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Distributed Throughput Maximization in
Wireless Mesh Networks via Pre-Partitioning

Andrew Brzezinski, Gil Zussma8enior Member,

Abstract— This paper considers the interaction between chan-
nel assignment and distributed scheduling in multi-channemulti-
radio Wireless Mesh Networks (WMNs). Recently, a number
of distributed scheduling algorithms for wireless networks have
emerged. Due to their distributed operation, these algoritms
can achieveonly a fraction of the maximum possible throughput.
As an alternative to increasing the throughput fraction by
designing new algorithms, we present a novel approach that
takes advantage of the inherent multi-radio capability of WMN's.
We show that this capability can enable partitioning of the
network into subnetworks in which simple distributed scheduling
algorithms can achieve 100% throughput. The partitioning is
based on the notion of Local Pooling. Using this notion, we -
acterize topologies in which 100% throughput can be achievk
distributedly. These topologies are used in order to devefp a
number of centralized channel assignment algorithms that are
based on a matroid intersection algorithm. These algorithrs
pre-partition a network in a manner that not only expands the
capacity regions of the subnetworks but also allowslistributed
algorithms to achieve these capacity regions. We evaluatéhe
performance of the algorithms via simulation and show that
they significantly increase thedistributedly achievable capacity
region. We note that while the identified topologies are of geeral
interference graphs, the partitioning algorithms are desgned for
networks with primary interference constraints.

Index Terms— Stability, Channel assignment, Scheduling, Dis-
tributed algorithms, Local Pooling, Matroid intersection

I. INTRODUCTION

IEEEand Eytan Modian&enior Member, IEEE

and scheduling but unlike most previous works, d@& not
assume that the traffic statistics are known. Alternatjvely
we assume a&tochastic arrival procesand present a novel
partitioning approach that enables throughput maxinorati
in each partition by distributed scheduling algorithms.

Joint scheduling and routing in a slotted multihop wireless
network with a stochastic packet arrival process was con-
sidered in the seminal paper by Tassiulas and Ephremides
[23]. In that paper they presented the ficgintralizedpolicy
that is guaranteed to stabilize the network (i.e. provide%0
throughput) whenever the arrival rates are within the &tgbi
region. The results of [23] have been extended to various
settings of wireless networks and input-queued switches (e
[18], [20]). However, optimal algorithms based on [23] requ
repeatedly solving global optimization problemtaking into
account the queue backlog information for every link in the
network. Obtaining a centralized solution to such a problem
in a wireless network does not seem to be feasible, due
to the communication overhead associated with continyousl
collecting the queue backlog information, and due to the
limited processing capability of the nodes. On the other
hand, distributed algorithms usually provide only appnaxie
solutions, resulting in significantly reduced throughput.

Hence, the design of distributed scheduling algorithms has
attracted a lot of attention recently. Lin and Shroff [11]died
the impact of imperfect scheduling on cross-layer raterobnt

Wireless Mesh Networks (WMNs) have recently emergegdearding primary interference constralnthey showed that

as a solution for providing last-mile Internet access [2]. £
WMN consists of mesh routers, that form the network backy,
bone, and mesh clients. Mesh routers are rarely mobile aggl,

sing a distributed maximal matching algorithm along with a
ate control algorithm may achieve as low as 50% throughput.
ilar results for different settings were obtained in, [6],

usually do not have power constraints. The mesh routers 8], [24]. Chaporkar et al. [6] characterize the stabitiégion

usually equipped with multiple wireless interfaces opearat

of a maximal scheduling algorithm under arbitrary topoésgi

in orthogonal channels. Therefore, a major challenge in &y jnterference models. They show that under secondary
design and operation of such networks is to allocate channgia ference constraints, the stability region may be cedu

and schedule transmissions to efficiently share the com
spectrum among the mesh routers. Several recent works
cused onmulti-radio multi-channeM/MNs. Specifically, [3],

[14], [22] study the issues of channel allocation, schedyli

”}BnA*/& where A* is the stability region under a perfect

(f@éntralized) scheduler. Finally, a novel distributaddomized
approach that can achieve 100% throughput has been présente
in [19]. Although randomized algorithms can obtain maximum

and routing in WMNSs, assuming that the traffic statistics aig o ghput, deterministic distributed algorithms areirdse,
given. In this paper, we study the issues of channel allonatiy e 1 their simplicity and since they often result in attiver
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vadelay performance.

In this paper, we show thathe multi-radio and multi-
channel capabilities of WMNs provide an opportunity for
simple deterministic distributed algorithms to achievghhi
throughput.Mesh routers are usually equipped with multiple

1Under primary interference constraints, each station cawerse with at
most a single neighbor at a time. Namely, the set of actieslat any point
of time is a matching.
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radios (transceivers) and can transmit and receive onpiilti(i.e. a2 x n input-queued switch) maximal weight matching
channels simultaneously [1], [3], [14]. Hence, channelgehaalgorithms achieve 100% throughput.
to be allocated to the links and the transmissions on eaclBuilding upon our observations, we design centralized
link have to be scheduled to avoid collisions. By allocatinghannel allocation algorithms that pre-partition the roatw
different channels to different links, several non-ingeirfig Similarly to [3] and to the static channel assignment in [14]
subnetworks can be constructed. We study which subnetwevk assume that a channel is assigned to a radio interface for
topologies enable simple distributed scheduling algorétio an extended period of time. For simplicity, similarly to the
achieve 100% throughput. Based on these results, we devedtgiic channel assignment in [14], we also assume that one
centralized network partitioning algorithms that decosgthe channel is assigned to each link. Under these assumptions,
network into such subnetworks. using the minimum number of channels requires a partitgnin
Although inarbitrary topologieshe worst case performanceof the network into the minimum number of subnetworks
of distributed maximal scheduling algorithms can be vemsatisfying LoP. The general LoP conditions are extremely
low, there are some topologies in which thegn achieve challenging to incorporate into a channel allocation atar.
100% throughput This observation is based on a work byFortunately, our study provides some useful building bsock
Dimakis and Walrand [9] in which they study the performanc8ince tree network graphs satisfy LoP, our approach is to
of the Longest Queue First (LQF) scheduling algorithm in partition the network into non-overlapping forests, subhtt
graph of interfering queuésThe LQF algorithm is a greedy each edge will be part of a single forest and each forest will
maximal weight scheduling algorithm that selects the set u$e a different channel. This problem is closely relatechéo t
served queues greedily according to the queue lengthskeJnlimatroid intersectiorand matroid partitioningproblems.
amaximumweight (optimal) solution, anaximalweight solu-  Given k channels, the problem of partitioning the graph
tion can be easily obtained in a distributed manner. Sufficieinto k£ forests such that the number of edges included in the
conditions for a maximal weight algorithm to achieve 100%orests is maximized is referred to as theforest problem
throughput are presented in [9]. These conditions arenetfer [10]. A simple approach is to obtain approximatesolution
to asLocal Pooling(LoP) and are related to the properties oy a Breadth First Search (BFS) algorithm. Alternativeilyce
all maximal independent sets in the conflict graph. the k-forest problem is actually a specific case of a Matroid
In this paper we conduct the first thorough study of the infardinality Intersection problem, asptimal solution can be
plications of the LoP conditions on the network performancéund by the Matroid Cardinality Intersection (MCI) algitwin
We start by presenting a motivating example demonstratiaf) [15] (having polynomial complexity). We show that the
that channel allocation algorithms that take into accowf L MCI algorithm can be adapted to take into account the scenari
have desirable properties. We then conduct an extensive itu-which different nodes have different numbers of radios.
merical study of the satisfaction of LoP by conflict graphs dfising either the BFS algorithm or the MCI algorithm enables a
up to 7 nodes. We show thatit of 1,252 graphs, only 14 dosimple distributed scheduling algorithm to achieve theacity
not satisfy LoPIt is an indication of the strength of maximalregion of the subnetworks (i.e. achieve 100% throughputen t
weight scheduling for achieving 100% throughput regaslesubnetworks). Yet, the capacity region itself may not be the
of the network topology, aside from a few “bad” topologiedhest possible. This results from thedesirable propertyhat
Due to computational limitations, exhaustively verifyitige the sizes (number of edges) of the forests are unbalanced.
satisfaction of LoP in graphs with more than 7 nodes seemsWe present three algorithms that aim to expand the capacity
infeasible. In order to be able to utilize larger graphs, tuelg  region, while maintaining the LoP conditions in all the sebn
what general properties of conflict graphs assist or hinder tworks. The main objective is to balance the number of edges
LoP conditions. For example, we show that cliques that adeross channels and to reduce the node degrees in each chan-
connected to each other in different manners satisfy3.oP. nel. Two of these novel capacity expansion algorithms make
These observations provide several building blocks for patse of augmenting paths (in the spirit of the MCI algorithm of
titioning a graph into subgraphs satisfying LoP. In order #3.5]) to balance the node degree across channels. Thus, they
demonstrate this capability and for the ease of presentatie can be viewed adalancedMatroid Cardinality Intersection
focus on scheduling under primary interference consshinglgorithms. We evaluate the performance of the algorithms
(studied in [6], [7], [19], [24]). For example, we show thavia simulation. We show that the MCI algorithm significantly
a tree network graph, when subject to primary interferengtperforms the BFS algorithms. We also compare the per-
constraints, yields an interference graph which satisfieB. L formance of the capacity expansion algorithms and the MCI
Hence,in trees, maximal weight matching algorithms achievalgorithm and show that a large capacity improvement can be
100% throughputWe also study bipartite network graphs tha@ained by using these algorithms. We conclude by comparing
provide insights regarding the number of required subgsapithe performance of the capacity expansion algorithms aed th
For instance, we show that in ank,, bipartite graph channel allocation algorithm of [14].
The main contributions of this paper are two-fold. First,
2 graph of interfering queues can be constructed from theatitgraph W€ conduct a rigorous study of the properties of network
%Ctgﬂgggcéoo:hceori]?ltistrfe:gnﬁe[lcsfinStraintS and is usuaffgred to as an graphs satisfying Local Pooling. The second contributi®n i
3In [25] we identify sgverr)al additional graph classes thaisgaloP. t_he develqpment of network partitioning (I'e'.Channel (Edk)
tion) algorithms that generate subnetworks with large cipa

4The approach can be extended to more realistic interferennstraints ) ) ] - 9"
and to joint routing and scheduling (for more details, se&)[2 regions, while enabling distributed throughput maximatn
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e\ r—" 0o (radios). There aré: available orthogonal channels and it
@ — ;, O (© Mmwn=jo 001 is assumed that each of the(v) interfaces operates on a
N ra— 0101 different channel. Similarly to [3] and to the static modél o

. . [14], we consider a static channel allocation model in wtdch
Fig. 1. (a) A network grapl , (b) the corresponding interference graph . . .
G under the primary interference constraints, and (c) theimat (V7) of channel is allocated to each interface for an extendedgefio
maximal independent sets @;. time. Such an approach enables the use of commodity 802.11
radios [3]. We note that the extension of the model for a
_dynamic channel allocation is a subject for further redearc
each of the subnetworks. To the best of our knowledge, this\iz assume that transmissions in different channels cannot

the first attempt to study the algorithmic implications ofcab q)jige. Therefore, once the different channels are afleta:
Pooling. This work is not only different from previous Workﬁjisjoint interference graphs are generated.

on distributed stability, due to the focus on partitioningsh £ the simplicity of presentation, we consider single-hop
networks, but also different from previous works on optimiz  p,;_girectional trafficc As mentioned above, the model can be

mesh networks that mostly rely on traffic statistics. extended to more general scenarios. Lt (¢) denote the
This paper is organized as follows. In Section Il we Preseflmber of packets arrived at noder node; by the end of

the network model and formulate the problem. In Section Y}e_siots that need to be transmitted across liik;). Ai;(t)

we present and clarify the LoP conditions and demonstralg, e yiewed as the cumulative number of packets arriving at

their effect on the channel assignment problem. Section fe ; ;) of the interference graph. We assume that arrivals

studies the characteristics of conflict graphs satisfyin@.L ..o mutually independent and temporally i.i.d. processés w

In Sect.ion Vv we present ngtwork .partitioning and Capac"é(rrival rate),;, that isE[A;; (1)] = A;,. Let the column vector
expansion algorithms and in Section VI we evaluate theyr _ (\ij, (i,7) € Ey) denote the arrival rate vector.
17 9 .

performance. We summarize the results and discuss futurt{et Q,;(t) denote the number of packets waiting to be
ij

research directions in Section VII. transmitted on link(i,j) at the beginning of time-slot
and Q(t) denote the queue-size vector. We will ugkt)
Il. MobEL as the system state at time Let TI(Gy) denote the set
We consider the backbone of a Wireless Mesh Netwodf all feasible link activations in the network grahyy. In
modeled by anetwork graphG'y = (Vv, En), WhereVy = particular, letr = (75, (i,j) € Ex) € II(Gy) be a(0,1)
{1,...,n} is the set of nodes (mesh routers) ahdy = column vector representing a possible link activation. &md
{(i,7) = i,j € Vn} is the set of bi-directional links, with primary interference constrainte,(G ) includes all possible
m £ |Ey|. Depending on the context, we denote a link eithenatchings, while in general, it corresponds to all indegend
by (i, j) or by ex. We assume that the time is slotted, denotegkts in the interference graph;. Following the notation of
by ¢, and that the packet length is normalized to be one tin}@], we denote byM (V;) the matrix that includes all the
slot. We denote bys,, a clique having: vertices and by; ; maximalindependent sets i@ (i.e. all the maximal elements
a complete bipartite graph withand ; vertices. of II(G n)). For example, Fig. 1(c) shows the matidX(V7)
Different wireless technologies pose different constsaim for the interference grap&i; in Fig. 1(b). We can now define
the set of transmissions that can take place simultaneoushe stability region(also known as theapacity regiof.
For example, undeprimary interference constraintshe set  Definition 1 (Admissible Rate-Vector): An arrival rate vec-
of possible transmissions is the set of all possible magshintor A is called admissible, if there exists a collection of link
on G'x. In many cases aimterference graphalso known as activations,r;,1 < ! < L such that
a conflict graph)&; = (Vi, Ey) can be dAefined based on the ; ;
network graphGy [13]. We assignV; = En. Thus, each
edgee; in the network graph is represented by a verntgxf As Z am, o 20, Z o < L.
the interference graph and an edge v;) in the interference  pefinition 2 (Stability Region): The set of all admissible

graph indicates a conflict between network graph linkand rate vectorsA is called the stability region and is denoted
e; (i.e. transmissions om; ande; cannot take place simul-y A+,

taneously). In graph theoretic terminology, the intenf@& A scheduling algorithm has to select a schedule that satisfie
graph resulting from primary interference constraintsabet!  yhe transmission constraints at each time slot. £g(t) €
aline graph[11]. For example, Fig. 1 illustrates a networky( 1} pe the indicator variable of whether lirfk, ;) is active

graph and the corresponding interference graph under pfima; time¢ andS(¢) denote the scheduling decision vector. Then,
interference constraints (i.e. the line graph _corresmmt_ﬂo S(t) € (G ). Under a scheduling algorithm, the state of the
the network graph). The r_nodgl can be _eaS|Iy generallzedgystem(Q(t%t > 0) evolves according to a Markov Chain. A
capture network graphs with directional links. In such aecassaple algorithm is defined as follows. We will also refertto i

link (i,5) may interfere with different links than those link,q gn algorithm that achieves 100% throughputiraughput
(7, 1) interferes with. Accordingly, the interference graph W”bptimal algorithm

include a node for each directional link.

We consider the application of Local Pooling to multi-
radio multi-channel WMNS- FO”_meg the mOdell of [3], we  synger this assumption, the joint routing and schedulingolenm reduces
assume that each nodeis equipped withR(v) interfaces to a scheduling problem.

Definition 3 (Stable Algorithm): A scheduling algorithm is
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U3a
stable, if for any admissiblé the Markov ChainQ(t),t > 0) @ 2 . a3 Va5
is positive recurrent. V1 Usg

61

Tassiulas and Ephremides [23] established the existence of
a stable scheduling algorithm. In particular, the alganitthat Fig. 2. (a) A6-node ring network graph and (b) its interference graph.
schedules according t8*(¢) where
* !/
§7(1) = ig@%Q (t)m (1) in any subgraph of a given interference graph induced by
selecting asubset of the nodes
Definition 6 (Overall Local Pooling - OLoP): Interference

Given an interference grapfi;, the algorithm of [23] has 10 graph 7, satisfies Overall Local Pooling if each induced
find the maximum weight independent setG; at each time subgraph over the nodds C V; satisfies SLoP.

slot. Namely, it has to solve an NP-Complete problem in 8VerY\nie continue with the example of the interference gréaph

:lr:‘(\e sllot. tlﬂ thﬁ cort1text ﬁfgrllme:;]y mtgrferenfcihcopsuam and the corresponding matrix/ (V) depicted in Fig. 1. We
IS _algonithm has fo schedule the edges ot MaxiMUm .., see thaty; satisfies SLoP since fon = (1,1,1,1,1),

Weight Matchingat each time slot, where the edge weights aro?’M(W) — 2¢/. Similarly, the subgraph composed of the

the queue sizes. The maximum weight matching in any gra%'rtex set{2,3,4) satisfies SLoP, since fa — (1,1,0)
can be found inD(n®) computation time, using a centralized N ' )

laorithm 1151, H i wirel works. impl ” o’M({2,3,4}) = €. It can be shown that all subgraphs of
aigor! m_[ 1 OWEVET IN WIreless Networks, Imp emeg 'nGI satisfy SLoP, and thereforé&;; satisfies OLoP.

a centralized algorithm is not feasible and distributedoalg Wi d ibe the stability of th ‘ h
rithms (e.g. [12]) can obtain only an approximate solution, € can now describe the stabiiity ot the system when

resulting in a fractional throughput. Hence, even undeyveE’Ie ser\tnce n e?:gh ttmlje FSIOtI'S S.t(;]hedl_:_lﬁ.d atl:cor(tjrllng .to the
simple transmission constraints, it is difficult to obtaid0% . ongest Queue First (LQF) algorithm. This algorithm is an

throughput in a distributed manner. This motivates us {eratlve greedy algorithm that selects the nodeGhf with

develop channel allocation methods that will enable simpﬁ € longest queue, and removes it and its neighbors from the

distributed scheduling algorithms to obtain 100% throughpmterfe(rjence gra_ph._ TTLS proceas {/swr]epeg;ed successlrxlmly "
in each channel. Therefore, we provide a definition of t P nodes remain In the grapn. en two queues have the

Channel Allocation Problenbelow. In Section V we will >2M€ length a tie-breaking rule has to be applied. The set of
develop algorithms for solving this problem selected nodes is a maximal independent set in the intadere

Definition 4 (Channel Allocation Problem): Given a r]et_graph. Hence, since the nodes are selected according to thei

work graph Gy, k channels, andR(v) radios at each node Wel_ghts, we will refer to the LQF algorithm as the Maxmal
. L o Weight Independent Set algorithm. Such a greedy algorithm
v € Vy, assign channels to link@, j) V(i, j) € Ex such that oo ) o
. . can be easily implemented in a distributed manner. In [9] the
at mostR(v) channels are used by links adjacentitpevery following theorem is proved
link is assigned a single channel, arsimple (e.g. greedy) wing , ! p ved. _ ,
distributed algorithms are stable in each subnetwork ofisga 1 heorem 1 (Dimakis and Walrand, 2006 [9]): If - interfer-

is a stable algorithm(’ denotes the transpose of vectgy.

in a different channel. ence graphG; satisfies the OLoP conditions, a Maximal
Weight Independent Set scheduling algorithm achig (e,
throughput.
Ill. L ocAL POOLING CONDITIONS To conclude, the satisfaction of OLoP by an interference
A. Definitions graph is asufficientcondition for distributed maximal weight

Local Pooling (LoP) has been defined by Dimakis an%lgorithm to be throughput optimal.

Walrand in [9]. In this section, we separate their definitain

Local Pooling to two different definitiorsRecall thath/ (V;)

is the collection of maximal independent vertex sets(yn B. Channel Allocation Example

organized as a matrix (an example appears in Fig. 1). We . . —
designate bye the vector having each entry equal to unity. The foIIowmg_s_lmpIe example demonstrates the application
We deliberately avoid specifying its size, because it wél bof the LoP CO’.‘F*'“‘?”S’ presented above, t_o a channel ailm:qt
obvious by the context of its use. We first define the notio(ﬁ]etwork partmonmg) pro.blem' We consider th_e 6-nqdegrm
of Subgraph Local Pooling (we note that the statement of tﬂgtwork graph, depicted in Fig. 2(a). Under primary interfe

LoP conditions can be weakened, if certain restrictions af&°® consraints, this graph h"?‘S a co_rres_po_ndlng 6-n(_?ge fn
made on the arrival processes [9]) interference graph representation, which is illustratedrig.

Definition 5 (Subgraph Local Pooling - SLoP): An inter_2(b). Under these constraints, the maximal weight independ

ference gra’oh‘GI satisfies Subgraph Local Pooling, if thereset in the interference graph is equivalent to the maximal
I

existsa € Rf and ¢ > 0 such thata/ M (V;) = ce'. welght_ matching in thg netvyork gr.ap_h. A maximal weight
. : . . matching can be obtained in a distributed manner by the
We now define the notion of Overall Local Pooling which .
. . . . . algorithm of [12].
requires that Subgraph Local Pooling (SLoP) will be satisfie . . :
If a single radio is located at each node of the 6-node ring

81t has been shown in [5] that the presented definitions arévaigut to ”!usnated in Fig. _Z(a)* then .I’I_O tWO. adjacent edges C.an be
those of [9]. simultaneously active. Thetability region(denoted byA7) is
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then characterized by the following inequalities: such that each component satisfies OLoP, the stability megio
that can bechieveddy a distributed algorithm istrictly larger
Atz + A2z < by Aoz + Asa S0, Asa + A5 < b, thanAz.8 This is despite the fact that the partitioning operation
A5+ Ase < b, Ase + Ae1 < b, Ae1 + A2 < b, (2) model is more restrictive than the other model.
This example demonstrates that careful channel allocation

where b = 1. This stability region can be achieved by %aking into account topologies that satisfy OLoP can previd

centralized algorithm that finds a maximum weight matching .~ ; ; .
gnificant improvements over arbitrary channel allogatio

in each time slot. If we allow two channels to be use : . o o
. . hus, it provides the motivation to study the charactessti
simultaneously and two radios are located at each node, the

stability region (denoted for this case By;) is characterized ° netvyork topqlog|es satlsfymg_ OLoP and to de_S|gn channel
by (2) with b = 2. allocation algorithms that exploit such characteristics.

Consider the case in which a single channel is used. It was
shown in [9] that in the 6-node ring, OLoP does not hold, and ) .
that in general amaximal weight matching algorithm doesA- Exhaustive Numerical Search
not achievel00% throughput in the 6-node rifigAccording We performed a numerical study in which we searched over
to [17], amaximalweight matching algorithm can guaranteall interference graphs of up fonodes. We employed Mathe-
stability for arrival rates that are at ledst% of the rates in the matica to identify all simple graphs, and Matlab to deternin
region Aj (i.e. the throughput obtained by a maximal weighthe maximal configurations (i.e. to obtain the matridéév’;))
algorithm may be 50% lower than that obtained by a maxand to verify the satisfaction of the OLoP conditions forleac
mum weight algorithm). Hence, thguaranteeddistributedly interference graph. The OLoP conditions are based on the
achievable region is given by (2) with= 0.5 (the region may SLoP conditions that were verified using the following linea

IV. A STUDY OF LOCAL POOLING

be larger but this is not guaranteed). program presented in [9].
Consider the case in which two channels can be used .
. . C = Imaxc
simultaneously and two radios are located at each node.rUnde Copv
the assumption that a node can transmit two packets on the St MV > MV + ce

selected link (similarly to a speedup of two, defined in [8]),
the guaranteeddistributedly achievable region is the same as
A7. Alternatively, we can solve the channel allocation prable |t has been shown in [9, Prop. 1] that the gra@h satisfies
defined in Definition 4. According to that definition, in everySLoP if and only ifc* = 0.
time slot only a single packet can be sent on a link (i.e. In order to simplify the presentation of the numerical resul
it is a more restrictive model than the one above). Underwe first show that the OLoP conditions are satisfied by the
possible allocation, link¢1,2), (2,3), and(3,4) can use one disjoint union of two graphs (not sharing any vertices in
channel, while the remaining links use the other channed. Thommon) satisfying the OLoP conditions. This allowed us to
interference graph on each channel is now a tree (e.g. tee li@strict our search to connected simple graphs.
connectinguz, v23, andvss). Since [9] shows that the maxi-  Proposition 1: A graphG; = G} U G? (disjoint union)
mal weight independent set algorithm is throughput optimal satisfies OLoP, if and only i/} and G2 satisfy OLOP.
tree interference graphs, thdistributedly achievabletability Proof: Suppose&’; satisfies OLoP. Consider all induced
region is now given by subgraphs restricted to the vertices @f. Then, any such
induced subgraph satisfies the SLoP conditions by our assump
M2+ Ao S 1, Aoz + Asa < tion thatG'; satisfies OLoP. Thug;} satisfies OLoP. The same
A15 + Ase < 1, Asg + A1 < 1. (3)  reasoning provides tha? satisfies OLoP. Suppose that:
This provides a strict performance improvement over, ande,_ s_atlsfy_O_L_oP._Then, any induced subgraprGQ)f can
which is the region guaranteed by using two channels (smee(ﬂ? S_pl't into disjoint |n1duced subgraphs 6 "_md Gy. For
of two). Yet, it is clear that this channel allocation is nbet the_ induced graph oG-}, our as_su_mptlon prov!des Fhat there
best possible: the allocation in which links, 2), (3,4), and EXISts nonzeray, > 0 that multiplies any maximal indepen-
(5,6) use one channel, while the remaining links use the oth@fnt vector on the induced subgraph to yield a constant

channel can provide each network link with a stable rate §f2milarly, there.exist.mg ande; for the inducgd subgraph on
one unit per time slot (i.e\;; < 1 (i, j) € Ex) G7. Every maximal independent set of the induced subgraph
LAy = ) .

To summarize, for a network operating under primary intePf G must be the disjoint u?ion of a ma_xima_l independent set
ference constraints withspeedup of tw@similar to allocating 0]: tt;e |_nciljuceddsubégraphh(m1 fn_?ha maﬁlmal mdepen;lent set
two channels to each link), a greedy maximal weight algmith0 the induce ,S:Jd graph of;. | us, the a?gmﬁnte .vecltor
(implementable in a distributed manner) can guaranteeaat Ie,(o‘dl’ az) SnUSt yie ?chonstznt Vzue gf+c? or all maxima
the network stability region; [17]. Our example above shows"dependent sets of the induced subgraptGon u

for a particular network that whetvo channels are allocated We, note that in _the following section we W'.” present several
additional theoretical results regarding LoP in generapbs.
7In [9], it was shown that underestricted arrival processes (subject to aA Specific case of one of the results that will be presented
variance constraint and a large deviation bound), a maxme#iht matching
algorithm is stable in the 6-node ring. In this work the atiprocesses are  8Note that this region is, of course, still smaller than (the stability region
not restricted in this way. of a network with two channels, achievable by a centralizgdrahm).

du=1, dv=1, u,VE]RIXII, ceR
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Fig. 3. 7-node graphs that fail OLoP: (a) configurations where theided U3

graph over the oute nodes is &-ring (the dotted lines indicate edges thatrig. 4. An interference graph composed of two cliques anddmeesponding
can exist), and (b) the only-node graph that has no induceding subgraph tree of cliquesgraph.
and fails SLoP.

include vertexv or v*, but never both vertices. Consequently,
there (Lemma 1) is that graphs that have a node with degreth&é vectora having all zero entries except at the indices
satisfy SLoP. This allowed us to restrict our search to gsapborresponding to vertices df,,, where the entries are set to
that do not have vertices of degrégthereby significantly re- 1, yieldso/ M (V') = €’. Thus, such a subgraph satisfies SLoP.
ducing the computation time. We first considered all coreectThis holds for all induced subgraphs 6f; that includev®,
interference graphs having up fovertices that do not have and we conclude that’; satisfies OLoP. |
vertices of degred. There arel5 such graphs. We obtained From the proof of Lemma 1 it can be seen that a graph that
the following numerical result. has a node with degree 1 (such a graph can be viewed as a
Numerical Result 1: All connected simple graphs of up @raphG; sharing a node witli,) satisfies SLoP. Recall that
5 nodes that do not have vertices of degiesatisfy SLoP.  we have used this result in Section IV-A to reduce the number
This immediately implies that all graphs having up to ®f graphs in our numerical search. Moreover, the obsematio
vertices (there are 52 such graphs) satisfy OLoP. Next, we [9] that any interference graph that is a tree (or forest)
considered graphs df vertices (there are 61 such connectesatisfies OLoP can be immediately obtained using Lemma 1.
graphs without degree 1) and obtained the following resultWe note that in Section IV-C we will show that even under the
Numerical Result 2: All graphs df vertices except thé- simple primary interference constraints, the only intefee
node ring satisfy SLoP. graph that can be a tree is a line. Therefore, we now study
Numerical Results 1 and 2 together imply that all graphs #fore complicated interference graphs.
up to 6 vertices except the 6-node ring satisfy OLoP. Lemma 2: Every complete graph satisfies OLoP.
Finally, we considered all graphs af vertices. We first Proof: Consider the complete graphi; = K,. Then
removed from consideration all such graphs havingring clearly any subset of the nodes Gf, labeledV/, also gener-
as an induced subgraph, since due to the failure of SLéFes a complete induced subgraph. Each maximal independent
in a 6-ring, OLOP fails in these graphs by definition. Therget of a complete graph can only contain one vertex, from
are 12 such graphs, and their general form is depicted Mhich we conclude thad/ (V') is the identity matrix of size
Fig. 3(a). Among the remaining graphs divertices, we can |V|. Thus, we can use = e, which yieldsa/M (V') = e for
then guarantee that there are no induced subgraphs, havirgny V', from which we conclude that every induced subgraph
vertices or fewer, that fail the SLoP conditions. satisfies SLoP, and consequently that satisfies OLoP. =
Numerical Result 3: There is one graph@fertices which ~ We define atree of cliquesas follows (an example is
does not have an inducédring on any subset df nodes that provided in Fig. 4) and derive the following Theorem.
fails the SLoP conditions. This graph is depicted in Fig.)3(b Definition 7: A tree of cliquesis composed of cliques
To conclude, almost all 1,252 graphs of up to 7 nod@onnected to each other in a tree structure. Its nodes can be
satisfy OLoP (specifically, 14 fail OLoP). All attempts atquated to cliques and its edges imply a shared vertex batwee
numerical evaluations for graphs of greater than 7 vertich¥0 adjacent cliques. No vertex can be shared by more than
suffered computational difficulty. Therefore, in the folimg two adjacent cliques.
section we focus on generating large graphs satisfying OLoPTheorem 2: A tree of cliques satisfies OLoP.
from small components. Proof: Consider any cliqué&'?} on the tree. By Lemma 2
this clique satisfies OLoP. Then, consider any clique adijace
to G} in the tree of cliques, and denote the graph of the two
combined cliquess?. SinceG} and the adjacent clique share
Our first observation is about connecting a graph andoaly a single vertex, we can apply Lemma 1 to conclude that
clique (complete graph). G? satisfies OLoP. By iteratively adding successive cliques
Lemma 1: IfG; satisfies OLoP, then the graghi;, which to the overall graph under consideration, we see that each
consists ofG; sharing a single vertex with cliqu&,,,n > 2, resulting graph must satisfy OLoP by Lemma 1. Thus, the
satisfies OLoP. overall tree of cliques must satisfy OLoP. [ ]
Proof: Assume thaty; satisfies OLoP. Denote hythe The next theorem considers cliques connected by disjoint
vertex of G that is shared with cliqud<,,. We need only edges, where no two connecting edges share any vertices in
consider the induced subgraphs @f containing a vertex common. Consequently, at masin{m, n} edges can connect
v* # v belonging to the cliquey,,, since all other induced K,, and K,, while maintaining an overall simple graph. The
subgraphs are subgraphs@®jf and satisfy SLoP by our initial proof considers four possible subgraph configurations and
assumption. Clearly, the maximal independent sets of acly sulemonstrates SLoP for each type. The main idea is that each
induced subgraph (whose vertex set is designated)ogither clique usually contributes a single vertex to every maximal

B. Constructive Approach
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independent set of each subgraph. blocks, and each subgraph of a tree of blocks is a forest of
Theorem 3: If two cliques are connected by any number biocks, OLoP is satisfied for any tree of blocks. ]
disjoint edges, the combined graph satisfies OLoP.
Proof: Designate the two clique&}; = (V}!, E7) and
G? = (V2 E?), whereV} NV = 0 and E} N EF = 0.
Further, letE, be the set of disjoint edges connectifi§g and As mentioned above, the primary interference constraints
G2. We then haves; = (V7, Er), whereV; = V' UV? and yield an interference grapfi; which is the line graph of the
E; = E} UE? U E,4. Consider the induced subgraph over theetwork graphG y. In this section, we study the restrictions
vertex setV C Vi. If V N Vll =PorVn V12 = (), then imposed on such interference graphs. We begin by consglerin
Lemma 2 implies thal/ satisfies SLoP. IfV N V}!| =1 and the only7-node graph, which does not have an induéethg,
there existey € V7 such that(V NV}, v) € E,, then Lemma that failed SLoP (depicted in Fig. 3(b)).
1 ensures that SLoP is satisfied figr If |V N V}!| = 1 and Proposition 2: Under primary interference constraintseth
there is nov € V7 such that{V NV}, v} € Eg, then the interference graph presented in Fig. 3(b) cannot correspon
induced subgraph ovér consists of the disjoint union of two to any valid network graph.
cliques, which satisfies SLoP by Lemma 2 and Proposition 1. Proof: According to [11] a graph is a line graph, if
The same reasoning applies whHémn V7| = 1. Finally, when and only if it does not contain any one 6fspecific induced
VNV > 1and|VNVZ| > 1, we claim that every maximal subgraphs. In particular, the following graph is one of the
independent set of the induced subgraph of verticés G; subgraphs, with vertices of Fig. 3(b) labeled appropryatel
contains two vertices. Denote I6y* the induced subgraph overshow the correspondence.
G} andG? that overG3. Since both7} andG? are cliques, no
more than two vertices can belong to any independent set, one
in each clique. Suppose a maximal independent set contains U4 U6
one vertex,v, without loss of generality this vertex belongs
to G}. By definition of the set?;, v can only share an edge
with a single vertex ofG4. Then, if no vertex ofG% can be
added to the independent s€% must beK, since otherwise
any vertex of G3 not incident onv could be added. This

C. Primary Interference Constraints

U3 U2

v U7 .
We conclude thabnly the 6-ring leads to failure of the
OLoP conditions in any network graph havirigedges or
fewer. By similar arguments, we can show that other in-

is a contradiction. Consequently SLoP must be satisfied Eﬁ{feren_ce graphs cannot exist under primary_ interference
such a subgraph. Thus, we have that SLoP is satisfied on & straints. qu example, we can ShOW that thgre IS o nEtwpr
subgraph ofG;, which implies that OLoP is satisfied. m graph whose interference graph (line graph) is a tree having

We now consider a generalized structure of the one defin%dq,Ode degree greater or equal&oAny S.UCh tree has as
in Definition 7, which we term “tree-of-blocks”. We generai an induced subgraph the complete bipartite graqly (also

the types of structures that can correspond to each vertekaf)Wn as the “claw”). According to [11], the gx_i§tence Of.
lfrléCh an induced subgraph precludes the possibility that thi

We next show that two cliques connected by any number |611terference graph is the line graph of any network graph.
Although there is no interference graph that is a tree, a

disjoint edges is another such structure. We again requite t , i
two “blocks” can only share at most one vertex in commonr.‘etwork graph _that is a tree can of course exist. It can b_e
Theorem 4: A “tree-of-blocks”, where each block is eitheshown that the interference graph of such a network graph is

a clique K,,,n > 2 or a pair of cliquesK,, Ky, n,m > 1 always a tree of cliques, defined in Definition 7. The follogvin

connected by any number of disjoint edges, satisfies_OLoIj.:or()",ary is an imme.diate re.sult of Thgorem 2. .According
Proof: Any connected subgraph of a tree of blocks is treid this corollary, maximal weight matching algorithms are

of blocks or a forest of blocks. Thus, we only need to considgiaP!e (provide 100% throughput) in tre%é’o the best of our

satisfaction of the SLoP properties of any tree of blockscivh knowledge, this corollary provides the first non-triviatwerk

will provide the satisfaction of OLoP for any tree of blocksStructure in which simple distributed algorithms are stafihe

If the tree of blocksG = (V, E) has any cliquek,,,n > 2 channel allocation algorithms that will be presented inti®ac
associated with a leaf of the tree, then one vertex of thigeli ¥ @ré based on this observation.

must belong to every maximal independent set of the tree ofc0rollary 1. Under primary interference constraints, the
blocks. Hence, setting; — 1 for any vertex corresponding'nterference graph of a tree network graph satisfies OLoP.

to this clique andx; = 0 otherwise providesy' M (V) = e Based on the results presented in Section IV-B, we can
and we conclude that SLoP is satisfied. It remains to consid@nstruct other non-trivial networks in which maximal weig
the case where every leaf of the tree of blocks corresporfi@iching algorithms are stable. For example, Theorem 4
to two cliques connected by any number of disjoint edgégr_lplles th{;\t the network de:scr!bed in Fig. 5 §at|sf|es OLqP,
Consider any such block and in particular focus on the cliq@d thus is stable under distributed scheduling. Devegppin
that has no other blocks sharing a vertex with it. Then, it REtwork partitioning algorithms that efficiently take adtage
clear that the proof of Theorem 3 applies to this clique, ifif Such topologies is a subject for further research.

that there must exist a vertex of this clique in every maximaIQNOte that while in [9] it was shown that maximal weight mata
mdep_enden'g set O_f Vert'?es @ Thusj SLOIP .mUSt be Satlsﬂedalgorithms are stable in tremterferencegraphs, the corollary shows that
for this configuration. Since SLoP is satisfied for any tree @fey are stable in tresetworkgraphs.
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minimum number of colors is known as the graph arboricity
and can be found by a@(m?) algorithm [10].
Initially, we assume that all nodes have the same number

Fig. 5. Example of a network graph whose interference grafibfies OLoP. of radios and that this number is equal to the number of
. (o) (52, d) channels (i.,eR(v) = k Vv € Vy).19 When the number of

available colors (channeld) is fixed, the k-forest problem
@m [10], [15] seeks to find the maximum number of edges of
AN the graph that can be colored using orlycolors without

G d ) ey closing a single color cycle. This problem can be formulated
Fig. 6. A network graph for @, bipartite graph € x = input-queued as amatroid* partitioning or a matroid intersectiorproblem.
switch) and the corresponding interference graph. In order to enable the development of capacity expansion
algorithms, we focus on the matroid intersection formolati
) . _Under this formulation, thé-forest problem makes use of two
We have obtained additional results that concern bipartiig, oiqs: thegraphic matroidand thepartition matroid In

g_raph.s. Although me_sh rjet\(vorks are PSUG‘”Y not bipartitg, setting, we define these matroids by considering thehgrap
bipartite graphs provide insight regarding the perfornmant&;;C

N . . ) ) k = (V. €), equal tok disjointcopiesof the network graph
of our partitioning algorithms. Since input-queued swésh Gyx. The graphic matroidM, = (£,7,) assigns toZ; all

are bipartite graphs with primary interference constsaintpossime forests irG%,. The partition matroidMs, = (£,7,)
an additional byproduct is insight regarding switches. Tr}fartitionsg intOméJ|vEN| sets, where theth set,&-,con’tains
followir_wg CO“’""”Y generalizes a recent result presemefd] 5y copies of edge. The collectionZ, contains all sets of
regarding & x 2 input-queued switch. _ _edges that have no more than a single element in any set of
Corollary 2: A maximal weight matching algorithmy, o partitions:/ € Z, implies [ N &| < 1 fori = 1,...,m.
achievesloo% throughpu_t in ak , bipartite graph (i.e. in By associating with each copy 6fx in_Géi, aunique coloy it
az2xmn mput-queue(_j SW!tCh)' _ _ can be seen that the sets belongingtoZ, can be equated to
.Pro_of: A KQ:” bipartite network graph is dep|f:ted on th(?:olorings, where each subgraph of a particular color is esfior
left in Fig. 6', Its mterfer_ence graph can then eaS|Iy.b.e _Smo‘”'i'his directly corresponds to a valid channel allocationgreh
to be two cliques of sizew (K,,), connected byn disjoint oa0h channel's network graph is a forest. Thferest problem
edges, as depicted on the right in Fig. 6. The result is theNy, fing for a givenk the largest set of edges belonging to

directly derived from Theo_rem_3. _.®  the matroid intersection of the graphic and partition mdso
It follows that a K4, bipartite graph can be partitioned

into two subgraphs, each of whose interference graphsﬁieatisA
OLoP. In Section V-B, we will use this observation to evatuat
the performance of our channel allocation algorithms.

. Partitioning Algorithms

Our first algorithm for thek-forest problem is the subopti-
mal Breadth-First Search (BFS) algorithm. Such an algorith
was used in [21] as a heuristic solution to this problem. Its

major advantage is its low complexity 6¥(k(m + n)). Yet,

The Channel Allocation Problem, introduced in Definitiony, section VI we will show that there is a large gap between
4, seeks to assign a channel to every link such that eagl Brs solution and the optimal solution.

partition (operating in a different channel) can achieve%0  Therefore, we selected an optimal algorithm as a basis for
throughput by a distributed maximal weight scheduling aljeyeloping our capacity expansion algorithms. The optimal
gorithm. In this section our objective is to develop channghytion to thek-forest problem can be found in polynomial
allocation algorithms that: (i) provide a large stabiliggion time [10], [15] by several algorithms. One of these algarith
and (ii) allow simple distributed algorithms to achievesthe- s the Matroid Cardinality Intersection(MCI) algorithm of
gion. As in Section IV-C, in order to demonstrate the presént| 51er [15]. Given a valid coloringl € Z; N Zs, the MCI
concept, we assume th_a_t primary mterferenc_e_constramds h algorithm searches for aaugmenting pathconsisting of an

In terms of LoP conditions, we see_k to partition the ”e_tworglternating sequence of edges nof iand edges i, such that
edges into ghgnnels such that the mterfgrence graph in eagten the edges of the path belonging'tare removed frond
channel satisfies OLoP. The OLoP requirement is extremely those not belonging tbare added, the resulting coloring
challenging to incorporate mto an optlml_za'uon algorittimat (channel allocation) belongs B N Z, and its cardinality has
generates a channel allocation, because it seeks the SbpP pjycreased byl (for more details see [15]). The complexity of
erty for every subgraph on each channel. However, Corollagys nvc) algorithm isO(km?2n’ + k2mn(n’)?), wheren/ =
1 shows that network graphs that are trees satisfy OLoP.,Thﬁﬁn{n’ m/k}. In the description of the following algorithms,

it is sufficient to partition the edges of the network graptvin e refer to two copies of the same edge on different colors in
channels such that each channel’'s network graph is a for@]kv. asparallel edges

This is the basis for our channel allocation algorithms.
Our channel allocation problem is equivalent to a coloring *°we will show below that this assumption can be relaxed.

problem on the network graph. Namely, we seek to color™*A matroid is a combinatorial structuté! = (£,7) in which £ is a finite
of elements, and is a collection of subsets & satisfying (i) € Z,

. Se!
the network edges _SUCh that edges of a single color do %ﬂil if I € Z, then all proper subsets dfbelong toZ, and (ii) if I1,I> € T
compose a cycle (i.e. each color composes a forest). Tieh |I2| = |I1| + 1, then there exists € I» such thatl; U {e} € Z.

V. CHANNEL ALLOCATION
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Our channel allocation framework admits the practicak*(K,4) = 2. Since K44 has 8 nodes, any forest in such
situation where each nodeis equipped withR?(v) radios (in- a graph can have at mostedges. Sincé<, 4, has16 edges,
terfaces) Namely, different nodes have a different number dfs arboricity must be at least (i.e. x(K44) = 3). Hence,
radios. In the formulation of the matroid intersection gesb, there exists a grapy ;' for which x(Gy) = 1.5*(Gy). R
we define the grapli’X; as the disjoint union of: identical
copies of the networksy. This corresponds to the case, wherg  capacity Expansion Algorithms
each node is equipped with exacklyadios. Essentially, rather
than generating: copies of each network graph edge, eacgI
network link should only have an edge represented inithe

An important undesirable feature of the MCI and BFS
gorithms is that each successive channel hamaximal
number of network edges assigned to it, given the assignment

th copy of the network graph?N when therg 'S a radio for to the previous channels. We wish to balance the trees irr orde
that link available for use of theth channel? Without loss .
to expand the capacity.

of generality we refer to any graph defined in this manner as\ e present three algorithms for improving the network

Gk, = (VE,&). The matroid intersection properties, the MCI : : i o ;
algoritrgmN an>d the algorithms describedpinpSection V-B Ca{:napacny properties. Since the admissible region resttio
then be a’pplied ek summed throughput of all edges incident on the same vertex

Once the channgI. allocation is performed, at each tini{(]a the network graph tal, it is desirable to minimize the
slot, one can use the distributed approximation algoritim fr:)r;wzxrllrr?eulmT\t/weert?i)r(std ?rifitﬁéeristhfaﬁ]:éw;t@grDa:(phzngniteaCh
[12] that finds the maximal weight (greedy) solution, thereb ) ag . L ' :
providing 100% throughput. The (local) computational Cc)mqperates by greedily selecting edges incident on vertiées o

plexity of this algorithm isO(1), which is low relative to the maximum degree and seeking any channel that they can be

O(n?) complexity of a centralized optimal algorithm requiredreanocalted to, such that the new allocation belongs,to 7,

to solve (1) [15]. In addition, the centralized algorithnsita and the aIIocaupn hgs an improved maximum degree..We note
) . . thate = (v;, v;) implies thatv; € e andv; € e. The algorithm
collect queue backlog information from all nodes at eacletim : - :
. makes use of the functioF; (7), which returns a negative
slot (for an extended comparison see [19]).

A value when the maximum degree or number of vertices at
In the realistic situation where the number of chanriels . A
o . - " maximum degree under allocatidnimproves upon that of a
is fixed andinsufficientto partition all the network edgesreference allocation,
into k£ forests, we apply the MCI algorithm (or BFS) to 0
generate an initial allocation that iskaforest, and assign the TF, () = A% — A
unallocated network edges to theth channel. Thus, the first ! fo
k — 1 channels are guaranteed to satisfy OLoP, whilektil + 1{A*:A70} (Zv Lia,(wy=az} — > 1{A10(v):A70}) .

channel operates at a worst-cag¥s throughput. )
P ’ gnp phAbove,A;(v) denotes the degree of vertesn graph(V{, 1),

A (theoretical) optimal solution will partition the graph’ ™™>"*" X :
into the minimum number of OLoP satisfying component&7 indicates the maximum vertex degree in grapi(;, 1),

whereas our algorithms partition into forests. In order §nd ¢ i the indicator f“nCti?”' The complexity of the R-
evaluate the performance of our algorithms, we considGREEDY algorithm isO(dnmkn’), whered is the maximum
complete bipartite graphs. It can be shown that two chann¥ftex degree irGy.

are necessary and sufficient to guarantee the satisfaction—o— .

OLoP in K3 3. Applying MCI, we find that the arboricity ATgorlthm Qreedy Reallocation (R'&EDY?

of K33 is 2 and conclude that MCI achieves the minimum 1 P€gin with any edge sef € 7, N7 (this could be the
number of channels to guarantee OLoP. This and similar output of BFS or MCI)

results point to the strong performance of the MCI algorithm?: "épeat

in partitioning the network into a small number of channels® .IO —1

satisfying OLOP. Yet, the following lemma provides a lower4 if Je1 € I, es ¢ I such thatdv € e1, As(v) =
bound on the performance in general. DefiréGy) as the A7, TF1((I\ {ex}) U {e2}) <0 then

minimum number of channels necessary to partition the edges I —(I'\{e1}) U{ez}

of a network graphy such that the interference graph of 6 until I equals/y

each partitioned subgraph satisfies OLoP.

Lemma 3:For e > 0 there is no approximation algorithm  Our second and third capacity expansion algorithms search
that partitions a network graply into x(G ) forests, where for capacity improvements by directly attempting to bakanc
k(Gn) < (1.5 —¢)k*(Gn),YGn. the vertex degrees over all channels. They make use of

Proof: Consider aK4 4 bipartite network graph. It can be augmenting paths in the spirit of the MCI algorithm to find
partitioned into twoK; 4 network graphs. Due to Corollary 2,new locations for edges that are incident on heavily-loaded
under primary interference constraints, an interferemegly vertices. Themaximum degree reallocatioalgorithm (R-
of K, 4 satisfies OLoP. Therefore, channels are sufficient Max D) seeks to minimize the maximum degree over vertices
to guarantee the satisfaction of OLoP ifiy,. Namely, in all channels. It proceeds by disabling edges incident on

1 _ _ _ _ maximum degree vertices and searching for augmenting paths

When different nodes have a different number of radios, thecific - .
allocation of the links to the different copies may affeat tapacity region. that do not use such Edges' The algorlthm uses the function
An efficient allocation algorithm is a subject for furthesearch. TF; for evaluating channel allocations, and the function
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ESFY(I) for selecting candidate edges to disadisF)(7) Algorithm CE-MCI(lo,Eo,ESF,TF,Depth)
returns all edges incident on vertices having maximum degret: Z = {I, \ Eo}
in graph(V{, 1), 2: while 37 € Z with |I| < m do
o . 3 IT—TI\{l}
ESFi(I) ={e€l:vee Ar(v) = Af} 4:  remove labels from all edges; assigh = I_ « ()
Theaverage degree reallocatiaigorithm (R-A/GD) seeks 5 1abel “+" on every edgee such that/ U {e} € 7, and

to reduceany vertex degree in the graph so long as the e Eo =0 .
reduction does not lead to higher vertex degrees or more  While ¢ = [edge with oldest unscanned labgl]) do

vertices of maximum degree elsewhere in the graph\RA 7 if e is labeled “+'and I U {e} € 7 then
employs the performance evaluation functioh, 8: trace the alternating path of ‘_+’ gnd ‘-’ labels that
. lead to the ‘+' label at by assigning edges labeled
TFy(I) = Zf:ﬁ 2isign (ZU LA ()=i} — 1{A10(v):i}) . ‘+’ to I, and those labeled ‘-’ td_
o: IT—TUu{(I\I-)Ul}
Above, the functionsign(z) = —1 if = < 0, sign(z) = 1 10 else ife is labeled ‘+'then
if « > 0, andsign(0) = 0. The functionTFy(I) returns 11 label *- on the edge inI that is parallel toe (if
a negative value when the first entry at which the degree the edge is unlabeled)
sequenc® of (V{, I) differs from that of(V{, Iy) is lower in  12: else
the sequence ofV{, I) than that in(V%, Ip). This function 13: label ‘+' on each unlabeled edge in the unique
encourages trading higher degree vertices for more vertice cycle in (VE TU{e})

of lower degree. R-AGD also makes use of the functioni4: 7« Z U {Iy}; Lei < argmin;.; TF(I)
ESF3(I), which returns all edges incident on vertexn I,  1s: if TF(I,mq) = TF(Ip) then

ESF3(I) = {e € I : v € e}. We simultaneously present bothie:  (failed to generate an improved augmenting path)
algorithms as Algorithms 1/2, making use of the parametar: if Depth< D_MAX then

PARAM;, with PARAM; = {0}, andPARAMg = V]I\CZ. 18: Lrmei — argminI{TF(I) :
I = CE-MCI(Iy,Eo U {e},ESF,TF,Depth+1),
Algorithm 1/2 Maximum Degree/Average Degree Realloca- e € ESF(Iy \ Eo)}
tion algorithms (R-M\xD [i = 1]/R-AVGD [i = 2]) 19: else
1: begin with any edge sef € 7, N Z; 20: Limei < 1o
2: repeat 21: return Lo
3: I — 1
4. for v € PARAM; do
5: I — argmin{TF;(I) : The channel allocation algorithms, as described, make no
I = CE-MCI(I {e},ESF} , TF;,1), e € ESF{(I)} use of knowledge regarding traffic. In situations wherefizaf
6: until I equalsiy statistics are known, it is desirable to have a channel allo-

cation that accounts for different levels of load at various

R-MAxD and R-A/GD employ the recursive procedure”OdeS- Nodes can be assigned different levels of priority by
CE-MCI that successively disables edges until an improvégsociating with each node a weight w,. For example,
augmenting path is found, or all possible configurations afegateway node that is anticipated to have a high level of
exhausted. CE-MCI takes as input the initial channel atiopa incoming traffic can be assigned a high weight. Continuing
I, the set of edge, to exclude when it attempts to searcthe example, if we apply the performance evaluation fumctio
for augmenting paths, the functions ESF and TF, and afs(/) = >_, w.dr(v), along with parameters PARAM=
integer to track the depth of the recursion. The maximutt and ESF5(I) in the algorithmic framework presented in
depth of the recursion can be set using the constahAX. Algorithms 1/2, then the algorithm will attempt to minimize
While the MCI algorithm modifies the channel allocation af F3(/). Itis clear that when the gateway node has high weight,
each iteration upon the discovery of its first augmentindnpathe resulting channel allocation will favor low node degree
CE-MCI labels over the entire graph arsglects the best On every channel incident on the gateway node. Obviously,

augmenting path availableetween all such paths found, inthis discussion oversimplifies the difficult and relatedipeon
terms of the functionl'F. of conducting channel allocation when traffic statistice ar

The complexity of the algorithms is a function of the comknown. However, it does serve as a demonstration of how

plexity of the MCI algorithm, which we denote hyMcI). this goal can be achieved in our framework.
The complexity of R-M\XD is O(dnmP-MAX¢(MCI)) and
of R-AVGD is O(dP-M4Xnmc(MCI)). As long as the search VI. PERFORMANCE EVALUATION

depth DMAX is low, the complexity is reasonable. In the N . . .
. . . A L The partitioning and capacity expansion algorithms pre-
following section, we will see that significant capacity im-

. . sented in Section V were implemented in Matlab and tested
provement is achieved fdb_MAX = 2. : .
on numerous randomly generated networks. In this section we
13The degree sequence of a graphis a nondecreasingsequence of the Priefly describe the numerical results obtained for a nurober
vertex degrees of7. representative cases. All presented results have beemedbta
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- . . C
. . . (c) ~ ><\/ @__ B ><
for randomly generated instances in which the node: N\ o é Y B
uniformly distributed in a plane of sizZ€)00m x 1000m, with a
. . . . . \’ . . _— ' . / .
!lnk existing between _two n_odes if the distance between o = <\/ X f — /[—V\’]—— X 2<
is at most250m. We intentionally present results regarc N\ -, Y BN

relatively dense networks, since in very sparse networg
partitioning solution is often trivial and does not shedhtign Fig. 8. Channel assignments by (a) MCI (b) RREEDY (c) R-MAXD, and
the tradeoffs involved in capacity expansion. As in the mes  (d) R-AvGD.

sections, we assumed that primary interference consdraint

hold. The presented results were obtained assuming that the

number of radios equals the number of channels and is the )
same for all nodes (i.e2(v) = k Vv). As described in Section figure presents the network and then, for each algorithm, the
VA, this assumption can be easily relaxed 4 forests. Fig. 8(a) presents the solution obtained by thé MC

algorithm. It can be seen that the leftmost forest is reddfiv
o . dense, while the rightmost tree is sparse (it includes only a
A. Partitioning Algorithms single edge). The capacity is not efficiently allocated iis th
Fig. 7 compares the average number of channejsr€- solution, since most of the nodes do not use the fourth channe
quired by the BFS and the MCI algorithms. The resulighile the first channel has to be shared by many links.
are presented as a function of the number of nodes in thq:ig. 8(b) presents the allocation performed by algorithm R-
network (2), where for each value of, the average was Greepy, using the MCI solution as input. It can be seen that
obtained overl00 different random instances. Over all caseggerg] edges now moved to the fourth (rightmost) channel.
tested, the BFS algorithm required on averaigdo more rig g(c) presents the allocation performed by algorithm R-
channels than the optimal MCI algorithm. Hence, despite ”Rﬁ*AxD, using the R-@EEDY solution as input. The R-
higher computational complexity, using a matroid intet®eC  Greepy solution had two vertices of degree three, and R-
algorithm is beneficial. ~ MaxD manages to manipulate the allocation such that only
Fig. 7 also presents arpper bouncbn the edge chromatic ; gingle vertex has degree three. The solution from RxEl
number, which is the minimum number of colors (channely) ,seq as input in RAD to obtain the channel allocation
such that an edge coloring exists having no two equally edlory¢ £ig g(d). Though the maximum vertex degree remains at
edges incident on the same vertex. According t0 Vizingi§ee, lower degree vertices have had their degrees imgrove
Theorem, the edge chromatic number is bounded above oy many more edges in this allocation entirely disconedct

A"-+1, whereA™ is the maximum vertex degree in the network The example above demonstrates the operation of the ca-

[11]. Th? large gap between the optl_mal solution and the ed gcity expansion algorithms. We now quantitatively evedua
chromatic number upper bound arises because under e
|

. . . . ir performance. Given a specific channel allocation fitds
coloring, all edges can be active simultaneously, while M . . . :
. o . Straightforward to represent the capacity region. Thislltes
creates trees on which transmissions still have to be stdedu " i . .
. : . S from the fact that it is a polytope iR']". Yet, in order to obtain
Hence, by using edge coloring, the capacity region is eergsome insight, we make the following simplifying assumption
to \;; < 1V(4,5) € En. In many network instances, such & gnt, g b g P

large capacity expansion requires numerous channels regarding the capacity allocation that takes place once the
9 pactly exp q ' channels are assigned to the links. We assume that somesdegre

] ) ) of fairness exists, and therefore, if possible, all edges- co
B. Capacity Expansion Algorithms nected to a node receive an equal share of the node capacity.
We now demonstrate the operation of the different capathis is sometimes impossible, due to a capacity limit rasglt
ity expansion algorithms on a specific randomly generatéwm the other node connected to an edge. Consequently; unde
network with 20 nodes. Fig. 8 illustrates an example of this assumption the throughput on an edgg) operating in
channel allocations performed by the different algoritima channelk will be at least(max(A; x, Aj,k))_l, whereA;
network in which the required number of channels is 4. The the number of edges adjacent to nadbat use channé.
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Fig. 9. Average and worst-case capacities. Fig. 10. Average capacities in a network with 20 nodes.

According|y’ the first performance measure&j\mrage Ca- there was a CyCle in thé-th Channel, we assumed that the
pacity, which is the average over all edg@s;j) € Ey of the edges in theé:-th channel achieve only 50% throughput when
above value. The second performance measure isMprst- calculating the average capacity. Algorithms R&EDY, R-
Case Capacitywhich is the lowest capacity allocated to a linkMAXxD and R-A/GD provide significant improvement over
in the network. This is inversely proportional to the maximu the MCI algorithm alone.
node degree over all nodes and all channels. Using the above
notation, it is equal tqmax; j Ai_,k)‘l. C. Comparison with Other Channel Allocation Algorithms

Fig. 9 illustrates these performance metrics for randomThys far, our simulation studies have provided absolute
networks with different numbers of nodes)( For each value measures of the performance. It is also desirable to compare
of n, the results were averaged over 50 different randofRe performance of the algorithms to that of algorithms pro-
network instances. It can be seen that both for the woisésed in the literature. However, as mentioned in Section I,
case and the average case, REGDY provides significant \yhile we do not assume any knowledge regarding the arrival
throughput improvement over the MCI algorithm (averaggtes, most of the previous work regarding mesh networls rel
improvement of29% and40% in the average and worst-caseyn traffic statistics. Therefore, we had to carefully conepaur
capacity, respectively). This is notable, since the comile igorithms to an algorithm which assumes some knowledge
of the greedy capacity expansion algorithm is small redatiuf the arrival rates. A well known efficient static channel
to that of MCI. When using the R-MxD and R-A/GD, we  gjlocation algorithn®® has been proposed by Kodialam and
employed a maximum search depth DfMAX = 2. This Nandagopal [14]. In this section, we show that the throughpu
implies that the complexities of R-MkD and R-A/GD are  optained by our channel allocation algorithm is usuallyhleig
respectivelyO(dnm?) and O(d°nm) times the complexity than the throughput obtained by the algorithm of [14].
of MCI. Despite the higher complexities, the value of these | [14], the joint routing and channel allocation problem
algorithms is evident from their ability to significantly prove s considered. The routing problem is solved using a linear
the performance metrics. Relative to the MCI solution, Rgrogram, and subsequently the implied link loads are used to
MAxD achieves average improvements3f/o and 56% in  determine an effective channel allocation (see [14, Fij. 5]
the average and worst-case capacities, respectivelye iRl Essentially, each (link,channel) combination is provideth
AvGD achieves45% and 56%, respectively’ There is an g weight that reflects the maximum load on any constraint set
evident tradeoff between complexity and performance. &ingontaining this pair, and the algorithm successively dgiees
the channel allocation problem is solved in a different timgye minimum weighted link and assigns a channel to that link.
scale from the scheduling problem, it seems beneficial to ugge algorithm as presented in [14] does not provide a tie-
R-MAXD or R-AvGD. breaking condition for allocating a channel to a link, when

In realistic situations the number of channels and radioshsultiple channels have the same weight. In our numerical
bounded. Fig. 10 depicts the average capacity metric versiigdies, we find that the choice of tie-breaking conditios &

the number of available channelg)(for a network with 20 effect on achievable throughput. Consequently, we distsiy
nodes. For each value df, the results were averaged ovepetween two versions of the algorithm:

50 different random network instances. Given a fixedhe
MCI, R-GREEDY, R-MAXD, and R-A/GD algorithms were index - referred to as the KN algorithm.

gnllsted to obtain and expand the capacnykx-)forests.. In 2) Ties are broken by randomly selecting among equally
instances where there were edges that could not be included weighted channels - referred to as the KN with Random
in a validk-forest, these edges were added to the last generated Tie_Break (KN-RTB) algorithm.

forest (at channek). As explained in Se_ctlon V-A, the .f'rSt We present results regarding four channel allocation meth-
k — 1 channels are guaranteed to satisfy OLoP, while tiz)

3ds: (i tatic channel allocation, wh ly thel MC
k-th channel operates at a worst-ca&®% throughput. If s: (i) our static channel allocation, where we apply M

1) Ties are broken by selecting the channel with lowest

15Recall from Section | that under static channel allocatiarghannel is
14The plots of the worst-case capacity for R«@D and R-Max D overlap.  allocated to a link for an extended period of time.



TO APPEAR IN IEEE/ACM TRANSACTIONS ON NETWORKING, 2008 13

R-GREEDY, R-MAXD, and R-A/GD algorithms in sequence,
followed by assigning any unallocated edge to charingli)

the static KN algorithm, (iii) the static KN-RTB algorithrand

(iv) dynamic channel allocation. Under the dynamic channel
allocation links are not bound to channels, and (link,cledinn
combinations are activated at each slot based on maximal
weight scheduling. Note that the dynamic channel allocatio
method has the advantage of being allowed to modify its chan-
nel allocation at each time slot. Consequently, its pertoroe

is superior to any static allocation scheme. Neverthelbgs,
throughput gap between static and dynamic channel alloca- g o000®®”
tions is of interest, since it clarifies some of the tradeoffs 01 015 O ot e 5 coacoeion 04 08
be;[;,\;]eaesnbzeerrioa:;nsirrfg dalrr:d[lsé(lz]hti(:ll:Lefl;i?;?'f?éelzlgnown ie. tl"l:ieg' 11. Average aggregate queue occupancy in a network 2&ithodes.
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arrival rate vector\ is explicitly considered as an input to the TABLE |
channel allocation algorithm of [14]). Although our algbrns ~ AcHiEVABLE THROUGHPUT OVER10 RANDOMLY SELECTED NETWORKS
do not r!eed information regarding in order to perform a ff_;ur Network N KN-RTB | R.AVGD | Dynamic
comparison, we assume that the KN and KN-RTB algorithms index | Algorithm | Algorithm | Algorithm | allocation
conduct channel allocation using the true arrival rate orett % 8-?2 8-22 8-22 8-23
Namely, whileA is known in advance to the KN and KN-RTB 3 025 033 033 0.42
algorithms, it is not known to our algorithms. It has alsorbee 4 0.14 0.20 0.25 0.33
assumed in [14] that the traffic @eterministic Under deter- g 8-% g-ég g-ég 8-23
ministic and known traffic, a fixed Tlm_e-D|V|S|on Multiplexg 7 0.20 020 033 033
(TDM) schedule can be used for serving the queues. Therefore 8 0.25 0.33 0.50 0.50
the KN algorithm has been designed to be used in conjunction 9 0.25 0.25 0.33 0.43
10 0.33 0.33 0.50 0.55

with a TDM scheduler. Recall that our scheduling objectsre i
to serve packets that arrigochastically Therefore, once the
static channel allocation is obtained by any of the algargh

(including KN and KN-RTB), we assume that packets are rinally, we note that although our channel allocation algo-
served using maximal weight scheduling. rithms enable distributed algorithms to achieve 100% thhou

In our simulations, we considdr = 3 available channels, put in each of thek subnetworks, this scheme does not
with 3 radios at each node. We assume that packets arffygcessarily achieve the stability region of a network with
according to a Poisson arrival process. In order to measiigannels. As mentioned in Section 11, achieving this sibil
performanc_e in terms of thr_oughput, we assume that theadirrlyegion in general requires centrally solving a global ojtan
rates to all links are equal, i.8;; = Aforall (i,j) € Ex. We  tion problem at each time slot. The throughput obtained by
will refer to the maximum value ok for which the queues in the dynamic channel allocation is an approximation to that
the network remain stable (i.e. do not grow without bound) &Bability region. However, characterizing the gap betwthen

the maximum achievable throughpot the network. throughput obtained by our scheme and the stability region i
We first considered a random placementof 25 nodes. g network withk channels is still an open problem.

Fig. 11 plots the average aggregate queue occupancy vaesus t
arrival rateA under the various channel allocation algorithms.
Each point in the figure is generated from a sample path
of duration 100,000 time slots. The maximum throughput In this paper we have applied techniques stemming from
values achievable under the KN, KN-RTB, R/D, and stability theory and matroid theory to obtain novel results
the dynamic channel allocation algorithms are respegtivefegarding the design of Wireless Mesh Networks. The ap-
A =0.2, 0.25, 0.33, and0.42 packets per slot. plication of these theories allows us to develop algorithms
Similarly, we considere@5 randomly generated mesh netfor pre-partitioning a mesh network into a number of high
works, each witlhh = 25 nodes. Table | presents the maximuneapacity subnetworks such that in each of the subnetworks
achievable throughput of the different channel allocatitgo- simple distributed algorithms can obtain 100% throughput.
rithms in 10 of these networks. Observe that our channel allo We have performed a thorough study of the implications
cation algorithm usually outperforms the other static c¢tedn of Local Pooling on network design and shown that although
allocations. Overall, our channel allocation outperfortne the notion of Local Pooling is rather abstract, its implicas
best KN algorithm by an average @6%. Additionally, the are quite powerful. We identified several types of intenfies
maximum achievable throughput of the KN-RTB is usuallgraphs that satisfy Local Pooling as well as network graphs
higher than that of the KN algorithm, with an average improvée.g. trees) which under primary interference constrajigkl
ment of15%. Dynamic channel allocation always outperformmterference graphs that satisfy Local Pooling (severali-ad
static allocation, with an average throughput improvenaént tional graph classes that satisfy Local Pooling can be found
33% over the best static allocation. in [25]). Based on our observations, we developed matroid

VII. CONCLUSIONS
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intersection algorithms for efficient network partitiogionder [19]
primary interference constraints. We have shown that these
algorithms perform very well in terms of capacity. We notgy,
that the scope of this work spans more than multi-radio multi
channel WMNSs. It is relevant to any wireless network witr[121]
stochastic arrivals in which transmissions can be diffeated

in the time domain (i.e. scheduling) and in other domains

(frequency, code, etc.). (22]
This paper primarily provides aheoretical contribution
that lays the foundation for developimactical algorithms [23]

Hence, there are still many problems to deal with. For exam-
ple, a future research direction is to allow dynamic channel
allocation. This will require to tailor the channel alloicat [24]
algorithms for online and perhaps distributed operation. |

addition, Lemma 3 indicates that partitioning into treesym%25
be suboptimal. Therefore, we would like to develop matroid

14
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nents similar to the ones identified in Section IV. In general

we would like to develop algorithms that partition the netiwo
to the minimum number of OLoP-satisfying components.
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