Lecture 4: Auditory Perception

1. Motivation: Why & how
2. Auditory physiology
3. Psychophysics: detection & discrimination
4. Pitch perception
5. Auditory organization & scene analysis
6. Speech perception

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/

Columbia University Dept. of Electrical Engineering
Spring 2003
Why study perception?

- Perception is messy: Can we avoid it?
 \textit{No!}

- Audition provides the ‘\textit{ground truth}’ in audio
 - what is relevant and irrelevant
 - subjective importance of distortion (coding etc.)
 - (there could be other information in sound...)

- Some sounds are ‘designed’ for audition
 - co-evolution of speech and hearing

- The auditory system is very successful
 - we would do extremely well to duplicate it

- We are now able to model complex systems
 - faster computers, bigger memories
How to study perception?

Three different approaches:

• **Analyze the example: physiology**
 - dissection & nerve recordings

• **Black box input/output: psychophysics**
 - fit simple models of simple functions

• **Information processing models**
 - investigate and model complex functions
 - e.g. scene analysis, speech perception
Outline

1 Motivation

2 Physiology
 - Outer, middle & inner ear
 - The Auditory Nerve and beyond
 - Models

3 Psychophysics

4 Pitch perception

5 Scene analysis

6 Speech perception
Physiology

- Processing chain from air to brain:

- Study via:
 - anatomy
 - nerve recordings

- Signals flow in both directions
• **Pinna ‘horn’**
 - complex reflections give spatial (elevation) cues

• **Ear canal**
 - acoustic tube

• **Middle ear**
 - bones provide impedance matching
Inner ear: Cochlea

- Mechanical input from middle ear starts *traveling wave* moving down Basilar Membrane.
- Varying stiffness and mass of BM gives results in continuous variation of *resonant frequency*.
- At resonance, traveling wave energy is dissipated in *BM movement*.

→ Frequency (Fourier) analysis.
Cochlea hair cells

- Ear converts sound to BM motion; Each point on BM corresponds to a frequency

- Hair cells on BM convert motion into nerve impulses (firings)
 - Inner Hair Cells detect motion
 - Outer Hair Cells? Variable damping?

[Allen simulation]
Inner Hair Cells

- IHCs convert BM motion into nerve firings
- Human hear has ~3500 IHCs; Each IHC has ~7 connections to Auditory Nerve
- Each nerve fires (sometimes) near peak displacement:

- Histogram to get firing probability:
Auditory nerve (AN) signals

- Single nerve measurements:

 Tone burst histogram

 Frequency threshold

 Rate vs. intensity

 - Hard to measure: probe living ANs?
AN population response

• All the information the brain has about sound:
 - average rate & spike timings on 30,000 fibers

• Not unlike a (constant-Q) spectrogram?
Beyond the auditory nerve

- **Ascending and descending**
- **Tonotopic** × ?
 - modulation - position - source??
Periphery models

- **Modeled aspects:**
 - outer/middle ear filtering
 - cochlea filtering
 - hair cell transduction
 - efferent feedback?

- **Result:** ‘neurogram’ / ‘cochleagram’

SlaneyPatterson 12 chans/oct from 180 Hz, BBC1tmp (20010218)
Outline

1. Motivation
2. Physiology
3. Psychophysics
 - Detection theory modeling
 - Intensity perception
 - Masking
4. Pitch perception
5. Scene analysis
6. Speech perception
3 Psychophysics

- *Physiology* looks at the implementation; *Psychology* looks at the function/behavior

- Analyze audition as *signal detection*: \(p(\omega \mid O) \)
 - psychological tests reflect internal decisions
 - assume optimal decision process
 - infer nature of internal representations, noise, ...
 \[\rightarrow \] lower bounds on more complex functions

- Different aspects to measure
 - time, frequency, intensity
 - tones, complexes, noise
 - binaural
 - pitch, detuning
Basic psychophysics

- Relate *physical* and *perceptual* variables
 - e.g. intensity → loudness
 - frequency → pitch

- Methodology: subject tests
 - just noticeable difference (jnd)
 - magnitude scaling e.g. ‘adjust to twice as loud’

- Results for Loudness vs. Intensity:
 Weber’s law \(\Delta I \propto I \rightarrow \log(L) = k \cdot \log(I) \)

\[
\log_2(L) = 0.3 \log_2(I) \\
= 0.3 \cdot \frac{\log_{10} I}{\log_{10} 2} \\
= \frac{0.3}{\log_{10} 2} \cdot dB \\
= dB / 10
\]
Loudness as a function of frequency

- **Fletcher-Munson equal-loudness curves:**
 - Hearing impairment: exaggerates

- **Hearing impairment: exaggerates**
Loudness as a function of bandwidth

- **Same total energy, different distribution:**

 - e.g. 2 chans at -6 dB (not -10 dB)

- **Critical bands: independent freq. channels**
 - ~ 25 total (4-6 / octave) [sndex]
Simultaneous masking

• A louder tone can ‘mask’ the perception of a second tone nearby in frequency:

![Diagram showing simultaneous masking](image)

• Suggests an ‘internal noise’ model:
Sequential masking

- **Backward/forward in time:**
 - Suggests temporal envelope of decision var.
 - Time-frequency masking ‘skirt’:

 ![Diagram showing time-frequency masking 'skirt'](image)
What we do and don’t hear

- **Timing:** 2ms attack resolution, 20ms discrim
 - but: spectral splatter
- **Tuning:** ~ 1% discrimination
 - but: beats
- **Spectrum:** profile changes, formants
 - variable time-frequency resolution
- **Harmonic phase**
- **Noisy signals & texture**
- **(Trace vs. categorical memory)**
Outline

1 Motivation
2 Physiology
3 Psychophysics
4 Pitch perception
 - ‘Place’ models
 - ‘Time’ models
 - Multiple cues & competition
5 Scene analysis
6 Speech perception
Pitch perception: A classic argument in psychophysics

- Harmonic complexes are a pattern on AN
- .. but give a fused percept (ecological)
- What determines the pitch percept?
 - not the fundamental
- How is it computed?
 - Two competing models: place and time
Place model of pitch

- AN excitation pattern shows individual peaks
- ‘Pattern matching’ method to find pitch:

- Support:
 Low harmonics are very important
- But: Flat-spectrum noise can carry pitch
Time model of pitch

- Timing information is preserved in AN up to ~ 1ms scale
- Extract periodicity by e.g. autocorrelation & combine across frequency chans:

- But: HF gives weak pitch (in practice)
Alternate & competing cues

- **Pitch perception could rely on various cues**
 - average excitation pattern
 - summary autocorrelation
 - more complex pattern matching

- **Relying on just one cue is brittle**
 - e.g. missing fundamental

→ Perceptual system appears to use a flexible, opportunistic combination

- **Optimal detector justification?**

\[
\arg\max_{\omega} p(\omega|o) = \arg\max_{\omega} \frac{p(o|\omega) \cdot p(\omega)}{p(o)} = \arg\max_{\omega} p(o_1|\omega) \cdot p(o_2|\omega) \cdot p(\omega)
\]

if \(o_1\) and \(o_2\) are *conditionally* independent
Outline

1 Motivation

2 Physiology

3 Psychophysics

4 Pitch perception

5 Scene analysis
 - Events and sources
 - Fusion and streaming
 - Continuity & restoration

6 Speech perception
Auditory Organization

• Detection model is huge simplification
• Real role of hearing is much more general: Recover useful information from outside world

→ Sound organization into events and sources:

- Research questions:
 - what determines perception of sources?
 - how do humans separate mixtures?
 - how much can we tell about a source?
Auditory scene analysis: Simultaneous fusion

- Harmonics are distinct on AN, but perceived as one sound ("fused"):
 - depends on common onset
 - depends on harmonicity (common period)

- Methodologies:
 - ask subject how many ‘objects’
 - match attributes e.g. object pitch
 - manipulate higher level e.g. vowel identity
Sequential grouping: streaming

- **Pattern / rhythm**: property of set of objects
- subsequent to fusion :: employs fused events?

- Measure by relative timing judgments
 - cannot compare between streams
- Separate ‘coherence’ and ‘fusion’ boundaries
- Can interact and compete with fusion

\[\Delta f: -2 \text{ octaves} \]

\[\text{TRT: 60-150 ms} \]

\[1 \text{ kHz} \]
Continuity & restoration

- **Tone is interrupted by noise burst:**
 What happened?

 - masking makes tone undetectable during noise

- **Need to infer most probable real-world events**
 - observation equally likely for either explanation
 - prior on continuous tone much higher → choose

- **Top-down influence on perceived events...**
 pulsation threshold [sndex]
Models of auditory organization

- Psychological accounts suggest bottom-up:
 - (Brown 1991)

- Complications in practice:
 - formation of separate elements
 - contradictory cues
 - influence of top-down constraints (context, expectations)
 ...

- formation of separate elements
- contradictory cues
- influence of top-down constraints (context, expectations)
...
Outline

1 Motivation

2 Physiology

3 Psychophysics

4 Pitch perception

5 Scene analysis

5 Speech perception
 - The sounds of speech
 - Phoneme perception
 - Context and top-down influences
 - Simultaneous vowels
Speech perception

- Highly specialized function
 - subsequent to source organization?
 - ... but also can interact

- Kinds of speech sounds:
 - vowels
 - glides
 - nasals
 - stops
 - fricatives
 - a watch
 - thin
 - has a dime
 - as a dime

- has a watch
 - thin
 - as a dime
 - vowels
 - glides
 - nasals
 - stops
 - fricatives
 ...
Cues to phoneme perception

• Linguists describe speech with **phonemes**:

 - phonemes define minimal word contrasts

• **Acoustic-phoneticians describe phonemes by:**

 - formants & transitions
 - bursts & onset times
Categorical perception

- (Some) speech sounds perceived *categorically* rather than *analogically*
 - e.g. stop-burst & timing:
 - tokens within category are hard to distinguish
 - category boundaries are very sharp

- *Categories are learned for native tongue*
 - “merry” / “mary” / “marry”
Where is the information in speech?

- ‘Articulation’ of high/low-pass filtered speech:

 - sums to more than 1...

- Speech message is highly redundant
 - e.g. constraints of language, context
 → listeners can understand with very few cues
Top-down influences: Phonemic restoration
(Warren 1970)

- What if a noise burst obscures *speech*?
 - auditory system ‘restores’ the missing phoneme
 ... based on *semantic* context
 ... even in *retrospect*!

- Subjects are typically unaware of which sounds are restored
A predisposition for speech: Sinewave replicas
(Remez et al. 1994)

- Replace each formant with a *single sinusoid*:
 - speech is (somewhat) intelligible
 - people hear both whistles and speech (“duplex”)
 - processed as speech despite un-speech-like

- What does it take to be speech?
Simultaneous vowels

- Mix synthetic vowels with different f_0s:

 - Pitch difference helps (though not necessary):

 - $/iy/$ @ 100 Hz
 - $/ah/$ @ 125 Hz

 ![Graph showing frequency distribution and percentage of both vowels correct vs. pitch difference (in semitones)]

 ![Graph showing percentage of both vowels correct vs. pitch difference (in semitones)]
Computational models of speech perception

- Various theoretical - practical models of speech comprehension, e.g.:

- Open questions:
 - mechanism of phoneme classification
 - mechanism of lexical recall
 - mechanism of grammar constraints

- ASR is a practical implementation (?)
Summary

- Auditory perception provides the ‘ground truth’ underlying audio processing
- Physiology specifies information available
- Psychophysics measures basic sensitivities
- Sound sources requires further organization
- Strong contextual effects in speech perception

Parting thought:

What are the *critical* aspects of the speech signal?