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Abstract—Motivated by applications in Dynamic Spectrum
Access Networks, we focus on a system in which a few agents are
engaged in a costly individual search where each agent’s benefit
is determined according to the minimum obtained value. Such a
search pattern is applicable to many systems, including shipment
and travel planning. This paper formally introduces and analyzes
a sequential variant of the general model. According to that
variant, only a single agent searches at any given time, and when
an agent initiates its search, it has complete information about the
minimum value obtained by the other agents so far. We prove that
the search strategy of each agent, according to the equilibrium
of the resulting Stackelberg game, is reservation-value based,
and show how the reservation values can be calculated. We
also analyze the agents’ optimal search strategies when they are
fully cooperative (i.e., when they aim to maximize the expected
joint benefit). The equilibrium strategies and the expected benefit
of each agent are illustrated using a synthetic homogeneous
environment, thereby demonstrating the properties of this new
search scheme and the benefits of cooperation.

Keywords-Multilateral Search, Cooperation, Dynamic spec-
trum access networks

I. INTRODUCTION

This paper focuses on search problems stemming from
the spectrum sensing process of users in a Cognitive Radio
Network (also known as Dynamic Spectrum Access Network).
A Cognitive Radio was first defined by Mitola [21] as a radio
that can adapt its transmitter parameters to the environment in
which it operates. According to the Federal Communications
Commission (FCC), a large portion of the assigned spectrum
is used only sporadically [8]. Due to their adaptability and
capability to utilize the wireless spectrum opportunistically,
Cognitive Radios are considered key enablers for efficient use
of the spectrum [1], [9].

Under the basic model of Dynamic Spectrum Access Net-
works [1], Secondary Users (SUs) can use white spaces that
are not used by the Primary Users (PUs) but must avoid
interfering with active PUs.1 In order to identify available PU
channels, the SUs have to sense the spectrum and to evaluate
the quality of the different available channels. In particular,
a spectrum sensing mechanism has to determine how and
when the SUs sense the different channels and a spectrum
decision mechanism has to determine which channel best
satisfies the application requirements (different channels may
have different qualities) [1], [12]. While spectrum sensing is
primarily a physical layer issue, we focus on the functionalities
above the physical layer that determine how the sensing should
be performed.

1PUs and SUs are also referred to as Licensed and Opportunistic Users,
respectively.

Figure 1. An illustration of the search process of the SUs which are connected
via an infrastructure network.

Specifically, we focus on the search process of SUs which
is illustrated in Figure 1.2 In our model, there are a few
non-interfering SUs that are served by different base stations
or access points. These SUs need to maintain a connection
through the infrastructure network. Each of the SUs has to
sense the channels in its own environment (i.e., to its own
base station) and to select a specific channel based on the
channels’ qualities (these qualities are not known in advance
as they depend on PUs’ activity). Sensing a specific channel
consumes the SU’s resources (e.g., energy), and therefore, an
SU will usually not sense all the channels in its environment.

The key point is that since all SUs participate in the connec-
tion, the overall performance of the system (e.g., bandwidth
allocated to the connection) is a function of the quality of the
worst channel. Each SU’s decision of whether or not to sense
and evaluate an additional channel should thus be based on
the tradeoff between the expected incremental improvement
that can be obtained in the connection’s quality and the cost
(in terms of energy spending) associated with the additional
sensing operation. The fact that the marginal improvement also
depends on the findings of the other searcher(s) substantially
complicates the calculation of the SUs’ search strategy. Par-
ticularly, when the SUs are self-interested, the set of search
strategies should be derived based on equilibrium analysis.

Models of agents engaged in costly search processes involv-
ing the evaluation of different available options (opportunities),
out of which only one needs to be chosen, are quite common
in multi-agent systems (MAS) [6], [16]. In these models, the
goal of the searcher is not necessarily to find the opportunity
associated with the maximum value but rather to maximize
the overall benefit, defined as the value of an opportunity
eventually picked minus the costs accumulated during the
search process. Economic search theory provides a framework

2We note that modeling the effects of the PU arrival process [15] is out of
the scope of this work.



for optimizing the performance of a searcher in such costly
search settings [19], [24]. The optimal search strategy in such
models is commonly reservation-value based. Namely, the
searcher evaluates opportunities as long as the best value found
is lesser (or greater, depending on the application) than a pre-
defined threshold.

Despite the richness of research in search theory, the models
used commonly assume a single search process. Yet, as illus-
trated by the Dynamic Spectrum Access example, in reality
agents often need to take into consideration the performance
of other agents engaged in the search. Other examples of
such dependencies can be found in complex transportation
problems that involve ground, air and sea transportation, as
well as in travel planning. In the first, assume that for each
segment of the trip different offers should be received from
shipment companies. The selection of a container/vehicle for
each segment of the trip dictates the amount and type of cargo
that can be transported overall (a single bottleneck). Similarly,
when planning a trip and requesting quotes from different
vendors (e.g., for flights and accommodation), the correlation
between the results of different search efforts substantially
influences the overall performance.

In this paper, we formally introduce the model of a mul-
tilateral search in which different agents need to search in-
dividually and the performance of each agent is affected by
the performance of all the others. In particular, we focus on a
protocol under which only one agent searches at a time, and
each agent’s search starts upon receiving the final outcome of
all agents that have searched prior to it. Since the agents are
searching sequentially, the problem can be considered from
a game theory perspective and formulated as a Stackelberg
game where each agent is a follower for the agent performing
the prior search and a leader for the agent performing the
subsequent search. We provide a comprehensive analysis of
the problem and prove that the equilibrium strategies for
the sequential multilateral search are reservation-value based.
Based on the analysis, we obtain the appropriate equations
from which the reservation value of each opportunity can
be calculated. Complementary analysis for the case of fully
cooperative agents and defection from cooperation scenarios
is also provided. We use homogeneous environments (i.e.,
where all opportunities available to an agent share the same
search cost and probabilistic properties) to illustrate the effect
of different parameters on the equilibrium search strategies and
the expected benefit of the different searchers.

II. THE MODEL

For exposition purposes, we first introduce and analyze the
two-agents case. Then, in Section V we generalize for the k-
agents case. The two-agents model considers agents A1 and
A2, both interested in forming an ad-hoc partnership from
which they can both benefit. Each agent t contributes a value
xt (t = 1, 2) to the partnership. The benefit of agent At from
the partnership, denoted vt, is the minimum of the values
contributed, i.e., vt = min{xi|i = 1, 2} = v∗.

The value xt, contributed by agent At, is the value of one
out of nt opportunities, denoted Ot = {ot1, .., otnt

}, available
to that agent. While the value of each opportunity oti is a priori

unknown to agent At, the agent is acquainted with the proba-
bility distribution function, f t

i (x), from which it is derived.
In order to obtain the true value of opportunity oti ∈ Ot,
agent At needs to consume some of its resources. This is
modeled by the cost cti, expressed in terms of opportunity
values. Therefore, the agents are required to conduct a search
process which takes into consideration the tradeoff between
the marginal improvement in the value they contribute to the
partnership and the cost incurred along the process.

There are many protocols the agents can follow for ex-
ecuting this multilateral search, differing in the parallelism
and levels of cooperation along the process. For example, the
agents can search simultaneously with no interaction between
them until each terminates its search. Another example is
when they take turns searching and share the values they find
along the process. Each search model variant is associated
with different advantages, disadvantages, and computational
complexities. In this paper, we investigate a sequential search
protocol by which agent A1 performs its search first and agent
A2 follows, after obtaining the value contributed by agent
A1. Furthermore, we assume that the value of opportunities
cannot be obtained simultaneously, and therefore, each agent
performs its search sequentially, obtaining the values one at a
time [19], [29] (e.g., spectrum sensing technology precludes
the evaluation of several channels simultaneously). The value
xt, contributed by agent At, is the maximum among the values
obtained along the individual search of that agent.

We distinguish between several settings, varying in the way
each agent’s expected benefit is defined. In the first setting,
both agents are self-interested. Namely, each agent At attempts
to maximize its own overall expected benefit, denoted EBt,
defined as the minimum of the values contributed, v∗ minus
the expected accumulated cost incurred by that agent along
its search. In the second setting, both agents are cooperative.
Thus, each agent’s goal is to maximize the aggregate of both
agents’ expected benefits, i.e., 2v∗ minus the sum of the costs
accumulated along both agents’ searches. The cooperative set-
ting is common when the agents involved represent individuals
from the same family or organization.

III. ANALYSIS

We first introduce the optimal search strategy for a single
searcher facing a sequential search problem, without restricting
the value found by the other agent. We then augment that
strategy and adapt it to the case of two-agents with the
minimum value restriction, distinguishing between different
cooperation variants of the model.

A. Optimal Sequential Search with no Restrictions on the
Value Found

When relaxing the restriction over the value obtained by the
searcher, each agent’s search problem can be mapped to the
canonical sequential search problem described by Weitzman
[29]. Weitzman’s model considers a single searcher facing a
setting similar to the one used for each of the agents in our
model, except that the agent’s expected benefit is the highest
value it finds minus the expected cost incurred along its search.

The optimal search strategy in Weitzman’s model is based
on setting a reservation value (a threshold), denoted ri for



each opportunity oi. The reservation value to be used should
satisfy:

ci =

∫ ∞
y=ri

(y − ri)fi(y)dy (1)

Intuitively, ri is the value where the searcher is precisely
indifferent: the expected marginal benefit from obtaining the
value of the opportunity exactly equals the cost of obtaining
that additional value. The searcher should always choose
to obtain the value of the opportunity associated with the
maximum reservation value and terminate the search once the
maximum value obtained so far is greater than the maximum
reservation value of any of the opportunities which has not yet
been obtained.

B. Optimal Search Strategy for the Sequential Multilateral
Search with Value Restriction

We begin by developing the optimal search strategy for
agent A2, given the value v received from agent A1. Obviously,
if A2 obtains a value greater than v along its search then
it necessarily terminates its search, as its benefit from the
partnership cannot be improved further.

Theorem 1: The optimal search strategy for agent A2, given
a value v obtained from A1, is to set a reservation value r2i < v
for each opportunity o2i , where r2i is derived from:

c2i =

∫ ∞
y=r2

i

(min(y, v)− r2i )f
2
i (y)dy (2)

The agent should always choose to obtain the value of the
opportunity associated with the maximum reservation value
and terminate the search once the maximum value obtained
so far is greater than the maximum reservation value of any
of the opportunities, which has not yet been obtained.

Proof: The proof augments the inductive proof given
in [29] for the case where no restrictions are made on the
value found.We first prove that the right-hand side of (2) is
a monotonic decreasing function in r2i , starting from infinity
for r2i → −∞, thus the r2i that satisfies (2) always exists. For
the inductive part, we begin with the case of having a single
opportunity. Here, the right-hand side of (2) can be interpreted
as the expected additional gain from obtaining the minimum
between the value of that opportunity and v, if the searcher
is already guaranteed a value r2i < v. Obtaining the value
of the opportunity in this case is thus beneficial only if the
expected additional gain is greater than c2i . Therefore, since
for any guaranteed value which is less than r2i , the right hand
side of (2) is necessarily less than c2i and thus r2i is, in fact, a
reservation value in this case.

Assume that the reservation-value based strategy is optimal
for the case of n′2 < n2 available opportunities when the
best value found so far by A2 is y. We need to prove that
for the n′2 + 1 available opportunities and best known value
y case, the optimal strategy is also reservation-value based.
We consider the opportunity o2i associated with the highest
reservation value among the n′2 + 1 opportunities. In order to
obtain the value of that opportunity we distinguish between
the cases where y ≥ r2i and y < r2i . If obtaining the value
of o2i when y ≥ r2i , then we are left with n′2 opportunities
whose reservation values are necessarily less than y. Therefore,
according to the inductive assumption, the search should

terminate. The decision should be made solely based on the
benefit of obtaining the value of o2i (constrained by v) and the
cost c2i which, according to (2), is negative and thus the value
should not be obtained. When obtaining the value of o2i when
y < r2i , one or more opportunity values should be obtained
(there is at least one opportunity where obtaining its value is
beneficial according to (2)). We need to prove that obtaining
the value of o2i , rather than the value of any other opportunity,
is optimal. This is achieved by showing that the expected
benefit from obtaining the value of o2i and then following the
optimal strategy for the remaining n′2 opportunities according
to the induction assumption, is greater than obtaining the value
of any opportunity o2j (i 6= j) and then following the optimal
strategy for the remaining n′2 opportunities according to the
induction assumption.

From (2), we observe that the reservation value r2i increases
as v increases and decreases as c2i increases. Also, r2i is always
smaller than v, otherwise the right-hand side of (2) becomes
zero. Furthermore, Proposition 1 presents an important prop-
erty of the correlation between r2i and v.

Proposition 1: The difference between v and r2i increases
as r2i increases, i.e., 0 <

dr2i
dv < 1.

Proof: For any two values v and v′, satisfying v < v′,
and the difference v − r2i , we prove that (2) can be satisfied
only by using r2

′

i that satisfies: r2
′

i < v′ − (v − r2i ).
Given a value v1 and the search strategy described in

Theorem 1, A2 returns a value v2. The benefit of both agents
from v2 is v′2 = min(v2, v1).3 In order to calculate E[v′2|v1],
we use S = (v1, w, i) to denote A2’s state along its search,
where i is the index of the opportunity whose value is to be
obtained next, v1 is the value obtained from A1 and w is the
highest value found by A2 thus far. The expected effective
value returned eventually by A2, if at state (v1, w, i), is thus
given by the recursive equation:

E[v′2|(v1, w, i)]=
∫ r2i

y=−∞
E[v′2|(v1,max(w, y), i+ 1)]f2

i (y)dy+

+

∫ ∞
y=r2

i

min(v1,max(w, y))f2
i (y)dy (3)

where: E[v′2|(v1, w, n2 + 1)] = w

Therefore, E[v′2|v1] = E[v′2|(v1,−∞, 1)].
Using E[v′2|v1], agent A1 can construct its optimal strategy,

as given in Theorem 2.
Theorem 2: The optimal search strategy for agent A1, is to

set a reservation value r1i for each opportunity o1i , where r1i
is derived from:

c1i =

∫ ∞
y=r1

i

(E[v′2|y]− E[v′2|r1i ])f1
i (y)dy (4)

Always choose to obtain the value of the opportunity associ-
ated with the maximum reservation value and terminate the
search once the maximum value obtained so far is greater
than the maximum reservation value of any of the remaining
opportunities.

Proof: Similar to the proof given for Theorem 1 with the
appropriate modifications of expected value calculation.

3In fact, for the two-agents case, v′2 = v∗. However, in (3)-(8) we prefer
the use of v′2 as it facilitates the transition to the multi-agent case.



The expected value obtained by each agent from the part-
nership, E[v′2], can be calculated using a recursive equation
similar to (3). We represent the state of A1 by (w, i), where
w is the best value found so far by A1 and i is the index of
the next opportunity whose value it needs to obtain. We use
E[v′2|(w, i)] to denote the expected effective value resulting
from A2’s search, if A1 is currently in state (w, i).

E[v′2|(w, i)] =
∫ r1i

y=−∞
E[v′2|(max(w, y), i+ 1)]f1

i (y)dy+

+

∫ ∞
y=r1

i

E[v′2|max(w, y)]f1
i (y)dy (5)

where: E[v′2|(w, n1 + 1)] = w

Therefore E[v′2] = E[v′2|(−∞, 1)]. Since the effective value
v′2 applies to both agents, the expected benefit of each agent
differs only in its accumulated cost component. The expected
cost of agent At is given by

∑nt

i=1 c
t
iPt(i), where Pt(i) denotes

the probability that At will eventually obtain, along its search,
the value of oti. The value of Pt(i) is given by

∏i−1
j=1 F

t
j (r

t
i).

The expected benefit of any agent At, denoted EBt, is thus
given by:

EBt = E[v′2]−
nt∑
i=1

cti

i−1∏
j=1

F t
j (r

t
i) (6)

C. Cooperative Behavior and Defection
In the previous section, we assumed that both agents A1

and A2 behave in a self-interested manner, i.e., each attempts
to maximize its own expected benefit. We now consider the
setting where both agents aim to maximize the sum of their
expected benefits, i.e.,

∑2
t=1(E[v′2]−

∑nt

i=1 c
t
iPt(i)). Naturally,

the search strategies that maximize the latter are different from
those used for the self-interested case. Furthermore, while the
expected overall joint benefit increases when both agents are
searching cooperatively, there is often an incentive for both
agents to deviate from the cooperative strategy in order to
improve their individual expected benefit. In the following
paragraphs, we present the optimal strategies to be used in a
fully cooperative setting and discuss the dynamics that occur
when either of the agents (or both) defect from the cooperative
strategy.

1) Fully Cooperative Setting: When both agents are fully
cooperative and when obtaining the value of an additional
opportunity, each agent should consider not only the marginal
benefit from that value to itself, but also the benefit from the
increase in the joint value v′2 to the other agent. In this case
we can prove, similar to the proof used for Theorems 1 and
2, that the optimal strategy of both agents is reservation-value
based, though different in its value. The reservation value r2i
of A2 in this case should satisfy:

c2i =

∫ ∞
y=r2

i

2(min(y, v)− r2i )f
2
i (y)dy (7)

and r1i of A1 should satisfy:

c1i =

∫ ∞
y=r1

i

2(E[v′2|y]− E[v′2|r1i ])f1
i (y)dy (8)

Proposition 2: Both the individual accumulated costs and
the expected value E[v′2] at the end of the search, in the fully

cooperative case, are greater than those resulting in the self-
interested case. Overall, the expected difference among the two
components (i.e., sum of expected values minus accumulated
costs) is greater in the cooperative case.

Proof: It is easy to see from (2) and (7) that the
reservation value r2i for any value v contributed by A1 is
greater in the cooperative case. Therefore agent A2, upon
receiving a value v, will necessarily search more than in the
self-interested case (incurring a greater cost) and its search
will result in finding a greater expected value. Consequently,
agent A1 receives greater values for each value with which it
terminates its search, and according to (8), its reservation value
r1i necessarily increases. The increase in r1i suggests a longer
search process, i.e., greater search costs. Since A2 receives
higher values with increased probability, and r2i increases as v
increases, A2 ends up searching more, overall, and terminates
its search with a greater expected value in comparison to
the self-interested case. Finally, the joint expected benefit in
the cooperative case is greater simply because the agents
attempt to maximize this sum directly rather than separately
maximizing each of its parts.

2) Incentives to Defect: The cooperative strategies are
beneficial when the cooperation can be enforced, or when
both agents are obligated to the same goal (e.g., working for
the same user or users from the same organization). When
the cooperation cannot be guaranteed, it will never hold and
the agents will use different reservation values. Regardless of
the strategy used by A1, A2 should use a reservation value
r2,defect
i according to (2), rather than r2,cooperative

i according to
(7), as this strategy maximizes its expected benefit for any
value v received from A1. If A2 is using its self-interested
strategy, then we should distinguish between the case where
A1 believes that A2 is cooperative and where A1 believes
it isn’t cooperative. Assuming that agent A2 is cooperative,
A1 should use a reservation value r1,defect

i according to a
modification of (2) that makes use of E′[v′2|v1], which is the
expected effective returned value given v1, when substituting
r2i = r2,cooperative

i (1 ≤ i ≤ n2) in (5). Finally, we consider
the case where both agents decide to deviate from their
cooperative behavior (while each assumes that the other is
using a cooperative strategy). Here, each agent At uses rt,defect

i
(1 ≤ i ≤ nt).

IV. STACKELBERG EQUILIBRIUM FOR HOMOGENEOUS
ENVIRONMENTS

To demonstrate the agents’ search strategies and the re-
sulting equilibrium dynamics in the sequential multilateral
model, we use a synthetic setting with an infinite number of
homogeneous opportunities available to each agent. The use
of the homogeneous setting simplifies the analysis. It enables
the illustration of the main differences between the sequential
multilateral search strategies model and others the agents may
use, as well as the differences between the strategies of A1 and
A2 under different cooperation schemes. In the homogeneous
setting used for this section, all opportunities available to agent
A1 share the same search cost and probability distribution
function, denoted c1 and f1(x), respectively, and those avail-
able to A2 are associated with c2 and f2(x). Specifically, we



Figure 2. Results for c1 = c2 = 0.01 and uniform distribution functions
over the interval (0, 1): (a) A2’s reservation value as a function of the value
v; (b) The expected benefit of A1 as a function of the reservation value it
uses (r1) without constraining its values by A2.

Figure 3. Differences (in percentages) between sequential multilateral
search and parallel search: (a) when the agents follow the “naive” strategy
simultaneously; (b) when the agents follow the equilibrium parallel strategy.

use a uniform distribution function defined over the interval
(0,m) (i.e., f(x) = 1/m, ∀0 ≤ x ≤ m, otherwise f(x) = 0).
We assume that the agents are not limited by a finite decision
horizon (i.e., they can obtain as many values as requested).
This latter assumption as well as the one regarding the infinite
number of opportunities available to each agent are common
in the search literature [18], [19].

Figure 2(a) depicts the reservation value that needs to be
used by A2, according to (2), as a function of the value v
provided by A1, for the case where c1 = c2 = 0.01 and both
distributions are uniform over the interval (0, 1). As expected,
the value of r2 increases as the value obtained, v, increases,
and is always lower than v. Also, the difference between v
and r2 increases as v increases, as proven in Proposition 1.
Figure 2(b) depicts the expected benefit of A1 as a function
of the reservation value it uses (r1) in the same homogeneous
environment, for both the case where the values obtained are
bounded by the values returned by A2 (denoted “S-M”) and
for the case where A2 does not exist and A1’s benefit is not
constrained at all (denoted “naive”). The first case describes
the sequential multilateral model and the latter describes the
problem of a single searcher as in [29]. As can be observed
from the figure, the reservation value that maximizes the
expected benefit of A1 is different in the two cases.

The differences, in percentages, between the expected bene-
fit of the agents when using the “naive” reservation values ac-
cording to [29] and the sequential multilateral search strategy
(constraining the values obtained in both cases) as a function
of the search cost, are given in Figure 3(a). Here, again, the

distribution used for both agents is uniform over (0, 1) and
the search cost is identical for both agents (c1 = c2 = c).
When applying the “naive” strategy, each agent sets its strategy
according to [29], regardless of the search strategy of the other
agent, thus the agents can search simultaneously. As can be
observed from the graph, the use of the sequential multilateral
search strategy actually worsened the agents’ expected benefit
compared to the use of the “naive” search strategies. While this
may seem surprising, one should keep in mind that the “naive”
set of strategies calculated by [29] is not in equilibrium,
and each agent has an incentive to deviate from it. Figure
3(b) depicts the difference in the expected benefit of the
agents when using the multilateral search strategies and when
using the equilibrium strategy for the case of simultaneous
searching (in percentages, as a function of the cost used, for the
same environment as in Figure 3(a)). The equilibrium parallel
strategies are those that guarantee that none of the agents has
an incentive to deviate to using a different reservation-value
strategy.As can be observed from Figure 3(b), the sequential
multilateral search strategy has the potential to substantially
improve both agents’ expected benefit.

Furthermore, even under the permissive assumption that
the “naive” reservation values are used, despite not being in
equilibrium, the sequential multilateral search method has the
potential to substantially improve both agents’ performance,
if the distribution of values associated with each agent or the
costs of search are different: Figure 4(a) depicts the agents’
individual and joint expected benefit, in a setting where A1’s
distribution is defined over (0, 1) and A2’s over (0, 2), when
using the sequential search analyzed in the above sections in
comparison to “naive” search according to [29]. While A2,
when using the “naive” approach, suffers substantially from
not considering in its search the constraint that is likely to be
imposed by A1’s search (see lower curve), its expected benefit
substantially increases in our model. The expected benefit of
A1 in this case does not change much, as the constraint that
could be imposed by A2’s search is insignificant, due to the
difference in the distribution interval. As the cost of search
increases, the differences between the expected benefit of the
two agents in both models increase, due to the improved
efficiency achieved in the sequential search. Figure 4(b) is
equivalent to Figure 4(a), except that both agents are fully
cooperative. Here the joint (aggregative) expected benefit is
greater, in comparison to the self-interested agents case. Since
the search strategies according to the “naive” search are not
influenced by the nature of the other agent (cooperative/non-
cooperative), the difference between the expected joint benefit
curves increases (in comparison to the non-cooperative case).

It is notable that the joint expected benefit does not nec-
essarily improve when using the new method. For example,
when using the reverse a setting, i.e., where A1’s distribution is
defined over (0, 2) and A2’s distribution is defined over (0, 1),
and search costs c1 = c2 = 0.01, the joint expected benefit is
1.11, while the use of the “naive” strategies yields 1.69. Still,
the “naive” set of strategies will never hold in equilibrium.

Figure 5 illustrates the effect of the difference between the
agents’ search costs on their individual and joint expected
benefit, in a setting where both agents’ distribution functions



Figure 4. Individual and joint expected benefit as a function of the search
cost (c1 = c2), when using the sequential multilateral model and the “naive”
search strategy, where: (a) both agents are self-interested; (b) both agents are
fully cooperative.

Figure 5. Expected benefit of the agents when using sequential multilateral
search as a function of the costs ratios: (a) c1/c2 (taking c2 = 0.01, fixed);
and (b) c2/c1 (taking c1 = 0.01, fixed).

are defined over (0, 1). The difference between the search
costs is captured by the ratios c1/c2 and c2/c1, keeping the
denominator fixed. Therefore, the intersection point between
parts (a) and (b) of the figure is in the value 1 over the
horizontal axis. As expected, the increase in search costs is
associated with a decrease in the expected benefit of both
agents (as performance is also influenced by the reduction
in the reservation value used by the other agent). The most
interesting observation from Figure 5 is that the increase in
c1 substantially affects both agents’ performance, while the
increase in c2 affects mostly A2 and has a slight effect on
A1. This means that it is more beneficial to choose the agent
associated with the greater search cost to act as A1, if the
goal is to maximize the joint expected benefit. When the two
agents operate in a similar setting (i.e., when c1 = c2), agent
A2 will always benefit more than A1 from using the sequential
multilateral search. This can be easily proven by allowing A2

to use a strategy similar to A1’s, except that when a value
greater than v is obtained from A1, A2’s search is terminated.
In the latter case, A2’s accumulated cost is necessarily less
than A1’s (while the value at the end of the process is similar
to A1’s value).

Finally, Figure 6 describes the expected individual and joint
benefit as a function of the search cost used by both agents, for
the different variations of cooperation compared to the set of
self-interested strategies. Here both distribution functions are

Figure 6. The case of using the cooperative strategy versus non-cooperative
variations (c1 = c2): (a) Expected individual benefit for A1; (b) Expected
individual benefit for A2; and (c) expected aggregate benefit.

defined over (0, 1). One of the curves on each graph represents
the case in which both agents use the fully cooperative strategy.
Two other curves represent the case in which one of the
agents uses the cooperative strategy, while the other is self-
interested and takes advantage of the fact that the first is being
cooperative. The fourth curve represents the case where both
agents are self-interested. Finally, the last curve represents the
case where both agents are self-interested though each of them
believes the other agent is cooperative. As expected, each agent
benefits the most from acting non-cooperatively while the
other agent is acting cooperatively (and vice versa, each agent
suffers the most when acting cooperatively while the other acts
non-cooperatively). Nevertheless, the joint expected benefit is
maximized when both agents are cooperative. In the latter case,
the joint expected benefit is substantially better compared to
any of the other cases. The case where both agents defect from
cooperation is associated with a decreased expected benefit
for both agents (compared to acting cooperatively or using the
self-interested strategy while assuming the other agent does the
same), though it isn’t as bad as when only one agent defects
from cooperation.

V. EXTENSION TO MULTI-AGENT

The two-agents model can be extended to the general k-
agents case, taking advantage of the analysis methodology
described in the former sections. The multi-agent model con-
siders a set of k agents A = {A1, A2, ..Ak}, all interested
in forming an ad-hoc partnership from which they all benefit
(e.g., a conference call). Each agent At (t = 1, 2, .., k) con-
tributes a value xt to the partnership. The common benefit of
each agent from the partnership, denoted vt, is the minimum of
the values contributed, i.e., vt = min{xi|i = 1, 2, .., k} = v∗.
We assume that the search of agent At starts only after
agent At−1 has finished its search (where A1 is the first
to search) and that the values obtained by agents that have
already finished their search is common knowledge. All other
assumptions used in Section II remain valid. The multi-agent
settings are illustrated schematically in Figure 7.

The optimal search strategy for agent Ak is the same as
the one used for A2 in the two-agents model, i.e., given
any value vk−1 received from agent Ak−1, it will extract its
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Figure 7. The multi-agent case.

reservation values according to (1). Now consider any agent
At (t = 2, .., k−1), receiving a value vt−1 = min(xt−1, vt−2)
from agent At−1. The decision setting of agent At in this case,
is similar to the one agent A1 faces in the two-agents model,
except that the value vt it will transfer to At+1 is bounded by
vt−1. Therefore, it uses the following modification of (4):

cti =

∫ ∞
y=rt

i

(E[v′t+1|min(vt−1, y)]− E[v′t+1|rti ])f t
i (y)dy (9)

where E[v′t+1|min(vt−1, y)] is calculated similar to E[v′2|v1]
for the two-agents case, by substituting v′2 = v′t+1, v1 = vt,
r2i = rt+1

i and f2
i (y) = f t+1

i (y) in (3). Finally, the optimal
strategy of agent A1 is calculated similar to the strategy of A1

in the two-agents case.
Similarly, we can also extend the cooperative model and the

different defection variants, though for the latter the number
of combinations of defecting agents is combinatorial.

VI. RELATED WORK

In many multi-agent environments autonomous agents may
benefit from cooperating and coordinating their actions. Co-
operation is mainly useful when an agent is incapable of
completing a task by itself or when operating as a group can
improve the overall performance [17]. Consequently, group-
based cooperative behavior has been suggested in various
domains [28], [30]. The recognition of the advantages encap-
sulated in teamwork and cooperative behaviors is the main
driving force of many coalition formation models in the
area of cooperative game theory and MAS [26]. Overall,
the majority of cooperation and coalition formation MAS-
related research tends to focus on the way coalitions are
formed and consequently concerns issues such as the optimal
division of agents into disjoint exhaustive coalitions [30],
division of coalition payoffs [30] and enforcement methods for
interaction protocols [20]. Only a few authors have considered
the problem of determining the strategy of a group once
formed [14], and no work to date considers search strategies
for a cooperative search of the nature described in this paper.

The problem of a searcher operating in a costly environ-
ment, seeking to maximize its long-term utility, is widely
addressed in classical economic search theory ( [18], [19],
[24] and references therein). Over the years, several attempts
have been made to adopt search theory concepts for agent-
based electronic trading environments associated with search
costs [6], [16]. Despite the richness of search theory and its
implications, most models, introduced to date, have focused
on the problem of a single searcher that attempts to maxi-
mize its own expected benefit. Few studies have attempted
to extend the search problem beyond a single search goal,
e.g., attempting to purchase several commodities while facing
imperfect information concerning prices [3], [5], [11]. Some
even considered multi-agent cooperative search for multiple
goals [25]. None of these works have applied any constraints

on the values obtained along the search. The only constraint on
the values obtained by a searcher that can be found in search
theory works is the availability of recall (i.e., the ability to
exploit formerly explored opportunities) [5], [19]. To date, to
the best of our knowledge, a model of a multilateral search,
in which one agent’s search is constrained by the findings of
other agents, as in the cognitive radio application, has not been
introduced in the search theory research domain.

Multi-agent search can also be found in ”two-sided” search
models (where dual search activities are modeled) [4], [27].
The search in these models is used solely for the matching
process between the different agents, i.e., for forming ap-
propriate stable partnerships. The value of each agent from
a given partnership depends on the partnership itself (e.g.,
the characteristics of the other agent with whom it partners).
In our model the partnership is given a priori and the value
of the partnership is derived from an external search process
performed independently by each agent.

From the Dynamic Spectrum Access application point of
view, various spectrum sensing approaches have been pro-
posed, including a cooperative sensing scheme based on
distributed detection theory [10], an adaptive MAC layer
spectrum sensing [7] and a practical sensing technique that
was evaluated in a testbed [23]. Several papers used game
theory notions to compare the cooperative and non-cooperative
behavior of spectrum sensing and sharing. In particular: [13]
proposes a scheme in which users exchange “price” signals
that indicate the negative effect of interference at the receivers,
[2] analyzes the power control and channel selection prob-
lem as a Stackelberg game and [22] proposes a distributed
approach, where devices negotiate local channel assignments
aiming for a global optimum. Unlike our approach, most of the
previous work in the area of Dynamic Spectrum Access and
Cognitive Radio focuses on scenarios in which the SUs are in
the same geographic area, sense the same set of channels and
try to either agree on the same channel or on a set of non-
interfering channels. To the best of our knowledge, searching
for channels such that the overall performance is tied to the
worst channel selected has not been studied before.

VII. DISCUSSION AND CONCLUSIONS

The sequential multilateral search model extends the legacy
economic search to the case where the process involves several
agents that need to engage in individual searches, and the
value of each agent from the process depends on the minimum
value found. As discussed throughout the introduction, such a
setting arises in various real-life applications and particularly
in Dynamic Spectrum Access Systems. The analysis given
in this paper, proves that the optimal set of strategies to be
used by the agents when using a sequential multilateral search
protocol is reservation-value based. While this property aligns
with a single agent’s search, the equilibrium set of reservation
values in the new model are different from those that ought
to be used for the single agent’s search model. This also
implies that the sequence according to which the values of the
different opportunities are obtained is often different from the
one used in the sequential search. Moreover, a strategy derived
according to the latter model can never be in equilibrium, as



the second agent always has an incentive to use a reservation
value lower than the value it obtains. This should be taken into
the first agent’s considerations.

The sequential nature of the search protocol used enables
the breaking down of the problem in order to find the optimal
strategy of each agent as a function of the minimum value
obtained by agents that have already searched and the search
strategy that will be used by the other agents along the
sequence. This enables the calculation of the equilibrium
strategies using backward induction and a trivial extension of
the analysis from the two-agent case to a general one.

The numerical illustration given in Section IV demonstrates
the benefits of cooperative search behavior in the new model.
Naturally, the cooperative setting is applicable whenever the
agents have a joint goal (e.g., when considering family mem-
bers). In other settings, this set of strategies is not stable,
and, as expected, the worst expected joint benefit is obtained
when each agent operates self-interestedly while believing that
the other agent is cooperative. Another important observation
from Section IV is the substantial effect of the order by which
the sequential multilateral search process takes place over the
individual and joint benefit. While this issue was left beyond
the scope of the analysis, we believe that appropriate methods
can be suggested for the agents to negotiate over the order by
which they will search (and possibly come up with schemes
for alternating orders in repeated settings) in order to improve
the joint and individual expected benefit.

Additional directions for future research include the de-
velopment of other multilateral search model variants, e.g.,
operating simultaneously (as used in a limited extent in the
homogeneous-environment section), exchanging information
throughout the search and even re-initiating searches by each
agent based on the findings received from the other agent.
Finally, applying the results to Dynamic Spectrum Access
Networks will require taking into account several realistic
considerations. These include the exchange of channel quality
information between the SUs, the possible operation of a few
interfering SUs in the same area (all searching for available
channels) and channel mobility resulting from the arrival of
PUs claiming back-channels used by the SUs.
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