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Abstract— This paper considers the interaction between chan-
nel assignment and distributed scheduling in multi-channel multi-
radio Wireless Mesh Networks (WMNs). Recently, a number
of distributed scheduling algorithms for wireless networks have
emerged. Due to their distributed operation, these algorithms
can achieveonly a fraction of the maximum possible throughput.
As an alternative to increasing the throughput fraction by
designing new algorithms, we present a novel approach that
takes advantage of the inherent multi-radio capability of WMNs.
We show that this capability can enable partitioning of the
network into subnetworks in which simple distributed scheduling
algorithms can achieve 100% throughput. The partitioning is
based on the notion of Local Pooling. Using this notion, we char-
acterize topologies in which 100% throughput can be achieved
distributedly. These topologies are used in order to develop a
number of centralized channel assignment algorithms that are
based on a matroid intersection algorithm. These algorithms
pre-partition a network in a manner that not only expands the
capacity regions of the subnetworks but also allowsdistributed
algorithms to achieve these capacity regions. We evaluate the
performance of the algorithms via simulation and show that
they significantly increase thedistributedly achievable capacity
region. We note that while the identified topologies are of general
interference graphs, the partitioning algorithms are designed for
networks with primary interference constraints.

Index Terms— Stability, Channel assignment, Scheduling, Dis-
tributed algorithms, Local Pooling, Matroid intersection

I. I NTRODUCTION

Wireless Mesh Networks (WMNs) have recently emerged
as a solution for providing last-mile Internet access [2]. A
WMN consists of mesh routers, that form the network back-
bone, and mesh clients. Mesh routers are rarely mobile and
usually do not have power constraints. The mesh routers are
usually equipped with multiple wireless interfaces operating
in orthogonal channels. Therefore, a major challenge in the
design and operation of such networks is to allocate channels
and schedule transmissions to efficiently share the common
spectrum among the mesh routers. Several recent works fo-
cused onmulti-radio multi-channelWMNs. Specifically, [3],
[14], [22] study the issues of channel allocation, scheduling,
and routing in WMNs, assuming that the traffic statistics are
given. In this paper, we study the issues of channel allocation
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and scheduling but unlike most previous works, wedo not
assume that the traffic statistics are known. Alternatively,
we assume astochastic arrival processand present a novel
partitioning approach that enables throughput maximization
in each partition by distributed scheduling algorithms.

Joint scheduling and routing in a slotted multihop wireless
network with a stochastic packet arrival process was con-
sidered in the seminal paper by Tassiulas and Ephremides
[23]. In that paper they presented the firstcentralizedpolicy
that is guaranteed to stabilize the network (i.e. provide 100%
throughput) whenever the arrival rates are within the stability
region. The results of [23] have been extended to various
settings of wireless networks and input-queued switches (e.g.
[18], [20]). However, optimal algorithms based on [23] require
repeatedly solving aglobal optimization problem, taking into
account the queue backlog information for every link in the
network. Obtaining a centralized solution to such a problem
in a wireless network does not seem to be feasible, due
to the communication overhead associated with continuously
collecting the queue backlog information, and due to the
limited processing capability of the nodes. On the other
hand, distributed algorithms usually provide only approximate
solutions, resulting in significantly reduced throughput.

Hence, the design of distributed scheduling algorithms has
attracted a lot of attention recently. Lin and Shroff [17] studied
the impact of imperfect scheduling on cross-layer rate control.
Regarding primary interference constraints1, they showed that
using a distributed maximal matching algorithm along with a
rate control algorithm may achieve as low as 50% throughput.
Similar results for different settings were obtained in [6], [7],
[16], [24]. Chaporkar et al. [6] characterize the stabilityregion
of a maximal scheduling algorithm under arbitrary topologies
and interference models. They show that under secondary
interference constraints, the stability region may be reduced
to Λ∗/8, where Λ∗ is the stability region under a perfect
(centralized) scheduler. Finally, a novel distributedrandomized
approach that can achieve 100% throughput has been presented
in [19]. Although randomized algorithms can obtain maximum
throughput, deterministic distributed algorithms are desirable,
due to their simplicity and since they often result in attractive
delay performance.

In this paper, we show thatthe multi-radio and multi-
channel capabilities of WMNs provide an opportunity for
simple deterministic distributed algorithms to achieve high
throughput.Mesh routers are usually equipped with multiple

1Under primary interference constraints, each station can converse with at
most a single neighbor at a time. Namely, the set of active links at any point
of time is a matching.
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radios (transceivers) and can transmit and receive on multiple
channels simultaneously [1], [3], [14]. Hence, channels have
to be allocated to the links and the transmissions on each
link have to be scheduled to avoid collisions. By allocating
different channels to different links, several non-interfering
subnetworks can be constructed. We study which subnetwork
topologies enable simple distributed scheduling algorithms to
achieve 100% throughput. Based on these results, we develop
centralized network partitioning algorithms that decompose the
network into such subnetworks.

Although inarbitrary topologiesthe worst case performance
of distributed maximal scheduling algorithms can be very
low, there are some topologies in which theycan achieve
100% throughput. This observation is based on a work by
Dimakis and Walrand [9] in which they study the performance
of the Longest Queue First (LQF) scheduling algorithm in a
graph of interfering queues2. The LQF algorithm is a greedy
maximal weight scheduling algorithm that selects the set of
served queues greedily according to the queue lengths. Unlike
a maximumweight (optimal) solution, amaximalweight solu-
tion can be easily obtained in a distributed manner. Sufficient
conditions for a maximal weight algorithm to achieve 100%
throughput are presented in [9]. These conditions are referred
to asLocal Pooling(LoP) and are related to the properties of
all maximal independent sets in the conflict graph.

In this paper we conduct the first thorough study of the im-
plications of the LoP conditions on the network performance.
We start by presenting a motivating example demonstrating
that channel allocation algorithms that take into account LoP
have desirable properties. We then conduct an extensive nu-
merical study of the satisfaction of LoP by conflict graphs of
up to 7 nodes. We show thatout of 1,252 graphs, only 14 do
not satisfy LoP. It is an indication of the strength of maximal
weight scheduling for achieving 100% throughput regardless
of the network topology, aside from a few “bad” topologies.
Due to computational limitations, exhaustively verifyingthe
satisfaction of LoP in graphs with more than 7 nodes seems
infeasible. In order to be able to utilize larger graphs, we study
what general properties of conflict graphs assist or hinder the
LoP conditions. For example, we show that cliques that are
connected to each other in different manners satisfy LoP.3

These observations provide several building blocks for par-
titioning a graph into subgraphs satisfying LoP. In order to
demonstrate this capability and for the ease of presentation, we
focus on scheduling under primary interference constraints4

(studied in [6], [7], [19], [24]). For example, we show that
a tree network graph, when subject to primary interference
constraints, yields an interference graph which satisfies LoP.
Hence,in trees, maximal weight matching algorithms achieve
100% throughput. We also study bipartite network graphs that
provide insights regarding the number of required subgraphs.
For instance, we show that in anyK2,n bipartite graph

2A graph of interfering queues can be constructed from the network graph
according to the interference constraints and is usually referred to as an
interference or conflict graph [13].

3In [25] we identify several additional graph classes that satisfy LoP.
4The approach can be extended to more realistic interferenceconstraints

and to joint routing and scheduling (for more details, see [25]).

(i.e. a 2 × n input-queued switch) maximal weight matching
algorithms achieve 100% throughput.

Building upon our observations, we design centralized
channel allocation algorithms that pre-partition the network.
Similarly to [3] and to the static channel assignment in [14],
we assume that a channel is assigned to a radio interface for
an extended period of time. For simplicity, similarly to the
static channel assignment in [14], we also assume that one
channel is assigned to each link. Under these assumptions,
using the minimum number of channels requires a partitioning
of the network into the minimum number of subnetworks
satisfying LoP. The general LoP conditions are extremely
challenging to incorporate into a channel allocation algorithm.
Fortunately, our study provides some useful building blocks.
Since tree network graphs satisfy LoP, our approach is to
partition the network into non-overlapping forests, such that
each edge will be part of a single forest and each forest will
use a different channel. This problem is closely related to the
matroid intersectionandmatroid partitioningproblems.

Given k channels, the problem of partitioning the graph
into k forests such that the number of edges included in the
forests is maximized is referred to as thek-forest problem
[10]. A simple approach is to obtain anapproximatesolution
by a Breadth First Search (BFS) algorithm. Alternatively, since
the k-forest problem is actually a specific case of a Matroid
Cardinality Intersection problem, anoptimal solution can be
found by the Matroid Cardinality Intersection (MCI) algorithm
of [15] (having polynomial complexity). We show that the
MCI algorithm can be adapted to take into account the scenario
in which different nodes have different numbers of radios.
Using either the BFS algorithm or the MCI algorithm enables a
simple distributed scheduling algorithm to achieve the capacity
region of the subnetworks (i.e. achieve 100% throughput in the
subnetworks). Yet, the capacity region itself may not be the
best possible. This results from theundesirable propertythat
the sizes (number of edges) of the forests are unbalanced.

We present three algorithms that aim to expand the capacity
region, while maintaining the LoP conditions in all the subnet-
works. The main objective is to balance the number of edges
across channels and to reduce the node degrees in each chan-
nel. Two of these novel capacity expansion algorithms make
use of augmenting paths (in the spirit of the MCI algorithm of
[15]) to balance the node degree across channels. Thus, they
can be viewed asbalancedMatroid Cardinality Intersection
algorithms. We evaluate the performance of the algorithms
via simulation. We show that the MCI algorithm significantly
outperforms the BFS algorithms. We also compare the per-
formance of the capacity expansion algorithms and the MCI
algorithm and show that a large capacity improvement can be
gained by using these algorithms. We conclude by comparing
the performance of the capacity expansion algorithms and the
channel allocation algorithm of [14].

The main contributions of this paper are two-fold. First,
we conduct a rigorous study of the properties of network
graphs satisfying Local Pooling. The second contribution is
the development of network partitioning (i.e. channel alloca-
tion) algorithms that generate subnetworks with large capacity
regions, while enabling distributed throughput maximization in
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Fig. 1. (a) A network graphGN , (b) the corresponding interference graph
GI under the primary interference constraints, and (c) the matrix M(VI) of
maximal independent sets inGI .

each of the subnetworks. To the best of our knowledge, this is
the first attempt to study the algorithmic implications of Local
Pooling. This work is not only different from previous works
on distributed stability, due to the focus on partitioning mesh
networks, but also different from previous works on optimizing
mesh networks that mostly rely on traffic statistics.

This paper is organized as follows. In Section II we present
the network model and formulate the problem. In Section III
we present and clarify the LoP conditions and demonstrate
their effect on the channel assignment problem. Section IV
studies the characteristics of conflict graphs satisfying LoP.
In Section V we present network partitioning and capacity
expansion algorithms and in Section VI we evaluate their
performance. We summarize the results and discuss future
research directions in Section VII.

II. M ODEL

We consider the backbone of a Wireless Mesh Network
modeled by anetwork graphGN = (VN , EN ), whereVN =
{1, . . . , n} is the set of nodes (mesh routers) andEN =
{(i, j) : i, j ∈ VN} is the set of bi-directional links, with
m , |EN |. Depending on the context, we denote a link either
by (i, j) or by ek. We assume that the time is slotted, denoted
by t, and that the packet length is normalized to be one time
slot. We denote byKn a clique havingn vertices and byKi,j

a complete bipartite graph withi andj vertices.
Different wireless technologies pose different constraints on

the set of transmissions that can take place simultaneously.
For example, underprimary interference constraints, the set
of possible transmissions is the set of all possible matchings
on GN . In many cases aninterference graph(also known as
a conflict graph)GI = (VI , EI) can be defined based on the
network graphGN [13]. We assignVI , EN . Thus, each
edgeei in the network graph is represented by a vertexvi of
the interference graph and an edge(vi, vj) in the interference
graph indicates a conflict between network graph linksei and
ej (i.e. transmissions onei and ej cannot take place simul-
taneously). In graph theoretic terminology, the interference
graph resulting from primary interference constraints is called
a line graph [11]. For example, Fig. 1 illustrates a network
graph and the corresponding interference graph under primary
interference constraints (i.e. the line graph corresponding to
the network graph). The model can be easily generalized to
capture network graphs with directional links. In such a case,
link (i, j) may interfere with different links than those link
(j, i) interferes with. Accordingly, the interference graph will
include a node for each directional link.

We consider the application of Local Pooling to multi-
radio multi-channel WMNs. Following the model of [3], we
assume that each nodev is equipped withR(v) interfaces

(radios). There arek available orthogonal channels and it
is assumed that each of theR(v) interfaces operates on a
different channel. Similarly to [3] and to the static model of
[14], we consider a static channel allocation model in whicha
channel is allocated to each interface for an extended period of
time. Such an approach enables the use of commodity 802.11
radios [3]. We note that the extension of the model for a
dynamic channel allocation is a subject for further research.
We assume that transmissions in different channels cannot
collide. Therefore, once the different channels are allocated,k
disjoint interference graphs are generated.

For the simplicity of presentation, we consider single-hop
bi-directional traffic.5 As mentioned above, the model can be
extended to more general scenarios. LetAij(t) denote the
number of packets arrived at nodei or nodej by the end of
time-slott that need to be transmitted across link(i, j). Aij(t)
can be viewed as the cumulative number of packets arriving at
node(i, j) of the interference graph. We assume that arrivals
are mutually independent and temporally i.i.d. processes with
arrival rateλij , that isE[Aij(1)] = λij . Let the column vector
Λ = (λij , (i, j) ∈ EN ) denote the arrival rate vector.

Let Qij(t) denote the number of packets waiting to be
transmitted on link(i, j) at the beginning of time-slott
and Q(t) denote the queue-size vector. We will useQ(t)
as the system state at timet. Let Π(GN ) denote the set
of all feasible link activations in the network graphGN . In
particular, letπ = (πij , (i, j) ∈ EN ) ∈ Π(GN ) be a (0, 1)
column vector representing a possible link activation. Under
primary interference constraints,Π(GN ) includes all possible
matchings, while in general, it corresponds to all independent
sets in the interference graphGI . Following the notation of
[9], we denote byM(VI) the matrix that includes all the
maximalindependent sets inGI (i.e. all the maximal elements
of Π(GN )). For example, Fig. 1(c) shows the matrixM(VI)
for the interference graphGI in Fig. 1(b). We can now define
the stability region(also known as thecapacity region).

Definition 1 (Admissible Rate-Vector): An arrival rate vec-
tor Λ is called admissible, if there exists a collection of link
activations,πl, 1 ≤ l ≤ L such that

Λ ≤
L

∑

l=1

αlπl, αl ≥ 0,

L
∑

l=1

αl < 1.

Definition 2 (Stability Region): The set of all admissible
rate vectorsΛ is called the stability region and is denoted
by Λ∗.

A scheduling algorithm has to select a schedule that satisfies
the transmission constraints at each time slot. LetSij(t) ∈
{0, 1} be the indicator variable of whether link(i, j) is active
at timet andS(t) denote the scheduling decision vector. Then,
S(t) ∈ Π(GN ). Under a scheduling algorithm, the state of the
system(Q(t), t ≥ 0) evolves according to a Markov Chain. A
stable algorithm is defined as follows. We will also refer to it
as an algorithm that achieves 100% throughput or athroughput
optimal algorithm.

Definition 3 (Stable Algorithm): A scheduling algorithm is

5Under this assumption, the joint routing and scheduling problem reduces
to a scheduling problem.
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stable, if for any admissibleΛ the Markov Chain(Q(t), t ≥ 0)
is positive recurrent.

Tassiulas and Ephremides [23] established the existence of
a stable scheduling algorithm. In particular, the algorithm that
schedules according toS∗(t) where

S∗(t) = arg max
π∈Π(GN )

Q′(t)π (1)

is a stable algorithm (Q′ denotes the transpose of vectorQ).
Given an interference graphGI , the algorithm of [23] has to
find themaximum weight independent setin GI at each time
slot. Namely, it has to solve an NP-Complete problem in every
time slot. In the context of primary interference constraints,
this algorithm has to schedule the edges of theMaximum
Weight Matchingat each time slot, where the edge weights are
the queue sizes. The maximum weight matching in any graph
can be found inO(n3) computation time, using a centralized
algorithm [15]. However in wireless networks, implementing
a centralized algorithm is not feasible and distributed algo-
rithms (e.g. [12]) can obtain only an approximate solution,
resulting in a fractional throughput. Hence, even under very
simple transmission constraints, it is difficult to obtain 100%
throughput in a distributed manner. This motivates us to
develop channel allocation methods that will enable simple
distributed scheduling algorithms to obtain 100% throughput
in each channel. Therefore, we provide a definition of the
Channel Allocation Problembelow. In Section V we will
develop algorithms for solving this problem.

Definition 4 (Channel Allocation Problem): Given a net-
work graphGN , k channels, andR(v) radios at each node
v ∈ VN , assign channels to links(i, j) ∀(i, j) ∈ EN such that
at mostR(v) channels are used by links adjacent tov, every
link is assigned a single channel, andsimple (e.g. greedy)
distributed algorithms are stable in each subnetwork operating
in a different channel.

III. L OCAL POOLING CONDITIONS

A. Definitions

Local Pooling (LoP) has been defined by Dimakis and
Walrand in [9]. In this section, we separate their definitionof
Local Pooling to two different definitions.6 Recall thatM(VI)
is the collection of maximal independent vertex sets onGI ,
organized as a matrix (an example appears in Fig. 1). We
designate bye the vector having each entry equal to unity.
We deliberately avoid specifying its size, because it will be
obvious by the context of its use. We first define the notion
of Subgraph Local Pooling (we note that the statement of the
LoP conditions can be weakened, if certain restrictions are
made on the arrival processes [9]).

Definition 5 (Subgraph Local Pooling - SLoP): An inter-
ference graphGI satisfies Subgraph Local Pooling, if there
existsα ∈ R

|VI |
+ and c > 0 such thatα′M(VI) = ce′.

We now define the notion of Overall Local Pooling which
requires that Subgraph Local Pooling (SLoP) will be satisfied

6It has been shown in [5] that the presented definitions are equivalent to
those of [9].
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Fig. 2. (a) A6-node ring network graph and (b) its interference graph.

in any subgraph of a given interference graph induced by
selecting asubset of the nodes.

Definition 6 (Overall Local Pooling - OLoP): Interference
graph GI satisfies Overall Local Pooling if each induced
subgraph over the nodesV ⊆ VI satisfies SLoP.

We continue with the example of the interference graphGI

and the corresponding matrixM(VI) depicted in Fig. 1. We
can see thatGI satisfies SLoP since forα = (1, 1, 1, 1, 1),
α′M(VI) = 2e′. Similarly, the subgraph composed of the
vertex set{2, 3, 4} satisfies SLoP, since forα = (1, 1, 0),
α′M({2, 3, 4}) = e

′. It can be shown that all subgraphs of
GI satisfy SLoP, and therefore,GI satisfies OLoP.

We can now describe the stability of the system when
the service in each time slot is scheduled according to the
Longest Queue First (LQF) algorithm. This algorithm is an
iterative greedy algorithm that selects the node ofGI with
the longest queue, and removes it and its neighbors from the
interference graph. This process is repeated successivelyuntil
no nodes remain in the graph. When two queues have the
same length a tie-breaking rule has to be applied. The set of
selected nodes is a maximal independent set in the interference
graph. Hence, since the nodes are selected according to their
weights, we will refer to the LQF algorithm as the Maximal
Weight Independent Set algorithm. Such a greedy algorithm
can be easily implemented in a distributed manner. In [9] the
following theorem is proved.

Theorem 1 (Dimakis and Walrand, 2006 [9]): If interfer-
ence graphGI satisfies the OLoP conditions, a Maximal
Weight Independent Set scheduling algorithm achieves100%
throughput.

To conclude, the satisfaction of OLoP by an interference
graph is asufficientcondition for distributed maximal weight
algorithm to be throughput optimal.

B. Channel Allocation Example

The following simple example demonstrates the application
of the LoP conditions, presented above, to a channel allocation
(network partitioning) problem. We consider the 6-node ring
network graph, depicted in Fig. 2(a). Under primary interfer-
ence constraints, this graph has a corresponding 6-node ring
interference graph representation, which is illustrated in Fig.
2(b). Under these constraints, the maximal weight independent
set in the interference graph is equivalent to the maximal
weight matching in the network graph. A maximal weight
matching can be obtained in a distributed manner by the
algorithm of [12].

If a single radio is located at each node of the 6-node ring
illustrated in Fig. 2(a), then no two adjacent edges can be
simultaneously active. Thestability region(denoted byΛ∗

1) is
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then characterized by the following inequalities:

λ12 + λ23 ≤ b, λ23 + λ34 ≤ b, λ34 + λ45 ≤ b,

λ45 + λ56 ≤ b, λ56 + λ61 ≤ b, λ61 + λ12 ≤ b, (2)

where b = 1. This stability region can be achieved by a
centralized algorithm that finds a maximum weight matching
in each time slot. If we allow two channels to be used
simultaneously and two radios are located at each node, the
stability region (denoted for this case byΛ∗

2) is characterized
by (2) with b = 2.

Consider the case in which a single channel is used. It was
shown in [9] that in the 6-node ring, OLoP does not hold, and
that in general amaximal weight matching algorithm does
not achieve100% throughput in the 6-node ring7. According
to [17], a maximalweight matching algorithm can guarantee
stability for arrival rates that are at least50% of the rates in the
regionΛ∗

1 (i.e. the throughput obtained by a maximal weight
algorithm may be 50% lower than that obtained by a maxi-
mum weight algorithm). Hence, theguaranteeddistributedly
achievable region is given by (2) withb = 0.5 (the region may
be larger but this is not guaranteed).

Consider the case in which two channels can be used
simultaneously and two radios are located at each node. Under
the assumption that a node can transmit two packets on the
selected link (similarly to a speedup of two, defined in [8]),
the guaranteeddistributedly achievable region is the same as
Λ∗

1. Alternatively, we can solve the channel allocation problem
defined in Definition 4. According to that definition, in every
time slot only a single packet can be sent on a link (i.e.
it is a more restrictive model than the one above). Under a
possible allocation, links(1, 2), (2, 3), and(3, 4) can use one
channel, while the remaining links use the other channel. The
interference graph on each channel is now a tree (e.g. the line
connectingv12, v23, andv34). Since [9] shows that the maxi-
mal weight independent set algorithm is throughput optimalin
tree interference graphs, thedistributedly achievablestability
region is now given by

λ12 + λ23 ≤ 1, λ23 + λ34 ≤ 1,

λ45 + λ56 ≤ 1, λ56 + λ61 ≤ 1. (3)

This provides a strict performance improvement overΛ∗
1,

which is the region guaranteed by using two channels (speedup
of two). Yet, it is clear that this channel allocation is not the
best possible: the allocation in which links(1, 2), (3, 4), and
(5, 6) use one channel, while the remaining links use the other
channel can provide each network link with a stable rate of
one unit per time slot (i.e.λij ≤ 1 ∀(i, j) ∈ EN ).

To summarize, for a network operating under primary inter-
ference constraints with aspeedup of two(similar to allocating
two channels to each link), a greedy maximal weight algorithm
(implementable in a distributed manner) can guarantee at least
the network stability regionΛ∗

1 [17]. Our example above shows
for a particular network that whentwo channels are allocated

7In [9], it was shown that underrestricted arrival processes (subject to a
variance constraint and a large deviation bound), a maximalweight matching
algorithm is stable in the 6-node ring. In this work the arrival processes are
not restricted in this way.

such that each component satisfies OLoP, the stability region
that can beachievedby a distributed algorithm isstrictly larger
thanΛ∗

1.8 This is despite the fact that the partitioning operation
model is more restrictive than the other model.

This example demonstrates that careful channel allocation
taking into account topologies that satisfy OLoP can provide
significant improvements over arbitrary channel allocation.
Thus, it provides the motivation to study the characteristics
of network topologies satisfying OLoP and to design channel
allocation algorithms that exploit such characteristics.

IV. A STUDY OF LOCAL POOLING

A. Exhaustive Numerical Search

We performed a numerical study in which we searched over
all interference graphs of up to7 nodes. We employed Mathe-
matica to identify all simple graphs, and Matlab to determine
the maximal configurations (i.e. to obtain the matricesM(VI))
and to verify the satisfaction of the OLoP conditions for each
interference graph. The OLoP conditions are based on the
SLoP conditions that were verified using the following linear
program presented in [9].

c∗ = max
c,µ,ν

c

s.t. M(VI)µ ≥M(VI)ν + ce

e′µ = 1, e′ν = 1, µ, ν ∈ R
|VI |
+ , c ∈ R

It has been shown in [9, Prop. 1] that the graphGI satisfies
SLoP if and only ifc∗ = 0.

In order to simplify the presentation of the numerical results,
we first show that the OLoP conditions are satisfied by the
disjoint union of two graphs (not sharing any vertices in
common) satisfying the OLoP conditions. This allowed us to
restrict our search to connected simple graphs.

Proposition 1: A graphGI = G1
I ∪ G2

I (disjoint union)
satisfies OLoP, if and only ifG1

I and G2
I satisfy OLoP.

Proof: SupposeGI satisfies OLoP. Consider all induced
subgraphs restricted to the vertices ofG1

I . Then, any such
induced subgraph satisfies the SLoP conditions by our assump-
tion thatGI satisfies OLoP. Thus,G1

I satisfies OLoP. The same
reasoning provides thatG2

I satisfies OLoP. Suppose thatG1
I

andG2
I satisfy OLoP. Then, any induced subgraph ofGI can

be split into disjoint induced subgraphs onG1
I and G2

I . For
the induced graph onG1

I , our assumption provides that there
exists nonzeroα1 ≥ 0 that multiplies any maximal indepen-
dent vector on the induced subgraph to yield a constantc1.
Similarly, there existsα2 andc2 for the induced subgraph on
G2

I . Every maximal independent set of the induced subgraph
of GI must be the disjoint union of a maximal independent set
of the induced subgraph onG1

I and a maximal independent set
of the induced subgraph onG2

I . Thus, the augmented vector
(α1, α2) must yield a constant value ofc1+c2 for all maximal
independent sets of the induced subgraph onGI .

We note that in the following section we will present several
additional theoretical results regarding LoP in general graphs.
A specific case of one of the results that will be presented

8Note that this region is, of course, still smaller thanΛ∗

2
(the stability region

of a network with two channels, achievable by a centralized algorithm).
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Fig. 3. 7-node graphs that fail OLoP: (a) configurations where the induced
graph over the outer6 nodes is a6-ring (the dotted lines indicate edges that
can exist), and (b) the only7-node graph that has no induced6-ring subgraph
and fails SLoP.

there (Lemma 1) is that graphs that have a node with degree 1
satisfy SLoP. This allowed us to restrict our search to graphs
that do not have vertices of degree1, thereby significantly re-
ducing the computation time. We first considered all connected
interference graphs having up to5 vertices that do not have
vertices of degree1. There are15 such graphs. We obtained
the following numerical result.

Numerical Result 1: All connected simple graphs of up to
5 nodes that do not have vertices of degree1 satisfy SLoP.
This immediately implies that all graphs having up to 5
vertices (there are 52 such graphs) satisfy OLoP. Next, we
considered graphs of6 vertices (there are 61 such connected
graphs without degree 1) and obtained the following result.

Numerical Result 2: All graphs of6 vertices except the6-
node ring satisfy SLoP.
Numerical Results 1 and 2 together imply that all graphs of
up to 6 vertices except the 6-node ring satisfy OLoP.

Finally, we considered all graphs of7 vertices. We first
removed from consideration all such graphs having a6-ring
as an induced subgraph, since due to the failure of SLoP
in a 6-ring, OLoP fails in these graphs by definition. There
are 12 such graphs, and their general form is depicted in
Fig. 3(a). Among the remaining graphs of7 vertices, we can
then guarantee that there are no induced subgraphs, having6
vertices or fewer, that fail the SLoP conditions.

Numerical Result 3: There is one graph of7 vertices which
does not have an induced6-ring on any subset of6 nodes that
fails the SLoP conditions. This graph is depicted in Fig. 3(b).

To conclude, almost all 1,252 graphs of up to 7 nodes
satisfy OLoP (specifically, 14 fail OLoP). All attempts at
numerical evaluations for graphs of greater than 7 vertices
suffered computational difficulty. Therefore, in the following
section we focus on generating large graphs satisfying OLoP
from small components.

B. Constructive Approach

Our first observation is about connecting a graph and a
clique (complete graph).

Lemma 1: IfGI satisfies OLoP, then the graphG∗
I , which

consists ofGI sharing a single vertex with cliqueKn, n ≥ 2,
satisfies OLoP.

Proof: Assume thatGI satisfies OLoP. Denote byv the
vertex of GI that is shared with cliqueKn. We need only
consider the induced subgraphs ofG∗

I containing a vertex
v∗ 6= v belonging to the cliqueKn, since all other induced
subgraphs are subgraphs ofGI and satisfy SLoP by our initial
assumption. Clearly, the maximal independent sets of any such
induced subgraph (whose vertex set is designated byV ) either

v1

v2

v3

v4
v5

v6

K3K4

Fig. 4. An interference graph composed of two cliques and thecorresponding
tree of cliquesgraph.

include vertexv or v∗, but never both vertices. Consequently,
the vectorα having all zero entries except at the indices
corresponding to vertices ofKn, where the entries are set to
1, yieldsα′M(V ) = e

′. Thus, such a subgraph satisfies SLoP.
This holds for all induced subgraphs ofG∗

I that includev∗,
and we conclude thatG∗

I satisfies OLoP.
From the proof of Lemma 1 it can be seen that a graph that

has a node with degree 1 (such a graph can be viewed as a
graphGI sharing a node withK2) satisfies SLoP. Recall that
we have used this result in Section IV-A to reduce the number
of graphs in our numerical search. Moreover, the observation
in [9] that any interference graph that is a tree (or forest)
satisfies OLoP can be immediately obtained using Lemma 1.
We note that in Section IV-C we will show that even under the
simple primary interference constraints, the only interference
graph that can be a tree is a line. Therefore, we now study
more complicated interference graphs.

Lemma 2: Every complete graph satisfies OLoP.
Proof: Consider the complete graphGI = Kn. Then

clearly any subset of the nodes ofGI , labeledV , also gener-
ates a complete induced subgraph. Each maximal independent
set of a complete graph can only contain one vertex, from
which we conclude thatM(V ) is the identity matrix of size
|V |. Thus, we can useα = e, which yieldsα′M(V ) = e

′ for
anyV , from which we conclude that every induced subgraph
satisfies SLoP, and consequently thatGI satisfies OLoP.

We define atree of cliquesas follows (an example is
provided in Fig. 4) and derive the following Theorem.

Definition 7: A tree of cliques is composed of cliques
connected to each other in a tree structure. Its nodes can be
equated to cliques and its edges imply a shared vertex between
two adjacent cliques. No vertex can be shared by more than
two adjacent cliques.

Theorem 2: A tree of cliques satisfies OLoP.
Proof: Consider any cliqueG1

I on the tree. By Lemma 2
this clique satisfies OLoP. Then, consider any clique adjacent
to G1

I in the tree of cliques, and denote the graph of the two
combined cliquesG2

I . SinceG1
I and the adjacent clique share

only a single vertex, we can apply Lemma 1 to conclude that
G2

I satisfies OLoP. By iteratively adding successive cliques
to the overall graph under consideration, we see that each
resulting graph must satisfy OLoP by Lemma 1. Thus, the
overall tree of cliques must satisfy OLoP.

The next theorem considers cliques connected by disjoint
edges, where no two connecting edges share any vertices in
common. Consequently, at mostmin{m, n} edges can connect
Km andKn while maintaining an overall simple graph. The
proof considers four possible subgraph configurations and
demonstrates SLoP for each type. The main idea is that each
clique usually contributes a single vertex to every maximal
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independent set of each subgraph.
Theorem 3: If two cliques are connected by any number of

disjoint edges, the combined graph satisfies OLoP.
Proof: Designate the two cliquesG1

I = (V 1
I , E1

I ) and
G2

I = (V 2
I , E2

I ), whereV 1
I ∩ V 2

I = ∅ and E1
I ∩ E2

I = ∅.
Further, letEd be the set of disjoint edges connectingG1

I and
G2

I . We then haveGI = (VI , EI), whereVI = V 1
I ∪ V 2

I and
EI = E1

I ∪E2
I ∪Ed. Consider the induced subgraph over the

vertex setV ⊆ VI . If V ∩ V 1
I = ∅ or V ∩ V 2

I = ∅, then
Lemma 2 implies thatV satisfies SLoP. If|V ∩ V 1

I | = 1 and
there existsv ∈ V 2

I such that(V ∩ V 1
I , v) ∈ Ed, then Lemma

1 ensures that SLoP is satisfied forV . If |V ∩ V 1
I | = 1 and

there is nov ∈ V 2
I such that{V ∩ V 1

I , v} ∈ Ed, then the
induced subgraph overV consists of the disjoint union of two
cliques, which satisfies SLoP by Lemma 2 and Proposition 1.
The same reasoning applies when|V ∩V 2

I | = 1. Finally, when
|V ∩V 1

I | > 1 and|V ∩V 2
I | > 1, we claim that every maximal

independent set of the induced subgraph of verticesV in GI

contains two vertices. Denote bȳG1
I the induced subgraph over

G1
I andḠ2

I that overG2
I . Since bothḠ1

I andḠ2
I are cliques, no

more than two vertices can belong to any independent set, one
in each clique. Suppose a maximal independent set contains
one vertex,v, without loss of generality this vertex belongs
to Ḡ1

I . By definition of the setEd, v can only share an edge
with a single vertex ofḠ2

I . Then, if no vertex ofḠ2
I can be

added to the independent set,Ḡ2
I must beK1, since otherwise

any vertex ofḠ2
I not incident onv could be added. This

is a contradiction. Consequently SLoP must be satisfied on
such a subgraph. Thus, we have that SLoP is satisfied on any
subgraph ofGI , which implies that OLoP is satisfied.

We now consider a generalized structure of the one defined
in Definition 7, which we term “tree-of-blocks”. We generalize
the types of structures that can correspond to each vertex of
a tree. We already showed that a clique is one such structure.
We next show that two cliques connected by any number of
disjoint edges is another such structure. We again require that
two “blocks” can only share at most one vertex in common.

Theorem 4: A “tree-of-blocks”, where each block is either
a cliqueKn, n ≥ 2 or a pair of cliquesKn, Km, n, m ≥ 1,
connected by any number of disjoint edges, satisfies OLoP.

Proof: Any connected subgraph of a tree of blocks is tree
of blocks or a forest of blocks. Thus, we only need to consider
satisfaction of the SLoP properties of any tree of blocks, which
will provide the satisfaction of OLoP for any tree of blocks.
If the tree of blocksG = (V, E) has any cliqueKn, n ≥ 2
associated with a leaf of the tree, then one vertex of this clique
must belong to every maximal independent set of the tree of
blocks. Hence, settingαi = 1 for any vertex corresponding
to this clique andαi = 0 otherwise providesα′M(V ) = e

′

and we conclude that SLoP is satisfied. It remains to consider
the case where every leaf of the tree of blocks corresponds
to two cliques connected by any number of disjoint edges.
Consider any such block and in particular focus on the clique
that has no other blocks sharing a vertex with it. Then, it is
clear that the proof of Theorem 3 applies to this clique, in
that there must exist a vertex of this clique in every maximal
independent set of vertices inG. Thus, SLoP must be satisfied
for this configuration. Since SLoP is satisfied for any tree of

blocks, and each subgraph of a tree of blocks is a forest of
blocks, OLoP is satisfied for any tree of blocks.

C. Primary Interference Constraints

As mentioned above, the primary interference constraints
yield an interference graphGI which is the line graph of the
network graphGN . In this section, we study the restrictions
imposed on such interference graphs. We begin by considering
the only7-node graph, which does not have an induced6-ring,
that failed SLoP (depicted in Fig. 3(b)).

Proposition 2: Under primary interference constraints, the
interference graph presented in Fig. 3(b) cannot correspond
to any valid network graph.

Proof: According to [11] a graph is a line graph, if
and only if it does not contain any one of9 specific induced
subgraphs. In particular, the following graph is one of the9
subgraphs, with vertices of Fig. 3(b) labeled appropriately to
show the correspondence.

v1

v2v3

v4

v7

v6

We conclude thatonly the 6-ring leads to failure of the
OLoP conditions in any network graph having7 edges or
fewer. By similar arguments, we can show that other in-
terference graphs cannot exist under primary interference
constraints. For example, we can show that there is no network
graph whose interference graph (line graph) is a tree having
a node degree greater or equal to3. Any such tree has as
an induced subgraph the complete bipartite graphK1,3 (also
known as the “claw”). According to [11], the existence of
such an induced subgraph precludes the possibility that this
interference graph is the line graph of any network graph.

Although there is no interference graph that is a tree, a
network graph that is a tree can of course exist. It can be
shown that the interference graph of such a network graph is
always a tree of cliques, defined in Definition 7. The following
corollary is an immediate result of Theorem 2. According
to this corollary,maximal weight matching algorithms are
stable (provide 100% throughput) in trees.9 To the best of our
knowledge, this corollary provides the first non-trivial network
structure in which simple distributed algorithms are stable. The
channel allocation algorithms that will be presented in Section
V are based on this observation.

Corollary 1: Under primary interference constraints, the
interference graph of a tree network graph satisfies OLoP.

Based on the results presented in Section IV-B, we can
construct other non-trivial networks in which maximal weight
matching algorithms are stable. For example, Theorem 4
implies that the network described in Fig. 5 satisfies OLoP,
and thus is stable under distributed scheduling. Developing
network partitioning algorithms that efficiently take advantage
of such topologies is a subject for further research.

9Note that while in [9] it was shown that maximal weight matching
algorithms are stable in treeinterferencegraphs, the corollary shows that
they are stable in treenetworkgraphs.
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Fig. 5. Example of a network graph whose interference graph satisfies OLoP.

s1 s2

d1 d2 d3 dn

Kn Kn

(s1, d1)

(s1, d2)

(s1, dn)

(s2, d1)

(s2, d2)

(s2, dn)

Fig. 6. A network graph for aK2,n bipartite graph (2 × n input-queued
switch) and the corresponding interference graph.

We have obtained additional results that concern bipartite
graphs. Although mesh networks are usually not bipartite,
bipartite graphs provide insight regarding the performance
of our partitioning algorithms. Since input-queued switches
are bipartite graphs with primary interference constraints,
an additional byproduct is insight regarding switches. The
following corollary generalizes a recent result presentedin [4]
regarding a2× 2 input-queued switch.

Corollary 2: A maximal weight matching algorithm
achieves100% throughput in aK2,n bipartite graph (i.e. in
a 2× n input-queued switch).

Proof: A K2,n bipartite network graph is depicted on the
left in Fig. 6. Its interference graph can then easily be shown
to be two cliques of sizen (Kn), connected byn disjoint
edges, as depicted on the right in Fig. 6. The result is then
directly derived from Theorem 3.

It follows that a K4,n bipartite graph can be partitioned
into two subgraphs, each of whose interference graphs satisfies
OLoP. In Section V-B, we will use this observation to evaluate
the performance of our channel allocation algorithms.

V. CHANNEL ALLOCATION

The Channel Allocation Problem, introduced in Definition
4, seeks to assign a channel to every link such that each
partition (operating in a different channel) can achieve 100%
throughput by a distributed maximal weight scheduling al-
gorithm. In this section our objective is to develop channel
allocation algorithms that: (i) provide a large stability region
and (ii) allow simple distributed algorithms to achieve this re-
gion. As in Section IV-C, in order to demonstrate the presented
concept, we assume that primary interference constraints hold.

In terms of LoP conditions, we seek to partition the network
edges into channels such that the interference graph in each
channel satisfies OLoP. The OLoP requirement is extremely
challenging to incorporate into an optimization algorithmthat
generates a channel allocation, because it seeks the SLoP prop-
erty for every subgraph on each channel. However, Corollary
1 shows that network graphs that are trees satisfy OLoP. Thus,
it is sufficient to partition the edges of the network graph into
channels such that each channel’s network graph is a forest.
This is the basis for our channel allocation algorithms.

Our channel allocation problem is equivalent to a coloring
problem on the network graph. Namely, we seek to color
the network edges such that edges of a single color do not
compose a cycle (i.e. each color composes a forest). The

minimum number of colors is known as the graph arboricity
and can be found by anO(m2) algorithm [10].

Initially, we assume that all nodes have the same number
of radios and that this number is equal to the number of
channels (i.e.R(v) = k ∀v ∈ VN ).10 When the number of
available colors (channels)k is fixed, thek-forest problem
[10], [15] seeks to find the maximum number of edges of
the graph that can be colored using onlyk colors without
closing a single color cycle. This problem can be formulated
as amatroid11 partitioning or a matroid intersectionproblem.
In order to enable the development of capacity expansion
algorithms, we focus on the matroid intersection formulation.
Under this formulation, thek-forest problem makes use of two
matroids: thegraphic matroidand thepartition matroid. In
our setting, we define these matroids by considering the graph
Gk

N = (V k
N , E), equal tok disjointcopiesof the network graph

GN . The graphic matroidM1 = (E , I1) assigns toI1 all
possible forests inGk

N . The partition matroidM2 = (E , I2)
partitionsE into m , |EN | sets, where thei-th set,Ei, contains
all k copies of edgei. The collectionI2 contains all sets of
edges that have no more than a single element in any set of
the partitions:I ∈ I2 implies |I ∩ Ei| ≤ 1 for i = 1, . . . , m.
By associating with each copy ofGN in Gk

N a unique color, it
can be seen that the sets belonging toI1∩I2 can be equated to
colorings, where each subgraph of a particular color is a forest.
This directly corresponds to a valid channel allocation, where
each channel’s network graph is a forest. Thek-forest problem
is to find for a givenk the largest set of edges belonging to
the matroid intersection of the graphic and partition matroids.

A. Partitioning Algorithms

Our first algorithm for thek-forest problem is the subopti-
mal Breadth-First Search (BFS) algorithm. Such an algorithm
was used in [21] as a heuristic solution to this problem. Its
major advantage is its low complexity ofO(k(m + n)). Yet,
in Section VI we will show that there is a large gap between
the BFS solution and the optimal solution.

Therefore, we selected an optimal algorithm as a basis for
developing our capacity expansion algorithms. The optimal
solution to thek-forest problem can be found in polynomial
time [10], [15] by several algorithms. One of these algorithms
is the Matroid Cardinality Intersection(MCI) algorithm of
Lawler [15]. Given a valid coloringI ∈ I1 ∩ I2, the MCI
algorithm searches for anaugmenting path, consisting of an
alternating sequence of edges not inI and edges inI, such that
when the edges of the path belonging toI are removed fromI
and those not belonging toI are added, the resulting coloring
(channel allocation) belongs toI1 ∩I2 and its cardinality has
increased by1 (for more details see [15]). The complexity of
the MCI algorithm isO(km2n′ + k2mn(n′)2), wheren′ =
min{n, m/k}. In the description of the following algorithms,
we refer to two copies of the same edge on different colors in
Gk

N asparallel edges.

10We will show below that this assumption can be relaxed.
11A matroid is a combinatorial structureM = (E, I) in which E is a finite

set of elements, andI is a collection of subsets ofE satisfying (i) ∅ ∈ I,
and if I ∈ I, then all proper subsets ofI belong toI, and (ii) if I1, I2 ∈ I
with |I2| = |I1| + 1, then there existse ∈ I2 such thatI1 ∪ {e} ∈ I.
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Our channel allocation framework admits the practical
situation where each nodev is equipped withR(v) radios (in-
terfaces). Namely, different nodes have a different number of
radios. In the formulation of the matroid intersection problem,
we define the graphGk

N as the disjoint union ofk identical
copies of the networkGN . This corresponds to the case, where
each node is equipped with exactlyk radios. Essentially, rather
than generatingk copies of each network graph edge, each
network link should only have an edge represented in thei-
th copy of the network graphGN when there is a radio for
that link available for use of thei-th channel.12 Without loss
of generality we refer to any graph defined in this manner as
Gk

N = (V k
N , E). The matroid intersection properties, the MCI

algorithm, and the algorithms described in Section V-B can
then be applied toGk

N .
Once the channel allocation is performed, at each time

slot, one can use the distributed approximation algorithm of
[12] that finds the maximal weight (greedy) solution, thereby
providing 100% throughput. The (local) computational com-
plexity of this algorithm isO(1), which is low relative to the
O(n3) complexity of a centralized optimal algorithm required
to solve (1) [15]. In addition, the centralized algorithm has to
collect queue backlog information from all nodes at each time
slot (for an extended comparison see [19]).

In the realistic situation where the number of channelsk
is fixed and insufficient to partition all the network edges
into k forests, we apply the MCI algorithm (or BFS) to
generate an initial allocation that is ak-forest, and assign the
unallocated network edges to thek-th channel. Thus, the first
k− 1 channels are guaranteed to satisfy OLoP, while thek-th
channel operates at a worst-case50% throughput.

A (theoretical) optimal solution will partition the graph
into the minimum number of OLoP satisfying components,
whereas our algorithms partition into forests. In order to
evaluate the performance of our algorithms, we consider
complete bipartite graphs. It can be shown that two channels
are necessary and sufficient to guarantee the satisfaction of
OLoP in K3,3. Applying MCI, we find that the arboricity
of K3,3 is 2 and conclude that MCI achieves the minimum
number of channels to guarantee OLoP. This and similar
results point to the strong performance of the MCI algorithm
in partitioning the network into a small number of channels
satisfying OLoP. Yet, the following lemma provides a lower
bound on the performance in general. Defineκ∗(GN ) as the
minimum number of channels necessary to partition the edges
of a network graphGN such that the interference graph of
each partitioned subgraph satisfies OLoP.

Lemma 3:For ε > 0 there is no approximation algorithm
that partitions a network graphGN into κ(GN ) forests, where
κ(GN ) ≤ (1.5− ε)κ∗(GN ), ∀GN .

Proof: Consider aK4,4 bipartite network graph. It can be
partitioned into twoK2,4 network graphs. Due to Corollary 2,
under primary interference constraints, an interference graph
of K2,4 satisfies OLoP. Therefore,2 channels are sufficient
to guarantee the satisfaction of OLoP inK4,4. Namely,

12When different nodes have a different number of radios, the specific
allocation of the links to the different copies may affect the capacity region.
An efficient allocation algorithm is a subject for further research.

κ∗(K4,4) = 2. SinceK4,4 has 8 nodes, any forest in such
a graph can have at most7 edges. SinceK4,4 has16 edges,
its arboricity must be at least3 (i.e. κ(K4,4) = 3). Hence,
there exists a graphGN for which κ(GN ) = 1.5κ∗(GN ).

B. Capacity Expansion Algorithms

An important undesirable feature of the MCI and BFS
algorithms is that each successive channel has amaximal
number of network edges assigned to it, given the assignment
to the previous channels. We wish to balance the trees in order
to expand the capacity.

We present three algorithms for improving the network
capacity properties. Since the admissible region restricts the
summed throughput of all edges incident on the same vertex
in the network graph to1, it is desirable to minimize the
maximum vertex degree over the network graphs on each
channel. The first algorithm is called R-GREEDY, and it
operates by greedily selecting edges incident on vertices of
maximum degree and seeking any channel that they can be
reallocated to, such that the new allocation belongs toI1 ∩I2
and the allocation has an improved maximum degree. We note
thate = (vi, vj) implies thatvi ∈ e andvj ∈ e. The algorithm
makes use of the functionTF1(I), which returns a negative
value when the maximum degree or number of vertices at
maximum degree under allocationI improves upon that of a
reference allocation,I0.

TF1(I) = ∆∗
I −∆∗

I0

+ 1{∆∗

I
=∆∗

I0
}

(

∑

v 1{∆I(v)=∆∗

I
} −

∑

v 1{∆I0
(v)=∆∗

I0
}

)

.

Above,∆I(v) denotes the degree of vertexv in graph(V k
N , I),

∆∗
I indicates the maximum vertex degree in graph(V k

N , I),
and 1{·} is the indicator function. The complexity of the R-
GREEDY algorithm isO(dnmkn′), whered is the maximum
vertex degree inGN .

Algorithm Greedy Reallocation (R-GREEDY)
1: begin with any edge setI ∈ I1 ∩ I2 (this could be the

output of BFS or MCI)
2: repeat
3: I0 ← I
4: if ∃e1 ∈ I, e2 /∈ I such that∃v ∈ e1, ∆I(v) =

∆∗
I , TF1((I \ {e1}) ∪ {e2}) < 0 then

5: I ← (I \ {e1}) ∪ {e2}
6: until I equalsI0

Our second and third capacity expansion algorithms search
for capacity improvements by directly attempting to balance
the vertex degrees over all channels. They make use of
augmenting paths in the spirit of the MCI algorithm to find
new locations for edges that are incident on heavily-loaded
vertices. Themaximum degree reallocationalgorithm (R-
MAX D) seeks to minimize the maximum degree over vertices
in all channels. It proceeds by disabling edges incident on
maximum degree vertices and searching for augmenting paths
that do not use such edges. The algorithm uses the function
TF1 for evaluating channel allocations, and the function
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ESF0
1(I) for selecting candidate edges to disable.ESF0

1(I)
returns all edges incident on vertices having maximum degree
in graph(V k

N , I),

ESF0
1(I) = {e ∈ I : v ∈ e, ∆I(v) = ∆∗

I}.

Theaverage degree reallocationalgorithm (R-AVGD) seeks
to reduceany vertex degree in the graph so long as the
reduction does not lead to higher vertex degrees or more
vertices of maximum degree elsewhere in the graph. R-AVGD
employs the performance evaluation functionTF2,

TF2(I) =
∑∆∗

I

i=1 2isign
(

∑

v 1{∆I(v)=i} − 1{∆I0
(v)=i}

)

.

Above, the functionsign(x) = −1 if x < 0, sign(x) = 1
if x > 0, and sign(0) = 0. The functionTF2(I) returns
a negative value when the first entry at which the degree
sequence13 of (V k

N , I) differs from that of(V k
N , I0) is lower in

the sequence of(V k
N , I) than that in(V k

N , I0). This function
encourages trading higher degree vertices for more vertices
of lower degree. R-AVGD also makes use of the function
ESFv

2(I), which returns all edges incident on vertexv in I,
ESFv

2(I) = {e ∈ I : v ∈ e}. We simultaneously present both
algorithms as Algorithms 1/2, making use of the parameter
PARAMi, with PARAM1 = {0}, andPARAM2 = V k

N .

Algorithm 1/2 Maximum Degree/Average Degree Realloca-
tion algorithms (R-MAX D [i = 1]/R-AVGD [i = 2])

1: begin with any edge setI ∈ I1 ∩ I2
2: repeat
3: I0 ← I
4: for v ∈ PARAMi do
5: I ← arg minĨ{TFi(Ĩ) :

Ĩ = CE-MCI(I,{e},ESFv
i ,TFi,1), e ∈ ESFv

i (I)}
6: until I equalsI0

R-MAX D and R-AVGD employ the recursive procedure
CE-MCI that successively disables edges until an improved
augmenting path is found, or all possible configurations are
exhausted. CE-MCI takes as input the initial channel allocation
I, the set of edgesE0 to exclude when it attempts to search
for augmenting paths, the functions ESF and TF, and an
integer to track the depth of the recursion. The maximum
depth of the recursion can be set using the constant DMAX.
While the MCI algorithm modifies the channel allocation at
each iteration upon the discovery of its first augmenting path,
CE-MCI labels over the entire graph andselects the best
augmenting path availablebetween all such paths found, in
terms of the functionTF.

The complexity of the algorithms is a function of the com-
plexity of the MCI algorithm, which we denote byc(MCI).
The complexity of R-MAX D is O(dnmD MAXc(MCI)) and
of R-AVGD is O(dD MAXnmc(MCI)). As long as the search
depth DMAX is low, the complexity is reasonable. In the
following section, we will see that significant capacity im-
provement is achieved forD MAX = 2.

13The degree sequence of a graphG is a nondecreasingsequence of the
vertex degrees ofG.

Algorithm CE-MCI(I0,E0,ESF,TF,Depth)

1: I = {I0 \ E0}
2: while ∃I ∈ I with |I| < m do
3: I ← I \ {I}
4: remove labels from all edges; assignI+ = I− ← ∅
5: label ‘+’ on every edgee such thatI ∪ {e} ∈ I1 and

e ∩ E0 = ∅
6: while e = [edge with oldest unscanned label]6= ∅ do
7: if e is labeled ‘+’ and I ∪ {e} ∈ I2 then
8: trace the alternating path of ‘+’ and ‘-’ labels that

lead to the ‘+’ label ate by assigning edges labeled
‘+’ to I+ and those labeled ‘-’ toI−

9: I ← I ∪ {(I \ I−) ∪ I+}
10: else if e is labeled ‘+’ then
11: label ‘-’ on the edge inI that is parallel toe (if

the edge is unlabeled)
12: else
13: label ‘+’ on each unlabeled edge in the unique

cycle in (V k
N , I ∪ {e})

14: I ← I ∪ {I0}; Irmci ← arg minI∈I TF(I)
15: if TF(Irmci) = TF(I0) then
16: (failed to generate an improved augmenting path)
17: if Depth< D MAX then
18: Irmci ← argminI{TF(I) :

I = CE-MCI(I0,E0 ∪ {e},ESF,TF,Depth+1),
e ∈ ESF(I0 \ E0)}

19: else
20: Irmci ← I0

21: return Irmci

The channel allocation algorithms, as described, make no
use of knowledge regarding traffic. In situations where traffic
statistics are known, it is desirable to have a channel allo-
cation that accounts for different levels of load at various
nodes. Nodes can be assigned different levels of priority by
associating with each nodev a weight wv. For example,
a gateway node that is anticipated to have a high level of
incoming traffic can be assigned a high weight. Continuing
the example, if we apply the performance evaluation function
TF3(I) =

∑

v wvδI(v), along with parameters PARAM2 =
V k

N and ESFv
2(I) in the algorithmic framework presented in

Algorithms 1/2, then the algorithm will attempt to minimize
TF3(I). It is clear that when the gateway node has high weight,
the resulting channel allocation will favor low node degree
on every channel incident on the gateway node. Obviously,
this discussion oversimplifies the difficult and related problem
of conducting channel allocation when traffic statistics are
known. However, it does serve as a demonstration of how
this goal can be achieved in our framework.

VI. PERFORMANCEEVALUATION

The partitioning and capacity expansion algorithms pre-
sented in Section V were implemented in Matlab and tested
on numerous randomly generated networks. In this section we
briefly describe the numerical results obtained for a numberof
representative cases. All presented results have been obtained
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Fig. 7. Average number of channels in the optimal solution, the number
required by the BFS algorithm, and the upper bound.

for randomly generated instances in which the nodes are
uniformly distributed in a plane of size1000m×1000m, with a
link existing between two nodes if the distance between them
is at most250m. We intentionally present results regarding
relatively dense networks, since in very sparse networks the
partitioning solution is often trivial and does not shed light on
the tradeoffs involved in capacity expansion. As in the previous
sections, we assumed that primary interference constraints
hold. The presented results were obtained assuming that the
number of radios equals the number of channels and is the
same for all nodes (i.e.R(v) = k ∀v). As described in Section
V-A, this assumption can be easily relaxed.

A. Partitioning Algorithms

Fig. 7 compares the average number of channels (k) re-
quired by the BFS and the MCI algorithms. The results
are presented as a function of the number of nodes in the
network (n), where for each value ofn, the average was
obtained over100 different random instances. Over all cases
tested, the BFS algorithm required on average32% more
channels than the optimal MCI algorithm. Hence, despite the
higher computational complexity, using a matroid intersection
algorithm is beneficial.

Fig. 7 also presents anupper boundon the edge chromatic
number, which is the minimum number of colors (channels)
such that an edge coloring exists having no two equally colored
edges incident on the same vertex. According to Vizing’s
Theorem, the edge chromatic number is bounded above by
∆∗+1, where∆∗ is the maximum vertex degree in the network
[11]. The large gap between the optimal solution and the edge
chromatic number upper bound arises because under edge
coloring, all edges can be active simultaneously, while MCI
creates trees on which transmissions still have to be scheduled.
Hence, by using edge coloring, the capacity region is enlarged
to λij ≤ 1 ∀(i, j) ∈ EN . In many network instances, such a
large capacity expansion requires numerous channels.

B. Capacity Expansion Algorithms

We now demonstrate the operation of the different capac-
ity expansion algorithms on a specific randomly generated
network with 20 nodes. Fig. 8 illustrates an example of the
channel allocations performed by the different algorithmsin a
network in which the required number of channels is 4. The
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Fig. 8. Channel assignments by (a) MCI (b) R-GREEDY (c) R-MAX D, and
(d) R-AVGD.

figure presents the network and then, for each algorithm, the
4 forests. Fig. 8(a) presents the solution obtained by the MCI
algorithm. It can be seen that the leftmost forest is relatively
dense, while the rightmost tree is sparse (it includes only a
single edge). The capacity is not efficiently allocated in this
solution, since most of the nodes do not use the fourth channel,
while the first channel has to be shared by many links.

Fig. 8(b) presents the allocation performed by algorithm R-
GREEDY, using the MCI solution as input. It can be seen that
several edges now moved to the fourth (rightmost) channel.
Fig. 8(c) presents the allocation performed by algorithm R-
MAX D, using the R-GREEDY solution as input. The R-
GREEDY solution had two vertices of degree three, and R-
MAX D manages to manipulate the allocation such that only
a single vertex has degree three. The solution from R-MAX D
is used as input in R-AVGD to obtain the channel allocation
of Fig. 8(d). Though the maximum vertex degree remains at
three, lower degree vertices have had their degrees improved,
with many more edges in this allocation entirely disconnected.

The example above demonstrates the operation of the ca-
pacity expansion algorithms. We now quantitatively evaluate
their performance. Given a specific channel allocation it isnot
straightforward to represent the capacity region. This results
from the fact that it is a polytope inRm

+ . Yet, in order to obtain
some insight, we make the following simplifying assumption
regarding the capacity allocation that takes place once the
channels are assigned to the links. We assume that some degree
of fairness exists, and therefore, if possible, all edges con-
nected to a node receive an equal share of the node capacity.
This is sometimes impossible, due to a capacity limit resulting
from the other node connected to an edge. Consequently, under
this assumption the throughput on an edge(i, j) operating in
channelk will be at least(max(∆i,k, ∆j,k))−1, where∆i,k

is the number of edges adjacent to nodei that use channelk.
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Fig. 9. Average and worst-case capacities.

Accordingly, the first performance measure isAverage Ca-
pacity, which is the average over all edges(i, j) ∈ EN of the
above value. The second performance measure is theWorst-
Case Capacity, which is the lowest capacity allocated to a link
in the network. This is inversely proportional to the maximum
node degree over all nodes and all channels. Using the above
notation, it is equal to(maxi,k ∆i,k)−1.

Fig. 9 illustrates these performance metrics for random
networks with different numbers of nodes (n). For each value
of n, the results were averaged over 50 different random
network instances. It can be seen that both for the worst
case and the average case, R-GREEDY provides significant
throughput improvement over the MCI algorithm (average
improvement of29% and40% in the average and worst-case
capacity, respectively). This is notable, since the complexity
of the greedy capacity expansion algorithm is small relative
to that of MCI. When using the R-MAX D and R-AVGD, we
employed a maximum search depth ofD MAX = 2. This
implies that the complexities of R-MAX D and R-AVGD are
respectivelyO(dnm2) and O(d2nm) times the complexity
of MCI. Despite the higher complexities, the value of these
algorithms is evident from their ability to significantly improve
the performance metrics. Relative to the MCI solution, R-
MAX D achieves average improvements of36% and 56% in
the average and worst-case capacities, respectively, while R-
AVGD achieves45% and 56%, respectively.14 There is an
evident tradeoff between complexity and performance. Since
the channel allocation problem is solved in a different time
scale from the scheduling problem, it seems beneficial to use
R-MAX D or R-AVGD.

In realistic situations the number of channels and radios is
bounded. Fig. 10 depicts the average capacity metric versus
the number of available channels (k) for a network with 20
nodes. For each value ofk, the results were averaged over
50 different random network instances. Given a fixedk, the
MCI, R-GREEDY, R-MAX D, and R-AVGD algorithms were
enlisted to obtain and expand the capacity ofk-forests. In
instances where there were edges that could not be included
in a validk-forest, these edges were added to the last generated
forest (at channelk). As explained in Section V-A, the first
k − 1 channels are guaranteed to satisfy OLoP, while the
k-th channel operates at a worst-case50% throughput. If

14The plots of the worst-case capacity for R-AVGD and R-MAX D overlap.
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Fig. 10. Average capacities in a network with 20 nodes.

there was a cycle in thek-th channel, we assumed that the
edges in thek-th channel achieve only 50% throughput when
calculating the average capacity. Algorithms R-GREEDY, R-
MAX D and R-AVGD provide significant improvement over
the MCI algorithm alone.

C. Comparison with Other Channel Allocation Algorithms

Thus far, our simulation studies have provided absolute
measures of the performance. It is also desirable to compare
the performance of the algorithms to that of algorithms pro-
posed in the literature. However, as mentioned in Section I,
while we do not assume any knowledge regarding the arrival
rates, most of the previous work regarding mesh networks rely
on traffic statistics. Therefore, we had to carefully compare our
algorithms to an algorithm which assumes some knowledge
of the arrival rates. A well known efficient static channel
allocation algorithm15 has been proposed by Kodialam and
Nandagopal [14]. In this section, we show that the throughput
obtained by our channel allocation algorithm is usually higher
than the throughput obtained by the algorithm of [14].

In [14], the joint routing and channel allocation problem
is considered. The routing problem is solved using a linear
program, and subsequently the implied link loads are used to
determine an effective channel allocation (see [14, Fig. 5]).
Essentially, each (link,channel) combination is providedwith
a weight that reflects the maximum load on any constraint set
containing this pair, and the algorithm successively determines
the minimum weighted link and assigns a channel to that link.
The algorithm as presented in [14] does not provide a tie-
breaking condition for allocating a channel to a link, when
multiple channels have the same weight. In our numerical
studies, we find that the choice of tie-breaking condition has an
effect on achievable throughput. Consequently, we distinguish
between two versions of the algorithm:

1) Ties are broken by selecting the channel with lowest
index - referred to as the KN algorithm.

2) Ties are broken by randomly selecting among equally
weighted channels - referred to as the KN with Random
Tie-Break (KN-RTB) algorithm.

We present results regarding four channel allocation meth-
ods: (i) our static channel allocation, where we apply the MCI,

15Recall from Section I that under static channel allocation,a channel is
allocated to a link for an extended period of time.
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R-GREEDY, R-MAX D, and R-AVGD algorithms in sequence,
followed by assigning any unallocated edge to channelk, (ii)
the static KN algorithm, (iii) the static KN-RTB algorithm,and
(iv) dynamic channel allocation. Under the dynamic channel
allocation links are not bound to channels, and (link,channel)
combinations are activated at each slot based on maximal
weight scheduling. Note that the dynamic channel allocation
method has the advantage of being allowed to modify its chan-
nel allocation at each time slot. Consequently, its performance
is superior to any static allocation scheme. Nevertheless,the
throughput gap between static and dynamic channel alloca-
tions is of interest, since it clarifies some of the tradeoffs
between performance and scheduler complexity.

It has been assumed in [14] that the traffic is known (i.e. the
arrival rate vectorΛ is explicitly considered as an input to the
channel allocation algorithm of [14]). Although our algorithms
do not need information regardingΛ, in order to perform a fair
comparison, we assume that the KN and KN-RTB algorithms
conduct channel allocation using the true arrival rate vector Λ.
Namely, whileΛ is known in advance to the KN and KN-RTB
algorithms, it is not known to our algorithms. It has also been
assumed in [14] that the traffic isdeterministic. Under deter-
ministic and known traffic, a fixed Time-Division Multiplexing
(TDM) schedule can be used for serving the queues. Therefore,
the KN algorithm has been designed to be used in conjunction
with a TDM scheduler. Recall that our scheduling objective is
to serve packets that arrivestochastically. Therefore, once the
static channel allocation is obtained by any of the algorithms
(including KN and KN-RTB), we assume that packets are
served using maximal weight scheduling.

In our simulations, we considerk = 3 available channels,
with 3 radios at each node. We assume that packets arrive
according to a Poisson arrival process. In order to measure
performance in terms of throughput, we assume that the arrival
rates to all links are equal, i.e.λij = λ for all (i, j) ∈ EN . We
will refer to the maximum value ofλ for which the queues in
the network remain stable (i.e. do not grow without bound) as
the maximum achievable throughputof the network.

We first considered a random placement ofn = 25 nodes.
Fig. 11 plots the average aggregate queue occupancy versus the
arrival rateλ under the various channel allocation algorithms.
Each point in the figure is generated from a sample path
of duration 100, 000 time slots. The maximum throughput
values achievable under the KN, KN-RTB, R-AVGD, and
the dynamic channel allocation algorithms are respectively:
λ = 0.2, 0.25, 0.33, and0.42 packets per slot.

Similarly, we considered25 randomly generated mesh net-
works, each withn = 25 nodes. Table I presents the maximum
achievable throughput of the different channel allocationalgo-
rithms in 10 of these networks. Observe that our channel allo-
cation algorithm usually outperforms the other static channel
allocations. Overall, our channel allocation outperformsthe
best KN algorithm by an average of25%. Additionally, the
maximum achievable throughput of the KN-RTB is usually
higher than that of the KN algorithm, with an average improve-
ment of15%. Dynamic channel allocation always outperforms
static allocation, with an average throughput improvementof
33% over the best static allocation.
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Fig. 11. Average aggregate queue occupancy in a network with25 nodes.

TABLE I

ACHIEVABLE THROUGHPUT OVER10 RANDOMLY SELECTED NETWORKS.

Network KN KN-RTB R-AVGD Dynamic
index Algorithm Algorithm Algorithm allocation

1 0.33 0.33 0.50 0.50
2 0.16 0.25 0.33 0.37
3 0.25 0.33 0.33 0.42
4 0.14 0.20 0.25 0.33
5 0.11 0.16 0.16 0.27
6 0.33 0.50 0.50 0.60
7 0.20 0.20 0.33 0.33
8 0.25 0.33 0.50 0.50
9 0.25 0.25 0.33 0.43
10 0.33 0.33 0.50 0.55

Finally, we note that although our channel allocation algo-
rithms enable distributed algorithms to achieve 100% through-
put in each of thek subnetworks, this scheme does not
necessarily achieve the stability region of a network withk
channels. As mentioned in Section II, achieving this stability
region in general requires centrally solving a global optimiza-
tion problem at each time slot. The throughput obtained by
the dynamic channel allocation is an approximation to that
stability region. However, characterizing the gap betweenthe
throughput obtained by our scheme and the stability region in
a network withk channels is still an open problem.

VII. C ONCLUSIONS

In this paper we have applied techniques stemming from
stability theory and matroid theory to obtain novel results
regarding the design of Wireless Mesh Networks. The ap-
plication of these theories allows us to develop algorithms
for pre-partitioning a mesh network into a number of high
capacity subnetworks such that in each of the subnetworks
simple distributed algorithms can obtain 100% throughput.

We have performed a thorough study of the implications
of Local Pooling on network design and shown that although
the notion of Local Pooling is rather abstract, its implications
are quite powerful. We identified several types of interference
graphs that satisfy Local Pooling as well as network graphs
(e.g. trees) which under primary interference constraintsyield
interference graphs that satisfy Local Pooling (several addi-
tional graph classes that satisfy Local Pooling can be found
in [25]). Based on our observations, we developed matroid
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intersection algorithms for efficient network partitioning under
primary interference constraints. We have shown that these
algorithms perform very well in terms of capacity. We note
that the scope of this work spans more than multi-radio multi-
channel WMNs. It is relevant to any wireless network with
stochastic arrivals in which transmissions can be differentiated
in the time domain (i.e. scheduling) and in other domains
(frequency, code, etc.).

This paper primarily provides atheoretical contribution
that lays the foundation for developingpractical algorithms.
Hence, there are still many problems to deal with. For exam-
ple, a future research direction is to allow dynamic channel
allocation. This will require to tailor the channel allocation
algorithms for online and perhaps distributed operation. In
addition, Lemma 3 indicates that partitioning into trees may
be suboptimal. Therefore, we would like to develop matroid
intersection algorithms that will partition into other compo-
nents similar to the ones identified in Section IV. In general,
we would like to develop algorithms that partition the network
to the minimum number of OLoP-satisfying components.
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