
Mobile Networks and Applications 9, 49–61, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Capacity Assignment in Bluetooth Scatternets –
Optimal and Heuristic Algorithms ∗

GIL ZUSSMAN and ADRIAN SEGALL
Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

Abstract. Bluetooth enables portable electronic devices to communicate wirelessly via short-range ad-hoc networks. Initially Bluetooth
will be used as a replacement for point-to-(multi)point cables. However, in due course, there will be a need for forming multihop ad-hoc
networks over Bluetooth, referred to as scatternets. This paper investigates the capacity assignment problem in Bluetooth scatternets. The
problem arises primarily from the special characteristics of the network and its solution requires new protocols. We formulate it as a problem
of minimizing a convex function over a convex set contained in the matching polytope. We develop an optimal algorithm which is similar
to the well-known flow deviation algorithm and that calls for solving a maximum-weight matching problem at each iteration. A centralized
heuristic algorithm with a relatively low complexity is also developed. Then, since in an ad-hoc network there is no central authority that is
responsible for network optimization, a distributed heuristic algorithm is proposed. Finally, numerical results are presented and it is shown
that the heuristic algorithms usually converge to results that are relatively close to the optimal results.

Keywords: Bluetooth, scatternet, capacity assignment, scheduling, Personal Area Networks (PAN)

1. Introduction

Recently, much attention has been given to the research and
development of Personal Area Networks (PAN). These net-
works are comprised of personal devices, such as cellular
phones, PDAs and laptops, in close proximity to each other.
Bluetooth is an emerging PAN technology, which enables
portable devices to connect and communicate wirelessly via
short-range ad-hoc networks [6,7,20]. The basic Bluetooth
network topology (referred to as a piconet) is a collection of
slave devices operating together with one master. A multihop
ad-hoc network of piconets in which some of the devices are
present in more than one piconet is referred to as a scatternet.

Since its announcement in 1998, the Bluetooth technology
has attracted a vast amount of research. However, the issue of
capacity assignment in Bluetooth scatternets has been rarely
investigated. Moreover, most of the research regarding net-
work protocols has been performed via simulation. In this pa-
per we formulate an analytical model for the analysis of the
capacity assignment problem and propose optimal and heuris-
tic algorithms for its solution.

Capacity assignment in communication networks focuses
on finding the best possible set of link capacities that satisfies
the traffic requirements, while minimizing some performance
measure (such as average delay). Most capacity assignment
models deal mainly with static networks in which a cost is as-
sociated with each level of link capacity (see [4] for a review
of models). The following discussion shows that there is a
need to study the capacity assignment problem in Bluetooth
scatternets in a different manner:

• In contrast with a wired and static network, in an ad-hoc
network, there is no central authority responsible for net-

∗ This research was supported by a grant from the Ministry of Science, Israel.

work optimization and there is no monetary cost associ-
ated with each level of link capacity.

• The nature of the network allows frequent changes in the
topology and requires frequent changes in the capacities
assigned to every link.

• Unlike other ad-hoc network technologies in which all
nodes within direct communication from each other share
a common channel, in Bluetooth only a subgroup of nodes
(piconet) shares a common channel and capacity has to be
allocated to each link.

• There are unique constraints imposed by the MAC layer
protocol (see section 2.1).

Although inter and intra-piconet scheduling as well as
scatternet formation have received considerable attention (see
section 2.2), the issue of capacity assignment in scatternets
has not been investigated. Baatz et al. [1,2] have made an at-
tempt to deal with the problem, but have found out that it is
a complex issue.1 A scatternet capacity assignment proto-
col has to determine the capacities that should be allocated in
each piconet, such that the network performance will be op-
timized. We envision that in the future, capacity assignment
protocols will start operating once the scatternet is formed
and will determine link capacities that will be dynamically
allocated by scheduling protocols. Thus, capacity assignment
protocols are the missing link between scatternet formation
and scatternet scheduling protocols, and are required in or-
der to improve the utilization of the scatternet bandwidth.
We also anticipate that the optimal solution of the capacity
assignment problem will improve the evaluation of heuristic
scatternet scheduling algorithms.

1 In [1] and [2] the term piconet presence schedule is used to refer to a notion
similar to capacity assignment.

50 G. ZUSSMAN AND A. SEGALL

Currently, our major interest is in algorithms for quasi-
static capacity assignment that minimizes the average delay
in the scatternet. The analysis is based on a static model with
stationary flows and unchanging topology. Needless to say,
we are interested in distributed algorithms. However, we shall
also focus on centralized algorithms, which are required in or-
der to gain insight to the network performance and to evaluate
the performance of the distributed algorithms.

To the best of our knowledge, the work presented in this
paper is the first attempt to analytically study the capacity
assignment problem in Bluetooth scatternets. In the sequel
we formulate the scatternet capacity assignment problem as
a minimization of a convex function over a convex set con-
tained in the polytope of the well-known matching problem
[21, p. 608] and show that different formulations apply to bi-
partite and nonbipartite scatternets. The methodology used
by Gerla et al. [12,22] is used in order to develop an optimal
algorithm which is similar to the flow deviation algorithm
[4, p. 458]. The main difference between the algorithms is
that at each iteration we solve a maximum-weight matching
problem instead of a shortest path problem. Then, we intro-
duce a centralized heuristic algorithm whose complexity is
much lower than the complexity of the optimal algorithm and
whose performance is often close to that of the optimal al-
gorithm. A distributed heuristic algorithm, which is based
on the centralized heuristic, is also introduced. Finally, nu-
merical results are presented and it is shown that the heuristic
algorithms usually converge to results that are very close to
the optimal results.

This paper is organized as follows. Section 2 gives a brief
introduction to Bluetooth technology and discusses related
work. In section 3, we present the model and in section 4
we formulate the scatternet capacity assignment problem for
bipartite and nonbipartite scatternets. An algorithm for ob-
taining the optimal solution of the problem is presented in
section 5. In section 6, we develop distributed and centralized
heuristic algorithms for bipartite scatternets and in section 7
we present numerical results. Section 8 summarizes the main
results and discusses possible extensions.

2. Background

2.1. Bluetooth technology

Bluetooth utilizes a short-range radio link, which operates in
the 2.4 GHz license free ISM band. Since the radio link is
based on frequency-hop spread spectrum, multiple channels
(frequency hopping sequences) can co-exist in the same wide
band without interfering with each other. Two or more units
sharing the same channel form a piconet, where one unit acts
as a master controlling the communication in the piconet and
the others act as slaves.

Bluetooth channels use a frequency-hop/time-division-
duplex (FH/TDD) scheme. The channel is divided into
625 µsec intervals called slots. The master-to-slave transmis-
sion starts in even-numbered slots, while the slave-to-master

transmission starts in odd-numbered slots. Masters and slaves
are allowed to send 1, 3 or 5 slots packets, which are trans-
mitted in consecutive slots. A slave is allowed to start trans-
mission in a given slot if the master has addressed it in the
preceding slot. Information can only be exchanged between
a master and a slave, i.e., there is no direct communication
between slaves. Packets can carry synchronous information
(voice link) or asynchronous information (data link).2

Multiple piconets in the same geographic area form a scat-
ternet. Since Bluetooth uses packet-based communication
over slotted links, it is possible to interconnect different pi-
conets in the same scatternet. Hence, a unit can participate
in two or more piconets, on a time-sharing basis, and even
change its role when moving from one piconet to another. We
will refer to such a unit as a bridge. For example, a bridge
can be a master in one piconet and a slave in another piconet.
However, a unit cannot be a master in more than one piconet.

2.2. Related work

Due to the special characteristics of Bluetooth networks,
many theoretical and practical questions regarding their per-
formance have been raised (a review of issues requiring re-
search can be found in [18]). Two main issues that are related
to capacity assignment and which received relatively much
attention are scheduling and scatternet forming.

In the Bluetooth specifications [6], the capacity allocation
by the master to each link in its piconet is left open. The mas-
ter schedules the traffic within a piconet by means of polling
and determines how bandwidth capacity is to be distributed
among the slaves. Numerous heuristic intra-piconet schedul-
ing algorithms have been proposed and evaluated via simula-
tion (e.g., [8–10,15] and references therein). Johansson et al.
[18] presented an overall architecture for handling schedul-
ing in a scatternet and a family of inter-piconet schedul-
ing algorithms (algorithms for masters and bridges). Several
inter-piconet scheduling algorithms have been proposed and
evaluated (e.g., [1,2,14,16,17,23,25,27]). Recently, analytical
results regarding the delay in piconets have been presented
in [14] and [29].

According to the architecture presented in [18], inter-
piconet scheduling algorithms should deal with capacity al-
location requests from applications or forwarding functions.
Thus, the solution of the capacity assignment problem is a
desirable input to scheduling algorithms such as the ones dis-
cussed above.

As mentioned before, capacity assignment protocols are
the missing link between scheduling and scatternet forma-
tion algorithms. Research regarding scatternet topology and
scatternet formation protocols has been recently receiving in-
creasing attention (e.g., [5,24,26] and references therein). We
expect that the solution of the capacity assignment problem
will enable the evaluation of different topologies and, there-
fore, will improve the design of scatternet formation algo-
rithms.

2 In this paper we concentrate on networks in which only data links are used.

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 51

3. Model and preliminaries

Consider the connected undirected scatternet graph G =
(N, L). N will denote the collection of nodes {1, 2, . . . , n}.
Each of the nodes could be a master, a slave, or a bridge. The
bi-directional link connecting nodes i and j will be denoted
by (i, j) and the collection of bi-directional links will be de-
noted by L. For each node i, denote by Z(i) the collection of
its neighbors. We denote by L(U) (U ⊆ N) the collection of
links connecting nodes in U .

Usually, capacity assignment protocols deal with the allo-
cation of capacity to directional links. However, due to the
tight coupling of the uplink and downlink in Bluetooth pi-
conets,3 we concentrate on the total bi-directional link capac-
ity. Hence, we assume that the average packet delay on a link
is a function of the total link flow and of the total link ca-
pacity. An equivalent assumption is that the uplink and the
downlink flows are equal (symmetrical flows).

Let Fij be the average bi-directional flow on link (i, j) and
let Cij be the capacity of link (i, j) (the units of F and C are
bits/second). We assume that the average bi-directional flow
is positive on every link (Fij > 0 ∀(i, j) ∈ L). We define fij
as the ratio between Fij and the maximal possible flow on a
Bluetooth link when using a given type of packets.4 We also
define cij as the ratio between Cij and the maximal possible
capacity of a link. It is obvious that 0 < fij � 1 and that
0 � cij � 1. We shall refer to fij as the flow on link (i, j)
and to cij as the capacity of link (i, j). Accordingly, c̄ will
denote the vector of the link capacities and will be referred to
as the capacity vector.

The objective of the capacity assignment algorithms, de-
scribed in this paper, is to minimize the average delay in the
scatternet. We define Dij as the total delay per unit time of
all traffic passing through link (i, j), namely:

Definition 1. Dij is the average delay per unit of the traffic
multiplied by the amount of traffic per unit time transmitted
over link (i, j).

We assume that Dij is a function of the link capacity cij
only. We should point out that the optimal algorithm requires
no explicit knowledge of the function Dij (cij). We shall
need to assume only the following reasonable properties of
the function Dij (·).

Definition 2. Dij (·) is defined such that all the following
holds:

1. Dij is a nonnegative continuous decreasing function of
cij with continuous first and second derivatives.

2. Dij is convex.

3. limcij→fij Dij (cij) = ∞.

3 A slave is allowed to start transmission only after a master had addressed it
in the preceding slot.

4 For example, currently the maximal flow on a symmetrical link, when using
five slots unprotected data packets (DH5), is 867.8 Kbits/second.

4. D′
ij (cij) < 0 for all cij where D′

ij is the derivative of Dij .

We note that the properties presented in definition 2 con-
form to the analytic and simulation results regarding the delay
in piconets presented in [14] and [29].

Using definition 1, we shall now define the total delay in
the network.

Definition 3. The total delay in the network per unit time is
denoted by DT and is given by

DT =
∑

(i,j)∈L
Dij (cij).

Since the total traffic in the network is independent of the
capacity assignment procedure, we can minimize the average
delay in the network by minimizing DT . A capacity vector
that achieves the minimal average delay will be denoted by c̄∗.

In section 6 we will develop heuristic algorithms and use
a delay function based on Kleinrock’s independence approx-
imation [19] which is described in the following definition.5

We will employ the same approximation in section 7 in order
to describe a few computational results regarding the optimal
algorithm.

Definition 4 (Kleinrock’s independence approximation).
When neglecting the propagation and processing delay,
Dij (cij) is given by

Dij (cij) =

fij

cij − fij
, cij > fij ,

∞, cij � fij .

A capacity assignment algorithm has to determine what
portion of the slots should be allocated to each master–slave
link. On the other hand, a scheduling algorithm has to
determine which master–slave links should use any given
slot pair. Hence, we define a scheduling algorithm as fol-
lows.

Definition 5. A scheduling algorithm determines how each
slot pair is allocated. It does not allow transmission on two
adjacent links in the same slot pair.

The Bluetooth specifications [6] do not require synchro-
nization of masters’ clocks. Since the clocks are not syn-
chronized a guard time is needed in the process of moving

5 Although analytic results regarding the delay are available for simple
scheduling regimes and simple topologies (e.g., [29]), as far as we know,
no analytic results are available for complex topologies and sophisticated
scheduling regimes. Thus, despite the fact that the Kleinrock’s indepen-
dence approximation does not fully model the delay in a scatternet, it has
been shown in the past to provide a relatively good estimation for the delay
in networks involving Poisson stream arrivals. Therefore, it is used for the
development of heuristic capacity assignment algorithms. We note that that
the development of the optimal algorithm does not require this approxima-
tion.

52 G. ZUSSMAN AND A. SEGALL

Table 1
A list of abbreviations.

Abbreviation Meaning Notes

SCA Scatternet Capacity Assignment Problem
SCAB Scatternet Capacity Assignment in Bipartite Graphs Problem
SCD Scatternet Capacity Deviation Algorithm
HCSCA Heuristic Centralized Scatternet Capacity Assignment Algorithm
HDSCA Heuristic Distributed Scatternet Capacity Assignment Algorithm

a bridge from one piconet to another. Yet, in order to formu-
late a simple analytical model we assume that the guard times
are negligible.

Finally, we note that table 1 includes a list of abbreviations,
used throughout this paper.

4. Formulation of the problem

Scatternet graphs can be bipartite graphs or nonbipartite
graphs [5] (a graph is called bipartite, if there is a partition
of the nodes into two disjoint sets S and T such that each
edge connects a node in S with a node in T [21, p. 50]). Any
scatternet graph in which no master is allowed to be a bridge
is necessarily bipartite. For example, the scatternet graph de-
scribed in figure 1A is bipartite. If masters are also bridges,
the scatternet may be bipartite (e.g., figure 1B) or nonbipar-
tite (e.g., figure 1C). A piconet whose master is also a bridge
is non-active when the master is away. Therefore, scatternets
where masters are bridges may result in poor bandwidth uti-
lization [5].

We note that a few examples of bipartite and nonbipartite
scatternets as well as a discussion of their performance can be
found in section 7.

In this section, we shall formulate the capacity assignment
problem for bipartite and nonbipartite scatternets. We will
show that the formulation for nonbipartite scatternets is more
complex than the formulation for bipartite scatternets.

4.1. Bipartite scatternets

When a bipartite scatternet graph is given, the nodes can be
partitioned into two sets S and T such that no two nodes in
S or in T are adjacent. Accordingly, the problem of scatter-
net capacity assignment in bipartite graphs (SCAB) is for-
mulated as follows.

Problem SCAB.

Given: Topology of a bipartite graph and flows fij .

Objective: Find capacities cij such that the average packet
delay is minimized:

minDT = min
∑

(i,j)∈L
Dij (cij) (1)

Subject to:

cij > fij ∀(i, j) ∈ L, (2)

∑
j∈Z(i)

cij � 1 ∀i ∈ S, (3)

∑
j∈Z(i)

cij � 1 ∀i ∈ T . (4)

The first set of constraints (2) is obvious. Constraints (3) and
(4) result from the TDD scheme and reflect the fact that the to-
tal capacity of the links connected to a node cannot exceed the
maximal link capacity. Due to the assumption that the guard
times are negligible, in (3) and (4) we neglect the time needed
in the process of moving a bridge from one piconet to another.
Notice that it is easy to see that the convex set defined by (2)–
(4) is contained in the bipartite matching polytope [21].

The formulation of the problem is based on the assumption
that the flow rates are given. Although this is not the situation
in a real scatternet, we assume that the traffic statistics can be
evaluated by higher layer protocols and can be used by the ca-
pacity assignment algorithms. Hence, algorithms such as the
ones described in the paper, which depend on estimates of the
traffic, are expected to provide insight into the development
of good (although suboptimal) capacity allocation schemes.

4.2. Nonbipartite scatternets

We shall now show that a formulation similar to the formula-
tion of problem SCAB is not valid for nonbipartite scatternets.
A simple example of a nonbipartite scatternet, given in [1], is
illustrated in figure 2A. Constraint (2) and the constraint

∑
j∈Z(i)

cij � 1 ∀i ∈ N (5)

are not sufficient in order for the capacity vector to be feasible
in this example. The capacities described in figure 2A satisfy
(2) and (5), but are not feasible because in any scheduling al-
gorithm no two neighboring links can be used simultaneously.
If links (1, 2) and (1, 3) are in use for distinct halves of the
available time slots, there are no free slots in which link (2, 3)
can be in use. Thus, if c12 = 0.5 and c13 = 0.5, there is no
feasible way to assign any capacity to link (2, 3).

Baatz et al. [1,2] suggest that a methodology for finding a
feasible (not necessarily efficient) capacity assignment6 will
be based on minimum coloring of a graph and indicate that:

6 Baatz et al. [1] refer to piconet presence schedule instead of capacity as-
signment. A piconet presence schedule determines in which parts of its
time a node is present in each piconet. It is very similar to link capacity
assignment as it is described in this paper.

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 53

Figure 1. Scatternet graphs – a bipartite scatternet in which no master is also a bridge (A), a bipartite scatternet in which a master is also a bridge (B), and a
nonbipartite scatternet (C).

Figure 2. Examples of scatternets with capacity vectors which are not feasible.

“the example gives an idea of how complex the determina-
tion of piconet presence schedules may get”. We propose a
formulation of the problem that is based on the formulations
of problem SCAB and the matching problem [21], and that
allows obtaining an optimal capacity allocation.

The formulation of the capacity assignment problem for
nonbipartite scatternets requires additional constraints to the
constraints described in problem SCAB. For example, one
could conclude that the capacity of the links composing the
cycle described in figure 2A should not exceed 1. Since adja-
cent links cannot be active simultaneously, one could further
conclude that the total capacity of links composing any odd
cycle should not exceed: (|links| − 1)/2. Namely:

∑
(i,j)∈C

cij � |C| − 1

2
∀C ⊆ L,C odd cycle. (6)

However, in the examples given in figures 2B and 2C, al-
though the capacities satisfy (6), they cannot be scheduled
in any way. Thus, requirement (6) is still not sufficient to
guarantee the feasibility of the capacity vector.

The set of links that are active in a slot must form a match-
ing (a subset of links X ⊆ L is said to be a matching if no two
links in X are incident to the same node [21]). Edmonds [11]
showed that the convex hull of the possible matching vec-
tors in a graph is defined by a set of linear constraints (also
known as the matching polytope). According to these con-
straints, in any odd set of nodes U the number of links that
take part in a matching should not exceed (|U | − 1)/2. It
follows from Edmonds’ theorem and from the fact that the
capacity of a link is the portion of the slots in which the link
is active, that the capacity of links connecting nodes in any
odd set of nodes U should not exceed (|U | − 1)/2.7 The fol-
lowing lemma describes the constraints that result from this

7 A similar observation has been recently independently made by Tassiulas
and Sarkar [25] who have considered the problem of max–min fair schedul-
ing in scatternets.

observation. We note that Hajek and Sasaki [13] have intro-
duced a similar lemma regarding link scheduling in a certain
kind of packet radio networks.

Lemma 1 (Edmonds [11]). The capacity vector must satisfy
(2), (5), and the following constraints:

∑
(i,j)∈L(U)

cij � |U | − 1

2
∀U ⊆ N, |U | odd, |U | � 3. (7)

The proof is based on Edmonds’ theorem and can be found
in [28].

The scatternet capacity assignment problem (SCA) can
now be formulated as follows (for bipartite graphs it reduces
to problem SCAB).

Problem SCA.

Given: Topology and flows fij .

Objective: Find capacities cij such that the average packet
delay is minimized: (1)

Subject to: (2), (5) and (7).

The constraints (2), (5) and (7) form a convex set which
is included in the matching polytope corresponding to the
scatternet graph (for bipartite scatternets these constraints re-
duce to constraints (2)–(4) described in problem SCAB). This
set consists of all the feasible capacity vectors c̄. We shall
now show that a feasible capacity vector has a corresponding
scheduling algorithm. Namely, that it is possible to determine
which links are used in each slot pair such that no two adja-
cent links are active in the same slot pair and the capacity used
by each link is as defined by the capacity vector c̄.8 Since the
vertices of the matching polytope defined by (5) and (7) are

8 Due to the TDD characteristics, each link should be active for at least a slot
pair.

54 G. ZUSSMAN AND A. SEGALL

(0, 1) vectors, finding a scheduling algorithm is equivalent to
finding the vertices whose convex combination provides c̄. It
can be found by the algorithm described in [13, section 3-C],
which has O(n6) computation complexity.

5. Optimal algorithm

An optimal solution of the capacity assignment problem is
required in order to gain some insight on the network’s op-
timal design and in order to evaluate the performance of op-
timal and heuristic distributed algorithms. In this section we
introduce a centralized scatternet capacity assignment algo-
rithm for finding an optimal solution of problem SCA, defined
in section 4.2.9 The algorithm is based on the conditional
gradient method also known as the Frank–Wolfe method [3,
p. 215], which was used for the development of the flow de-
viation algorithm [4, p. 458]. Therefore, we refer to the algo-
rithm as the scatternet capacity deviation (SCD) algorithm.
Gerla et al. [12,22] have used the Frank–Wolfe method in
order to develop bandwidth allocation algorithms for ATM
networks. Following their approach, we shall now describe
the optimality conditions and the algorithm.

Since the objective of problem SCA is to minimize a con-
vex function (DT) over a convex set ((2), (5) and (7)), any
local minimum is a global minimum. Thus, necessary and
sufficient conditions for the capacity vector c̄∗ to be a global
minimum are formulated as follows (the following proposi-
tion is derived from a well-known theorem [3, p. 194] and its
proof is omitted).

Proposition 1. The capacity vector c̄∗ minimizes the average
delay for problem SCA, if and only if:

• c̄∗ satisfies constraints (2), (5) and (7) of problem SCA.

• There are no feasible directions of descent at c̄∗; i.e., there
does not exist c̄ such that:10

∇DT

(
c̄∗)(c̄ − c̄∗) < 0, (8)∑

j∈Z(i)
cij � 1 ∀i ∈ N, (9)

∑
(i,j)∈L(U)

cij � |U | − 1

2
∀U ⊆ N, |U | odd, |U | � 3.

(10)

Proposition 1 suggests a steepest descent algorithm in
which we can find a feasible direction of descent c̄ at any
feasible point c̄K by solving the problem:

min ∇DT

(
c̄K

)
c̄ (11)

subject to (9), (10) and

cij � 0 ∀(i, j) ∈ L. (12)

9 The algorithm for the solution of problem SCAB is similar (the changes
are outlined below).

10 ∇DT (c̄
∗) is the gradient of DT with respect to c̄ evaluated at c̄∗.

1 set K = 0
2 find the vector c̄# – the optimal solution of (9)–(12)

(i.e., solve a maximum-weight matching problem)
3 find the value α∗ that minimizes DT (αc̄

K + (1 − α)c̄#)

4 set c̄K+1 = α∗c̄K + (1 − α∗)c̄#

5 if ∇DT (c̄
K)(c̄K − c̄#) � t

6 then stop
7 else set K = K + 1 and go to 2

Figure 3. Algorithm SCD for obtaining the optimal solution to problem SCA.

Since the constraint set (10) may include exponentially
many constraints, this problem cannot be easily solved us-
ing a linear programming algorithm. Yet, since D′

ij (cij) < 0
for all cij (according to definition 2.4), the formulation of the
problem conforms to the formulation of the maximum-weight
matching problem [21, p. 610], which has a polynomial-time
algorithm (O(n3)).

This result and proposition 1 are the basis for algorithm
SCD, described in figure 3. The input to the algorithm is the
topology, the flows fij , a feasible initial solution c̄0, and the
tolerance t . The output is the optimal capacity vector c̄∗.

We emphasize that unlike the flow deviation algorithm, in
which a feasible direction is found in each iteration by solving
a shortest path problem, in algorithm SCD there is a need to
solve a maximum-weight matching problem at each iteration.
In case the algorithm is applied to problem SCAB, there is a
need to solve a bipartite maximum-weight matching problem.

6. Heuristic algorithms for bipartite scatternets

As mentioned before, scatternet topologies in which a master
is also a bridge may result in poor bandwidth utilization [5].
Scatternets in which a master is not allowed to be a bridge are
necessarily bipartite (see section 4). In this section we pro-
pose low complexity centralized and distributed heuristic al-
gorithms for such bipartite scatternets. We shall refer to these
algorithms as the heuristic centralized/distributed scatternet
capacity assignment algorithms (algorithm HCSCA/HDSCA,
respectively).

The distributed algorithm is required because in an ad-hoc
network, such as Bluetooth scatternet, there is no central au-
thority that is responsible for network optimization. On the
other hand, the centralized algorithm can be used to obtain
the initial solution for the optimal algorithm (algorithm SCD,
presented in section 5). The main difference between the cen-
tralized and distributed algorithms is the order in which ca-
pacity is allocated to the links.

In this section, we shall present the algorithms and show
that the centralized algorithm always converges to a feasible
capacity vector. We note that in our experiments (see sec-
tion 7), the results of the heuristic algorithms were very close
to the optimal results. Moreover, the two algorithms always
converged to the same capacity vector.

The algorithms are based on the assumption that the delay
function, presented in definition 4, is given. Before proceed-
ing, we define the slack capacity of a node as follows.

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 55

Definition 6. The slack capacity of node i is the maximal ca-
pacity which can be added to links connected to the node. It
is denoted by si and is given by

si = 1 −
∑

j∈Z(i)
cij .

In both algorithms, all link capacities are initially equal to
the flows on the links (cij = fij ∀(i, j) ∈ L).11 The algo-
rithms select a node and allocate the slack capacity to some of
the links connected to it. Then, another node is selected, ca-
pacity is allocated and so on. Before describing the process of
node selection we shall describe the process of capacity allo-
cation and define the notions of fully and non-fully allocated
node.

Once a node k is selected, the slack capacity of this node is
allocated to those adjacent links, whose capacities have not
yet been assigned. The slack capacity is assigned according
to the square root assignment [19, p. 20]:

ckj = fkj + sk
√
fkj∑

m: m∈Z(k),ckm=fkm

√
fkm

∀j : j ∈ Z(k), ckj = fkj . (13)

It can be shown that after capacity is assigned to a sub-
group of the links connected to a node i (links whose ca-
pacities have not been assigned before), the delay derivatives
D′

ij (cij) of all these links will be the same. Accordingly, we
define the delay derivative of a node as follows.

Definition 7. The delay derivative of node i is the square root
of the absolute value of the delay derivatives of the links con-
nected to node i, whose capacities have not yet been assigned.
Its value is computed as if node i has been selected as the node
whose capacity has to be assigned and the capacities of these
links have been assigned according to (13). It is denoted by
di and is given by

di =
∑

m: m∈Z(i),cim=fim

√
fim

si
. (14)

According to (13), capacity is allocated to a link only once.
Hence, we define the notions of a fully allocated node and a
non-fully allocated node as follows.

Definition 8. A fully allocated node is a node such that all its
adjacent link capacities have been assigned.12

Definition 9. A non-fully allocated node is a node such that
at least one of its adjacent link capacities has not been as-
signed.

11 In the distributed algorithm, when a node (i) receives a message of the
algorithm for the first time it sets cij = fij ∀j ∈ Z(i).

12 A fully allocated node does not necessarily utilize its full capacity.

1 set cij = fij ∀(i, j) ∈ L

2 set k = arg max di
i∈N∩i non-fully allocated

3 set ckj = fkj + √
fkj /dk ∀j : j ∈ Z(k), ckj = fkj

4 if there exists (i, j) ∈ L such that cij = fij
5 then go to 2
6 else stop

Figure 4. Algorithm HCSCA for obtaining a heuristic solution to problem
SCAB.

6.1. Centralized heuristic (algorithm HCSCA)

There are various ways to decide upon the order of node se-
lection. For example, nodes can be selected according to their
slack capacity or according to their average slack capacity.
Some of the selection methodologies require care in order to
ensure that the obtained capacity vector is feasible (satisfies
constraints (2)–(4) of problem SCAB). We propose a simple
selection methodology that not only guarantees a feasible ca-
pacity vector at each step, but also usually results in a vector
which is close to the optimal capacity vector. The selection
methodology is based on the square root assignment and on
the property of the delay derivatives described in definition 7.

Node k, whose link capacities are next to be assigned, is
selected from the non-fully allocated nodes. The delay deriv-
atives di of these nodes are computed and the node with the
largest derivative is selected. Thus, the capacities of links with
high absolute value of delay derivative, whose delay is more
sensitive to the value of capacity, are assigned first.

Algorithm HCSCA, which is based on the above method-
ology, is described in figure 4. The input is the topology and
the flows fij , and the output is a capacity vector c̄. It can be
seen that the complexity of the algorithm is O(n2), which is
about the complexity of a single iteration in the optimal al-
gorithm. Moreover, the following proposition shows that the
capacity vector obtained by the algorithm is always feasible.

Proposition 2. Algorithm HCSCA results in an allocation c̄

that satisfies constraints (2)–(4) of problem SCAB.

The proof appears in the appendix.

6.2. Distributed heuristic (algorithm HDSCA)

In the distributed algorithm a token is passed by the nodes
and only the node that holds the token is allowed to allocate
capacity. The algorithm is initiated by an arbitrary node that
creates the token.13 Once a node receives the token, it can ei-
ther allocate its slack capacity14 or decide to send the token to
a neighbor. The assignment of slack capacity is the same as in
the centralized algorithm (square root assignment). However,
the selection of the node which holds the token and the deci-

13 At this stage of our work we assume that there is only one initiating node
and that it initiates the protocol only once.

14 Since bridges are unable to allocate capacity, we assume that if a bridge
decides to allocate capacity, it informs its neighboring masters and they
allocate the required capacities for it.

56 G. ZUSSMAN AND A. SEGALL

1 push the details of the node which sent the token to the parents stack
2 find the node with the largest dk among the non-fully allocated neighbors

and yourself∗
3 if it is a neighbor
4 then send the token to this neighbor
5 else
6 allocate capacity according to (13)
7 update the neighbors
8 change the state to token transfer state
∗According to definition 7, dk is the value of the delay derivative of node k.

Figure 5. Algorithm HDSCA – the procedure executed by a node in the allocation state.

sion whether it should allocate capacity or transfer the token
to a neighbor is different.

Each node keeps a stack, referred to as the parents stack,
that contains the identities of neighbors from which it had
previously received the token. Each node also maintains a
list of non-fully allocated neighbors. We define two possible
states for the node holding the token.

• Allocation State. A non-fully allocated node enters this
state when it receives the token. At this time the node
pushes the identity of the neighbor that sent it the token
to the parents stack. The neighbor is referred to as one of
the node’s parents.15 The node decides to either stay in
this state and transfer the token to a neighbor or allocate
capacity and then move to the token transfer state.

• Token Transfer State. A node enters this state after it allo-
cates capacity or when it receives the token from a neigh-
bor while being fully allocated. In this state, one of the
non-fully allocated neighbors will receive the token. If all
the neighbors are fully allocated, the token will be returned
to the first neighbor in the stack and this neighbor will be
popped from the stack. The protocol halts when all the
neighbors are fully allocated and the stack is empty. The
protocol always terminates at the initiating node.

Figure 5 presents the pseudocode of the procedure exe-
cuted by a node in the allocation state. In the centralized al-
gorithm a node allocates capacity if its dk is the largest in the
network. In the distributed algorithm a node allocates capac-
ity if its dk is larger than the dk’s of its neighbors. Thus, the
order in which capacity is allocated to the links is not neces-
sarily the same in the two algorithms. In our numerical exper-
iments, the distributed algorithm (algorithm HDSCA) always
converged to the same capacity vector as the centralized algo-
rithm (algorithm HCSCA) regardless of the node which initi-
ated the protocol. However, proving that this property holds
for every scatternet and flow vector requires further research.

Figure 6 describes the pseudocode of the procedure exe-
cuted by a node in the token transfer state. A node enters this
state due to two possible events: capacity allocation by the
node or receipt of the token from a neighbor that popped its
details from the stack. In this state it can either send the token
to its “best” neighbor or return it to one of its parents. Thus,

15 Unlike other distributed protocols (such as Depth First Search), a node
can have a few parents.

1 find the node with the largest dk among the non-fully al-
located neighbors

2 if such a node exists
3 then send the token to that neighbor
4 else if the stack is empty
5 then halt
6 else
7 pop the first node from the parents stack
8 send the token to that parent

Figure 6. Algorithm HDSCA – the procedure executed by a node in the token
transfer state.

Figure 7. A simple scatternet.

the token either does not traverse a link or traverses it in both
directions. It can be shown that since the token cannot be re-
turned to a parent before all the neighbors are fully allocated,
the algorithm cannot halt before all the link capacities have
been allocated. Moreover, the protocol terminates at the initi-
ating node, thereby providing an indication of the completion
of the protocol.

In order to illustrate the need for a node to return the token
to its parents, we shall describe a simple example of execu-
tion of the algorithm in the scatternet described in figure 7.
Table 2 presents the operations performed during the execu-
tion, assuming that master 2 imitates the algorithm and that
at initialization d3 > d2. Suppose that node 4 had another
neighbor (referred to as node 5). If the algorithm stopped af-
ter node 2 allocates capacity (step 3 in table 2), link (4, 5)
would have remained unallocated. However, since the token
must be returned to a parent, it must be returned to bridge 3
at the end of step 3. This bridge should send it to its non-fully
allocated neighbor – node 4, which would allocate the capac-
ity of link (4, 5). Notice that in more complicated scatternet
topologies a node may get the token from a few parents before
it allocates capacity by itself.

Notice that the algorithm is based on token passing and
thereby requires the implementation of mechanisms that deal

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 57

Table 2
The operations performed during the execution of Algorithm HDSCA (initiated by node 2) in the scatternet described in figure 7.

Step Node States Operations

1 2 Allocation Send token to node 3 (d3 > d2)

2 3 Allocation and Token Transfer Allocate capacity and send token to node 2
3 2 Allocation and Token Transfer Allocate capacity and send token to node 3 (parent)
4 3 Token Transfer Send token to node 2 (parent)
5 2 Token Transfer Halt (the parents stack is empty)

Figure 8. A bipartite scatternet with different values of flow (an arrow denotes flow along a path).

A B

Figure 9. The optimal average delay in the scatternets presented in figures 8A and 8B.

with lost and duplicate tokens. These mechanisms will be
implemented both in the link layer and as a part of the algo-
rithm. Thus, in an operational version of the algorithm some
of the nodes will be responsible for monitoring the network
and dealing with situations in which a token is lost or dupli-
cated.

7. Numerical results

The optimal algorithm (algorithm SCD, presented in sec-
tion 5) and the heuristic algorithms (algorithm HCSCA and
algorithm HDSCA, presented in section 6) were imple-
mented16 and tested on several representative cases. In all
these cases, the results of the heuristic algorithms were very
close to the optimal results and the centralized and distributed
heuristic algorithms converged to the same capacity vector.
Although our analysis is based on a static model with sta-

16 For the implementation of algorithm SCD, we used the delay function
presented in definition 4.

tionary flows, we have also evaluated the distributed heuristic
in dynamic scenarios in which the flow rates change during
the execution of the algorithm. It was found that the distrib-
uted heuristic usually converges to results close to the results
in static scenarios. Regarding nonbipartite scatternets, it was
found that in many cases the available capacity is utilized in-
efficiently relatively to its utilization in bipartite scatternets.
In this section, we briefly describe the numerical results ob-
tained for a few scatternets and demonstrate these findings.

7.1. Bipartite scatternets

Figures 8A and 8B illustrate a bipartite scatternet with differ-
ent flow values. The scatternet topology is based on the topol-
ogy presented in [24, figure 4] (every master has two bridge-
slaves and one non-bridge slave). Figure 9 presents the opti-
mal values of average delay (obtained by algorithm SCD) in
the scatternets described in figure 8 for different values of λ.
Figure 10 gives the ratio DT /D

∗
T where DT is of the delay

obtained by the centralized heuristic (algorithm HCSCA) and

58 G. ZUSSMAN AND A. SEGALL

A B

Figure 10. The ratio of the heuristic delay to the optimal delay (DT /D
∗
T
) in the scatternets presented in figures 8A and 8B.

Figure 11. A bipartite scatternet (the flow values from the master to the non-bridge slaves in every piconet are identical to the values in the lowest piconet)
and the ratio of the heuristic delay to the optimal delay (DT /D

∗
T).

D∗
T is the optimal delay. It can be seen that in all cases the

two values are very close. For instance, in the worst case (the
scatternet described in figure 8B with λ = 0.062) the heuris-
tic delay is bigger than the optimal delay by 0.592%.

Figure 11 presents a more complex scatternet based on the
topology described in [27, figure 1]. The figure also presents
the ratio of the heuristic delay values to the optimal delay
values, which as before is very close to 1.

There are cases in which algorithm SCD converges af-
ter a large number of iterations. However, the number of
iterations is drastically reduced if the vector obtained by
algorithm HCSCA is used as an initial solution for algo-
rithm SCD. For example, table 3 includes the number of it-
erations required for obtaining the optimal solution with an
arbitrary initial solution and with an initial solution computed
by algorithm HCSCA.

We note that in our numerical experiments, the centralized
heuristic (algorithm HCSCA) and the distributed heuristic (al-
gorithm HDSCA) always converged to the same capacity vec-
tor although the two algorithms normally allocate capacity in
different order.

As mentioned before, although the analysis is based on a
static model with stationary flows, the distributed heuristic
performed well in dynamic scenarios in which the flow rates
vary during the execution of the algorithm. For example, we
have simulated a scenario in which after a token transfer, the
flow on every link (i, j) is set to fij (1 +R) where R is a uni-

formly distributed random variable (R ∼ U(−rmax, rmax)).
Then, the algorithm determines the next step according to the
new flow values. The graphs in figure 12 present the distri-
bution of the ratio DT /D

∗
T where D∗

T is the optimal delay
and DT is of the delay obtained by algorithm HDSCA when
the flows were varied at every iteration.17 It can be seen that
when the flow values are within reasonable ranges, the effect
on the delay is relatively insignificant.

7.2. Nonbipartite scatternets

Figure 13 illustrates three nonbipartite scatternets and the op-
timal capacities obtained by algorithm SCD for a given flow.
In the scatternet described in figure 13B, no node utilizes its
full capacity (every node is idle for at least 10% of its time
slots) and in the scatternet described in figure 13C, only two
nodes utilize their full capacity (nodes 2 and 5). Allocations
in which most of the nodes are idle during some of the time
slots are typical to nonbipartite scatternets. This is an out-
come of constraint (7), described in lemma 1, which must be
satisfied in nonbipartite scatternets.

According to a condition described in [13] and [25], if
every node is allowed to utilize at most 2/3 of its capacity,
constraint (7) will be satisfied. For example, in the scatternet
described in figure 13A, if every link capacity is 1/3, (7) will
be satisfied. However, since this is not a necessary condition,

17 For every value of λ and rmax the scenario was simulated 100 times.

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 59

a node can utilize more than 2/3 of its capacity and (7) will
still be satisfied (for example, nodes 2 and 5 in the scatternet
described in figure 13C utilize their full capacity). In view
of the fact that bounding the capacity of a node to 2/3 seems
drastic, we wish to illustrate the effect of (7) on the capacity

Figure 12. The distribution of the ratio of the heuristic delay, obtained for
varying link flows, to the optimal delay (DT /D

∗
T) in the scatternet presented

in figure 8B with λ = 0.05 and different values of rmax.

allocated in the scatternet. Thus, we shall compare the capac-
ities allocated when condition (7) is enforced as opposed to
when it is ignored.

For example, in the scatternet described in figure 13B, the
average capacity allocated by a node is 0.8 and the total de-
lay is 53.48. On the other hand, if (7) is ignored the average
capacity is 0.95 and the total delay is 21.72. Thus, (7) causes
a reduction of 15.8% in the average capacity allocated and an
increase of 146% in the total delay. Notice that in this scatter-
net the node capacities cannot be restricted to 2/3.

Another example of a nonbipartite scatternet is illustrated
in figure 14. Figure 15 presents the average node capacities
and the total delay when (7) holds and when it is ignored.
When (7) holds the average node capacity is 0.8 (for all the
values of λ, node 2 utilizes its full capacity) and when it is
ignored the average node capacity is 0.867. Moreover, on
average the delay is increased by 15.6% due to (7).

Although the constraint imposed by the nonbipartite topol-
ogy does not seem to degrade the performance by 1/3, it ap-
pears that a scatternet with a nonbipartite topology may uti-
lize its resources in an inefficient manner. This conclusion,
along with the fact that scatternet topologies in which a mas-
ter is also a bridge may result in poor bandwidth utilization
supports our focus on algorithms for bipartite scatternets.

8. Conclusions and future study

This paper presents an analytical study of the capacity assign-
ment problem in Bluetooth scatternets. The problem has been
formulated for bipartite and nonbipartite scatternets, using the
properties of the matching polytope. Then, we have intro-
duced a centralized algorithm for obtaining its optimal solu-
tion. A low complexity heuristic algorithm for the solution
of the problem in bipartite scatternets, which obtains results
that are relatively close to the optimal results, has also been

Table 3
The number of iterations required for obtaining the optimal solution in the
scatternet described in figure 8B. The optimal solution was computed with
an arbitrary initial solution and with an initial solution obtained by algo-

rithm HCSCA (the required tolerance t was 0.005).

Initial solution
λ Arbitrary Obtained by HCSCA

0.03700 5.952 1
0.04325 42.340 36
0.04950 100 215
0.05575 392 352
0.06200 20.993 303

Figure 13. Nonbipartite scatternets and the optimal capacities c∗ found by algorithm SCD for given values of flow f .

60 G. ZUSSMAN AND A. SEGALL

described. We have also developed a distributed heuristic that
seems to obtain the same results as the centralized heuristic.
Finally, we have presented a few numerical examples and dis-
cussed the performance of the heuristic algorithms in static
and dynamic scenarios as well as the bandwidth utilization in
nonbipartite scatternets.

The work presented here is the first approach towards an
analysis of scatternet performance. Hence, there are still
many open problems to deal with. For example, since distrib-
uted protocols are required for actual Bluetooth scatternets,
future study will focus on developing optimal distributed pro-
tocols and improving the heuristic distributed protocol, pre-
sented in this paper. Furthermore, in this paper we have evalu-
ated the performance of the distributed heuristic in scatternets
with a static topology. In the future, we intend to investigate
the performance of the distributed protocols in a dynamic
topology maintained by a scatternet formation algorithm.

Finally, we note that a major future research direction is
the development of capacity assignment protocols that will be
able to deal with various quality-of-service requirements and
to interact with scatternet formation, scheduling, and routing
protocols.

Appendix

Proof of proposition 2

We shall introduce a lemma regarding algorithm HCSCA (de-
scribed in figure 4) that is required in order to prove the propo-

Figure 14. A nonbipartite scatternet.

sition. The rest of the proof is by induction and it is omitted
due to space constraints (it can be found in [28]).

Lemma 2. If in step 2 of algorithm HCSCA, node p is se-
lected and in step 3 capacity is allocated to the link (p, q),
then this capacity is smaller or equal to the capacity which
would have been allocated to the link, in case node q had
been selected in step 2.

Proof. Denote by cpq [p] the capacity of link (p, q) as it
is allocated in step 3, following the selection of node p in
step 2. Similarly, denote by cpq [q] the capacity of link (p, q)
that would have been allocated in step 3, if node q had been
selected in step 2.

In step 2, dp and dq are computed as if the nodes have been
selected and the capacities have been assigned. Since node p
is selected in step 2 and due to the selection procedure, dp �
dq . According to (13) and definition 7, D′

pq(cpq [p]) = −d2
p.

Therefore, D′
pq(cpq [p]) � D′

pq(cpq[q]).
According to definition 2.2, D′

ij (cij) is an increasing func-
tion of cij and therefore cpq[p] � cpq [q]. �

References

[1] S. Baatz, M. Frank, C. Kühl, P. Martini and C. Scholz, Adaptive scatter-
net support for Bluetooth using sniff mode, in: Proc. of IEEE LCN’01
(November 2001) pp. 112–120.

[2] S. Baatz, M. Frank, C. Kühl, P. Martini and C. Scholz, Bluetooth scat-
ternets: An enhanced adaptive scheduling scheme, in: Proc. of IEEE
INFOCOM’02 (June 2002) pp. 782–790.

[3] D.P. Bertsekas, Nonlinear Programming (Athena Scientific, MA,
1999).

[4] D.P. Bertsekas and R. Gallager, Data Networks (Prentice Hall Interna-
tional, Englewood Cliffs, NJ, 1992).

[5] P. Bhagwat and S.P. Rao, On the characterization of Bluetooth
scatternet topologies, submitted for publication (August 2002),
available at http://www.winlab.rutgers.edu/~pravin/
publications/papers/bt-top.ps

[6] Bluetooth Special Interest Group, Specification of the Bluetooth System
– Version 1.1 (February 2001).

[7] J. Bray and C. Sturman, Bluetooth 1.1 Connect without Cables (Pren-
tice Hall International, Englewood Cliffs, NJ, 2001) pp. 1990–1994.

A B

Figure 15. Results obtained for the scatternet presented in figure 14. The ratio of the average optimal node capacities to the average node capacities allocated
when (7) is ignored (A) and a comparison of the optimal delay to the delay when (7) is ignored (B).

CAPACITY ASSIGNMENT IN BLUETOOTH SCATTERNETS 61

[8] R. Bruno, M. Conti and E. Gregori, Bluetooth: Architecture, protocols
and scheduling algorithms, Cluster Computing 5 (April 2002) 117–131.

[9] A. Capone, M. Gerla and R. Kapoor, Efficient polling schemes for
Bluetooth picocells, in: Proc. of IEEE ICC’01 (June 2001) pp. 1990–
1994.

[10] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey, Enhancing per-
formance of asynchronous data traffic over the Bluetooth wireless ad-
hoc network, in: Proc. of IEEE INFOCOM’01 (April 2001) pp. 591–
600.

[11] J. Edmonds, Maximum matching and a polyhedron with (0, 1) vertices,
Journal of Research of the National Bureau of Standards 69B (1965)
125–130.

[12] M. Gerla, J.A.S. Monteiro and R.A. Pazos-Rangel, Topology design
and bandwidth allocation in ATM nets, IEEE J. Selected Areas Com-
mun. 7 (October 1989) 1253–1262.

[13] B. Hajek and G. Sasaki, Link scheduling in polynomial time, IEEE
Trans. Inform. Theory 34 (September 1988) 910–917.

[14] L. Har-Shai, R. Kofman, G. Zussman and A. Segall, Inter-piconet
scheduling in Bluetooth scatternets, in: Proc. of OPNETWORK 2002
(August 2002).

[15] N. Johansson, U. Korner and P. Johansson, Performance evaluation of
scheduling algorithms for Bluetooth, in: Proc. of IFIP TC6 Internat.
Conf. on Broadband Communications (November 1999) pp. 139–150.

[16] N. Johansson, U. Korner and L. Tassiulas, A distributed scheduling al-
gorithm for Bluetooth scatternet, in: Proc. of ITC’17 (December 2001)
pp. 61–72.

[17] P. Johansson, R. Kapoor, M. Kazantzidis and M. Gerla, Rendezvous
scheduling in Bluetooth scatternets, in: Proc. of IEEE ICC’02 (April
2002) pp. 318–324.

[18] P. Johansson, M. Kazantzidis, R. Kapoor and M. Gerla, Bluetooth:
An enabler for personal area networking, IEEE Network 15 (Septem-
ber/October 2001) 28–37.

[19] L. Kleinrock, Communication Nets: Stochastic Message Flow and De-
lay (McGraw-Hill, New York, 1964).

[20] B.A. Miller and C. Bisdikian, Bluetooth Revealed (Prentice Hall Inter-
national, Englewood Cliffs, NJ, 2000).

[21] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Opti-
mization (Wiley, New York, 1988).

[22] R.A. Pazos-Rangel and M. Gerla, Express pipe networks, in: Proc. of
Global Telecommunications Conf. (1982) pp. B2.3.1–5.

[23] A. Racz, G. Miklos, F. Kubinszky and A. Valko, A pseudo-random
coordinated scheduling algorithm for Bluetooth scatternets, in: Proc.
of ACM MOBIHOC’01 (October 2001) pp. 193–203.

[24] T. Salonidis, P. Bhagwat, L. Tassiulas and R. LaMaire, Distributed
topology construction of Bluetooth personal area networks, in: Proc.
of IEEE INFOCOM’01 (April 2001) pp. 1577–1586.

[25] L. Tassiulas and S. Sarkar, Maxmin fair scheduling in wireless net-
works, in: Proc. of IEEE INFOCOM’02 (June 2002) pp. 763–772.

[26] G.V. Zaruba, S. Basagni and I. Chlamtac, Bluetrees – scatternet for-
mation to enable Bluetooth-based ad hoc networks, in: Proc. of IEEE
ICC’01 (June 2001) pp. 273–277.

[27] W. Zhang and G. Cao, A flexible scatternet-wide scheduling algorithm
for Bluetooth networks, in: Proc. of IEEE IPCCC’02 (April 2002)
pp. 291–298.

[28] G. Zussman and A. Segall, Capacity assignment in Bluetooth
scatternets – analysis and algorithms, CCIT Report, No. 355,
Department of Electrical Engineering, Technion (October 2001), avail-

able at http://www.comnet.technion.ac.il/segall/
reports/CapacityBT.pdf

[29] G. Zussman, U. Yechiali and A. Segall, Exact probabilistic analysis of
the 1-limited scheduling algorithm for symmetrical Bluetooth piconets,
in: Proc. of IFIP-TC6 Personal Wireless Communications (PWC’03),
eds. M. Conti et al., Lecture Notes in Computer Sience, Vol. 2775
(Springer, 2003) pp. 276–290.

Gil Zussman received the B.Sc. degree in industrial
engineering and management and the B.A. degree in
economics (both summa cum laude) from the Tech-
nion – Israel Institute of Technology in 1995. He re-
ceived the M.Sc. degree (summa cum laude) in oper-
ations research from Tel-Aviv University in 1999. He
is currently working toward the Ph.D. degree in the
Department of Electrical Engineering at the Tech-
nion. From 1995 to 1998, he served as an officer
and an engineer in the Israel Defense Forces. His

current research interests are in the area of ad hoc and sensor networks. In
particular, he is interested in personal area networks, energy efficient routing,
and medium access control protocols. Gil received the Knesset (Israeli Par-
liament) Award for distinguished students, the Best Student Paper Award at
the IFIP-TC6 Networking 2002 Conference, and the IEEE Communications
Magazine Best Paper Award at the OPNETWORK 2002 Conference.
E-mail: gilz@tx.technion.ac.il
WWW: http://www.comnet.technion.ac.il/~gilz

Adrian Segall received the B.Sc. and M.Sc. degrees
in electrical engineering from the Technion, Israel
Institute of Technology in 1965 and 1971, respec-
tively, and the Ph.D. degree in electrical engineering
with a minor in statistics from Stanford University
in 1973. After serving active duty in the Israel De-
fense Forces, he joined in 1968 the Scientific Depart-
ment of Israel’s Ministry of Defense. From 1973 to
1974 he was a Research Engineer at System Con-
trol Inc., Palo Alto, CA and a Lecturer at Stanford

University. From 1974 to 1976 he was an Assistant Professor of Electrical
Engineering and Computer Science at the Massachusetts Institute of Tech-
nology. From 1987 to 1998 he was on the faculty of the Department of
Computer Science at the Technion. He is presently Benjamin Professor of
Computer-Communication Networks in the Department of Electrical Engi-
neering, Technion, Israel Institute of Technology. From 1982 to 1984 he was
on leave with the IBM T.J. Watson Research Center, Yorktown Heights, NY.
He held visiting positions with IBM, AT&T and Lucent Bell Labs. His cur-
rent research interests are in the area of optical networks, wireless, sensor
and ad-hoc networks. Dr. Segall is an IEEE Fellow and has served in the past
as Editor for Computer Communication Theory of the IEEE Transactions
on Communications and Editor for the IEEE Information Theory Society
Newsletter. He was selected as an IEEE delegate to the 1975 IEEE–USSR
Information Theory Workshop, and is the recipient of the 1981 Miriam and
Ray Klein Award for Outstanding Research and of the 1990 Taub Award in
Computer Science. He is presently a Senior Editor for the IEEE Journal on
Selected Areas in Communications.
E-mail: segall@ee.technion.ac.il
WWW: http://www.comnet.technion.ac.il/segall

