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ABSTRACT
Dynamic Spectrum Access systems exploit temporarily avail-
able spectrum (‘white spaces’) and can spread transmissions
over a number of non-contiguous sub-channels. Such meth-
ods are highly beneficial in terms of spectrum utilization.
However, excessive fragmentation degrades performance and
hence off-sets the benefits. Thus, there is a need to study
these processes so as to determine how to ensure acceptable
levels of fragmentation. Hence, we present experimental and
analytical results derived from a mathematical model. We
model a system operating at capacity serving requests for
bandwidth by assigning a collection of gaps (sub-channels)
with no limitations on the fragment size. Our main theo-
retical result shows that even if fragments can be arbitrarily
small, the system does not degrade with time. Namely, the
average total number of fragments remains bounded. Within
the very difficult class of dynamic fragmentation models (in-
cluding models of storage fragmentation), this result appears
to be the first of its kind. Extensive experimental results de-
scribe behavior, at times unexpected, of fragmentation un-
der different algorithms. Our model also applies to dynamic
linked-list storage allocation, and provides a novel analysis
in that domain. We prove that, interestingly, the 50% rule of
the classical (non-fragmented) allocation model carries over
to our model. Overall, the paper provides insights into the
potential behavior of practical fragmentation algorithms.

Keywords: Dynamic Spectrum Access, Fragmentation, Er-
godicity of Markov chains, Cognitive Radio

1. INTRODUCTION
This paper focuses on dynamic resource allocation algo-

rithms in Dynamic Spectrum Access Networks (also known
as Cognitive Radio Networks). A Cognitive Radio is a con-
cept that was first defined by Mitola [27,28] as a radio that
can adapt its transmitter parameters to the environment
in which it operates. Technically, it is based on the con-
cept of Software Defined Radio [4] that can alter parameters
such as frequency band, transmission power, and modula-
tion scheme through changes in software. According to the
Federal Communications Commission (FCC), a large por-
tion of the assigned spectrum is used only sporadically [11].
Because of their adaptability and capability to utilize the
wireless spectrum opportunistically, algorithms for Dynamic
Spectrum Access are key enablers to efficient use of the spec-
trum. Hence, the potential of Cognitive Radio Networks
has been recently identified by various policy [12, 13], re-
search [7,8], and standardization [10,19,20] organizations.
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Figure 1: Non-contiguous OFDM with Primary and
Secondary Users (SUs), where the Secondary Users
use non-contiguous channels that do not overlap
with the Primary Users’ channels.

Under the basic model of Cognitive Radio Networks [2],
Secondary Users (SUs) can use white spaces (also known as
spectrum holes) that are not used by the Primary Users but
must avoid interfering with active Primary Users (e.g., Fig-
ure 1). For example, the Primary and Secondary Users can
be viewed as TV broadcasters and cellular operators using
available TV bands [19]. Under this model, one assumes
that when a transmission of a Primary User takes place, it
occupies a predefined band. An SU may identify spectrum
holes (not used by Primary or other Secondary Users) and
can allocate its bandwidth among a number of subchannels,
occupying a number of holes (not necessarily contiguous).
This can be realized, for example, by employing a variant of
Orthogonal Frequency-Division Multiplexing (OFDM) that
is capable of deactivating sub-carriers which have the poten-
tial to cause interference to other users [16,25,29–32] (such
a non-contiguous OFDM scheme is shown in Figure 1).

The use of non-contiguous bandwidth blocks results in
non-trivial behavior even for very simple scenarios. As an
example, due to the dynamic use of the available spectrum
holes and the arrivals and departures of SU bandwidth re-
quests, SUs may need to transmit in a set of smaller and
smaller holes. This will lead to a highly fragmented spec-
trum whose maintenance may require complex algorithmic
solutions. Although the practical (physical layer) aspects
of OFDM-based Dynamic Spectrum Access have been ex-
tensively studied recently, the use of fragmented (i.e., non-
contiguous) spectrum introduces several new problems [21,
31,33] that significantly differ from classical Medium Access
Control (MAC) and fragmentation problems.

In this paper, we study the most basic theoretical model in
which the spectrum is shared by SUs only. Those users have
to transmit and receive data, and accordingly need some
bandwidth for given amounts of time. Hence, bandwidth
requests of SUs are characterized by a desired total band-
width and the duration of a time interval over which it is
needed. The data transmission can take place over a non-



contiguous channel (i.e., a number of subchannels). Once a
transmission terminates, some fragments (subchannels) are
vacated, and therefore, gaps (spectrum holes/white spaces)
develop randomly in both size and position.

When allocating a channel to a new SU request, it is being
fragmented (in the frequency domain) into available gaps
until the full requested bandwidth is provided. This pro-
cess repeats itself, until the next request fails to fit into the
available fragments. Figure 2 demonstrates the process of
a transmission termination followed by the fragmentation
of waiting bandwidth requests (more details about this ex-
ample can be found in Section 2). We note that from a
practical point of view, such a system can be viewed as
a simplistic version of an OFDM-based access-point/base-
station/spectrum-broker that tracks the available spectrum
holes and allocates non-contiguous bandwidth blocks to SUs.

The main goal of the paper is to investigate the phenom-
ena of fragmentation induced by spectrum allocation algo-
rithms. For this purpose, we will ignore the particularities
of techniques such as OFDM and make a couple of assump-
tions (for a complete system description, see Section 2): (i)
the system operates at capacity and there is always a waiting
bandwidth request; and (ii) the fragment size is not bounded
from below. Making the first assumption allows us to study
the effect of fragmentation in the worst case. Clearly, if
there are idle periods, when there are no waiting requests,
only departures occur and the fragmentation level of the
system decreases during these periods. Similarly, the lat-
ter assumption allows us to study the system performance
when artificial lower bounds on the fragment size are not
imposed. This differs from OFDM-based systems in which
a subcarrier has a given minimal bandwidth.

Main Results
At first glance, it seems that given assumption (ii) above,
as time passes, the fragments used by bandwidth requests
might well become progressively narrower and that the num-
ber of fragments grows without bound. Clearly, such an
operation model cannot be supported by a realistic system
(e.g., an OFDM-based system). However, our analytical and
experimental results show that this is not the case.

In particular, under our model, a portion of the spectrum
(represented by the interval [0, 1]) is available for allocation
to requests whose sizes are uniform on (0, α] (0 < α ≤ 1).
Once allocated, requests are satisfied (leave the system) af-
ter an exponential time. A stochastic model of channel frag-
mentation is investigated which includes the asymptotic be-
havior of the number G(t) of gaps, F (t) of fragments, and
R(t) of requests being served (also referred to as allocated
channels). A Markovian description of this system is clearly
more complicated than the vector (G(t), F (t), R(t)), since
for each of the R(t) channels, the location and size of each
of its fragments should be included in such a description.

Let (tn) be the sequence of request departure times. Our
main result shows that the total number of gaps and frag-
ments at these epochs has bounded exponential moments,

sup
n≥1

E

(

eη(F (tn)+G(tn))
)

< +∞,

for some η > 0. It follows that the sum F (tn) + G(tn) is
strongly concentrated near the origin, indicating that, with
high probability, low fragmentation of the spectrum holds un-
der high traffic intensity. In our analysis, several basic in-

gredients are used: relations between the number of frag-
ments and gaps in the spectrum; a drift relation of Lya-
punov type for the total number of gaps, fragments, and
requests (Proposition 1); a general inequality for Markov
chains (Theorem 4); and a stability result of [22].

In addition to the analytical results, and in order to gain
insight into the performance of the system, we present the
results of an extensive simulation study. We show that al-
though for a given maximum request size (α), the number of
fragments has a finite expected value, there is a linear rela-
tionship between 1/α and the expected number of fragments
into which a request is divided. This indicates that when the
requests are very small, they are also fragmented into a rel-
atively large number of fragments. From a practical point of
view, this implies that imposing a lower bound on the frag-
ment size is important in order to reduce the complexity
resulting from maintaining a channel heavily fragmented.

We show that different bandwidth allocation algorithms
have significantly different performance in terms of the frag-
mentation occurring in the system. In particular, an algo-
rithm (referred to as LFS) that allocates gaps in decreas-
ing order of their sizes reduces the fragmentation by almost
an order of magnitude compared to other algorithms. In-
terestingly, we also show that the number of fragments is
distributed according to a Normal law with a relatively low
mean value. Finally, we observe an unexpected reappear-
ance of the 50% rule [23], according to which, on average the
number of gaps (unoccupied fragments) is half the number
of requests being served (this rule differs from the original
50% rule by Knuth [23] which is briefly discussed below).

Related Work
The areas of Dynamic Spectrum Access and Cognitive Ra-
dio Networks have been extensively studied (for a compre-
hensive review of previous work see [1, 2, 24, 26]). In par-
ticular, problems stemming from fragmented spectrum have
been considered in [21,31,33]. In addition, several previous
works focused on the technical aspects of channel fragmen-
tation [15,16,18,25,29,30,32]. To the best of our knowledge,
despite these recent efforts, the fragmentation problem con-
sidered in this paper has not been studied before.

Yet, the spectrum allocation problems described here can
be characterized in the context of classical dynamic stor-
age allocation problems of computers, see Knuth [23]. In
that context, the term “spectrum” refers to the storage unit,
“bandwidth” refers to storage, and “channel” refers to a re-
gion in storage containing a file. In the original storage
model, fragmentation refers only to the gaps of unoccupied
storage interspersed with intervals of occupied storage: files
are not fragmented. The 50% rule was derived for this model
and asserted that the number of gaps was approximately half
the number of files when exact fits of files into gaps were
rare. Our notion of fragmentation applies also to the files
themselves, so our discovery that the 50% rule continued
to apply was a surprising one at first. Note that, in terms
of the storage application, our model corresponds well to
linked-list allocation of files – channels allocated to requests
are sets of linked, disjoint segments of storage allocated to
specific file fragments. Our results provide a novel analy-
sis for such systems, and have implications for the garbage-
collection/defragmentation process in linked-list systems.

We note that studies of dynamic storage allocation have
been around for some 40 years, and widely recognized as
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Figure 2: An example of the admission and departure processes and the resulting spectrum fragmentation.

posing very challenging problems to both combinatorial and
stochastic modeling and analysis. In particular, results of
the type found in this paper, rigorous within stochastic mod-
els, seem to be quite new.

For a system without fragmentation, the early results of
Kipnis and Robert [22] concern a stochastic analysis of the
number of requests being served in the system. Fragmen-
tation is not an issue in their case since request allocations
can be moved when needed in order to put available space
all together in one block. A major result in [22] applying to
our model asserts the existence and uniqueness of an invari-
ant measure for the number of requests. Explicit formulas
for our system are hard to come by, but those in [22] for
the maximal departure rate in special cases have provided
useful checks on our experiments.

Organization of the Paper
The remainder of this paper is organized as follows. Sec-
tion 2 describes the system, allocation algorithm, and the
mathematical variables describing fragmentation. Section 3
presents simulation results that bring out the behavior of
the system and the effects of fragmentation. Section 4 in-
troduces some relations between the variables describing the
fragmentation and a 50% limit law for the relation between
the number of active channels and the number of gaps in the
spectrum at departure times. Section 5 contains our main
mathematical result, Theorem 2, which shows that the av-
erage value of the total number of fragments and gaps is
bounded. Furthermore, in some cases, the existence of an
equilibrium distribution is established in Theorem 3. Sec-
tion 6 discusses algorithmic issues, such as changes in perfor-
mance resulting from alternative algorithms for sequencing
through the list of gaps when constructing a channel for a
newly admitted request. Section 7 presents experiments sug-
gesting that Normal approximations for the total number of
fragments and gaps hold. Section 8 discusses the results and
future research directions.

2. THE MODEL

System Model
As mentioned above, we consider requests for bandwidth
queued up waiting to be served, each of them identified with
the amount of bandwidth required and a time telling how
long it wants a channel with that total bandwidth. Chan-
nels are allocated to bandwidth requests on a FCFS (first-

come-first-served) basis, subject to available bandwidth; the
channels must remain fixed while active; they depart after
varying delays, so gaps alternating with sequences of sub-
channels (channel fragments) develop over time.

For convenience, we normalize the spectrum to the in-
terval [0, 1], so all bandwidth requests are numbers in [0, 1].
There is a queue of waiting requests that never empties. As-
suming that the spectrum initially has no channels in use,
the allocation process begins by allocating consecutive chan-
nels i.e., consecutive subintervals of [0,1], to requests whose
sizes are u1, u2, . . . until a request whose size ui, i > 1, is
reached which exceeds available bandwidth, i.e.,

u1 + · · · + ui−1 ≤ 1 < u1 + · · · + ui

All i− 1 of the channels now begin their independent de-
lays. Subsequent state transitions take place at departure
epochs when the delays of currently allocated channels ex-
pire. At such epochs, all fragments of the departing chan-
nel are released. Suppose all requests up to uj have been
allocated channels and a request ui, i ≤ j, departs, releas-
ing its allocated channel. Then uj+1, uj+2, . . . are allocated
their requested bandwidths until, once again, a request is
encountered that asks for more bandwidth than is available.
All channels then begin or continue their delays until the
next departure. A standard rule for setting up a channel
is to scan the spectrum, from one end to the other, with
gaps of available bandwidth allocated to fragments of the
new requested bandwidth until enough has been allocated
to satisfy the entire request. The last gap used in satisfying
a request is normally only partially used; the partial alloca-
tion in the last gap is left-justified in that gap. We refer to
this scanning rule as Linear Scan.

An example is shown in Figure 2. Allocations for the
first 8 user requests whose sizes are u1, · · · , u8 are shown,
assuming that, at time 0, the spectrum is not in use. The
requests with sizes u1, u2, and u3 are the first to be allocated
channels; u4 must wait for a departure, since the first 4
request sizes sum to more than 1. The variables ti give
the sequence of departure times of allocated requests. We
see that the first occurrence of fragmentation takes place at
the departure of u2 and the subsequent admission of u4; an
initial fragment of u4 is placed in the gap left by u2 and a
final fragment is placed after u3. Note also that, even after
u2 and u4 have departed, there is still not enough bandwidth
for u5. After the additional departure of u1, both u5 and
u6, but not u7, can be allocated bandwidth.

In Section 6, we shall also evaluate two alternatives to the



Linear Scan rule: a Circular Scan, by which each linear scan
starts where the previous one left off, and a Largest-First
Scan intended to further reduce fragmentation. Although
these algorithms make different scans of the gap sequence,
they are all alike in their treatment of the last gap occupied:
the last fragment is left justified in the last gap. This is a
key assumption, and it is very likely to hold in practice.

The allocation process described in this section contrasts
with the classical model of dynamic storage allocation, in
which each bandwidth request must be accommodated by a
single, sufficiently large gap of available spectrum. However,
the process does correspond closely to the linked-list model
of dynamic storage allocation, in which an available-space
list is maintained and files can be fragmented in accordance
with this list. This paper also yields a novel stochastic anal-
ysis of such systems. Note that the assumption that there is
always another request in queue models a system operating
at capacity, where the departure rate, which is equal to the
admission rate, is often called maximum throughput.

Notation, State Space, and Probability Model
We denote by U the size of the request waiting to be allo-
cated bandwidth, and by Ui for i ≥ 1 the size of the ith
request behind it. Except in the proof of Theorem 3 in Sec-
tion 5, we omit the dependency in time of these variables for
the sake of notation. As mentioned in Section 2, we denote
by R(t) the number of channels (requests that are allocated
bandwidth) at time t. F (t) and G(t) denote the number
of fragments and gaps at time t. A Markovian description
of this system is clearly more complicated than the vector
(G(t), F (t),R(t)). Hence, we now define the state space of
the fragmentation process. At a given state, we denote by
r the number of channels (requests to which bandwidth has
been allocated) and by si (1 ≤ i ≤ r) the amount of band-
width allocated to these requests. A state of the spectrum
[0, 1] carries the information given by a sequence in which
gaps alternate with sets of contiguous fragments:

Definition 1. A state x in the state space S of the frag-
mentation process is denoted by

x = (L1, . . . , Lr;u)

where u is the size of (amount of bandwidth required by) the
request waiting at the head of the queue and Li, is the list
of open subintervals of [0, 1] occupied by the fragments of
the i-th channel. For x to be admissible, the open intervals
in ∪iLi must be mutually disjoint, and, since the size of u
exceeds the bandwidth available, u > 1 − ∑

i si has to hold.

Note that for a specific state, the size of the requests in
the queue are denoted by u and uj , j ≥ 1 and the size of the
channels (requests that are already allocated bandwidth) are
denoted by si, 1 ≤ i ≤ r.1

Let (X(t)) be the process living in the state space S . In
the probability model used in this paper, the bandwidth re-
quests (Ui) are independent random variables which are uni-
formly distributed on (0, α], 0 < α ≤ 1, and request res-
idence times are i.i.d. mean-1 exponentials.2 Under this
probability model, (X(t)) is a Markov process on S .

1For simplicity of the presentation, we did not use the no-
tation si in the example provided in Figure 2.
2The assumption that request sizes are uniformly dis-
tributed is for convenience. The results hold for more general
distributions.
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3. EXPERIMENTAL RESULTS
In this section we describe an experimental study of the

model described above. This serves two related roles. First,
it brings out characteristics of the fragmentation process
that need to be borne in mind in implementations, par-
ticularly where these characteristics show conditions (e.g.,
parameter settings) that must be avoided, if a system with
fragmentation is to operate efficiently. The second role is
that of experimental mathematics, in which results indi-
cate where behavior might well be formalized and rigorously
proved as a contribution to mathematical foundations. In
the latter role, this section leads up to the next two sections,
which formalize the stability of the fragmentation process.

The experiments were conducted with a discrete-event
simulator written in C. In general, the tool is capable of sim-
ulating stochastic request arrival/departure processes. For
this paper, however, the arrival process was effectively in-
operative, since the interest here is behavior while the sys-
tem is operating at capacity (i.e., at maximum throughput).
Admissions are made whenever the waiting request fits into
available spectrum, and once made the waiting request is
immediately replaced by another with independent samples
from the required-bandwidth and residence-time distribu-
tions. The admission process continues in this way, effec-
tively simulating a queue that never empties, until no fur-
ther admissions can be made and one or more departures
need to occur. The excellent accuracy of the tool was es-
tablished in tests against exact queueing results, and exact
results from [22]. The verification details are omitted and
can be found in Appendix A.

Recall that bandwidth requests are uniformly distributed
on (0, α], 0 < α ≤ 1. Hence, the principal parameter of the
experimental model will be α. The simulations of stationary
behavior were most demanding, of course, for small α. For
every α value, 0.01 ≤ α ≤ 1, 20 million departure events
were simulated starting in an empty state, with data col-
lected for the last 10 million events. For 0.001 ≤ α ≤ 0.01,
100 million departure events were processed and data col-
lection was performed during the last 50 million events.

The results for the average number of channels, the aver-
age number of gaps, and the average number of fragments
per channel are shown in Figure 3. The curves are nearly
linear in 1/α (the errors in the linear fits are within the
thickness of the printed lines). In particular, the asymptotic
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Figure 4: Average total number of fragments vs.
1/α: a quadratic fit.
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Figure 5: Percentage of type-i fragments.

average number of channels in the spectrum is 2/α. When
requests are large relative to the spectrum (i.e., for α > 1/3),
the behavior is not given by functions quite so simple. As
such cases are of less practical interest, we omit the relevant
data due to space constraints.

The asymptotic linear growth of the average number of
channels as a function of channel size is obvious, but the
linearity of the other two measures is not so obvious. A
closer look shows that the average number of gaps is almost
exactly one half the average number of channels for even rel-
atively small 1/α. This is an unexpected version of Knuth’s
50% rule for dynamic storage allocation. We return to this
behavior in the next section, where we prove a 50% limit
law. The linear growth of the average number of fragments
per channel may also be unexpected at first glance: the frag-
mentation of channels increases as the average channel size
decreases. This linear growth implies the quadratic growth
of the average total number of fragments plotted in Figure
4 (the accuracy of the fit is as before: the error is within the
thickness of the printed lines).

The analysis in the later sections will focus largely on
tracking fragment types defined as follows: a fragment is of
type-i, if it is adjacent to 0, 1, or 2 fragments. It can be seen
in Figure 5 that for small α, more than 90% of the fragments
are type-2 fragments. In addition, clearly, the number of
type-0 and type-1 fragments is a function of the number
of gaps. These observations and the results illustrated in
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Figure 6: Average sizes of fragments and gaps.

Figures 3 and 4 indicate that, even for relatively small 1/α,
the average total number of type-0 and type-1 fragments
grows linearly in 1/α, but the average number of type-2
fragments grows quadratically.

Figure 6 compares the average gap and fragment sizes. As
might be expected, for relatively small α, they are close to
each other. The relation holds even for moderately large α,
although for α rather close to 1, the difference amounts to
about a factor of 2. With this property and the 50% rule
suggested by Figure 3, the linear growth in the number of
fragments per channel (shown in Figure 3) is easily explained
for moderately small α in the following way.

As mentioned above, for moderately small α, the number
of channels is approximately 2/α (i.e., the spectrum size di-
vided by the average request size). Due to the 50% rule, the
number of gaps is roughly 1/α. At any time, the total size of
the gaps is at most α, since there is a request waiting for de-
partures whose requested bandwidth exceeds that total size
of gaps. Therefore, at most α available bandwidth is spread
among 1/α gaps, giving an average gap size on the order of
α2. The average fragment size is at most (and indeed very
close to) the average gap size. The fragments must occupy
at least 1−α of the spectrum (since, as mentioned above, at
most a fraction α of the spectrum is devoted to gaps). Thus,
the number of fragments must be on the order of 1/α2, and
so the average number of fragments per channel must be on
the order of (in particular, linear in) 1/α. As α → 0, the
asymptotics of these estimates become more precise.



4. NUMBERS OF FRAGMENTS AND GAPS
As mentioned in Section 2, under our probability model,

(X(t)) (the process living in the state space S) is a Markov
process on S . In this section, we obtain analytical results
regarding the number of fragments and gaps under this pro-
cess. We begin by formally defining the fragment types
which were discussed in Section 3.

Definition 2. For i = 0,1, or 2, a fragment is said to be
of type i if it touches exactly i other fragments. Ni(t) denotes
the number of type i fragments at time t, so that F (t) =
N0(t) +N1(t) +N2(t) is the total number of fragments.

Let σ(t) denotes the sum of the number of fragments and
gaps,

σ(t) = F (t) +G(t). (1)

The numberG(t) of gaps and the numbers of fragment types
are related as follows.

Lemma 1. With probability 1,

G(t) = N0(t) +
1

2
N1(t) + I(t) (2)

For any t ≥ 0, where I(t) = 1, if there is a gap starting at
the origin, and 0 otherwise.

Proof. Each gap, except for boundary gaps starting at
0 or ending at 1, separates two fragments. Two gaps sur-
round a type-0 fragment not touching the origin, only one
touches a type-1 fragment not touching the origin, and none
touch a type-2 fragment, so the gaps strictly inside (0, 1)
are double-counted in 2N0(t) +N1(t). Gaps at the bound-
aries are counted only once in this expression, so if there are
gaps touching each boundary, 2 must be added to 2N0(t) +
N1(t) to produce a double count of all gaps. Then N0(t) +
N1(t)/2 + 1 counts the gaps as called for by the lemma.

With probability 1, a gap always touches the boundary at
1, so the only case left to consider is the absence of a gap
touching the origin. In this case, there is a type-0 or type-1
fragment touching the origin, and so a nonexistent gap has
been counted in 2N0(t)+N1(t). This over-count cancels the
under-count of the gap touching 1, and so no correction term
is needed, i.e., N0(t) +N1(t)/2 counts all gaps as stated in
the lemma.

Definition 3. Let (tk) denote the sequence of departure
times, let Di(tk) denote the number of type i fragments in the
channel leaving at time tk, and let A(tk) denote the number
of requests admitted to the spectrum at time tk. Finally,
define the drift in the total number of fragments and gaps:

∆σ(tk)
def
= σ(tk) − σ(tk−1). (3)

The following lemma is the basis of the stability analysis
of σ(t) in Section 5, and the 50% rule proved later in this
section.

Lemma 2. With probability 1, the departure at tk creates
the following change in the total number of fragments and
gaps:

∆σ(tk) = A(tk) − 2D0(tk) −D1(tk) + J(tk), k ≥ 1 (4)

with t0 = 0, and J(tk) = 1, if a fragment starting at the
origin is in the departing channel, and 0 otherwise.

Proof. With probability 1, each new channel allocation
covers completely every gap it is allocated, except for the last
one, which is only partially covered. Thus, with probability
1, each new channel allocation changes gaps to fragments,
except for the last gap which is changed to a fragment plus
a gap; this adds one to σ(tk−1) for each admission, which
accounts for the total of A(tk) in (4).

Two fragments of the same channel can not be contiguous,
so it is correct to add up the changes created by departing
fragments, with each being treated separately. Suppose first
that there is no fragment (0, b) against the origin. Then for
every type-0 fragment in the departing channel, two gaps
and a fragment are replaced by a single gap for a net de-
crease of two, and for every departing type-1 fragment, a
gap and a fragment are replaced by a single gap for a net re-
duction of one. This gives the reduction of 2D0(tk)+D1(tk)
appearing in (4). If there is a fragment (0, b), it must be
of type 0 or 1; if it is of type 0, then its departure gives a
decrease of one; if it is of type 1, its departure has no effect.
Each of these contributions is one less than it would be were
the fragment not touching the origin. There can only be
one such fragment, so the correction shown in J(tk) for a
fragment (0, b) follows.

We will denote by G−(tk) the total number of gaps just
after the k-th departure, but before new admissions, if any,
are made. Note that if we remove A(tk) from the right-hand
side of (4) and add back the total number of departing frag-
ments at tk, i.e., D0(tk)+D1(tk)+D2(tk), we get the number
of gaps available to admissions at the k-th departure:

G−(tk) = G(tk−1) −D0(tk) +D2(tk) + J(tk) (5)

with J(tk) = 1, if there is a departing fragment (0, b), and 0
otherwise.

Knuth’s widely known 50% rule appears in a very different
context than the model here, so it is difficult to anticipate the
apparent fact that it also holds for our fragmentation model.
However, one can argue a similar result assuming only that
the fragmentation process has a stationary distribution. The
result is given below as an expected value of a ratio, rather
than a ratio of expected values.

Theorem 1. Assume that the fragmentation process at
departure epochs tk has the stationary distribution πα, then
as α→ 0,

Eπα

(

G(tk)

R(tk)

)

∼ 1

2

Proof. In the stationary regime, one has, by Lemma 2,

Eπα
[σ(tk) − σ(tk−1)] =

Eπα
[A(tk) − 2D0(tk) −D1(tk) + J(tk)] = 0,

and to balance departure and admission rates, we must have
Eπα

A(tk) = 1. Thus, we can write

Eπα
[2D0(tk) +D1(tk) − J(tk)] = 1. (6)

Now for a state x at time tk having r channels and Ni(tk)
type-i (i = 0, 1, 2) fragments, we have from Lemma 1

Ex[2D0(tk) +D1(tk) − J(tk)] =

(2N0(tk) +N1(tk))/r − Ex[J(tk)] =

2[G(tk) − I(tk)]/r − Ex[J(tk)] = 2G(tk)/r +O (1/r)

Thus, dropping the O(1/r) term that tends to 0 with α uni-
formly in x, the expectation in (6) proves the theorem.



5. STABILITY RESULTS
This section establishes that the average total number of

fragments and gaps remains bounded and that, for certain
distributions of request sizes, ergodicity holds. The analysis
leads to the two following results. Recall that (tn) is the
sequence of departure times (t0 = 0) and σ(t) = F (t)+G(t),
defined in (1), is the total number of fragments and gaps.

Theorem 2. There exists some η > 0 such that, for any
initial state x ∈ S,

sup
n≥1

Ex

(

eησ(tn)
)

< +∞. (7)

Clearly, this implies that for any initial state x ∈ S , the
sequence (Ex(σ(tn)), n ≥ 0) is bounded. With an additional
assumption on the distribution of the request size, a stronger
stability result can be proved.

Theorem 3. When α > 1/2, the process (X(t)) is posi-
tive Harris recurrent; in particular, it has a unique station-
ary distribution.

A criterion for finite exponential moments using a Lyapunov
function is established next. Then, we provide some esti-
mates of the drift of the number of fragments between de-
partures which will show us how to construct a Lyapunov
function. After constructing this function, we will be in po-
sition to prove the boundedness of exponential moments.

A Criterion for Finite Exponential Moments
Before stating the main result, some results on Markov chains
are needed. In the sequel, ≤st refers to stochastic ordering,
i.e., V ≤st Z means that E(f(V )) ≤ E(f(Z)) for any in-
creasing function f . For reasons that will become clear in
Lemma 5, the following lemma focuses on admissions at 4
consecutive departure times. Recall that (Ui, i ≥ 1) are the
sizes of the requests waiting to be allocated bandwidth (after
the first one U), which are assumed to i.i.d.

Lemma 3. The random variable A(t1) + · · · + A(t4) is
stochastically dominated by a random variable Z such that
E(eλZ) < +∞ for some λ > 0.

Proof. It is clear that A(t1) ≤ Z + 1 where

Z = 1 + inf{n ≥ 1 : U1 + · · · + Un ≥ 1}.
The Markov inequality shows that for any z ≥ 0,

P(Z ≥ z + 1) = P(U1 + · · · + Uz ≤ 1) ≤ e
(

E

(

e−U1

))z

and so E(eηZ) is finite for η > 0 small enough. From this
observation, it is not difficult to extend the result to A(t1)+
· · · + A(t4) instead of just A(t1).

This lemma shows in particular that

ξ
def
= sup

i≥1
sup
x∈S

Ex(A(ti)) < +∞.

is well-defined; this constant will be used repeatedly through-
out the rest of the analysis. The proof of the following lemma
is standard, and therefore, omitted.

Lemma 4. Let Z ≥ 0 be a positive, real-valued random
variable such that E(eλZ) < +∞ for some λ > 0, and define
c = λ−2

E(eλZ − 1 − λZ). Then for any 0 ≤ ε ≤ λ and any
real-valued random variable V such that V ≤st Z, we have
E

(

eεV
)

≤ 1 + εE(V ) + ε2c.

The following result is closely related to result of Hajek [17].
The proof can be found in Appendix B.

Theorem 4. Let (Yk) be a discrete-time, continuous state-
space Markov chain such that for some function f ≥ 0,
there exist K, γ > 0 such that for any initial state y with
f(y) > K, Ey(f(Y1)−f(Y0)) ≤ −γ. Assume that there exists
a random variable Z such that for any initial state y, Z dom-
inates stochastically the random variable f(Y1) − f(Y0) un-
der Py. Assume finally that E(eλZ) < +∞ for some λ > 0.
Then there exist η > 0 and 0 ≤ C < +∞ such that for any
initial state y,

sup
n≥1

Ey

(

eηf(Yn)
)

≤ eηf(y) + C.

Theorem 4 will be applied to the Markov chain (X(t4n))
with a function f of the form σκ = σ + κr for some κ > 0
suitably chosen. (X(t4n)) is not the most natural choice
at first glance, but it appears to be needed because of the
complexity of the state space.

It is clear that σ(t1) − σ(t0) ≤ A(t1) + 1, so that

σκ(t4) − σκ(t0) ≤ (κ+ 1)(A(t1) + · · · +A(t4)) + 4

and therefore, by Lemma 3, σκ(t4)−σκ(t0) is stochastically
dominated by some random variable Z with an exponential
moment. Therefore, one has to establish a negative drift re-
lation for σκ(t4)−σκ(t0). This is the purpose of the following
two subsections.

Evolution of the Number of Fragments
Recall that x ∈ S , the initial state of the system, has r ac-
tive channels, and define the total available gap size h =
1− (s1+ · · ·+sr). Time 0 referring to the initial state x will
usually be omitted; e.g., σ(0), F (0), G(0), . . . will be simpli-
fied to σ, F,G, . . .. Recall that ∆σ(tn) is defined in (3) as
σ(tn) − σ(tn−1).

Lemma 5. Fix 0 < ε < 1 and 0 < η < 1/2, and let x ∈ S
be an initial state such that σ = G+ F ≥ 2K + 1 for some
fixed K ≥ 0.

Then F = N0 +N1 +N2 ≥ K, and

1) If r = 1, then Ex(∆σ(t1)) ≤ ξ −K.

2) If r > 1 and N0 +N1 ≥ εK, then

Ex(∆σ(t1)) ≤ ξ + 1 − εK

r
.

Assume in the remaining cases that r > 1, define K′ =

K
(

(1 − ε)/r − ε
)+

, and let i∗ ∈ {1, . . . , r} index a channel
Li∗ in x with the most type-2 fragments.

3) If N0 +N1 ≤ εK and u > h+ si∗ , then

Ex(∆σ(t2)) ≤ ξ + 2 − K′

r(r − 1)
. (8)

4) If N0 +N1 ≤ εK, u < h+ si∗ and h+ si∗ < ηα, then

Ex(∆σ(t3)) ≤ ξ + 2 − (1 − η)K′

r2(r − 1)
. (9)

5) If N0 +N1 ≤ εK, u < h+ si∗ and ηα < h+ si∗ , then
there exists a γ(η) > 0 such that

Ex(∆σ(t4)) ≤ ξ + 2 − γ(η)K′

r5
. (10)



It follows that there exists a ξ > 0 and a function ψ(r) > 0
such that for any x with σ ≥ 2K + 1,

Ex(σ(t4) − σ) ≤ ξ −Kψ(r). (11)

Proof. As is readily verified, G ≤ F + 1, so 2K + 1 ≤
σ = F +G ≤ 2F +1, and hence F ≥ K as claimed. In what
follows, we use repeatedly the two following simple facts:

Ex (D0(t1) +D1(t1)) = (N0 +N1)/r, (12)

and by Lemma 1,

G ≥ K ⇒ N0 +N1 ≥ K − 1. (13)

— First case: r = 1. Then, right after the only channel
initially present leaves, there is no channel allocated band-
width, and therefore, σ(t1) = A(t1). Note that r = 1 is only
possible when α > 1/2, and in this case the possibility for
a channel to be alone is crucial in the proof of the Harris
recurrence stated in Theorem 3.
— Second case: r > 1, N0 +N1 ≥ εK. Then the inequality
follows from (4):

Ex(∆σ(t1)) ≤ ξ + 1 − Ex(D0(t1) +D1(t1))

= ξ + 1 − N0 +N1

r
≤ ξ + 1 − εK

r
.

In the 3 remaining cases, let N∗
j denote the number of

type-j fragments in any channel i∗ which has the most type-2
fragments. If N0 +N1 ≤ εK, then since F ≥ K, necessarily
N2 ≥ (1 − ε)K and N∗

2 ≥ (1 − ε)K/r. Define the event
D∗ = {channel Li∗ leaves at t1} and recall that G− denotes
the number of gaps right after Li∗ leaves but before new
admissions, if any, are made. It follows from (5) that G− ≥
K′ in the event D∗, since

G− = G−N∗
0 +N∗

1 + J(t1) ≥ (−εK + (1 − ε)K/r)+ = K′.

The remaining analysis tacitly assumes that r > 1, that
N0 +N1 ≤ εK and that the channel Li∗ leaves at t1.
— Third case: u > h+ si∗ . Then A(t1) = 0, since when Li∗

leaves it does not provide enough additional bandwidth for U .
In particular, R(t1) = r − 1 and G(t1) = G− ≥ K′, and so

Ex(∆σ(t2)) ≤ ξ + 1 − Ex(D0(t2) +D1(t2);D
∗).

The strong Markov property makes it possible to lower-
bound this last term.

Ex(D0(t2)+D1(t2);D
∗) = Ex(EX(t1)(D0(t1)+D1(t1));D

∗)

= Ex

(

(N1 +N2)(t1)

R(t1)
;D∗

)

≥ K′ − 1

r − 1
Px(D∗) =

K′ − 1

r(r − 1)

and therefore, Ex(∆σ(t2)) ≤ ξ + 2 −K′/(r(r − 1)).
— Fourth case: u < h+si∗ < ηα. In this case U is admitted
at t1. Thus it makes sense to define the event

E4 = D∗ ∩ {U leaves at t2 and U1 > ηα}.
Then as before

Ex(∆σ(t3)) ≤ ξ + 1 − Ex(D0(t3) +D1(t3);E4).

In the event E4, U is admitted at t1 and leaves at t2, while
U1 stays blocked at t1 and t2, so that G(t2) = G− ≥ K′ and
R(t2) = r − 1. Hence as in the second case,

Ex(D0(t3) +D1(t3);E4) ≥ K′ − 1

r − 1
Px(E4) ≥ (1 − η)K′

r2(r − 1)
− 1

since Px(E4) = (1 − η)/r2. Thus (9) holds.
— Fifth case: u < h + si∗ and ηα < h + si∗ . Again, U is
admitted at t1. Letting Ui denote the sizes of the requests
behind U , define the event

B = {Ui < ηα, i = 1, . . . , τ and Uτ+1 > 2ηα}
with τ = inf{n ≥ 0 : U1 + · · · + Un > h + si∗ − ηα} and
E′

5 = D∗ ∩ B ∩ {U leaves at t2}. It is readily verified that
1 ≤ τ < +∞ almost surely. Moreover, one has in E′

5

0 < h∗ def
= h+ si∗ − (U1 + · · · + Uτ ) < ηα < Uτ+1.

This means that at t2, exactly τ new requests U1, . . . , Uτ

have been admitted, and Uτ+1 is blocked. Moreover, for
any i ∈ {1, . . . , τ}, one has h∗ + Ui < 2ηα < Uτ+1, so that
if one of the τ channels allocated to the (Ui) leaves, Uτ+1

remains blocked.
When Li∗ left, there wereG− ≥ K′ gaps; in the remainder

of the analysis, we call an initial gap a gap present right
after Li∗ left. After Li∗ left, U and A(t1) − 1 new requests
were admitted, and then U left and A(t2) new requests were
admitted at t2. Thus, at t2, each initial gap is in either of
two states: either it is completely filled, or it is still a gap,
i.e., it has not been filled completely. Let k be the number of
initial gaps completely filled at t2, and let k′ = G−−k: then
k+ k′ = G− ≥ K′. In each initial gap completely covered at
t2, there is at least one type-2 fragment of one of the τ new
channels. Therefore, N1,2 +N2,2 + · · · +Nτ,2 ≥ k with Ni,2

the number of type-2 fragments of the channel corresponding
to U . In particular there is a channel Lj∗ , j

∗ ∈ {1, . . . , τ}
with at least the average k/τ of type-2 fragments: Nj∗,2 ≥
k/τ . Define finally the event E5 = E′

5 ∩ {Lj∗ leaves at t3}.
Since h∗ + Uj∗ < Uτ+1, then Uτ+1 remains blocked at t3
when E5 occurs, and therefore (note that when j∗ leaves,
some gaps may merge, but not two initial gaps),

G(t3) ≥ Nj∗,2 + k′ ≥ k/τ + k′ ≥ (k + k′)/τ ≥ K′/τ.

Now we proceed as before, to obtain

Ex(∆σ(t4)) ≤ ξ + 1 − Ex(D0(t4) +D1(t4);E5)

and, using the Markov property at time t3,

Ex(D0(t4)+D1(t4);E5) = Ex(EX(t3)(D0(t1)+D1(t1));E5)

= Ex

(

(N0 +N2)(t3)

R(t3)
;E5

)

≥ Ex

(

(K′/τ − 1)+

r + τ − 2
;E5

)

since R(t3) = r + τ − 2 in E5. The same kind of reasoning
as before then leads to

Ex

(

(K′/τ − 1)+

r + τ − 2
;E5

)

≥ K′

r5
f(η, h+ si∗ − αη) − 1

with the function f(η, ·) defined for y > 0 by

f(η, y) = E
(

(1 + τ (y))−5;B(η, y)
)

with τ (y) = inf{n ≥ 1 : U1 + · · · + Un ≥ y} and

B(η, y) = {Ui < ηα, i = 1, . . . , τ (y) and Uτ(y)+1 > 2ηα}.
It is not difficult to show that γ(η) = inf0<y<1 f(η, y) > 0
which then gives the result.

It remains to prove (11). One only needs to assemble the
various bounds, taking into account that Ex(∆σ(ti)) ≤ ξ+1
for any x ∈ S and i ≥ 0, to arrive at 4 separate bounds on
Ex(σ(t4) − σ). For example, using the former bound for



the first two terms and the last term of Ex(σ(t4) − σ) =
∑

1≤i≤4 Ex∆σ(ti) and then the bound in (9) for the third
term, we get that one of the 4 bounds, which applies when
x satisfies the inequalities of the fourth case, is

Ex(σ(t4) − σ) ≤ 4ξ + 5 − (1 − η)K′

r5

Computing the minimum over these bounds with η = 1/4
and ε = 1/r2, one obtains (11) after setting ξ = 4ξ + 5 and

ψ(r) =
ϕ(r)

r6
× ((1 − η) ∧ γ)

with ϕ(r) = 1 − 2r−2. This concludes the proof.

We turn now to the case where r is large. In this case, the
negative drift comes from the fact that, except perhaps at t1,
with high probability there is no admission at a departure,
since the channel that leaves is small with high probability.
However, we see in (4) that this is not enough for σ to decay,
for one would need at least one type-0 or type-1 fragment to
leave as well, and it can be the case that most fragments are
of type-2. The second term of the Lyapunov function allows
us to get around this problem. Since the variation ∆R(tk)
in the number of channels at a departure is exactly equal to
A(tk) − 1, one readily gets that

σκ(t4) − σκ = (σ(t4) − σ) + κ(A(t1) + · · · + A(t4) − 4).

In particular, if x ∈ S is such that σ ≥ 2K + 1 and r ≤ Kr,
then (from now on, we assume without loss of generality
that the function ψ given by (11) in Lemma 5 is decreasing)

Ex(σκ(t4) − σκ) ≤ ξ −Kψ(Kr) + 4κ(ξ − 1)

whereas if r ≥ Kr,

Ex(σκ(t4) − σκ) ≤ 4(ξ + 1) + κEx(r(t4) − r)

and so we see that we only need to control Ex(r(t4)−r) for r
large.

Lemma 6. There exist Kr, γr > 0 such that if x ∈ S is
such that r ≥ Kr, then Ex(r(t4) − r) ≤ −γr.

Proof. Since the technical difficulty of the proof of this
inequality is similar to that of the above proof, we need only
give a sketch of it. From s1 + · · · sr = 1 − h ≤ 1 one gets
#{i : si ≥ γ} ≤ 1/γ, and therefore, Px(si1 ≥ 1/

√
r) ≤ 1/

√
r

with Li1 , i1 ∈ {1, . . . , r}, the channel that leaves at t1. Thus,
when r is large, with high probability a small channel leaves.

If h−u is away from α, then the event {u1 > h−u+si1 +
· · · + si4} (with ik defined similarly) has high probability,
and in this event A(t1) + · · · + A(t4) ≤ 1. If in contrast
h−u is large, then with high probability U1 is admitted and
with high probability h − u− U1 is away from α; hence we
can do the same again, and get that, with high probability,
A(t1) + · · · + A(t4) ≤ 2. The lemma is proved.

Construction of a Lyapunov Function
For κ > 0, one defines, for an initial state x ∈ S of the

system, σκ
def
= σ + κ r, where r is the number of channels

allocated in x and σ = F + G is the sum of the number of
fragments and gaps in x.

Proposition 1. (Lyapunov function inequality) There ex-
ist κ and K > 0 such that if x ∈ S is such that σκ ≥ K,
then Ex(σκ(t4) − σκ) ≤ −1.

Proof. Let Kr and γr be as in Lemma 6, and take κ and
K as follows:

κ =
4ξ + 5

γr
and K =

8ξ + 2ξ + 2

ψ(Kr)
+ κKr + 1.

Assume that σκ ≥ K. If r ≥ Kr, then

Ex(σκ(t4) − σκ) ≤ 4(ξ + 1) − κγr = −1.

Otherwise, r ≤ Kr, and since σκ ≥ K, this necessarily gives
σ ≥ K − κKr = 2K̂ + 1 with K̂ = (K − κKr − 1)/2. Thus,

Ex(σκ(t4) − σκ) ≤ ξ − K̂ψ(Kr) + 4ξ = −1

and the proposition follows.

Proof of Theorem 2
Theorem 4 and Lemma 3 applied to the Markov chain (X(t4n),
n ≥ 0), and the function σκ show that for some η > 0 and
some constant 0 ≤ C < +∞,

sup
n≥0

Ex

(

eησκ(t4n)
)

≤ eησκ + C.

Then the Markov property gives for any i ≥ 0

sup
n≥0

Ex

(

eησκ(t4n+i)
)

≤ Ex

(

eησκ(ti)
)

+ C < +∞

from which (7) follows readily.

Proof of Theorem 3
In the following discussion, no conceptual argument is miss-
ing, only some formalism needed to handle the continuous
state space S . These details are routine and left to the in-
terested reader. In the analysis below, requests are said to
be big if their size exceeds 1/2.

We argue that (X(t)) visits infinitely often a state in which
there are no fragmented channels, and such that all size
distributions remain the same at all visits. This is enough
to show Harris recurrence; see for instance Asmussen [3]. For
this purpose, it is convenient to pick a simple regeneration
set E ⊂ S in which (i) the spectrum is being used by a
big request, alone and with an unfragmented channel of the
form (0, b), and (ii) the request U waiting at the head of the
queue is also big. Each of these has the conditional request-
size distribution given that its size is larger than 1/2, i.e.,
the uniform distribution on (1/2, α), see [22].

To verify that E is visited infinitely often, consider the
process (R(t), U(t)) with R(t) the number of requests allo-
cated a channel at time t and U(t) the size of the request
at the head of the queue; the process (R(t), U(t)) is simply
the process (X(t)) when the data on fragmentation is ig-
nored. This process is positive Harris recurrent, as shown
in Kipnis and Robert [22]. In particular it visits infinitely
often states with R(t) = 1 and U(t) > 1/2; one can add
U1(t) > 1/2 as well (i.e., the first request in line behind the
head of the queue request is also big), since this happens
with a geometric probability. Then when the only channel
leaves, the process (X(t)) enters E, since there is exactly
one channel, it is big, it is necessarily unfragmented and of
the form (0, b), and a big request is waiting at the head of
the queue. Moreover, this argument shows that the time
between visits to E is integrable, which in turn establishes
positive Harris recurrence. This completes the proof.
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Figure 7: Average number of fragments per channel.

6. ALGORITHMS
Although the focus so far has been on measures of frag-

mentation as a function of α, algorithmic issues are also of
obvious interest. For example, more uniform patterns of
gaps might be an advantage. The Linear Scan (LS), dis-
cussed in the previous sections, tends to push the gaps to-
wards the end of the spectrum, particularly when the spec-
trum is viewed at random times in steady state. Interest-
ingly, our experiments have shown that, for all α < 1/3, the
starting position of the first gap in the spectrum remains
very close to 0.64.

To uniformize gap locations, an alternative gap scan re-
sembles the Circular Scan (CS) sequences of dynamic stor-
age allocation [23]. In our case, CS uses a circular gap list,
in which the successor to the last gap in [0,1] is the first gap
in [0,1]. The scan is still linear, but the starting gap of the
scan moves as follows: if the last fragment of a channel is
placed in gap g, then the residual gap of g is the first gap
scanned in constructing the next channel. Clearly, although
CS will tend to uniformize gap sizes as a function of posi-
tion, boundary effects will persist so long as the spectrum
itself is not circular, i.e., gaps and fragments are not allowed
to overlap the end of the spectrum, a restriction that would
likely be dictated in practice.

The average number of fragments per channel is a direct
measure of gap-search times, and one that we use here. For
values of α expected to be of interest in applications, the
effects of CS on gap-search times are only within a few per-
cent relative to LS, as can be seen in Figure 7. The figure
also shows the average number of fragments per channel for
the Largest-First Scan (LFS) algorithm. This algorithm is
designed to speed up the process of finding a set of gaps
sufficient to create a new channel. It selects available gaps
in a decreasing order of their sizes and allocates them to
a request, thereby greedily minimizing the number of gaps
needed to fulfill a request. The extra mechanism needed
for such a search will of course tend to reduce overall perfor-
mance gains. The results in Figure 7 for LFS show a surpris-
ingly large improvement in the average number of fragments
per channel – as can be seen, a reduction by a factor more
than 3 is achieved by LFS for even moderately small α.

The Probability Mass Functions (pmf’s) of the number of
fragments per channel are shown in Figure 8. Notice that
while all probabilities are small under LS and CS, the largest
applies to the case of no fragmentation at all. The much
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Figure 8: Distribution of the number of fragments
per channel for α = 0.1.
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Figure 9: G/R → 1/2 as α → 0 under LS, LFS, and
CS.

more peaked distribution for LFS has both much smaller
mean and variance: The standard deviation under CS and
LS is approximately 1.5 to 2.0 times that under LFS. The
same limiting behavior called for by the 50% law holds for
CS and LFS, which was to be expected, as the arguments
supporting the 50% law did not depend on the sequence in
which gaps were scanned. But an interesting result of our
experiments with CS is that the 50% approximation to ex-
pectation of the ratios is within a couple of percent even
when the maximum request size is as much as 0.2 the spec-
trum size. This is easily seen in Figure 9. The convergence
rate of LFS to 50% is intermediate between LS and CS.

7. NORMAL APPROXIMATIONS
After the usual scaling (i.e., first centering then normal-

izing by the standard deviation), the scaled version of the
number of channels, R, tends in probability to the standard
Normal, N (0, 1), as M → ∞, where M = ⌊1/α⌋ (it is con-
venient to express the asymptotics in this section in terms
of M). This result follows easily from the corresponding
heavy-traffic limits in [5,6], and the ergodicity of (R(t)).

Interestingly, it was discovered in the experiments that a
normal limit law also appears to hold for the total number
F of fragments as M → ∞ (see for example Figure 10).
This is not surprising, since F is the sum over all requests in
system of the numbers Fi, 1 ≤ i ≤ R, of fragments allocated
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Figure 10: Distributions of the total number of frag-
ments and corresponding Normal fits.

to requests. The requests have a mutual dependence, but
one whose effect can be expected to weaken for large M . As
illustrated in Figure 7, the mean of Fi is proportional to M .
Our experiment indicate that the standard deviation of Fi is

also approximately proportional to M . Hence, if
p→ denotes

convergence in probability as M → ∞, then

F − βM2

θM3/2

p→ N (0, 1) (14)

with β ≈ 1.5 and θ ≈ 0.9 formalizes the normal-limit law
suggested by our experiments.

Note the two departures from the standard Central Limit
Theorem set-up. First, consistent with the linear fragmen-
tation observation, individual request fragmentation scales
linearly inM , so that the total number of fragments scales as
M2. Restating the limit law in terms of the sums of random
variables (Fi/M) clearly eliminates this discrepancy. Sec-
ond, the number of channels (R) is random and satisfies the
normal limit law discussed above. Thus, the plausibility of
(14) requires an appeal to Central Limit Theorems for ran-
dom sums (e.g., see [14], p. 258, for an appropriate version).
Finally, Figure 10 gives some idea of the convergence of the
fits to the normal density; as can be seen, fits for α ≤ 0.1
are indeed close to the simulation data.

We note that the normal approximations shown for the
total number of fragments under LS were also found to hold
under CS and LFS. This is illustrated in Figure 11.
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Figure 11: Distributions of the total number of frag-
ments for α = 0.1 and the corresponding Normal fits.
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Figure 12: Distributions of the number of gaps at
different epochs for α = 0.01.

The distributions of the number of gaps at different epochs
are shown in Figure 12. The distribution at a random time
shows a decreasing pmf. What appeared to be yet another
normal approximation was discovered when looking at the
first-admission pmf in Figure 12; this is the distribution as
seen by the first admission immediately after a departure
at just those epochs when there is at least one admission.
The third curve is the pmf of the number, G−, of gaps as
seen right after departures, but before determining whether
or not the head of the queue fits in the total available band-
width. The fit to the Normal density is also illustrated in
the figure. The proof of a similar limit law for Renyi’s space-
filling problem can be found in [9], but extension of known
techniques once again faces the difficult challenges posed by
our more difficult fragmentation problem.

8. CONCLUSIONS
The results of this paper prepare the ground for further

research on several fronts. Before listing a number of the
more important ones, we review what we have learned. Our
experiments brought out first an unexpected reappearance
of a 50% rule relating the expected numbers of gaps and
channels in the limit of small request sizes relative to the
spectrum size. In our case, we were able to prove the limit
law. The next result described a linear relationship between



the maximum request size, α, and the expected number of
fragments into which a request was divided at the time of al-
location. Interestingly, the smaller α was taken, the greater
was the resulting fragmentation of requests.

Our stability results established the beginning of a mathe-
matical foundation of fragmentation processes. Particularly,
we showed that for α > 1/2, the fragmentation process is
Harris recurrent. For general α, we proved (with consider-
able effort) that the total number of fragments is bounded in
expected value. We examined alternative algorithms for se-
quencing through the available gaps and showed that using
the LFS algorithm leads to significantly less fragmentation
than using the LS or CS algorithms. Finally, we exhibited
experimentally a limiting, small-α behavior in which, with
appropriate scaling, distributions tend to Normal.

A broad direction for further research extends the param-
eters of our mathematical model. For instance, while Uni-
form distributions are generally the assumption of choice in
fragmentation models, it would be interesting to see what
new effects are created by other distributions of request size,
e.g., by varying a in the generalized uniform distributions on
[0, α], with densities xa/αa+1. The exponential residence-
time assumption is likely to yield simplifications to analysis,
but changes in behavior resulting from other distributions
are worth investigating. Moreover, instead of a system op-
erating at capacity, in which there is always a request wait-
ing, one could adopt an underlying, fully stochastic model
of demand, e.g., a Poisson arrival process, as found in [22].

More realistic, but in all likelihood significantly more diffi-
cult models, would relax the independence assumptions. A
prime example appropriate for Dynamic Spectrum Access
applications would be allowing residence times to depend on
fragmentation, the greater the fragmentation of a request,
the longer its residence time.

The results regarding the performance of the different
algorithms imply that the algorithms’ design should also
be considered carefully. Some examples of algorithms that
come to mind will aim to better fit the fragments into the
available gaps. A more challenging objective would be to
develop algorithms that take into account spectrum sensing
capabilities during the gap allocation process.

Finally, another broad and very important avenue of re-
search that introduces more realistic models discretizes re-
quest sizes and the bandwidth allocation process (as is being
done while allocating OFDM subcarriers). As in other mod-
els of fragmentation, the continuous limit represented in this
paper may conceal important effects, or, conversely, it may
introduce effects not present in discrete models. We are ac-
tively pursuing this avenue of research.
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APPENDIX

A. TOOL VALIDATION
In the first test of the simulation tool, we allowed arrivals,

discretized the spectrum size, and fixed the requested band-
width, in such a way that the system reduced to a conven-
tional M/M/k queue. We then matched simulation results
with those obtained from classical formulas. In all cases
checked, the error compared to the exact results was negli-
gible.

Keeping with our continuous model operating at capac-
ity with random bandwidth requests, one finds that there
are very few explicit results for measures of interest, even
for the process R(t) for the number of channels in the sys-
tem. Those that do exist can be found in [22] along with the
elegant formula below, which unfortunately requires calcu-
lations that are rarely tractable.

Theorem 5 (Kipnis and Robert [22]). Let Sn denote
the sum of n i.i.d. request sizes. Then, the maximum through-
put (expected number of requests in the system) is

E(R) =
1

∑+∞
n=1(1/n)P(Sn ≤ 1 < Sn+1)

=
1

∑+∞
n=2(1/n(n− 1))P(Sn > 1)

A system with requests that are uniformly distributed on
[0, 1] is one case that admits of a simple formula. Here,
the density of Sn on [0, 1] is zn−1/(n − 1)!, and so an easy
calculation gives

E(R) =
1

e− 2
= 1.392 . . .

Transform methods are used in [22] to evaluate E(R) for
other values of α. In particular, computations are based
on the (numerical) inversion of a Fourier-Laplace transform.
To evaluate the accuracy of our simulator, we checked our
experimental results against the computations for the values
of α shown in Table 1. As can be seen, the numerics agree
well with simulations.

B. PROOF OF THEOREM 4
For any 0 < ε ≤ λ,

Ey

(

eεf(Yn+1)
)

= Ey

(

EYn

(

eε(f(Y1)−f(Y0))
)

eεf(Yn)1{f(Yn)≤K}

)

+ Ey

(

EYn

(

eε(f(Y1)−f(Y0))
)

eεf(Yn)1{f(Yn)>K}

)

. (15)

Since by assumption, f(Y1)−f(Y0) under Py is stochastically
dominated by Z for every y, one gets

EYn

(

eε(f(Y1)−f(Y0))
)

≤ E

(

eεZ
)

= E

(

eλZ
)

def.
= D

and therefore

Ey

(

EYn

(

eε(f(Y1)−f(Y0))
)

eεf(Yn)1{f(Yn)≤K}

)

≤ DeεK .

(16)
For the second term, we apply Lemma 4 to the random
variable f(Y1) − f(Y0) under PYn

:

EYn

(

eε(f(Y1)−f(Y0))
)

≤ 1 + εEYn
(f(Y1) − f(Y0)) + cε2.

Table 1: Averages R, computed from our experi-
ments, vs. the corresponding values E(R), obtained
from the numerical computations in [22], for various
values of α. Except for the case α = 1, the latter
results were given to two decimal digits only.

α E(R) R α E(R) R

0.05 39.51 39.325 0.55 2.9 2.892

0.1 19.4 19.317 0.6 2.54 2.541

0.15 12.69 12.653 0.65 2.26 2.261

0.2 9.34 9.306 0.7 2.04 2.039

0.25 7.32 7.303 0.75 1.87 1.868

0.3 5.98 5.961 0.8 1.73 1.731

0.35 5.01 5.003 0.85 1.62 1.621

0.4 4.28 4.275 0.9 1.53 1.531

0.45 3.71 3.709 0.95 1.45 1.456

0.5 3.29 3.281 1 1.392 1.392

Thus, on the event {f(Yn) > K}, one gets

EYn

(

eε(f(Y1)−f(Y0))
)

≤ 1 − γε+ cε2
def
= ρε (17)

and finally

Ey

(

EYn

(

eε(f(Y1)−f(Y0))
)

eεf(Yn)1{f(Yn)>K}

)

≤ ρεEy

(

eεf(Yn)
)

. (18)

Gathering the two bounds (16) and (18) in (15) finally gives

Ey

(

eεf(Yn+1)
)

≤ ρεEy

(

eεf(Yn)
)

+DeεK

which leads by induction to

Ey

(

eεf(Yn)
)

≤ ρn
ε e

εf(y) +
1 − ρn+1

ε

1 − ρε
DeεK .

Let η =
(

ε/(2γ)
)

∧λ. From the definition of ρε in (17), one
can easily check that 0 < ρη < 1. Therefore, choosing ε = η
gives the result.


