequence
 - extract the ‘performance’
• **Ensemble performance**
 - ‘gestalts’: chords, tone colors
• **Broader timescales**
 - phrasing & musical structure
 - artist / genre clustering and classification
Instrument identification

- Research looks for perceptual ‘timbre space’

- Cues to instrument identification
 - onset (rise time), sustain (brightness)

- Hierarchy of instrument families
 - strings / reeds / brass
 - optimize features at each level
Pitch tracking

- Fundamental frequency (→ pitch) is a key attribute of musical sounds → pitch tracking as a key technology

- **Pitch tracking for speech**
 - voice pitch & spectrum highly dynamic
 - speech is voiced and unvoiced ground truth?

- **Applications**
 - voice coders (excitation description)
 - harmonic modeling
Pitch tracking for music

- **Pitch in music**
 - pitch is more stable (although vibrato)
 - but: multiple pitches

- **Applications**
 - harmonic modeling
 - music transcription (→ storage, resynthesis)
 - source separation

- **Approaches: “place” & “time”**
Meddis & Hewitt pitch model

- Autocorrelation (time) based pitch extraction
 - fundamental period \rightarrow peak(s) in autocorrelation

$$x(t) \approx x(t + T) \rightarrow r_{xx}(T) = \int x(t)x(t + T) \approx \max$$

- Compute separately in each frequency band
 & ‘summarize’ across (perceptual) channels
Tolonen & Karjalainen simplification

- Multiple frequency channels can have different dominant pitches ...

- But equalizing (flattening) the spectrum works:

 \[\text{Pre-whitening} \xrightarrow{\text{Highpass @ 1kHz}} \text{Rectify & low-pass} \xrightarrow{\text{Periodicity detection}} \text{SACF enhance} \xrightarrow{\text{ESACF}} \]

→ Summary AC as a function of time:

- ‘Enhancement’ = cancel subharmonics
Post-processing of pitch tracks

- Remove outliers with **median filtering**

 ![Median Filtering Example]

- **Octave errors are common:**
 - if $x(t) \approx x(t + T)$ then $x(t) \approx x(t + 2T)$ etc.

 \rightarrow dynamic programming/HMM

- **Validity**
 - “is there a pitch at this time?”
 - voiced/unvoiced decision for speech

- **Event detection**
 - when does a pitch slide indicate a new note?
Outline

1. Music and nonspeech
2. Music synthesis techniques
3. Sinewave synthesis
4. Music analysis
5. Transcription
 - Bottom-up and top-down
 - Transcription from sinewave models
5 Transcription

- Basic idea: Recover the score

- Is it possible? Why is it hard?
 - music students do it
 ... but they are highly trained; know the rules

- Motivations
 - for study: what was played?
 - highly compressed representation (e.g. MIDI)
 - the ultimate restoration system...
Transcription framework

• Recover discrete events to explain signal

Note events \(\{t_k, p_k, i_k\} \) \(\rightarrow \) synthesis \(? \) Observations \(X[k,n] \)

- analysis-by-synthesis?

• Exhaustive search?
 - would be possible given exact note waveforms
 - or just a 2-dimensional ‘note’ template?

but superposition is not linear in \(|STFT| \) space

• Inference depends on all detected notes
 - is this evidence ‘available’ or ‘used’?
 - full solution is exponentially complex
Bottom-up versus top-down

- **Bottom-up**: observ’n directly gives description
 - e.g. peaks in 2-D convolution
 - but: few domains are that ‘linear’

- **Top-down**: pursue & confirm *hypotheses*
 - e.g. analysis-by-resynthesis matching
 - but: need to limit search space

- **Generally, need to do both:**

 - bottom-up guides & limits search
 - top-down resolves ambiguities in low-level

 how to transcribe?
Problems for transcription

- **Music is practically worst case!**
 - note events are often synchronized
 - defeats common onset
 - notes have harmonic relations (2:3 etc.)
 - collision/interference between harmonics
 - variety of instruments, techniques, ...

- **Listeners are very sensitive to certain errors**
 - .. and impervious to others

- **Apply further constraints**
 - like our ‘music student’
 - maybe even the whole score (Scheirer)!
Transcription from sinewave models

- **Sinusoid model**
 - as with synthesis, but signal is more complex

- **Break tracks**
 - need to detect new ‘onset’ at single frequencies

- **Group by onset & common harmonicity**
 - find sets of tracks that start around the same time
 - + stable harmonic pattern

- **Pass on to constraint-based filtering...**
Searching for multiple pitches
(Klapuri 2001)

- At each frame:
 - estimate dominant f_0 by checking for harmonics
 - cancel it from spectrum
 - repeat until no f_0 is prominent

Stop when no more prominent f_0s

Subtract & iterate
Multi-Pitch Extraction Results

- After continuity cleanup:

 Beatles - Lucy in the Sky with Diamonds - seg 1

 Captures main notes, plus a lot else
 - hand-tuned termination thresholds?

- Evaluation?
Probabilistic Pitch Estimates
(Goto 2001)

- Generative probabilistic model of spectrum as weighted combination of tone models at different fundamental frequencies:

\[p(x(f)) = \int \left(\sum_m w(F, m) p(x(f) | F, m) \right) dF \]

- ‘Knowledge’ in terms of tone models + prior distributions for \(f_0 \):

- EM (RT) results:
Generative Model Fitting
(Walmsley et al. 1999)

- Generative model of harmonic complexes in the time domain:

\[d_i = \sum_{q=1}^{Q} \gamma_i^q G_i^q b_i^q + e_i \]

- Too many parameters to solve by EM!
 → Use Markov chain Monte Carlo (MCMC) to find good solution

- Results?
Summary

• ‘Nonspeech audio’
 - i.e. sound in general
 - characteristics: ecological

• Music synthesis
 - control of pitch, duration, loudness, articulation
 - evolution of techniques
 - sinusoids + noise + transients

• Music analysis
 - different aspects: instruments, pitches, performance
 - transcription complications: representation, octaves, onsets, ...
 - rely on high-level structural constraints

and beyond?
References

http://staff.aist.go.jp/m.goto/PAPER/ICASSP2001goto.pdf
