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Abstract—Efficient operation of wireless networks and switches
requires using simple (and in some cases distributed) scheduling
algorithms. In general, simple greedy algorithms (known as
Greedy Maximal Scheduling - GMS) are guaranteed to achieve
only a fraction of the maximum possible throughput (e.g., 50%
throughput in switches). However, it was recently shown that in
networks in which the Local Pooling conditions are satisfied, GMS
achieves 100% throughput. Moreover, in networks in which the
σ-Local Pooling conditions hold, GMS achieves σ% throughput.
In this paper, we focus on identifying the specific network
topologies that satisfy these conditions. In particular, we provide
the first characterization of all the network graphs in which
Local Pooling holds under primary interference constraints (in
these networks GMS achieves 100% throughput). This leads to
a linear time algorithm for identifying Local Pooling-satisfying
graphs. Moreover, by using similar graph theoretical methods,
we show that in all bipartite graphs (i.e., input-queued switches)
of size up to 7×n, GMS is guaranteed to achieve 66% throughput,
thereby improving upon the previously known 50% lower bound.
Finally, we study the performance of GMS in interference graphs
and show that in certain specific topologies its performance
could be very bad. Overall, the paper demonstrates that using
graph theoretical techniques can significantly contribute to our
understanding of greedy scheduling algorithms.

Index Terms—Local pooling, scheduling, throughput maxi-
mization, graph theory, wireless networks, switches.

I. INTRODUCTION

The effective operation of wireless and wireline networks
relies on the proper solution of the packet scheduling problem.
In wireless networks, the main challenge stems from the need
for a decentralized solution to a centralized problem. Even
when centralized processing is possible, as is the case in input-
queued switches, designing low complexity algorithms that
will enable efficient operation is a major challenge.

A centralized joint routing and scheduling policy that
achieves the maximum attainable throughput region was pre-
sented by Tassiulas and Ephremides [26]. That policy applies
to a multihop network with a stochastic packet arrival process
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and is guaranteed to stabilize the network whenever the arrival
rates are within the stability region (i.e., it provides 100%
throughput). The results of [26] have been extended to various
settings of wireless networks and input-queued switches (e.g.,
[1], [21]). However, algorithms based on [26] require the
repeated solution of a global optimization problem, taking into
account the queue backlog of every link. For example, even
under simple primary interference constraints1, a maximum
weight matching problem has to be solved in every slot,
requiring an O(n3) algorithm.

Hence, there has been an increasing interest in simple
(potentially distributed) algorithms. One such algorithm is the
Greedy Maximal Scheduling (GMS) algorithm (also termed
Maximal Weight Scheduling or Longest Queue First - LQF).
This algorithm selects the set of served links greedily accord-
ing to the queue lengths [12], [19]. Namely, at each step, the
algorithm selects the heaviest link (i.e., with longest queue
size), and removes it and the links with which it interferes
from the list of candidate links. The algorithm terminates when
there are no more candidate links. Such an algorithm can be
implemented in a distributed manner [12], [17].

It was shown that the GMS algorithm is guaranteed to
achieve 50% throughput in switches [8] and in general graphs
under primary interference constraints [19]. It also was proved
in [5], [24] that under secondary interference constraints2 the
throughput obtained by GMS may be significantly lower than
the throughput under a centralized scheduler.

Although in arbitrary topologies the worst case performance
of GMS can be very low, there are some topologies in
which 100% throughput is achieved. Particularly, Dimakis
and Walrand [9] presented sufficient conditions for GMS to
provide 100% throughput. These conditions are referred to as
Local Pooling (LoP) and are related to the structure of the
network. Based on these conditions, it was shown that GMS
achieves maximum throughput in tree network graphs under
k-hop interference (for any k) [16], [28], in 2 × n switches
[4], and in a number of interference graph classes [28].

The LoP conditions were recently generalized to provide
the σ-Local Pooling (σ-LoP) conditions under which GMS
achieves σ% throughput [15], [16] (the conditions were refor-
mulated in [18]). Using these conditions, lower bounds on the

1Primary interference constraints imply that each pair of simultaneously
active links must be separated by at least one hop (i.e., the set of active links
at any point of time constitutes a matching).

2Secondary interference constraints imply that each pair of simultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [5].
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guaranteed throughput in geometric graphs [16] and in graphs
under secondary interference constraints [17] were obtained.

From a practical point of view, identifying graphs that
satisfy LoP and σ-LoP can provide important building blocks
for partitioning a network (e.g., via channel allocation) into
subnetworks in which GMS performs well [4]. Another pos-
sible application is to add artificial interference constraints to
a graph that does not satisfy the LoP conditions in order to
turn it into a LoP-satisfying graph. Adding such constraints
may decrease the stability region but would enable GMS to
achieve a large portion of the new stability region.

While it is known that under primary interference some
graph families (mainly trees and 2×n bipartite graphs) satisfy
LoP, the exact structure of networks that satisfy LoP was not
characterized. In this paper, we use graph theoretic methods
to obtain the structure of all the network graphs that satisfy
LoP under primary interference constraints (in these networks
GMS achieves 100% throughput). This allows us to develop an
algorithm that checks if a network graph satisfies LoP in time
linear in the number of vertices, significantly improving over
any other known method. We note that although primary inter-
ference constraints may not hold in many wireless networking
technologies, the characterization provides an important the-
oretical understanding regarding the performance of simple
greedy algorithms. It also shows that the 2 × n switch is the
largest switch for which 100% throughput is guaranteed.

We then focus on graphs in which GMS does not achieve
100% throughout. We consider bipartite network graphs (i.e.,
input-queued switches) and show that for bipartite graphs
of size k × n, where k ≤ 7 and n is arbitrary, GMS
achieves at least 66% throughput. Namely, for switches with
up to 7 inputs or 7 outputs, the throughput under GMS is
bounded from below by 66%. This significantly improves upon
the well known 50% lower bound [8] and confirms many
simulation studies (e.g., [10]) in which it was shown that
greedy algorithms perform relatively well in switches. To show
that this result does not extend to all bipartite graphs, we show
that there exists a 10× 10 bipartite graph for which σ = 0.6.

Finally, we consider interference graphs3 and categorize dif-
ferent graph families according to their σ values. In particular,
we show that all co-strongly perfect graphs satisfy LoP. This
class encapsulates all the classes of perfect LoP-satisfying
interference graphs that were identified before (i.e., chordal
graphs, interference graphs of trees, etc.). The observation
increases the number of graphs known to satisfy LoP by an
order of magnitude. Regarding σ-LoP we show that there are
graphs with arbitrarily low σ. Since the worst case specific
graph identified up to now had σ = 0.6 [15] and the lowest
lower bound known for a graph family was 1/6 [16], [17],
this provides an important insight regarding graphs in which
GMS may have bad performance. We conclude with briefly
describing a simulation study that compares the performance
of GMS to the optimal algorithm in graphs with low σ.

To conclude, the main contributions of this paper are two-

3Although it has been recently shown that in some cases the interference
graph does not fully capture the wireless interference characteristics [22], it
still provides a reasonable abstraction. Extending the results to general SINR-
based constraints is a subject for further research.

fold: (i) a characterization of all network graphs in which
Local Pooling holds under primary interference constraints (in
these network graphs Greedy Maximal Scheduling is guaran-
teed to achieve 100% throughput) and (ii) improved lower
bounds on the throughput performance of Greedy Maximal
Scheduling in small switches. Overall, the paper demonstrates
that using graph theoretical techniques can significantly con-
tribute to our understanding of greedy scheduling algorithms.

This paper is organized as follows. In Section II we present
the model. We characterize all graphs that satisfy LoP under
primary interference constraints in Section III. In Section IV
we show that GMS achieves 66% throughput in switches
with up to 7 inputs. We study the performance of GMS in
interference graphs in Section V and we conclude and discuss
open problems in Section VI.

II. MODEL AND PRELIMINARIES

In this section, we first present the network model under
primary interference and then extend it for general interfer-
ence. We also provide some graph theoretic definitions and
derive results for graphs that exhibit certain symmetry.

A. Network Graphs

Consider a network graph G = (V,E), where V =
{1, . . . , n} is the set of nodes, and E ⊆ {ij : i, j ∈ V, i 6= j} is
a set of links indicating pairs of nodes between which data flow
can occur. Following the model of [4], [9], [15], [26], assume
that time is slotted and that packets are of equal size, each
packet requiring one time slot of service across a link. The
model considers only single-hop traffic. A queue is associated
with each edge in the network. We assume that the stochastic
arrivals to edge ij have long term rates λij and are independent
of each other. We denote by ~λ the vector of the arrival rates
λij for every edge ij. For more details regarding the queue
evolution process under this model, see [4], [9], [15].

For a graph G, let M(G) be a 0-1 matrix with |E| rows,
whose columns represent the maximal matchings of G. A
scheduling algorithm selects a set of edges to activate at each
time slot and transmits packets on those edges. Since they
must not interfere under primary interference constraints, the
selected edges form a matching. In other words, the scheduling
algorithm picks a column π(t) from the maximal matching
matrix M(G) at every time slot t. If πk(t) = 1, one of the two
nodes along edge ek can transmit, and the associated queue is
decreased by one. We define the stability region (or capacity
region) of a network as follows.

Definition 2.1 (Stability region [26]): The stability region
of a network G is defined by

Λ∗ =
{
~λ |~λ < ~u for some ~u ∈ Co(M(G))

}
,

where Co(M(G)) is the convex hull of the columns of
M(G) (inequality operators are taken element-wise when their
operands are vectors).

A stable scheduling algorithm (which we also refer to as
a throughput-optimal algorithm or an algorithm that achieves
100% throughput) is defined as an algorithm for which the
Markov chain that represents the evolution of the queues is
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positive recurrent for all arrivals ~λ ∈ Λ∗. It was shown in
[26] that the Maximum Weight Matching algorithm that selects
the matching with the largest total queue sizes at each slot
is stable. When an algorithm is not throughput-optimal, the
efficiency ratio γ∗ indicates the fraction of the stability region
for which the algorithm is stable (in simple words, the queues
are bounded for all arrival rates ~λ ∈ γ∗Λ∗).

We briefly reproduce the definitions of Local Pooling (LoP)
presented in [4], [9].4 In the following, e denotes the vector
having each entry equal to one.

Definition 2.2 (Subgraph Local Pooling - SLoP): A net-
work graph G satisfies SLoP, if there exists α ∈ [0, 1]|E| such
that αTM(G) = eT .

This definition also corresponds to associating a weight,
denoted α(e), to all edges e ∈ E, such that∑

e∈Z
α(e) = 1 for every maximal matching Z in G.

If a vector α satisfies the above condition, we will say that it
is a good edge weighting.

Definition 2.3 (Overall Local Pooling - OLoP): A net-
work graph G satisfies OLoP, if every subgraph S of G
satisfies SLoP.

In [9], Dimakis and Walrand proved that if a graph satisfies
OLoP, GMS achieves 100% throughput. In networks in which
OLoP is not satisfied, σ-Local Pooling [15], [16] provides a
way of estimating the efficiency ratio γ∗ of GMS. Below, we
provide a different definition called σ-SLoP that is equivalent
to the original one from [15], [16].

Definition 2.4 (σ-SLoP - Xi et. al. [18]): A network
graph G satisfies σ-SLoP, if and only if there exists a vector
α ∈ [0, 1]|E| such that

σeT ≤ αTM(G) ≤ eT .

Clearly, if a graph satisfies σ-SLoP, it also satisfies σ′-SLoP
for every σ′ < σ. Therefore, it is sufficient to focus on the
largest value of σ such that G satisfies σ-SLoP. This value is
denoted by σ(G):

σ(G) := max {σ | G satisfies σ-SLoP} . (1)

This definition can also be written as a Linear Program whose
solution yields the σ(G) for a given graph G [18]:

σ(G) = max σ (2)

subject to σeT ≤ αTM(G) ≤ eT .

We say that a graph satisfies σ-OLoP, if all of its subgraphs
satisfy σ-SLoP. We can then define the local pooling factor of
a graph as follows:

Definition 2.5 (Joo et. al. [15]): The local pooling factor
σ∗(G) of a network graph G is the largest value of σ for
which σ-SLoP is satisfied for all subgraphs S.
This definition can also be written in terms of σ(S):

σ∗(G) := min {σ(S) | for all subgraphs S of G} . (3)

4This definition slightly differs from that in [4] by setting the sum equal
to eT instead of ceT , where c is a positive constant.

It was proved in [15] that the local pooling factor σ∗ of a
graph is equal to the efficiency ratio γ∗ of GMS in that graph.
For instance, if a graph has a local-pooling factor of 2/3,
GMS is stable for all arrival rates ~λ ∈ 2/3Λ∗ and therefore
achieves 66% throughput. Note that σ∗(G) = 1, if and only
if G satisfies the OLoP condition.

B. Interference Graphs

We now generalize the model by introducing interference
graphs. Based on the network graph and the interference
constraints, the interference between network links can be
modeled by an interference graph (or a conflict graph)
GI = (VI , EI) [14]. We assign VI = E. Thus, each edge
ek in the network graph is represented by a node vk in
the interference graph, and an edge vivj in the interference
graph indicates a conflict between network graph links ei
and ej (i.e., transmissions on ei and ej cannot take place
simultaneously). Under primary interference, the interference
graph GI corresponds to the line graph of G.

The model and the LoP theory described so far extend to
interference graphs. The nodes of GI correspond to queues
to which packets arrive according to a stochastic process
at every time slot. A scheduling algorithm must pick an
independent set at each slot so that neighboring nodes will
not be activated simultaneously. Each column of the matrix
M(GI) corresponds to a maximal independent set of GI . An
algorithm which selects the independent set with the largest
weights (i.e., solves the Maximum Weight Independent Set
Problem) is stable. SLoP corresponds to finding a vector
α ∈ [0, 1]|VI | that assigns a weight α(u) to each node u
such that

∑
u∈I α(u) = 1 for every maximal independent set

I in GI . If such a vector exists, we will call it a good node
weighting. For OLoP to be satisfied, SLoP must be satisfied
by all induced subgraphs (i.e., with respect to node removals).
σ-SLoP and σ-OLoP extend to this case in a very similar way.

C. Graph Theoretic Definitions

We review some definitions from graph theory that are
required in the following sections (for details, see [27]). For a
graph G, we denote by N(v) the set of neighbors of v and by
deg(v) = |N(v)| the degree of v. For x, y ∈ V (G), we say
that x is a clone of y if N(x) = N(y). We say that X ⊆ V (G)
is a clique (independent set) if the vertices in X are pairwise
adjacent (non-adjacent). A matching M is said to cover a node
v, if there exists an edge in M that is incident with v. For
x ∈ V (G), we denote by G − x the graph obtained from
G by deleting x and all edges incident with it. An induced
subgraph of G is a subgraph of G that is obtained from G
by repeatedly deleting a node and all edges incident with it.
For two graphs G1, G2, an isomorphism from G1 to G2 is
a bijection φ : V (G1) → V (G2) such that uv ∈ E(G1),
if and only if φ(u)φ(v) ∈ E(G2). Two graphs G1, G2 are
isomorphic, if there exists an isomorphism from G1 to G2.
An automorphism of G is an isomorphism from G to itself.
A graph G is edge-transitive, if for all uv,wx ∈ E(G), there
exists an automorphism φ of G such that φ(u)φ(v) = wx. A
graph G is vertex-transitive, if for all u, v ∈ V (G), there exists
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an automorphism φ of G such that φ(u) = v. For k ≥ 1, G is
k-connected if for every two distinct vertices in G, there exist
k vertex-disjoint paths between them. A graph is connected if
it is 1-connected. A connected component of G is a maximal
connected induced subgraph of G. Finally, for n ≥ 1, we let
Kn denote the complete graph on n nodes and, for t ≥ 1, we
let Kt,n denote the t× n complete bipartite graph.

D. σ(G)–values and Bounds on σ(G)

We now describe a simple method to compute a lower
bounds on σ(G) and provide a method for calculating σ(G)
of edge- and vertex-transitive graphs. These are graphs that
exhibit a high degree of symmetry (e.g., cycles). We will use
the following notation:

ν(G) = max{|Z| : Z is a matching in G},
µ(G) = min{|Z| : Z is a matching in G}.

The following lemma presents a lower-bound on σ(G) [17].
Using Definition 2.4, we provide an alternative proof below.

Lemma 2.1 (Leconte et al. [17]): For any graph G,
σ(G) ≥ µ(G)/ν(G) .

Proof of Lemma 2.1: Let α(e) = 1/ν(G)∀e ∈ E(G).
This is clearly a good edge weighting for G. Since every
maximal matching in G has size at least µ(G), it follows that
µ(G)/ν(G) ≤ ∑e∈Z α(e) ≤ 1 for every maximal matching
Z in G. Therefore, σ(G) ≥ µ(G)/ν(G).
To demonstrate the benefits of the σ-OLoP definition, we
provide a very simple proof to the fact that GMS achieves
50% throughput in any network graph G (shown in different
methods in [8], [19]). First, note that the size of any maximal
matching is at least half the size of a maximum matching [23],
which means that µ(G) ≥ ν(G)/2, for all G. By Lemma 2.1
and (3), it follows that σ∗(G) ≥ 1/2 for every graph G, and
therefore that γ∗ ≥ 1/2.

In order to extend this lemma to general interference graphs,
we define the independent set counterparts of µ(G) and ν(G):

ν(GI) = max{|S| : S is an independent set in GI},
µ(GI) = min{|S| : S is an independent set in GI}.

It is easy to generalize Lemma 2.1 to interference graphs GI
to show that σ(GI) ≥ µ(GI)/ν(GI). For vertex-transitive
graphs, the following is a stronger counterpart of Lemma 2.1,
proved in Appendix A:

Lemma 2.2: If GI is vertex-transitive, then σ(GI) =
µ(GI)/ν(GI).

Since edge-transitive networks graphs are special cases of
vertex-transitive interference graphs, Lemma 2.3 follows from
Lemma 2.2:

Lemma 2.3: If G is edge-transitive, then σ(G) =
µ(G)/ν(G).

Proof: Notice that it follows, from the fact that G is edge-
transitive, that the line graph L(G) of G is vertex-transitive.
Moreover, since matchings in G correspond to independent
sets in L(G), it follows that µ(G) = µ(L(G)) and ν(G) =
ν(L(G)). Hence, it follows from Lemma 2.2 that σ(G) =
µ(L(G))/ν(L(G)) = µ(G)/ν(G).

(a) D5,7
0 (b) D5,5

3 (c) Petersen graph

Fig. 1. Graphs (a) and (b): examples of graphs from the family Dp,q
k , all of

which fail OLoP under primary interference. Graph (c): the Petersen graph.
This graph does not satisfy OLoP because it contains, among other graphs,
C6 and D5,5

1 (bold edges) as subgraphs.

III. NETWORK GRAPHS THAT SATISFY OLOP UNDER
PRIMARY INTERFERENCE

Only a small collection of network graphs have been shown
to satisfy OLoP under primary interference. Among the known
cases are trees [4], [16], and 2 × n bipartite graphs [4]. The
main result of this section is a description of the structure of all
network graphs that satisfy OLoP under primary interference.
This structure shows that such graphs are relatively easy to
construct and, moreover, they can be recognized in linear time.
The proofs of the results for this section can be found in
Appendix B.

Define the following families of graphs. For k ≥ 3, let
Ck be a cycle with k edges (or, equivalently, k nodes). For
k ≥ 0 and p, q ∈ {5, 7}, let Dp,q

k be the graph formed by
the union of two cycles of size p and q joined by a k-edge
path (where k ≥ 0). If k = 0, the cycles share a common
node (see Fig. 1-(a) and 1-(b)). Let F = {Ck

∣∣ k ≥ 6, k 6=
7} ∪ {Dp,q

k

∣∣ k ≥ 0; p, q ∈ {5, 7}}. For two graphs G and H ,
we say that G contains H as a subgraph if G has a subgraph
that is isomorphic to H . We will say that a graph G is F-free,
if it does not contain any graph F ∈ F as a subgraph.

We will focus on connected graphs, because it is easy to
see that a graph satisfies OLoP, if and only if all its connected
components satisfy OLoP. So we may assume without loss of
generality that all graphs in this section are connected graphs.

The results in this section are three-fold. First, in Subsection
III-A, we give a structural description of all F-free graphs.
Second, in Subsection III-B, we will use this description to
prove the following theorem:

Theorem 3.1: A network graph G satisfies OLoP under
primary interference, if and only if G is F-free.

Theorem 3.1 shows that if a network graph G does not
satisfy OLoP under primary interference, then G contains
some F ∈ F as a subgraph. For example, it was previously
shown that the Petersen graph (Fig. 1-(c)) fails OLoP [15].
Using Theorem 3.1 we can immediately see this from the fact
that it contains, for example, C6 and D5,5

1 as a subgraph.
Testing whether a network graph satisfies SLoP previously

required enumerating all maximal matchings (of which there
are an exponential number) and solving a Linear Program
[9]. To test the OLoP condition, this procedure had to be
repeated for every subgraph. The weakness of this approach is
its large computational effort. In Subsection III-C, we present
the third result, which uses the structure of F-free graphs to
construct an algorithm that decides in linear time whether a
graph satisfies OLoP, as described in the following theorem:
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Theorem 3.2: It can be decided in O(|V (G)|) time whether
a network graph G satisfies OLoP under primary interference.

A. The Structure of F-free Graphs

We will start with a structural description of F-free graphs.
The reason for our interest in F-free graphs is the fact (which
will be proved in Subsection III-B) that the class of F-free
graphs is precisely the class of network graphs that satisfy
OLoP under primary interference.

We will describe the structure of F-free graphs in terms
of the so-called ‘block decomposition’. Let G be a connected
graph. We call x ∈ V (G) a cut-node of G, if G−x is not con-
nected. We call a maximal connected induced subgraph B of G
such that B has no cut-node a block of G. Let B1, B2, . . . , Bq
be the blocks of G. We call the collection {B1, B2, . . . , Bq}
the block decomposition of G. It is known that the block
decomposition is unique and that E(B1), E(B2), . . . , E(Bq)
forms a partition of E(G) (e.g., [27]). Furthermore, the node
sets of every two blocks intersect in at most one node and this
node is a cut-node of G.

Block decompositions give a tree-like decomposition of a
graph in the following sense. Construct the block-cutpoint
graph of G by keeping the cut-nodes of G and replacing each
block Bi of G by a node bi. Make each cut-node v adjacent
to bi if and only if v ∈ V (Bi). It is known that the block-
cutpoint graph of G forms a tree (e.g., [27]). With this tree-like
structure in mind, we say that a block Bi is a leaf block if it
contains at most one cut-node of G. Clearly, if q ≥ 2, then
{Bi}qi=1 contains at least two leaf blocks.

It turns out that the block decomposition of an F-free graph
is relatively simple in the sense that there are only two types
of blocks. The types are defined by the following two families
of graphs. Examples of these families appear in Fig. 2.
B1: Construct B1 as follows. Let H be a graph with V (H) =
{c1, c2, . . . , ck}, with k ∈ {5, 7}, such that

1) c1-c2- · · · -ck-c1 is a cycle;
2) if k = 5, then the other adjacencies are arbitrary; if

k = 7, then all other pairs are non-adjacent, except
possibly {c1, c4}, {c1, c5} and {c4, c7}.

Then, H ∈ B1.
Now iteratively perform the following operation. Let
H ′ ∈ B1 and let x ∈ V (H ′) with deg(x) = 2.
Construct H ′′ from H ′ by adding a node x′ such that
N(x′) = N(x). Then, H ′′ ∈ B1. We say that a graph is
of the B1 type if it is isomorphic to a graph in B1.

B2: Let B2 = {K2,K3,K4} ∪ {K2,t,K
+
2,t | t ≥ 2}, where

K+
2,t is constructed from K2,t by adding an edge between

the two nodes on the side that has cardinality 2. We say
that a graph is of the B2 type, if it is isomorphic to a
graph in B2.

In simple words, graphs of the B1 type are constructed by
starting with a cycle of length five or seven. Then we may add
some additional edges between nodes of the cycle, subject to
some constraints. Finally, we may iteratively take a node x of
degree 2 and add a clone x′ of x. It will turn out that F-free
graphs have at most one block of the B1 type and that all other
blocks are of the B2 type. This means that F-free graphs can

Fig. 2. An example of an F -free graph (the dashed edges may or may not
be present). The ellipses show the blocks of the graph.

be constructed by starting with a block that is either of the B1
or of the B2 type, and then iteratively adding a block of the
B2 type by ‘glueing’ it on an arbitrary node.

Fig. 2 shows an example of an F-free graph. The tree-like
structure is clearly visible. The graph has one block of the
B1 type with k = 7. This block consists of a cycle of length
7 together with two clones. The other blocks are of the B2
type. Some of them are attached to the block of the B1 type
through a cut-node. Others are attached to other blocks of the
B1 type. Notice that trees and 2×n complete bipartite graphs,
which were previously known to satisfy OLoP [4], [16], are,
as should be expected, subsumed by this structure.

The goal of this subsection is to prove the following formal
version of the characterization given above:

Theorem 3.3: Let G be a connected graph and let
{B1, B2, . . . , Bq} be the block decomposition of G. Then G
is F-free, if and only if there is at most one block that is of
the B1 type and all other blocks are of the B2 type.

The proof of the ‘if’ direction is straightforward. Here, we
will give a proof sketch of the ‘only-if’ direction in a number
of steps. For a block B in an F-free graph, its type depends
on the size of the longest cycle in B. It will turn out that if
B contains a cycle of length 5 or 7, then B is of the B1 type.
Otherwise, B is of the B2 type. We have the following result
on blocks that have a cycle of length five or seven.

Lemma 3.1: Let G be an F-free graph and let B be a block
of G. Let F be a cycle in B that has maximum length. If
|V (F )| ≥ 5, then B is of the B1 type.

Next, we deal with blocks that do not contain a cycle of
length 5 or 7. It follows from the definition of F-free graphs
that such blocks do not have cycles of length at least 5.
Maffray [20] proved the following theorem:

Theorem 3.4 (Maffray [20]): Let G be a graph. Then, the
following statements are equivalent:
(1) G does not contain any odd cycle of length at least 5.
(2) For every connected subgraph G′ of G, either G′ is

isomorphic to K4, or G′ is a bipartite graph, or G′ is
isomorphic to K+

2,t for some t ≥ 1, or G′ has a cut-node.
Theorem 3.4 implies the following lemma.

Lemma 3.2: Let G be an F-free graph and let B be a block
of G. Suppose that B contains no cycle of length at least 5.
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Then, B is of the B2 type.
We are now ready to prove Theorem 3.3:

Proof of Theorem 3.3: Let G be an F-free graph and
let {B1, B2, . . . , Bm} be the block decomposition of G. For
every i ∈ {1, 2, . . . ,m}, if Bi contains a cycle of length 5
or 7, it follows from Lemma 3.1 that Bi is of the B1 type.
Otherwise, it follows from from Lemma 3.2 that Bi is of the
B2 type. Now suppose that there are i 6= j and p, q ∈ {5, 7}
such that Bi contains a cycle T1 of length p and Bj contains
a cycle T2 of length q. Since G is connected, there exists a
path P of length k ≥ 0 from a node in T1 to a node in T2.
Since T1 and T2 are subgraphs of different blocks, T1 and T2
share at most one node. If they share a node, then k = 0.
Now the edges of T1, T2, P form a graph isomorphic to Dp,q

k ,
a contradiction. This proves Theorem 3.3.

B. Network graphs satisfy OLoP under primary interference,
if and only if they are F-free

Now that we have described the structure of all F-free
graphs, we use this structure to prove Theorem 3.1 which
states that a network graph satisfies OLoP under primary
interference, if and only if it is F-free. It was shown in [4]
(Theorems 2 and 3) that all cycles of length k ≥ 6, k 6= 7 fail
SLoP.5 Therefore, such cycles do not appear as subgraphs in
graphs that satisfy OLoP. The following lemma shows that the
same is true for the graphs Dp,q

k .
Lemma 3.3: Dp,q

k fails SLoP for all p, q ∈ {5, 7}, k ≥ 0.
The results from [4] together with Lemma 3.3 imply the

following result:
Corollary 3.1: Graphs that satisfy OLoP are F-free.

Proof: Let G be a graph that satisfies OLoP. By the
definition of OLoP, every subgraph H of G satisfies SLoP.
Since every graph in F fails SLoP, it follows that G does not
contain any graph in F as a subgraph.

Corollary 3.1 settles the ‘only-if’ direction of Theorem 3.1.
To prove the ‘if’ direction, we will start with a useful lemma.

Lemma 3.4: Let G be a graph and x, x′ ∈ V (G) such that
deg(x) = 2 and x′ is a clone of x. Then, G satisfies SLoP.

Proof: Let x and x′ be as in the claim and let {z1, z2} =

N(x). Define α ∈ [0, 1]
|E| by

α(e) =


1/2 if e is incident with z1 or z2, and e 6= z1z2

1 if e = z1z2

0 otherwise.

To see that α is a good edge weighting for G, let M be a
maximal matching in G′. If z1z2 ∈ M , then no other edge
in M is incident with z1 or z2 and hence

∑
e∈M α(e) = 1.

Therefore we may assume that z1z2 6∈M . It suffices to show
that M covers both z1 and z2. So let us assume to the contrary
that M does not cover z1. Since M is a matching, at most one
of xz2, x′z2 is in M . From the symmetry, we may assume
that xz2 6∈M . But now we may add xz1 to the matching and
obtain a larger matching, contary to the maximality of M .

5Although the case considered in [4] pertains to interference graphs,
the network case is identical since the interference graph (under primary
interference) of a cycle is a cycle of the same length.

The following lemma is the crucial step in settling the ‘if’
direction of Theorem 3.1. Again, we give the proof idea.

Lemma 3.5: Every connected F-free satisfies SLoP.
Proof idea: Let G be a connected F-free graph and let

{B1, B2, . . . , Bq} be the block decomposition of G. It follows
from Theorem 3.3 that there is at most one block Bi that is of
the B1 type and all other blocks are of the B2 type. We will
construct a good edge weighting α for G.

Suppose first that G has a leaf block Bi of the B2 type. If
q = 2, then let x be the cut-node of G in V (Bi). If q = 1, let
x ∈ V (Bi) be arbitrary. There are four cases:

(1) Bi is isomorphic to K2: let x, v denote the nodes of Bi.
Let α(e) = 1 for all edges incident with x and α(e) = 0 for
every other edge e.

(2) Bi is isomorphic to K3: let α(e) = 1 for all e ∈ E(Bi)
and α(e) = 0 for every other edge e.

(3) Bi is isomorphic to K4: let x, v1, v2, v3 denote the nodes
of Bi and let α(v1v2) = α(v1v3) = α(v2v3) = 1 and α(e) =
0 for all e ∈ (E(G) \ {v1v2, v1v3, v2v3}).

(4) Bi is isomorphic to K2,t or K+
2,t for some t ≥ 2: let

V (Bi) = V1∪V2 such that |V1| = 2 and V2 is an independent
set. Let V1 = {y1, y2} and let V2 = {z1, z2, ..., zt}. If Bi is
isomorphic to K+

2,2 and x ∈ V2, then assume that x = z1
and set α(y1z2) = α(y2z2) = α(y1y2) = 1. Otherwise, Bi
contains nodes p, p′ such that deg(p) = deg(p′) = 2 and p′ is
a clone of p, and hence, the result follows from Lemma 3.4.

Thus, we may assume that G does not have a leaf block of
type B2 . Since if q ≥ 2, G has at least two leaf blocks, and
hence, at least one leaf block of the B2 type, we may assume
that q = 1 and G = B1 is of the B1 type. Let H, k be as in
the definition of B1. It follows from the definition of H that
|V (H)| = k. First, suppose that V (G) \ V (H) 6= ∅. Then, it
follows from the definition of B1 that there exist two nodes
x, x′ such that deg(x) = deg(x′) = 2 and x′ is a clone of
x. By Lemma 3.4, G satisfies SLoP. So we may assume that
V (G) = V (H). If k = 5, then every maximal matching has
size two, and hence, we may set α(e) = 1/2 for all e ∈ E(G).
If k = 7, then every maximal matching has size three, and
hence, we may set α(e) = 1/3 for all e ∈ E(G).

We are now in a position to prove Theorem 3.1:
Proof of Theorem 3.1: Corollary 3.1 is the ‘only-if’ part

of the theorem. For the ‘if’ part, since every subgraph of G
is F-free, it follows from Lemma 3.5 that every subgraph of
G satisfies SLoP. Therefore, G satisfies OLoP.

C. Recognizing network graphs that satisfy OLoP under pri-
mary interference

Having described the structure of graphs that satisfy OLoP,
we provide an efficient algorithm for testing whether a network
graph satisfies OLoP under primary interference. A useful
observation is the following (see Appendix B for the proof).

Lemma 3.6: |E(G)| ≤ 2|V (G)| for every F-free graph G.
This puts us in a position to prove Theorem 3.2.

Proof idea of Theorem 3.2: We may assume that G
is connected. By Theorems 3.1 and 3.3, it suffices to check
whether G has the structure described in Theorem 3.3. We
propose the following algorithm. Let n = |V (G)| and m =
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Fig. 3. The Desargues graph D for which σ(D) = 0.6 and which is a
subgraph of K10,10, showing that σ∗(K10,10) ≤ 0.6.

|E(G)|. First, check that m ≤ 2n, because otherwise G is not
F-free by Lemma 3.6 and we can stop. Now, construct the
block decomposition {B1, B2, ..., Bq} of G. Since m ≤ 2n,
this can be done in O(n+m) = O(n) time (see e.g., [11]). For
each block Bi, test in O(|V (Bi)|) time whether Bi is of the B2
type. If G has more than one block that is not of the B2 type,
then G is not F-free and we stop. If we encounter no such
block, then G is F-free and we stop. Next, check whether B∗

is of the B1 type using multiple applications of Bodlaender’s
algorithm [3] which, for fixed k, finds a cycle of length at least
k in a given graph H , if it exists, in O(k!2k|V (H)|) time.
Checking this can be done in O(|V (B)|) time. Therefore, the
overall complexity of the algorithm is O(n).

IV. t× n SWITCHES WITH t ≤ 7 SATISFY σ∗ ≥ 2/3

In the previous section, we characterized the full set of
graphs that satisfy OLoP. It is only natural to ask the question:
what happens to graphs that do not satisfy OLoP? In this
section, we will show that every bipartite graph G that has
one side with at most 7 nodes satisfies σ∗(G) ≥ 2/3, which
implies that σ∗(Kt,n) = 2/3 for 3 ≤ t ≤ 7, n ≥ 3.
We also note that this bound is close to being tight by
presenting a bipartite graph with 10 nodes on one side for
which σ∗(G) < 2/3. Consider the so-called Desargues graph
D in Fig. 3. D is edge-transitive and hence it follows from
Lemma 2.3 and the fact that ν(D) = 10 and µ(D) = 6 that
σ(D) = 3/5. Since D is a subgraph of K10,10, this implies
that σ∗(Kt,n) ≤ 3/5 for all t ≥ 10, n ≥ 10.

We now concentrate on subgraphs of Kt,n with t ≤ 7, n ≥
1. We will start with some easy observations that help give a
lower bound on σ(G).

Lemma 4.1: Let G be a graph.

(a) If there exists v ∈ V (G) such that every maximal
matching in G covers v, then σ(G) = 1.

(b) If deg(v) = 1 for some v ∈ V (G), then σ(G) = 1.
(c) If deg(v) = 2 for some v ∈ V (G), then σ(G) ≥ 2/3.

Proof: Part (a): let α(e) = 1 for all edges incident with
v and α(e) = 0 for all other edges. Clearly, every maximal
matching Z satisfies

∑
e∈Z α(e) = 1. This proves (a). Part

(b) follows immediately because if deg(v) = 1, then every
maximal matching covers the unique neighbor u of v. Part
(c): let a, b be the neighbors of v. Let α(av) = α(bv) = 2/3,
α(ab) = 1 if ab ∈ E(G), α(e) = 1/3 for all edges e 6∈
{ab, bv, av} that are incident with a or b, and α(e) = 0 for
all other edges. It is not hard to see that

∑
e∈Z α(e) ≥ 2/3

for every maximal matching Z in G. This proves (c), thus
proving Lemma 4.1.

By using the conditions given in Lemmas 4.1 and 2.1, we
prove the following lemma in Appendix C:

Lemma 4.2: Let G be a bipartite graph with µ(G) ≤ 4.
Then σ(G) ≥ 2/3.

Lemma 4.2 has the following corollaries:
Corollary 4.1: Every bipartite graph G with ν(G) ≤ 7

satisfies σ∗(G) ≥ 2/3.
Proof: Let H be a subgraph of G (perhaps H = G).

Clearly, ν(H) ≤ ν(G) ≤ 7. If µ(H) ≤ 4, then, from Lemma
4.2, σ(H) ≥ 2/3. Otherwise, µ(H) ≥ 5 and hence it follows
from Lemma 2.1 that σ(H) ≥ 5/7 > 2/3. Therefore, σ(H) ≥
2/3 for all subgraphs H of G, and σ∗(G) ≥ 2/3.

It is already known that σ∗(Kt,n) = 1 for t ∈ {1, 2}. For
3 ≤ t ≤ 7, we obtain:

Corollary 4.2: σ∗(Kt,n) = 2/3 for all 3 ≤ t ≤ 7, n ≥ 3.
Proof: Let 3 ≤ t ≤ 7, n ≥ 3. It follows from Corollary

4.1 that σ∗(Kt,n) ≥ 2/3. Since Kt,n has C6 as a subgraph
and σ(C6) = 2/3, it follows that σ∗(Kt,n) = 2/3.

V. INTERFERENCE GRAPHS AND THEIR σ∗–VALUES

Our focus so far has been on network graphs and primary
interference constraints. We now consider general interference
graphs GI that represent arbitrary transmission constraints.
Recall that under general interference constraints, a scheduling
algorithm has to select an independent set from the interfer-
ence graph at each slot. We are interested in the performance
of a low-complexity GMS algorithm which greedily picks the
nodes with the largest weight (this algorithm is also referred
to as the Maximal Weighted Independent Set algorithm). The
results are summarized in Fig. 4 which illustrates throughput
guarantees of several graph families.

A. OLoP-satisfying Interference Graphs

We first show that the OLoP condition holds in a large
subclass of perfect graphs which we will call co-strongly
perfect graphs:

Definition 5.1 (Co-strongly perfect graph): A graph GI is
co-strongly perfect if for every induced subgraph H of GI
there exists α ∈ {0, 1}|V (H)| such that αTM(H) = eT .
Equivalently, a graph GI is co-strongly perfect, if and only
if GI contains a clique that intersects every maximal inde-
pendent set in G. It follows from the definition, and from the
interference graph counterparts of Definitions 2.2 and 2.3 that
every graph that is co-strongly perfect satisfies OLoP.

Note from the above weighting that co-strongly perfect
graphs satisfy OLoP with an integer vector α. An open
question is whether all perfect graphs that satisfy OLoP do so
with integer weights α. This is not true for imperfect graphs,
because C5 is an imperfect graph that satisfies OLoP with the
unique optimal node weighting α(v) = 1/2 for all v ∈ V (C5).
The vertical division of Fig. 4 into perfect and non-perfect
graphs, denoted P and P , respectively, allows us to represent
this open problem by the question mark in the perfect division.

The Co-Strongly Perfect class includes a large num-
ber of perfect graph families (some of them identified individ-
ually in [28]). To provide some context about the magnitude
of the result, consider the set of simple graphs with 10 nodes.
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Co-Strongly Perfect

Bipartite

CBip

σ∗

Line Graphs
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L(Bip) ≤ 7

ECyc ≥ 6OCyc ≥ 9
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MK

... F2
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1 > σ∗ ≥ 2
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F

Fig. 4. Throughput guarantees (bounds on σ∗) for various interference graph
families: P - Perfect graphs, P - Non-perfect graphs, ECyc ≥ 6 - cycles Cn

with n even and n ≥ 6, OCyc ≥ 9 - cycles Cn with n odd and n ≥ 9,
L(Bip) ≤ 7 - line graphs of k × n bipartite graphs with k ≤ 7, CBip -
Chordal bipartite graphs, L(Pet) - Line graph of the Petersen graph, L(F -free)
- Line graphs of F -free graphs, Fig42 - Graph from Fig. 42 in [13], MK -
Möbius-Kantor graph, F2 - graph obtained by a single cycle substitution, Fk

- sequence of graphs obtained by recursive cycle substitutions.

There are 3,063,185 such co-strongly perfect graphs. This can
be compared to the 126,768 chordal graphs with 10 nodes (the
chordal graphs family is one of the largest previously known
families satisfying OLoP) and to the 106 trees [25].

We proved in Section III-A that F-free network graphs are
OLoP-satisfying under primary interference. This is shown
in Fig. 4 by the class L(F-free) (line graphs of F-free
graphs), which is a subclass of the Line Graphs family.
Since L(F-free) graphs represent all OLoP-satisfying line
graphs, this family covers the entire section of Line Graphs
that is in the σ∗ = 1 division. The chordal bipartite family, de-
noted CBip on Fig. 4, is another family that is entirely OLoP-
satisfying and forms the subclass of Bipartite graphs that
are co-strongly perfect and OLoP-satisfying [28].

B. σ∗–values for Line Graphs

We examine the σ∗ values of interference graphs that are
Line Graphs and that fail OLoP. As mentioned in Section
II and in [19], σ∗ ≥ 1/2 for all Line Graphs. In Fig. 4, the
bottom part of this family is shaded to indicate that we still
do not have any specific example of a line graph for which
σ∗ = 1/2. The line graph with the lowest known σ∗ value
(σ∗ = 0.6) is the line graph of the Petersen graph (Fig. 1-(c))
[15], denoted L(Pet).

We consider families that are subclasses of line graphs.
The results on bipartite network graphs from Section IV (line
graphs of subgraphs of Kt,n with t ≤ 7 have σ∗ ≥ 2/3)
are shown on the figure as the L(Bip) ≤ 7 class which is
located in the top and the second divisions.

We now obtain the σ∗ values of the entire family of
cycles, some of which have been considered individually in
the literature. For the 6-cycle it has been shown that σ∗ = 2/3
[9], [15] (represented by the point C6 on Fig. 4). It has also
been shown that C5 and C7 satisfy OLoP, while larger cycles
(n ≥ 8) do not [28]. Using Lemma 2.2, the following lemma
provides the value of σ∗ for all cycles.

(a) (b)

Fig. 5. Graphs that have low σ∗ values: (a) Möbius-Kantor graph (b) F2, a
graph where each node of a C6 is substituted by a C6.

Lemma 5.1: For n ≥ 3, σ∗(Cn) = dn/3e/bn/2c.
Proof: Let n ≥ 3. Since every proper induced subgraph

H of Cn (i.e. H 6= Cn) is a forest, we have σ(H) = 1
for every such H . Now consider Cn itself. A maximum
independent set in Cn can be constructed by choosing nodes
alternatingly on the cycle. This implies that ν(GI) = bn/2c.
A smallest maximal independent set can be constructed by
choosing nodes skipping two nodes at a time. This implies
that µ(GI) = dn/3e. Since Cn is vertex-transitive, it follows
from Lemma 2.2 that σ(GI) = dn/3e/bn/2c. From this and
the above, the result follows from the definition of σ∗(GI).

To the best of our knowledge, this is the first time an entire
family’s σ–value has been characterized this precisely. This
result is shown in Fig. 4 as the classes ECyc ≥ 6 and OCyc
≥ 9, for large even and odd cycles, respectively. No odd cycle
can have σ∗ = 2/3, which is why the OCyc family is strictly
within the second division. As can be seen in Fig. 4, the class
ECyc ≥ 6 is exactly the intersection of the Bipartite
and the Line Graphs families that do not satisfy OLoP.6 In
other words, there are no bipartite line graphs that have σ∗ <
1 and that are not large even cycles. Since dn/3e/bn/2c ≥
2/3 for all n ≥ 3, the following result for the lower-bound
of arbitrary cycles, that was proved in [18], is immediately
obtained from Lemma 5.1.

Lemma 5.2 (Boyaci et. al. [18]-Lemma 16): For all cycles
Cn, n ≥ 3, σ∗(Cn) ≥ 2/3.

C. Low σ∗–values

We now focus on graphs with very low σ∗. The current
knowledge of σ∗–values is limited to a handful graphs in
which GMS achieves a large portion of the stability region.
The lowest σ∗–value of a specific graph is σ∗ = 0.6 for the
line graph of the Petersen graph [15]. In [16], it was shown
that for geometric graphs 1/6 ≤ σ∗ ≤ 1/3. Below, we present
a graph that has σ∗ = 0.5 and provide a method through which
it is possible to create networks with arbitrarily low σ∗.

Consider the graph shown in Fig. 5-(a). It is a generalized
Petersen graph with factors GP (8, 3), also known as the
Möbius-Kantor graph MK. Because of its vertex-transitivity,
it follows from Lemma 2.2 and from the fact7 that ν̄(MK) =
8 and µ̄(MK) = 4 that σ∗(MK) = 1/2. Hence, GMS can

6Since line graphs do not contain induced claws (i.e., complete bipartite
graphs K1,3), it follows that bipartite line graphs have maximum degree of
two. Hence, the family of bipartite line graphs consists of paths and even
cycles.

7The largest independent set of µ(GI) = 8 is constructed by selecting
four nodes from the outer cycle and four from the inner cycle. The smallest
independent set of ν(GI) = 4 is constructed by selecting two opposite nodes
from the outer cycle and two opposite nodes from the inner cycle.
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only guarantee 50% throughput.8 Being a bipartite graph, the
Möbius-Kantor implies that Bipartite graphs can have σ∗

values as low as 0.5, as illustrated in Fig. 4. Whether bipartite
graphs can have σ∗ < 0.5 is still an open question, shown by
the shaded region in Fig. 4.

Now consider the following family. Let F1 be a 6-cycle and,
for k ≥ 2, construct Fk from Fk−1 by substituting a 6-cycle
for each node v ∈ V (Fk). By substituting C6 for a node x of
the original graph, we mean that we replace x by a 6-cycle H
and we make every v ∈ V (H) adjacent to every neighbor of x.
For example, F2 is shown in Fig. 5-(b), (where the hexagons
represent 6-cycles). Using Lemma 2.2 and the fact that the Fk
are vertex-transitive, we prove the following observation:

Observation 5.1: σ∗(Fk) ≤ (2/3)
k for all k ≥ 1.

Proof: Clearly, every Fk is vertex-transitive. Let us con-
sider F2. A maximum independent set in F2 can be constructed
by first choosing three non-consecutive 6-cycles and, next,
choosing three non-consecutive nodes from each of these
three 6-cycles. It is clear that this constitutes a maximum
independent set and its size is 3×3 = 9. A minimum maximal
independent set in F2 can be constructed by choosing two
opposite 6-cycles and, next, choosing two opposite nodes from
each of these two 6-cycles. This gives a maximal independent
set of size 2× 2 = 4. Since F2 is vertex-transitive, it follows
from a direct extension of Lemma 2.1 to interference graphs
that σ(F2) = 4/9 and hence σ∗(F2) ≤ 4/9. This reasoning
extends easily to the general case, where we have ν(Fk) = 3k

and µ(Fk) = 2k. Therefore, σ∗(Fk) ≤ (2/3)
k.

Since we may choose k arbitrarily large, it follows that there
exist graphs with arbitrarily small σ∗. A graph generated by
this method appears in Fig. 4 as F2 and the sequence of graphs
obtained through recursive substitution with decreasing σ∗–
values is shown as Fk.

Finally, it can be shown that the family of weakly chordal
graphs that was left unresolved in [28] is not entirely OLoP-
satisfying. An example of a weakly chordal graph that is not
co-strongly perfect and that has σ∗ < 1 appears in Fig. 42 in
[13] and is denoted in Fig. 4 as Fig42.

D. Simulation Results

When GMS guarantees only low throughput efficiency γ∗,
there may exist a specific arrival rate outside of γ∗Λ∗ for
which GMS is not stable. In real-life arrival processes, it is
sometimes unlikely that such an arrival process would occur.
Hence, GMS may behave better than predicted. We used
Matlab simulations in order to evaluate the performance of
GMS in graphs with low σ∗ identified in Section V-B.

We consider i.i.d. uniform arrival of packets to every node
of an interference graph GI at each time slot for a range
of normalized loads within the stability region. Since we
are using interference graphs, each node in the graph GI
represents a link in the network graph GN . Each node contains
a queue whose size changes with the arrival of new packets
and the service of queues by the scheduler. Nodes that are

8Note that since this graph contains a claw (i.e., a complete bipartite graph
K1,3), it cannot be the interference graph of any network under primary
interference constraints.
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Fig. 6. Average queue sizes as a function of the arrival rate under GMS and
the optimal algorithm. The results are obtained via simulation in a 12-cyle
(C12), a Möbius-Kantor graph, and a 5-cycle (C5).

connected by a link cannot be activated at the same time.
We tested GMS and the optimal algorithm that solves the
Maximum Weight Independent Set problem9. For each arrival
rate, the simulation was run for 1,100,000 slots and the first
100,000 slots were discarded to account for the initial phase.
The results were averaged over 10 repetitions. As an example,
the average queue size for three specific graphs are plotted in
Fig. 6. For the cycle C12, σ∗ = 2/3, but the queues under
GMS become unstable at a load level of 0.9. Although for the
Möbius-Kantor graph, σ∗ = 1/2, GMS performs better than in
C12. For the OLoP-satisfying cycle C5, GMS and the optimal
algorithm perform similarly.

VI. CONCLUSION

The Local Pooling (LoP) conditions provide a new tool
for better understanding the performance of Greedy Maximal
Scheduling (GMS) algorithms. In this paper, we identified
all the network graphs in which these conditions hold under
primary interference constraints (in these graphs Greedy Max-
imal Scheduling achieves 100% throughput). In addition, we
showed that in all bipartite graphs of size up to 7× n, GMS
is guaranteed to achieve 66% throughput. Finally, we studied
the performance of GMS in interference graphs and showed
that σ∗ can be arbitrarily low.

We emphasize that our objective in this paper is to obtain
a better theoretical understanding of LoP that will assist
the development of future algorithms. As such, the paper
demonstrates that using graph theoretical methods can signif-
icantly contribute to our understanding of greedy scheduling
algorithms. From a graph theoretical point of view, LoP raises
many interesting open problems. For example, three of the
authors [6], [7] are currently working on extending some of the
results to claw-free graphs, which are a generalization of the
interference graphs of networks under primary interference.
From the networking point of view, there remain many open
problems. For example, generalizing the interference model to
a model based on SINR and deriving the corresponding LoP
conditions remain major subjects for future research.

9Although the problem is NP-complete, we obtained numerical solutions
in small graphs.
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APPENDIX A
PROOF OF LEMMA 2.2 (SECTION II)

Let GI be a graph. The following lemma pro constructing
optimal solutions to the following Linear Program, which is
the interference graph analog of (2):

σ(GI) = max σ (4)

subject to σeT ≤ αT I(GI) ≤ eT ,

where α ∈ [0, 1]|V (GI)| and I(GI) is the maximal independent
set/vertex incidence matrix corresponding to GI . Note that
I(GI) is the independent set counterpart of M(G) introduced
previously. For two functions f : Z → Y and g : X → Z, we
denote by f ◦g the composition of f with g, i.e. f ◦g : X → Y
is defined as f ◦ g(x) = f(g(x)). For an integer k ≥ 0 and an
automorphism φ of G, we denote by φk the kth composition
of φ with itself (where φ0 denotes the identity function).

The following lemma will be used for proving Lemma 2.2:
Lemma A.1: Let GI be a vertex-transitive graph. If (4) has

a solution (σ,α), then (4) has a solution (σ,α′) such that
α′(v) = c for all v ∈ V (GI).

Proof: Let (σ,α) be a solution of (4) such that

f(α) :=
∑
u,v

∣∣α(u)−α(v)
∣∣

is minimum. If f(α) = 0, then the lemma holds. So suppose
for a contradiction that f(α) > 0. Then let x, y ∈ V (GI) such
that |α(x)−α(y)| is maximum. Since GI is vertex-transitive,
there exists an automorphism φ of GI such that φ(x) = y.
Let K ≥ 1 be smallest such that φK = φ and define

β =
1

K

K−1∑
k=0

α ◦ φk.

Since φ is an automorphism, every term in the summation
corresponds to a solution (σ,α ◦ φk) of (4). Since β is the
convex combination of solutions of (4), β is also a solution
of (4). From the triangle inequality for u, v ∈ V (GI),

∣∣β(u)− β(v)
∣∣ ≤ 1

K

K−1∑
k=0

∣∣α(φk(u))−α(φk(v))
∣∣.

By the construction of β, β(x) = β(y). Notice that f(α) =
f(α ◦ φk) for all k. Since |α(x)−α(y)| > 0, we obtain

f(β) =
∑
u,v

∣∣β(u)− β(v)
∣∣

=
∑
u,v

{u,v}6={x,y}

∣∣β(u)− β(v)
∣∣

≤
∑
u,v

{u,v}6={x,y}

[
1

K

K−1∑
k=0

∣∣α(φk(u))−α(φk(v))
∣∣]

≤ 1

K

[(∑
u,v

∣∣α(u)−α(v)
∣∣)− ∣∣α(x)−α(y)

∣∣]

+
1

K

K−1∑
k=1

f(α ◦ φk)

<
1

K

∑
u,v

∣∣α(u)−α(v)
∣∣+

1

K

K−1∑
k=1

f(α)

=
∑
u,v

∣∣α(u)−α(v)
∣∣ = f(α),

which contradicts the assumption that α was chosen with f(α)
minimum. This proves Lemma A.1.

Proof of Lemma 2.2: From Lemma A.1, there exists an
optimal solution (σ,α) for the Linear Program (4) such that
α(v) = c for all v ∈ V (GI) for some c. Therefore, (4) may
be reduced to the following Linear Program in two variables:

σ(G) = max σ (5)

subject to σeT ≤ c I(GI) ≤ eT .

In this Linear Program, it is optimal to choose c as large as
possible and choose σ as large as possible subject to the choice
of c. Clearly, the largest possible value of c is 1/ν̄(GI). The
corresponding largest possible value of σ is µ̄(GI)/ν̄(GI).

APPENDIX B
FULL PROOFS OF THE RESULTS IN SECTION III

Proof of Lemma 3.1: We prove this by induction on
|V (B)|. Let f1, f2, . . . , fk be the nodes of the cycle F . It
follows from the definition of F that k ∈ {5, 7}. We will start
with a number of subclaims:
(i) Every node in V (B) \ V (F ) is a clone for F .
Let x ∈ (V (B) \ V (F )). Since |V (B)| ≥ |V (F )| ≥ 5 and
|V (B)| has no cut-node, it follows that B is 2-connected
and hence there exist two edge-disjoint paths P1 and P2

from x to two distinct nodes of F , say fi and fj , respec-
tively. From the symmetry, we may assume that i = 1 and
j > k/2. First assume that |E(P1)| + |E(P2)| ≥ 3. Now
f1-P1-x-P2-fj-fj−1- · · · -f2-f1 is a cycle of length |E(P1)|+
|E(P2)|+ j > 3 + k/2, contradicting the maximality of F .

It follows that |E(P1)| + |E(P2)| = 2 and, therefore,
|E(P1)| = |E(P2)| = 1. Thus, x has two neighbors in V (F ).
If x has two consecutive neighbors in V (F ), say f1, f2, then
f1-x-f2-f3- · · · -fk−1-fk-f1 is a cycle of length k+1, contrary
to the maximality of F . If k = 5, then, since x has at least
two neighbors in V (F ), it follows that x is a clone for F .
So we may assume that k = 7. Suppose that x is adjacent to
fp and fp+3 for some p ∈ {1, 2, . . . , 7}. From the symmetry,
we may assume that p = 1. But f1-x-f4-f5-f6-f7-f1 is a
cycle of length six, a contradiction. From the symmetry, x has
exactly two neighbors in F and they are fq and fq+2 for some
q ∈ {1, 2, . . . , 7}. Hence, x is a clone for F . This proves (i).
(ii) V (B) \ V (F ) is an independent set.
Suppose that x, y ∈ V (B) \ V (F ) are adjacent nodes. We
may assume that x is a clone of f2. First, suppose that y
is also a clone of f2. Then x-f3-f4- · · · fk−1-fk-f1-y-x is a
cycle of length k + 1, country to maximality of F . Next,
suppose that y is a clone of a node at distance 2 of f2, say
fk. Then, x-f1-f2- · · · -fk−1-y-x is a cycle of length k + 1,
contrary to the maximality of F . Finally, suppose that k = 7
and y is a clone of a node at distance 3 of f2, say f5. It
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follows that x-f1-f2-f3-f4-f5-f6-y-x is a cycle of length eight,
a contradiction. This proves (ii).

Now suppose there exists x ∈ (V (B) \ V (F )) 6= ∅. It
follows from the above that x is a clone for F . From the
symmetry, we may assume that x is a clone of f2. We claim
that deg(f2) = 2. For suppose not. Then f2 has a neighbor y 6∈
{f1, f2, f3}. First suppose that y ∈ (V (B)\V (F )). It follows
from (i) that y is a clone of f1 or of f3. From the symmetry,
we may assume that y is a clone of f3. But y-f2-f3-x-f1-f2-y
is a cycle of length six, a contradiction. Therefore, it follows
that y = fj for some j ∈ {4, 5, . . . , k}. First assume that
j = 5. Then x-f1-f2-f5-f4-f3-x is a cycle of length six, a
contradiction. From the symmetry, this leaves only the case
where k = 7 and j ∈ {4, 6}. We may assume that j = 4. But
f2-f4-f5-f6-f7-f1-f2 is a cycle of length six, a contradiction.
This proves that deg(f2) = 2. It follows from the induction
hypothesis that B − f2 is of the B1 type. Therefore, by the
definition of B1, it follows that B is of the B1 type.

So we may assume that V (B) \ V (F ) = ∅. If k = 5, then
we are done. If k = 7 and F is an induced cycle in B, then
we are also done. If k = 7 and F is not an induced cycle in
B, then there are extra edges in B. So we may assume that
there is an edge between some fi and fj with |i− j| ≥ 2.
(iii) There is no i ∈ {1, 2, . . . , 7} such that either (a) fi
is adjacent to fi+2, or (b) fi is adjacent to fi+3 and fi+1 is
adjacent to fi+5.
From the symmetry, we may assume that i = 1. If fi is
adjacent to fi+2, it follows that f1-f3-f4-f5-f6-f7-f1 is a cycle
of length six, a contradiction. For part (b), if fi is adjacent
to fi+3 and fi+1 is adjacent to fi+5, then it follows that
f1-f4-f3-f2-f6-f7-f1 is a cycle of length six, a contradiction.
This proves (iii).

It follows from the above and from (iii) that there exists
i ∈ {1, 2, . . . , 7} such that fi is adjacent to fi+3. From the
symmetry, we may assume that i = 1. It follows from (iii)
that f2 is non-adjacent to f5 and f6, and f3 is non-adjacent
to f6 and f7. Hence, the only possible other edges are f1f5
and f4f7. Therefore, B is of the B1 type.

Proof of Lemma 3.2: Since B has no cycle of length at
least 5 and B has no cut-node, it follows from Theorem 3.4
that either B is a bipartite graph, or B is isomorphic to K4,
or B isomorphic to K+

2,t. In the latter two cases, we are done.
So suppose that B is a bipartite graph. Let V (G) = X ∪ Y
such that X and Y are independent sets. If |X| ≤ 1, then
x ∈ X is a cut-node, a contradiction. From the symmetry, it
follows that |X| ≥ 2 and |Y | ≥ 2. Now suppose x ∈ X is
non-adjacent to y ∈ Y . Since B is 2-connected, it follows
that there are two edge-disjoint paths P1 and P2 from x to y.
Since x and y are non-adjacent and B is bipartite, it follows
that |E(P1)| ≥ 3 and |E(P2)| ≥ 3. But x-P1-y-P2-x is a
cycle of length at least six, a contradiction. It follows that X
is complete to Y . If |X| ≥ 3 and |Y | ≥ 3, then B contains a
cycle of length six, a contradiction. Therefore, at least one of
X,Y has size exactly 2. Hence, B is isomorphic to K2,t with
t = max{|X|, |Y |} and therefore B is of the B2 type.

The following lemma is used in the proof of Lemma 3.3.

Lemma B.1: Let m ∈ {5, 7} and let q ≥ 0. Let G′ be a
graph and let F be a m-cycle disjoint from G′. Let v ∈ V (G′)
such that there exists a matching in G′ that covers all neighbors
of v in G′, but not v itself. Let G be the graph constructed from
the disjoint union of G′ and F by adding a path P of length
q between f ∈ V (F ) and v. Then every good edge weighting
α for G satisfies α(e) = 0 for every e ∈ E(F ) ∪ E(P ).

Proof: Let f1, f2, . . . , fm be the nodes of F in order
and let p1, p2, . . . , pq be the nodes of P . We may assume
that f = fm, p1 = f and pq = v. We use induction on
q. First suppose that q = 0, i.e. v = fm. We will prove
this for the case when m = 5. The case when m = 7 is
analogous. Let M be a maximal matching in G′ that covers
v. Let M1 = M ∪ {f1f2, f3f4} and let M2 = M ∪ {f2f3}.
Since α is a good edge weighting and M1 and M2 are maximal
matchings, it follows that α(f2f3) = α(f1f2)+α(f3f4). Now
let M ′ be a maximal matching in G′ that does not cover v. Let
M ′1 = M ′∪{f1v, f2f3} and M ′2 = M ′∪{f1v, f3f4}. Since α
is a good edge weighting and M ′1 and M ′2 are maximal match-
ings, it follows that α(f2f3) + α(f1v) = α(f3f4) + α(f1v).
Hence, α(f2f3) = α(f3f4). Using the symmetry, it follows
that α(f2f3) = α(f1f2). Combining this with the equality
found above, it follows that α(f2f3) = 2α(f2f3) and hence
that α(f1f2) = α(f2f3) = α(f3f4) = 0. Finally, let
M ′′ be a maximal matching in G′ that covers all neighbors
of v but not v itself. Let M ′′1 = M ′′ ∪ {f1v, f2f3} and
M ′′2 = M ′′ ∪{f1f2, f3f4}. Since α is a good edge weighting
and M ′′1 and M ′′2 are maximal matchings, it follows that
α(f1v) + α(f2f3) = α(f1f2) + α(f3f4) = 0. Hence,
α(f1v) = 0 and, from the symmetry, α(f4v) = 0. This proves
the claim for q = 0.

Next, suppose that q ≥ 1. It follows from the induction
hypothesis that α(e) = 0 for all e ∈ (E(F ) ∪ E(P )) \
{pq−1pq}. Let M be a matching in G′ that covers all neighbors
of v but not v itself. Let M1 be a maximal matching in
G|(V (F ) ∪ V (P )) that covers v and let M2 be a maximal
matching in G \ (V (F )∪ V (P )) that does not cover v. Since
M ∪M1 and M ∪M2 are maximal matchings, it follows that
α(M1) = α(M2). Since α(M2) = 0, α(pq−1pq) = 0.

Proof of Lemma 3.3: Let k ≥ 0, p, q ∈ {5, 7} and
suppose that Dp,q

k satisfies SLoP. Then there exists a good edge
weighting α for Dp,q

k . It follows from Lemma B.1 applied to
Dp,q
k that α(e) = 0 for all e ∈ E(Dp,q

k ). This is clearly not a
good edge weighting for Dp,q

k , a contradiction.

Proof of Lemma 3.5: The proof is by induction on
|E(G)|. Let {B1, B2, . . . , Bq} be the block decomposition of
G. It follows from Theorem 3.3 that Bi is either of the B1
type or of the B2 type, and for at most one value of i, Bi is
of the B1 type. Since, inductively, every proper subgraph of
G satisfies SLoP, it suffices to find a good edge weighting α.

Suppose first that G has a leaf block Bi of the B2 type. If
q = 2, then let x be the cut-node of G in V (Bi). If q = 1, let
x ∈ V (Bi) be arbitrary. There are four cases:
(1) Bi is isomorphic to K2. Let x, v denote the nodes of Bi.

Let α(e) = 1 for all edges incident with x and α(e) = 0 for
every other edge e. Let M be a maximal matching in G. If
xv ∈M , then, since M is a matching, M does not contain
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any other edge e with α(e) = 1 and, hence,
∑
e∈M α(e) =

1. If xv 6∈ M , then, since M is maximal, M contains an
edge incident with x and, hence,

∑
e∈M α(e) = 1. Since

this is true for every maximal matching M of G, it follows
that α is a good edge weighting for G.

(2) Bi is isomorphic to K3: let x, v1, v2 denote the nodes
of Bi and let α(e) = 1 for all e ∈ E(Bi) and α(e) = 0
for every other edge e. Let M be a maximal matching in
G. If v1v2 ∈M , then, since M is a matching, M does not
contain either of xv1, xv2 and, hence,

∑
e∈M α(e) = 1. If

v1v2 6∈M , then, since M is maximal and M is a matching,
exactly one of xv1, xv2 is in M and, hence,

∑
e∈M α(e) =

1. Since this is true for every maximal matching M of G,
it follows that α is a good edge weighting for G.

(3) Bi is isomorphic to K4: let x, v1, v2, v3 denote the nodes
of Bi and let α(v1v2) = α(v1v3) = α(v2v3) = 1 and
α(e) = 0 for all e ∈ (E(G) \ {v1v2, v1v3, v2v3}). To see
that this is a good edge weighting, let M be a maximal
matching in G. Suppose that M does not contain any of
the edges v1v2, v1v3, v2v3. Since M does not contain v1v3
and M is maximal, it follows that M contains either xv1
or xv3. Assume without loss of generality that xv1 ∈ M .
Now we may add v2v3 to M to obtain a larger matching,
a contradiction. It follows that

∑
e∈M α(e) = 1. Since this

is true for every maximal matching M of G, it follows that
α is a good edge weighting for G.

(4) Bi is isomorphic to K2,t or K+
2,t for some t ≥ 2: let

V (Bi) = V1 ∪ V2 such that |V1| = 2 and V2 is an indepen-
dent set. Let V1 = {y1, y2} and let V2 = {z1, z2, ..., zt}.
First suppose that Bi is isomorphic to K+

2,2 and x ∈ V2.
We may assume that x = z1. Set α(y1z2) = α(y2z2) =
α(y1y2) = 1 and α(e) = 0 for all other edges e. Let M
be a maximal matching in G. Suppose that M does not use
any of the edges y1z2, y2z2, y1y2. Since M is a matching,
at least one of the edges xy1, xy2 is not in M , say xy1. But
now we may add y1z2 to M to obtain a larger matching, a
contradiction. It follows that

∑
e∈M α(e) = 1. Since this is

true for every maximal matching M of G, it follows that α
is a good edge weighting for G. This solves the case when
Bi is isomorphic to K+

2,2 and x ∈ V2. So we may assume
this is not the case.
We claim that Bi contains two nodes p, p′ of degree 2 such
that p′ is a clone of p. Suppose that x ∈ V1. Then let p = z1,
p′ = z2. It follows that deg(p) = deg(p′) = 2 and p′ is a
clone of p. Therefore, we may assume that x ∈ V2. We
may assume that x = z1. Suppose that |V2| ≥ 3. Then let
p = z2, p′ = z3. Then, deg(p) = deg(p′) = 2 and p′ is
a clone of p. So we may assume that |V2| = 2. From the
above, it follows that Bi is isomorphic to K2,2. Let p = y1,
p′ = y2. It follows that deg(p) = deg(p′) = 2 and p′ is a
clone of p. Now the result follows from Lemma 3.4.

Thus, we may assume that G does not have a leaf block of
the B2 type. Since if q ≥ 2, G has at least two leaf blocks, and
hence at least one leaf block of the B2 type, we may assume
that q = 1 and G = B1 is of the B1 type. First suppose
that V (G) \ V (C) 6= ∅. Then it follows from the definition
of B1 that there exist two nodes x, x′ such that deg(x) =

deg(x′) = 2 and N(x) = N(x′). It follows from Lemma
3.4 that there exists a good edge weighting for G. So we
may assume that V (G) = V (C). Suppose first that k = 5. It
follows from the definition of B1 that G is a 5-cycle plus some
arbitrary additional edges. Clearly, no maximal matching has
size 1. Hence, since |V (G)| = 5, it follows that every maximal
matching in G has size exactly 2. Therefore, α(e) = 1/2 for
all e ∈ E(G) is a good edge weighting for G. So we may
assume that k = 7. Clearly, G has no maximal matching of
size 1. It is also easy to see that G has no maximal matching of
size 2. Hence, since |V (G)| = 7, it follows that every maximal
matching in G has size exactly 3 and therefore α(e) = 1/3
for all e ∈ E(G) is a good edge weighting for G.

Proof of Lemma 3.6: We may assume that G is con-
nected, because if not the lemma follows from considering
each connected component of G. We first claim that |E(B)| ≤
2|V (B)| for all B ∈ B1. Let B ∈ B1 and let C be a longest
cycle in B. It follows from the definition of B1 that |V (C)| ∈
{5, 7}. Clearly, we have |E(Bi)| ≤ |V (C)|+ 5 + 2(|V (Bi) \
V (C)|) ≤ 2|V (C)|+ 2(|V (Bi)| − |V (C)|) = 2|V (Bi)|. This
proves the claim. Next we claim that |E(B)| ≤ 2|V (B)| − 2
for all B ∈ B2. If B is isomorphic to K4, then |E(B)| = 6 =
2|V (B)| − 2. If B is isomorphic to K2,t or K+

2,t for some
t ≥ 1, then |E(B)| ≤ 1 + 2(|V (B)|− 2) < 2|V (B)|− 2. This
proves the claim.

Now let G be an F-free graph and let {B1, B2, . . . , Bq} be
the block decomposition of G. We prove by induction on q
that |E(G)| ≤ 2|V (G)|. If q = 1, it follows from the above
that |E(G)| = |E(B1)| ≤ 2|V (B1)| = 2|V (G)|. Let q ≥ 2.
Since G has at least two leaf blocks and at most one block
is in B1, we choose i such that Bi is a leaf block and Bi is
of the B2 type. Let x be the unique cut-node of G that lies
in Bi. By induction, the graph G|(V (Bi) \ {x}) has at most
2(|V (G)| − |V (Bi)|+ 1) edges. From the above, since Bi is
of the B2 type, |E(Bi)| ≤ 2|V (Bi)| − 2. Hence, |E(G)| ≤
2(|V (G)| − |V (Bi)|+ 1) + 2|V (Bi)| − 2 = 2|V (G)|.

The following two lemmas will be used in the proof of
Theorem 3.2.

Lemma B.2: It can be decided in O(|V (B)|) time whether
a given graph B is of the B1 type.

Proof: We may assume that |E(B)| ≤ 2|V (B)|, because
if not, then it follows from Lemma 3.6 that B is not of the B1
type. For any fixed k, finding a cycle of length at least k in
a given graph H , if it exists, can be done in O(k!2k|V (H)|)
time [3]. The following algorithm uses the algorithm in [3]
multiple times to recognize graphs of the B1 type.
(1) For p = 8, 7, 6, 5, do:

Check if B contains a cycle of length p or more. If
so, let F be the cycle and go to step (3).

(2) B does not contain a cycle of length 5 or larger, and
hence B is not of the B1 type and we return NO.

(3) Let k = |V (F )|. If k ∈ {6, 8}, then B is not of the B1
type and we return NO. Let f1, f2, . . . , fk be the nodes
of F in order. If k = 7, check that the ‘inner edges’ of
F are as in the definition of B1. If not, B is not of the
B1 type and we return NO.
For i ∈ {1, 2, . . . , k}, do:
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Let Ai be the nodes in V (B)\V (F ) that are adjacent
to exactly fi−1 and fi+1. If |Ai| ≥ 1 and deg(fi) 6=
2, then B is not of the B1 type and we return NO.

If
∑k
i=1 |Ai| + |V (F )| < |V (B)|, then B is not of the

B1 type and return NO.
(4) B is of the B1 type and we return YES.

Note that this algorithm takes O(|V (B)|) time.

Lemma B.3: It can be decided in O(|V (B)|) time whether
a given graph B is of the B2 type.

Proof: We may assume that |E(B)| ≤ 2|V (B)|, because
if not, then it follows from Lemma 3.6 that B is not of the B2
type. Clearly, it can be checked in constant time whether B is
isomorphic to K2, K3, K4, K2,2 or K+

2,2. So we may assume
that B is either isomorphic to K2,t or K+

2,t for some t ≥ 3, or
B is not of the B2 type. Let X ⊆ V (B) be the set of nodes of
degree 2. If |X| 6= |V (B)| − 2, then B is not of the B2 type
and we may stop. Otherwise, let {a1, a2} = V (B) \ X . We
need to check that X is an independent set and X is complete
to {a1, a2}. If so, then B is of the B1 type and we may stop.
If not, then B is not of the B2 type and we may stop. Notice
that, since |E(B)| ≤ 2|V (B)|, the check above can be done
in O(|E(B)|) time.

Proof of Theorem 3.2: We may assume that G is
connected. By Theorem 3.1 and Theorem 3.3, it suffices to
check whether G admits the structure described in Theorem
3.3. We propose the following algorithm. Let n = |V (G)| and
m = |E(G)|. First we check that m ≤ 2n, because otherwise
G is not F-free by Lemma 3.6 and we stop immediately.
Now, construct the block decomposition {B1, B2, ..., Bq} of
G. This can, in general, be done in O(n+m) time (see e.g.
[11]). However, since we know that m ≤ 2n, this step actually
takes O(n) time. For each block Bi, we test whether Bi is of
the B2 type. This can be done O(|V (Bi)|) time by Lemma
B.3. If G has more than one block that is not of the B2 type,
then G is not F-free and we stop. If we encounter no such
block, then G is F-free and we stop. So let B∗ be the unique
block that is not of the B2 type. It follows from Lemma B.2
that it can be decided in O(|V (B∗)|) time whether B∗ is of
the B1 type or not. If it is, then G is F-free and we stop. If
not, then G is not F-free and we stop.

APPENDIX C
PROOF OF LEMMA 4.2 (SECTION IV)

Lemma C.1: Let G be a bipartite graph with bipartition
X,Y . If |X| ≥ k and deg(x) ≥ k for all x ∈ X , then every
maximal matching in G has size at least k.

Proof: The proof is by induction on k. The lemma is
clearly true for k = 0. So let k ≥ 1. Let M be a maximal
matching in G. Since X is not anticomplete to Y , it follows
that M contains an edge xy with x ∈ X , y ∈ Y . Let M ′ =
M \{xy}, X ′ = X\{x}, Y ′ = Y \{y} and G′ = G|(X ′∪Y ′).
Clearly, M ′ is a maximal matching in G′, |X ′| ≥ k − 1 and
degG′(x′) ≥ k − 1 for all x′ ∈ X ′. Hence, it follows by
induction that |M ′| ≥ k − 1 and therefore that |M | ≥ k.

Proof of Lemma 4.2: Write ν = ν(G) and µ = µ(G).
It follows from Lemma 4.1.(b)-(c) that we may assume that

deg(v) ≥ 3 for all v ∈ V (G). If µ ≥ 2ν/3, then σ(G) ≥ 2/3
by Lemma 2.1. We may therefore assume that µ < 2ν/3.

Let V (G) = X ∪ Y such that X and Y are independent
sets. Let M∗ be a maximal matching of size µ. Let A, B be
the set of nodes in X , Y , respectively, that are covered by
M∗. Let C = Y \B and D = X \A. Since M∗ is maximal,
C is anticomplete to D. Moreover, since deg(v) ≥ 3 for all
v ∈ V (G), every c ∈ C has at least three neighbors in A, and
every d ∈ D has at least three neighbors in B.

Let EAB , EAC , EBD be the edges between A and B, A
and C, and B and D, respectively. Since C is anticomplete to
D, we have E(G) = EAB ∪ EAC ∪ EBD. We claim that:

|C|, |D| > µ/2. (6)

Proof of the claim: Suppose to the contrary that |C| ≤ µ/2
and let M be a maximal matching in G. Let M1 = M ∩EAB ,
M2 = M ∩ EAC , M3 = M ∩ EBD. First, we have |M2| ≤
|C| ≤ µ/2. Second, since every edge in M1 ∪M3 covers a
unique node in B, it follows that |M1 ∪ M3| ≤ |B| = µ.
Therefore, |M | ≤ 3µ/2. Since this is true for every maximal
matching M , it follows that ν ≤ 3µ/2. But this means that
µ ≥ 2ν/3, contrary to our assumption. Hence, |C| > µ/2 and,
by the symmetry, that |D| > µ/2. This proves the claim.

If µ ≤ 2, then, since every node in C has at least three
neighbors in A, it follows that |C| = 0, contrary to (6). Hence,
µ ∈ {3, 4}. It follows from (6) and if µ = 3, then |C|, |D| ≥ 2,
and if µ = 4, then |C|, |D| ≥ 3. Define

α(e) =

{
1
µ if e ∈ EAB
1
2µ if e ∈ EAC ∪ EBD.

We need to prove that 2/3 ≤ ∑
e∈M α(e) ≤ 1 for every

maximal matching M in G. So let M be a maximal matching
in G. Since every edge in M is incident with a node of A∪B,
it is easy to see that

∑
e∈M α(e) ≤ 1. Let k = |M ∩ EAB |.

It suffices to show that |M ∩ EAC | ≥ µ − k − 1 and that
|M ∩ EBD| ≥ µ− k − 1, because if so, then∑

e∈M
α(e) ≥ k/µ+ (µ− k − 1)/µ

= µ− 1/µ ≥ 2/3, for µ ∈ {3, 4}.
From symmetry, it suffices to show that |M∩EAC | ≥ µ−k−1.
Let A′ be the nodes of A that are not covered by M . We may
assume that k < µ− 1, because otherwise there is nothing to
prove. Consider the graph G′ = G|(A′∪C). Clearly, we have
|C| ≥ µ− k− 1, degG′(c) ≥ 3− k ≥ µ− k− 1 for all c ∈ C.
Moreover, M ∩EAC is a maximal matching in G′. Hence, it
follows from Lemma C.1 that |M ∩ EAC | ≥ µ− k − 1.
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