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Abstract—Telecommunications networks heavily rely on the
physical infrastructure and, are therefore, vulnerable to natural
disasters, such as earthquakes or floods, as well as to physical
attacks, such as an Electromagnetic Pulse (EMP) attack. Large-
scale disasters are likely to destroy network equipment and to
severely affect interdependent systems such as the power-grid. In
turn, long-term outage of the power-grid might cause additional
failures to the telecommunication network.

In this paper, we model an attack as a disk around its epicenter,
and provide efficient algorithms to find vulnerable points within
the network, under various metrics. In addition, we consider
the case in which multiple disasters happen simultaneously and
provide an approximation algorithm to find the points which
cause the most significant destruction. Finally, since a network
element does not always fail, even when it is close to the attack’s
epicenter, we consider a simple probabilistic model in which the
probability of a network element failure is given. Under this
model, we tackle the cases of single and multiple attacks and
develop algorithms that identify potential points where an attack
is likely to cause a significant damage.

Index Terms—Network survivability, geographic networks,
network design, Electromagnetic Pulse (EMP), computational
geometry.

I. INTRODUCTION

Telecommunication networks are crucial for the normal
operation of all sectors of our society. During a crisis, telecom-
munications is essential to facilitate the control of physically
remote agents, provides connections between emergency re-
sponse personnel, and eventually enables reconstitution of so-
cietal functions. However, telecommunication networks heav-
ily rely on physical infrastructure (such as optical fibers,
amplifiers, routers, and switches), making them vulnerable
to physical attacks, such as an Electromagnetic Pulse (EMP)
attack, as well as natural disasters, such as earthquakes, hur-
ricanes or floods [1]–[4]. Increasingly, networks use a shared
infrastructure to carry voice, data, and video simultaneously;
hence, failures in the physical infrastructure will lead to a
breakdown of vital services.

Physical attacks or disasters affect a specific geographical
area and will result in failures of neighboring components.
Therefore, it is crucial to consider the effect of disasters on
the physical (fiber) layer as well as on the (logical) network
layer. Although there has been a significant amount of work on
network survivability, most previous work considered a small

Fig. 1. The fiber backbone operated by a major U.S. network provider [5].

number of isolated failures. In contrast, and similarly to [6]–
[8], in this paper we consider events that cause a large number
of failures in a specific geographical region. Furthermore,
while in [6]–[8] only a single disaster was considered, we con-
sider a case in which several disasters happen simultaneously
and show how this affects the vulnerability of the network.

The resilience of the network clearly depends on its topol-
ogy as well as the shape of the disaster. This work focuses
on circular cut failures, where all components within a pre-
determined disk around the epicenter of the disaster may fail
(while all components outside this disk continue to operate
normally). In addition, we consider two network topologies: a
general graph, in which no assumption is made, and a planar
graph, in which we assume that the links intersect each other
only at the end-points. This assumption is satisfied in practice.

Moreover, we present a new probabilistic failure model, in
which network components in the vicinity of the disaster fail
with probability p while other components further away do not
fail. We then provide efficient algorithms to find the vulnerable
points under this model. Most algorithms are precise in
case of a single disaster/attack, although, in order to reduce
computation time we also provide approximation algorithms
for some instances. For multiple simultaneous disasters, the
problem is known to be NP-hard, both in the probabilistic and
the deterministic setting [9]. Thus, we provide only efficient
approximation algorithms. Interestingly, our approximation
algorithm for the probabilistic failure model has the same—
and in some instances even superior—performance than its
deterministic counterpart. Finally, we present numerical results
that demonstrate the use of our algorithms.
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(a) The hippodromes hi1j1 , hi2j2 , and hi3j3
which correspond to 3 links ei1,j1 , ei2,j2 , and
ei3j3 .

(b) The hippodromes, corresponding to attacks with radius r = 60
miles, of the fiber backbone network shown in Fig. 1.

Fig. 2. Examples of hippodromes induced by various networks. Each hippodrome indicates the region around a link where an attack needs to occur, i.e., a
cut needs to be centered, in order to affect that link. The arrangement of the hippodromes for 3 links is shown in Fig 2a. A face of this arrangement is shown
shaded and the vertices marked as squares. Each arc is the portion of the boundary of a hippodrome from one vertex to another.

II. RELATED WORK

Network survivability and resilience is a well-established
research area (e.g., [10], [11] and references therein). However,
most of the previous work in this area and in particular in
the area of physical topology and fiber networks (e.g., [12],
[13]) focused on a small number of fiber failures (e.g.,
simultaneous failures of links sharing a common physical
resource, such as a cable, conduit, etc.). Such correlated link
failures are often addressed systematically by the concept of
Shared Risk Link Group (SRLG) [14]. In contrast with these
works, we focus on failures within a specific geographical
region (e.g., [2], [3], [15]), implying that the failed components
do not necessarily share the same physical resource. To the
best of our knowledge, geographically correlated failures have
been rarely considered [6], [7], [16]–[18] and in most cases,
the assumption is that the failures of the components are
deterministic.

Another closely related theoretical problem is the network
inhibition problem [19]–[22], in which the objective is to
minimize the value of a maximum flow in the graph, where
there is a cost associated with destroying each link, and a fixed
budget is given for an orchestrated attack (namely, removing
a set of links whose total destruction cost is less than the
budget). However, previous works dealing with this setting
and its variants (e.g., [22], [23]) did not study the removal of
(geographically) neighboring links.

Notice that when the logical (i.e., IP) topology is considered,
wide-spread failures have been extensively studied [23]–[25].
Most of these works consider the topology of the Internet as
a random graph [26] and use percolation theory to study the
effects of random link and node failures on these graphs. These
studies are motivated by failures of routers due to attacks by
viruses and worms rather than physical attacks.

Finally, we note that results regarding the resilience of fiber
networks to geographically correlated failures were recently
obtained in [6], [7]. Most related to our paper are results in [7]
where, as this paper, disasters are modeled as circular areas in
which the links and nodes are affected. However, [7] considers
only a single disaster scenario where failures are deterministic.
Moreover, the algorithms presented in [7] (for identifying

vulnerable points) have a substantially higher complexity than
the algorithm presented in this paper.

III. PROBLEMS STATEMENT

The network topology is given by a geometric graph model
G = (V,E) where V is the set of n disjoint nodes in the plane
(representing routers location) and E is the set of m links
between the nodes (representing fiber links between routers).
The location of node i is given by the coordinates (xi, yi). A
link from i to j is modeled as a straight line segment from
i to j and is denoted by eij . Further, we assume that every
pair of links intersect in at most one point. Following [7], a
disaster or attack results in a circular cut which is modeled as
a disk of radius r which is centered at point b and is denoted
by cutr(b). Let the minimum distance from a point b ∈ R2 to
a link e be denoted by d(b, e). A link eij ∈ E is affected by
cutr(b) centered at some point b, if and only if it is within its
impact radius r. In other words, b is within the hippodrome hij
defined as hij = {x ∈ R2 | d(x, eij) ≤ r}. Examples of such
hippodromes are depicted in Fig. 2a. Let H = {hij | eij ∈ E}
be the set of all m hippodromes.

In this paper, we consider the following two ways of
measuring the impact of (one or many) attacks. First, we
consider the number of link failures caused by the attacks.
Second, we consider the terminal reliability that measures the
effect on the global connectivity of the network caused by a
cut. Namely, for a pair of nodes vi, vj ∈ V and a cut cutr(b)
centered at the point b ∈ R2, let zij(b) = 1, if there is an
undirected path from vi to vj , even in the presence of the
cut cutr(b), and let zij(b) = 0 otherwise. Then, the average
two-terminal reliability (ATTR) is

χ(b) =
1(
n
2

) ∑
i 6=j

zij(b).

For example, if the graph G is connected even after an attack
at b, then χ(b) = 1.

The following observation captures the connection between
the average two-terminal reliability and the partitioning of the
network graph.

Observation 1. Assume G is partitioned to (maximally) con-
nected components of sizes n1 ≤ n2 ≤ . . . ≤ nk, and let j
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be the first index for which nj ≥ 2. Thus, the average two-
terminal reliability of the graph is 1

(n
2)
∑k
i=j

(
ni

2

)
.

In addition, when considering multiple simultaneous at-
tacks, it turns out that identifying the most vulnerable point
becomes NP-hard. Since it is intractable to find the optimal
solutions in these settings, we aim at devising constant-factor
approximation algorithms. Namely, algorithms which provide
a solution within a (known) constant multiplicative factor of
the optimal solution.

In order to provide a framework in which the effect on
a link due to an attack is probabilistic, we also consider a
probabilistic model for the cuts. In this model, we assume
that links within cutr(b) fail with some probability p. Then,
we measure the expected number of failed links, denoted by
Φ(b). More formally, fij(b) is a random variable representing
the probability that the link between vi and vj is destroyed by
a cut whose epicenter is in b:

fij(b) =
{
p if b ∈ hij ,
0 otherwise.

and Φ(b) =
∑
eij∈E fij(b). Notice that the objective of an

adversary is to find a point b that either minimizes χ(b) or
maximizes Φ(b).

IV. ATTACKS WITH DETERMINISTIC OUTCOME

In this section we assume that the response of a link to
an attack at b is completely predictable. Namely, a link eij
is destroyed by an attack at b, if and only if it is affected by
cutr(b), i.e., b ∈ hij .
A. The average two-terminal reliability — single cut case

We next present a fast algorithm to compute a point b∗ that
minimizes, among all points in the plane, the average two-
terminal reliability after the links in cutr(b∗) are removed from
the graph.

For a set H of hippodromes, the arrangement A(H) is the
subdivision of the plane R2, into vertices, arcs, and faces. The
vertices are the intersection points of the hippodromes, the
arcs are either maximally connected circular arcs or straight
line segments of the boundaries of hippodromes that occur
between the vertices, and faces are maximally connected
regions bounded by arcs (see Fig. 2). Let A = A(H) be the
arrangement of hippodromes of all links, and let |A| denote
the number of vertices, arcs, and faces in A. In the worst
case |A| can be quadratic in m but in practice it is near-linear
in m. The arrangement can be computed in expected time
O(m logm + |A|) [27]. Our algorithm to compute the point
b∗ takes O(|A| log2m) expected time, thus improves the time
complexity of the algorithm presented in [7], by a factor of
≈ m3/|A|.

For a face ϕ ∈ A, let Eϕ ⊆ E be the set of links eij
such that hij does not contain ϕ. Note that for two adjacent
faces ϕ,ϕ′ in A, |Eϕ ⊕ Eϕ′ | ≤ 1, where the operator ⊕
represents the symmetric difference between the set Eϕ, and
Eϕ′ . Moreover, for all points b in a face ϕ of A, χ(b)
remains the same, which we denote by χ(ϕ). We traverse the
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Fig. 3. Illustration of a spanning tree (dotted lines) on the
dual graph of the arrangement shown in Fig. 2a, whose faces are
F = {ϕ1, . . . , ϕ11}. The spanning path (solid lines) is Π = 〈ϕ1, ϕ2, ϕ3,
ϕ4, ϕ5, ϕ4, ϕ6, ϕ7, ϕ8, ϕ7, ϕ9, ϕ7, ϕ6, ϕ4, ϕ10, ϕ4, ϕ11, ϕ4, ϕ3, ϕ2, ϕ1〉.
Let ui be the i-th face in Π (1≤i≤21). The intervals associated with the
hippodromes are therefore Ii1j1 = {[u3, u4], [u6, u7], [u9, u9], [u13, u19]},
Ii2j2 = {[u1, u3], [u11, u11], [u15, u15], [u19, u21]}, and Ii3j3 =
{[u1, u1], [u7, u13], [u17, u17], [u21, u21]}.

arrangement A, compute χ(ϕ) for each face, and return a point
from a face that maximizes the value of χ. To facilitate the
traversal of A and the computation of χ(ϕ), we maintain U, a
union-find data structure [28] on the nodes of G. Whenever we
visit a face ϕ, U maintains the connected components of the
graph (V,Eϕ) along with the size of the connected component
from which χ(ϕ) can be updated quickly. U supports the
following three operations each in O(logm) time.

1) MERGE (u, v): Merge the components of nodes u, v.
2) FIND (v): Return the connected component of a node v.
3) MAKE COMPONENT (v): Create a component for a

node v.
We now describe the algorithm in detail.

1) We first compute the arrangement A. Let F be the set
of faces of A and let A∗ = (F,Γ) be the dual graph
of A; γij = (ϕi, ϕj) ∈ Γ if the faces ϕi and ϕj share
an arc in A. If the arc is a portion of the boundary of
a hippodrome hkl, then we label γij with the link ekl.
Initialize U by invoking MAKE COMPONENT (v) for
each node v ∈ V .

2) Compute a spanning tree of the vertices of A∗, and
convert the spanning tree into a spanning path Π by
starting from a leaf of the tree and visiting each edge of
tree twice; see Fig. 3 and [29] for details. The length of
the spanning path is |Π| = O(|A|).

3) Fix a hippodrome hij . If we remove the edges of Π
labeled with the link eij , Π is decomposed into maximal
subpaths, called intervals, such that either all faces in a
subpath lie in hij or none of them lie inside hij . Let
Iij be the set of intervals of the latter type — none
of the faces in any interval of Iij destroy the link eij .
Set I =

⋃
hij∈H Iij ; see Fig. 3. By construction, |I| ≤

|Π| = O(|A|).
4) Construct a minimum-height binary tree T on Π, i.e.,

the i-th leaf of T corresponds to the i-th vertex in Π.
Each vertex ξ ∈ T is associated with a subpath Πξ of Π,
spanned by the leaves in the subtree rooted at ξ. We store
an interval I ∈ I at ξ ∈ T, if Πξ ⊆ I , and Πp(ξ) 6⊆ I ,
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where p(ξ) is the parent of ξ. Let Iξ ⊆ I be the set of
intervals stored at ξ. We also associate a subset Eξ ⊆ E
of links with ξ — if an interval Iij belongs to Iξ we
add the link eij to Eξ. Let E∗ξ =

⋃
λ∈Λ(ξ)Eλ, where

Λ(ξ) is the set of ancestors of ξ, including ξ itself. Let
χ̂(ξ) be the average number of pairs of nodes in the
subgraph (V,E∗ξ ) that are connected. For a leaf η ∈ T,
if η corresponds to a face ϕ of A, then Eϕ = E∗ξ , so
χ(ϕ) = χ̂(η). Note that,

∑
ξ∈T |Iξ| = O(|I| logm).

5) Traverse T in a top-down manner, i.e., recursively visit
first a vertex, then its children. At each vertex ξ, we
update U so that it stores the connected components of
the subgraph (V,E∗ξ ). More precisely, when we reach ξ,
U stores the connected components of (V,E∗p(ξ)), so we
insert the links Eξ to get the subgraph (V,E∗ξ ), and for
each link eij ∈ Eξ, we perform MERGE (i, j) on U, and
update the value of χ̂(ξ). We also maintain a copy of
the changes into the data structure U on a stack. If ξ is a
leaf corresponding to a face, then we have the subgraph
(V,E∗ξ ) at our disposal. So, we output χ̂(ξ) = χ(ϕ).
When we finish traversing the subtree rooted at ξ,
we undo all the changes made to U by MERGE (·, ·)
procedures.

6) Return a point from a face ϕ of A that has the minimum
value of χ(ϕ).

The correctness of the algorithm follows from the invariant
that for each leaf of T corresponding to a face φ of A, the
algorithm maintains Eϕ and computes χ(ϕ). Moreover, there
is a leaf in T for each face of A. The expected running time
of the algorithm is

∑
ξ∈T O(|Eξ| logm) = O(|A| log2m).

B. The maximum number of affected links — single cut case

In this section our goal is to find a point b∗ for which
the number of the links affected by cutr(b∗) is maximized.
Finding b∗ can be done using standard techniques, such as
constructing A(H) explicitly. This can be obtained in time
O(m2), or more precisely, in time O(m logm+ |A|). Similar
approach was taken in [7] and thus we omit the details from
this paper.

If the network topology is planar, a much faster approx-
imation algorithm is obtainable. Recall that planarity of the
graphs implies that links might meet at their endpoints but do
not cross each other. Note that even in the case of a planar
graph, the arrangement can have Ω(m2) vertices. Specifically,
we denote by ∆(b,H), the depth of a point b ∈ R2 with
respect to a subset H ⊆ H to be the number of hippodromes
in H that contain b. The depth of a set of hippodromes H is
∆(H) = maxb∈R2 ∆(H, b), and let ∆ = ∆(H). Notice that
∆ is the the number of links affected by cutr(b∗).

Using the technique of Aronov and Har-Peled [30], one can
find a point b whose depth is close to ∆: For any ε > 0, the
algorithm finds in O(mε2 log2m) expected time and with prob-
ability 1−1/mO(1), a point b, such that ∆(b,H) ≥ (1− ε)∆.
However, this technique requires an oracle procedure, named
DEPTH THRESHOLD(H, k, `), whose input is a set H of
k hippodromes and an integer ` ≤ k; if ∆(H, k) ≤ `,

the procedure returns TRUE along with the point z of the
maximum depth. Otherwise, it returns FALSE and a point z
with ∆(z,H) > `. Such a procedure can be implemented
using a randomized divide-and-conquer approach that runs in
O(k` log k) time; see [29] for details.

C. The maximum number of affected links — multiple cuts
case

This section considers the maximum number of links that
can be destroyed by a set of k simultaneous attacks. This is
an instance of the k set cover problem [9] which is known
to be NP-hard. However, a greedy strategy that picks a point
that destroys as many links as possible (or, equivalently, picks
a point that intersects as many hippodromes as possible), and
processes the remaining links for k iterations destroys at least
1−1/e fraction of the links destroyed by any set of k attacks.

V. MULTIPLE ATTACKS WITH PROBABILISTIC OUTCOMES

In this section we consider our probabilistic failure model
which assumes that a link is destroyed only with some pre-
specified probability p > 0. We then measure the expected
number of links destroyed.

When considering only a single attack, the algorithms
presented in Section IV-B achieve the same performance also
for this model. The exact details, which are omitted from this
paper for brevity, are straightforward and based on the linearity
of expectation.

Thus, we study the impact on the network of k simultaneous
circular cuts, whose centers are at locations B = {b1 . . . bk}.
Recall that fij(b) is the probability that link eij is affected
by an attack whose epicenter is b. Hence, the total number of
links that are destroyed by at least one of the cuts is

Φ(B) =
∑
eij∈E

[
1−
∏
b∈B

(1−fij(b))
]

= m−
∑
eij∈E

Π(eij , B)

where Π(eij , B) = Πb∈B(1 − fij(b)). Let B∗ = {b∗1 . . . b∗k}
denote the optimal solution, i.e., B∗ = arg maxB Φ(B).

Since finding B∗ is at least as hard as the set cover
problem [9], we propose the following greedy heuristic. As-
sume that j − 1 cuts are already present, and define the
revenue of the cut j at location bj to be the expected
number of links that cutr(bj) damages, among the links that
survived cuts 1 . . . j − 1; namely, Rev(x | b1 . . . bj−1) =∑
eij∈E [fij(x) ·Π(eij , {b1, . . . , bj−1})] . Our greedy strategy

is to pick, at each iteration j = 1 . . . k, the point bj that
maximizes the revenue, i.e., bj = arg maxx∈R2 Rev(x |
b1, b2, . . . , bj−1). Thus, our algorithm executed k times the
algorithm to identify a single vulnerable point (see Sec-
tion IV-B), and therefore, its running time is O(km logm +
k|A|). Let B̂ = {b̂1 . . . b̂k} denote the resulting sequence and
let α = Φ(B̂)/Φ(B∗) be the approximation ratio of this
greedy strategy; Fig. 4 shows specific locations of B̂ and
B∗ for p = 1.0 and r = 300 miles. We next show that
α ≤ (4 − p)/4 when k = 2. We leave the evaluation of the
case for k > 2 for future research.
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Fig. 4. Comparison of two optimal locations B∗, for p = 1.0 and r = 300
and the two locations B̂, selected by the greedy algorithm.

Theorem 1. The greedy heuristic achieves an approximation
ratio of (4− p)/4 for any p and k = 2.

Proof: The proof follows by applying the inclusion-
exclusion principle, where for any set of locations B =
{bx, by}, Φ({bx, by}) = p(|Sx| + |Sy| − p|Sx ∩ Sy|), where
Sx (resp. Sy) is the set of links affected by cutr(bx) (resp.
cutr(by)).

Recall that B∗ is the set of (two) optimal locations and B̂
is the set of locations picked by our greedy strategy. Denote
by S∗1 , S

∗
2 , Ŝ1, and Ŝ2 the corresponding affected link sets. By

the greedy choice of b̂1, we get that |Ŝ1| ≥ 1
2 (|S∗1 | + |S∗2 |).

Thus,

|Ŝ1| ≥
1
2

(|S∗1 |+ |S∗2 | − p|S∗1 ∩ S∗2 |) =
1
2p

Φ(B∗). (1)

Now, without loss of generality, let Φ({b̂1, b∗1}) ≥
Φ({b̂1, b∗2}). Thus, Φ({b̂1, b∗1}) ≥ 1

2 (Φ({b̂1, b∗1}) +
Φ({b̂1, b∗2})), implying that Φ({b̂1, b∗1}) ≥
p
2

(
|S∗1 |+ |Ŝ1| − p|S∗1 ∩ Ŝ1|+ |S∗2 |+ |Ŝ1| − p|S∗2 ∩ Ŝ1|

)
.

However, since |S∗1 ∩ Ŝ1|+ |S∗2 ∩ Ŝ1| ≤ |Ŝ1|+ |S∗1 ∩ S∗2 |, we
get the following approximation ratio:

Φ(B̂) = Φ({b̂1, b̂2}) ≥ Φ({b̂1, b∗1})

≥ p|Ŝ1|+
p

2
(|S∗1 |+ |S∗2 | − p|S∗1 ∩ S∗2 |)−

p2

2
|Ŝ1|

=
p(2− p)

2
|Ŝ1|+

1
2

Φ({b∗1, b∗2}) ≥
4− p

4
Φ(B∗),

where the last inequality follows from (1).
To show that the bound on the ratio is tight, consider

the example in Fig. 5. The links are all parallel and also
perpendicular to a line l. The two points, b∗1, and b∗2, that
maximize Φ, affect a disjoint set of links, and hence, the
expected number of links destroyed is 12p. For picking the
first cut, any point b on the line l for which the corresponding
cutr(b) affects six links has equal revenue. Hence, the greedy
approach picks such a point arbitrarily. If it picks the point b̂1,
then the ratio Φ(B̂)/Φ(B∗) ≥ (4−p)/4. This is because b∗1 or
b∗2 should be picked at the second step of the greedy approach
to maximize the revenue. Hence, Φ({b̂1, b∗1}) = 12p − 3p2

which implies that α = (4− p)/4.

VI. NUMERICAL RESULTS

We have conducted a numerical study to measure the ex-
pected number of failed links Φ when the number of cuts is 2,

cutr(b
∗
1)

b∗1 b̂1 b∗2

cutr(b̂1)

cutr(b
∗
2)

l

Fig. 5. Worst case performance of the greedy approach.

Fig. 6. The number of intersecting pairs of hippodromes for attack radii
60–300 miles. The results are shown for the fiber-optic network presented in
Fig. 1 and for various sub-networks (determined by different US time-zones).

the failure model is probabilistic with p = {0.5, 0.75, 1}, and
the cut radius ranges from 60 to 300 miles. The network under
consideration is the fiber-optic network depicted in Fig. 1, and
therefore, the possible locations of the two attacks of radius 60
miles are the vertices of the arrangement of the hippodromes
shown in Fig. 2b. Fig. 6 shows the number of intersecting pairs
of hippodromes in the arrangement and indicates that most of
the intersecting hippodromes are on the east coast (recall that
this number determines the running time of our algorithms).
Table I shows the expected number of links destroyed by the
optimal choice of two attacks (namely, Φ(B∗)), by a greedy
choice of two attacks (namely, Φ(B̂)), and the resulting ratio
α = Φ(B̂)/Φ(B∗). As can be seen, the ratio α is 1 for radii
60 through 240 miles in all the three cases of p, and it is very
close to 1 for radius of 300 miles. This shows that in this
fiber-optic network, the greedy algorithm produces a solution
which is practically as good as the optimal one. A possible
explanation for this phenomenon is the fact that in the network
of Fig. 1, the links are clustered along the east coast in both
the north and the south. Hence, the optimal locations tend to
be disjoint for radii 60 to 180 miles and the greedy is able to
successfully find these disjoint locations.

VII. CONCLUSION

In this paper, we provided algorithms to detect the most
vulnerable point(s), given a network embedded in the Eu-
clidean plane and circular-shaped attack(s). We considered
both deterministic and probabilistic scenarios as well as sit-
uations in which several attacks happen simultaneously. All
our algorithms run in low-complexity polynomial-time and
significantly improve upon prior state of the art. Since these al-
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TABLE I
NUMERICAL RESULTS FOR TWO ATTACKS IN THE FIBER-OPTIC NETWORK OF FIG. 1, FOR p ∈ {0.5, 0.75, 1} AND CUTS OF RADIUS 60 TO 300 MILES: THE

OPTIMAL VALUE OF THE EXPECTED NUMBER OF FAILED LINKS, THE APPROXIMATE VALUE (OBTAINED BY A GREEDY CHOICE), AND THE RATIO, α,
BETWEEN THE APPROXIMATE AND OPTIMAL VALUES.

r Φ(B∗) Φ(B̂) α
60 17.25 17.25 1
120 28.5 28.5 1
180 41 41 1
240 51.5 51.5 1
300 62.75 62.5 0.996

(a) p = 0.5

r Φ(B∗) Φ(B̂) α
60 25.688 25.688 1
120 42.75 42.75 1
180 61.5 61.5 1
240 77.25 77.25 1
300 92.625 90.938 0.982

(b) p = 0.75

r Φ(B∗) Φ(B̂) α
60 34 34 1
120 57 57 1
180 82 82 1
240 103 103 1
300 122 120 0.984

(c) p = 1

gorithms must be executed a large number of times for various
possible scenarios, reducing their complexity and guaranteeing
low approximation ratios significantly improves our ability to
understand the possible impacts of geographically correlated
attacks or natural disasters. Future research directions include
generalizing our framework to different shapes of attacks (e.g.
splines and polygons), considering more realistic probability
models (e.g., models in which the failure probability of each
link is inversely proportional to its distance from the attack’s
epicenter), considering more than two simultaneous attacks,
and improving the running time of our algorithms using finer
analysis and additional tools from computational geometry.

VIII. ACKNOWLEDGMENTS

The work of P.A. and S.G. is supported by NSF under grants
CNS-05-40347, CCF-06-35000, IIS-07-13498, and CCF-09-40671,
by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, by an
NIH grant 1P50-GM-08183-01, by a DOE grant OEG-P200A070505,
and by a grant from the U.S.–Israel Binational Science Foundation.
The work of A.E. and S.S. is supported by NSF CAREER grant
0348000 and NSF grant CNS-1017714. The work of G.Z. and D.H.
is supported by DTRA grant HDTRA1-09-1-0057, NSF grant CNS-
1018379, CIAN NSF ERC under grant EEC-0812072, and the Legacy
Heritage Fund program of the Israel Science Foundation (Grant No.
1816/10).

REFERENCES

[1] J. Borland, “Analyzing the Internet collapse,” MIT Technology
Review, Feb. 2008. [Online]. Available: http://www.technologyreview.
com/Infotech/20152/?a=f

[2] J. S. Foster, E. Gjelde, W. R. Graham, R. J. Hermann, H. M. Kluepfel,
R. L. Lawson, G. K. Soper, L. L. Wood, and J. B. Woodard, “Report
of the commission to assess the threat to the United States from
electromagnetic pulse (EMP) attack, critical national infrastructures,”
Apr. 2008.

[3] C. Wilson, “High altitude electromagnetic pulse (HEMP) and high
power microwave (HPM) devices: Threat assessments,” CRS Report
for Congress, July 2008. [Online]. Available: http://www.ntia.doc.gov/
broadbandgrants/comments/7926.pdf

[4] W. R. Forstchen, One Second After. Tom Doherty Associates, LLC,
2009.

[5] Level 3 Communications, Network Map. [Online]. Available: http:
//www.level3.com/interacts/map.html

[6] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
impact of geographically correlated network failures,” in Proc. IEEE
MILCOM, Nov. 2008.

[7] ——, “Assessing the vulnerability of the fiber infrastructure to disasters,”
in Proc. IEEE INFOCOM, Apr. 2009.

[8] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in Proc. IEEE INFOCOM, Mar. 2010.

[9] D. Hochbaum and A. Pathria, “Analysis of the greedy approach in
problems of maximum k-coverage,” Naval Research Logistics (NRL),
vol. 45, no. 6, pp. 615–627, 1998.

[10] R. Bhandari, Survivable networks: algorithms for diverse routing.
Kluwer, 1999.

[11] C. Ou and B. Mukherjee, Survivable Optical WDM Networks. Springer-
Verlag, 2005.

[12] O. Crochat, J.-Y. Le Boudec, and O. Gerstel, “Protection interoperability
for WDM optical networks,” IEEE/ACM Trans. Netw., vol. 8, no. 3, pp.
384–395, 2000.

[13] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology
design for survivable routing of logical rings in WDM-based networks,”
IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1525–1538, Oct. 2004.

[14] IETF Internet Working Group , “Inference of Shared Risk Link
Groups,” November 2001, Internet Draft. [Online]. Available: http:
//tools.ietf.org/html/draft-many-inference-srlg-02

[15] D. Bienstock, “Some generalized max-flow min-cut problems in the
plane,” Math. Oper. Res., vol. 16, no. 2, pp. 310–333, 1991.

[16] A. F. Hansen, A. Kvalbein, T. Cicic, and S. Gjessing, “Resilient routing
layers for network disaster planning,” in Proc. ICN. Springer-Verlag,
Apr. 2005.

[17] M. M. Hayat, J. E. Pezoa, D. Dietz, and S. Dhakal, “Dynamic load
balancing for robust distributed computing in the presence of topological
impairments,” Wiley Handbook of Science and Technology for Homeland
Security, 2009.

[18] K. Atkins, J. Chen, V. S. A. Kumar, and A. Marathe, “The structure
of electrical networks: a graph theory-based analysis,” Int. J. Critical
Infrastructures, vol. 5, no. 3, pp. 265–284, 2009.

[19] C. A. Phillips, “The network inhibition problem,” in Proc. ACM STOC,
1993.

[20] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg,
“A decomposition-based pseudoapproximation algorithm for network
flow inhibition,” in Network Interdiction and Stochastic Integer Pro-
gramming. Springer, 2003, ch. 3, pp. 51–68.

[21] A. Schrijver, “On the history of combinatorial optimization (till 1960),”
in Handbook of Discrete Optimization. Elsevier, 2005, pp. 1–68.

[22] A. Pinar, Y. Fogel, and B. Lesieutre, “The inhibiting bisection problem,”
in Proc. ACM SPAA, June 2007.

[23] R. L. Church, M. P. Scaparra, and R. S. Middleton, “Identifying critical
infrastructure: the median and covering facility interdiction problems,”
Ann. Assoc. Amer. Geographers, vol. 94, no. 3, pp. 491–502, 2004.

[24] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Breakdown of the
Internet under intentional attack,” Phys. Rev. Lett., vol. 86, no. 16, pp.
3682–3685, Apr. 2001.

[25] D. Magoni, “Tearing down the Internet,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 6, pp. 949–960, Aug. 2003.

[26] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, October 1999.

[27] M. Sharir and P. Agarwal, Davenport-Schinzel Sequences and their
Geometric Applications. Cambridge University Press, 1995.

[28] R. E. Tarjan, Data structures and network algorithms. Society for
Industrial and Applied Mathematics, 1983.

[29] P. K. Agarwal, D. Z. Chen, S. K. Ganjugunte, E. Misiołek, M. Sharir,
and K. Tang, “Stabbing convex polygons with a segment or a polygon,”
in Proc. ESA, Sept. 2008.

[30] B. Aronov and S. Har-Peled, “On approximating the depth and related
problems,” in Proc. ACM-SIAM SODA, Jan. 2005.

1952


