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Abstract—Efficient operation of wireless networks requiresdis-
tributed routing and scheduling algorithms that take into account
interference constraints. Recently, a few algorithms for etworks
with primary- or secondary-interference constraints have been
developed. Due to their distributed operation, these algothms
can achieveonly a guaranteed fraction of the maximum possible
throughput. It was also recently shown that if a set of condiions
(known as Local Pooling) is satisfied, simple distributed dteduling
algorithms achieve 100% throughput. However, previous wok
regarding Local Pooling focused mostly on obtaining abstrat
conditions and on networks with single-hop interference orsingle-
hop traffic. In this paper, we identify several graph classeghat
satisfy the Local Pooling conditions, thereby enabling theuse of
such graphs in network design algorithms. Then, we study the
multihop implications of Local Pooling. We show that in many
cases, as the interference degree increases, the Local Poglcon-
ditions are more likely to hold. Consequently, although inceased
interference reduces the maximum achievable throughput othe
network, it tends to enable distributed algorithms to achieve
100% of this throughput. Regarding multihop traffic, we show
that if the network satisfies only the single-hop Local Pootig
conditions, distributed joint routing and scheduling algarithms
are not guaranteed to achieve maximum throughput. Therefoe,
we present new conditions for Multihop Local Pooling, under
which distributed algorithms achieve 100% throughout. Fimally,
we identify network topologies in which the conditions holdand
discuss the algorithmic implications of the results.

Index Terms—Stability, Distributed algorithms, Wireless net-
works, Local Pooling, Interference, Scheduling, Routing.
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routing and schedulinglgorithms achieve 100% throughput.

The policy of [25] applies to a multihop wireless network
with a stochastic packet arrival process and is guaranteed t
stabilize the network (i.e. provide 100% throughput) wheme
the arrival rates are within the stability region. The résul
of [25] have been extended to various settings of wireless
networks and input-queued switches. However, throughput o
timal algorithms based on [25] require the repeated saiutio
of a global optimization problemtaking into account the
queue backlog information for every link in the network. For
example, even under simple primary interference conggfain
a maximum weight matching problem has to be solved in
every slot. Obtaining a centralized solution to such a bl
in a wireless network does not seem to be feasible, due
to the overhead associated with continuously collecting th
queue backlog information. Therefore, the desigdisfributed
algorithmshas attracted a lot of attention recently.

For single-hop traffic the joint problem reduces techedul-
ing problem. Lin and Shroff [21] studied the impact of
distributed imperfect scheduling on cross-layer rate rant
Regarding primary interference constraints, they shovined t
using adistributed maximal matchinglgorithm along with a
rate control algorithm may achieve 50% throughput. Similar
results for different settings were also obtained in [1QJ1][
[20]. It was also proved in [10], [20], [24], [27] that under
secondary interference constrafntise throughput obtained by
a distributed maximal scheduling algorithm may be signifi-

A major challenge in the design and operation of wirelesmntly smaller than the throughput under a centralizedr(ad}
networks is to jointly route packets and schedule transoriss scheduler. In particular, it was proved in [10] that a disited
to efficiently share the common spectrum among links in tregorithm may achieve as low &$8 of the possible throughput.
same area. Acentralizedjoint routing and scheduling policy Dimakis and Walrand [13] recently showed that although in
that achieves the maximum attainable throughput region waibitrary topologiesthe worst case performance of distributed
presented by Tassiulas and Ephremides [25]. However, te lanaximal scheduling algorithms can be very low, there are
of central control in wireless networks calls for the desafn some topologies in whicl100% throughput is achievedin
distributed algorithms. Such algorithms can usually achievpearticular, they consider a graph of interfering quéuasd
only  fraction of t-he m-aXimum throughput. Recently, it ha-ls lPrimary interference constraints imply that each pair efiianeously
been shown by_ Dl!”nak|§ and_ V\_/alrand [13].that thgre ex'ﬁ&ive links must be separated by at least one hop (i.e. thef setive links
network tOpOIOgleS in which dlStrlbUtesthedUllnga.lgorlthms at any point of time constitutes a matching) [10], [21], [22]
achievel00% throughput In this paper, we focus on identify- 2Secondary interference constraints imply that each pasiratitaneously
ing topologies in which distibuted algorithms achiew’: 31 I L% 08 SChaer b 3 oo o o g consvins
throughput and studying the effect wiultihopinterference on

) h o = 3Such graph is constructed from the network graph accordmghe
these topologies. We also provide conditions under wjgait interference constraints and is referred to as interferemaonflict graph [11].
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study the performance of greedy maximal weight schedulingmany topologies, ak increases, the resulting interference graph
algorithm (termed Longest Queue First - LQF) that seleats tis such that distributed maximal weight scheduling achsdhe
set of served queues greedily according to the queue lengtinaximum throughput instead of the worst case throughput.
They present sufficient conditions for such an algorithm to In general, networking environments in which the traffic
provide 100% throughput (notice that unlikereximurmweight is inherently single-hopand where packets must depart the
solution, amaximalweight solution can be easily obtained irsystem upon transmission across a link are rare. This sesult
a distributed manner [16], [19]). These conditions arerrefé from the fact that many connections are necessarily muydtiho
to as Local Pooling (LoP) and are related to the propertiesonnections, due to geographical and physical constraimts
of all maximal independent sets in the conflict graph. Thgser connectivity. Networks witmultinop traffic have been
LoP conditions were recently generalized in [18] to providstudied in [20], [26], [27], where it was shown that, in gealer
conditions under which a greedy maximal weight matchingnly a fraction of the throughput is attainable when using
algorithm obtains some guaranteed fractional throughput. distributed algorithms. Since the LoP results of [6], [1[3]3]

Identifying specific network topologies that satisfy LoP id1ave been constrained to single-hop traffic, it is desirable
important, since it enables the design of algorithms thiieei identify topologies in which distributed algorithms cantaib
partition a wireless network into subnetworks with sucholop  100% throughput in the multihop traffic setting.
gies (e.g. via channel allocation) or add artificial intezfece We show that the single-hop LoP conditions introduced in
constraints that create such topologies. Hence, in [6] a fé13] areinsufficientto guarantee stability in the multihop rout-
interference graphs satisfying LoP were identified and it wing environment. Therefore, we study the LoP properties of a
proved that under primary interference constraints, teteork  distributed routing and scheduling algorithm which is lthea
graphs vyield interference graphs that satisfy LoP. Althoughe backpressure mechanism of [25]. In this algorithm thgeed
some knowledge about LoP has been acquired, [13] providedights are obtained by the backpressure mechanism bieunli
mostly abstract conditions, while [6], [18] focused mostly in [25], a distributed maximal weight scheduling algorithm is
primary interference constraints. Despite the fact th@&seéh used to determine which edges should be activated. We gresen
constraints may hold for specific technologies, they are noeéw LoP conditions that are sufficient for guaranteeing that
realistic in most practical settings. Therefore, in oraealiow algorithm achieves00% throughput in the multihop routing
the development of algorithms that take advantage of LoP, wavironment. Then, we present a specific network topologl th
focus on identifying topologies of interference and networsatisfies the multihop LoP conditions and show that the aéss
graphs that satisfy the LoP conditions, and on studying thepologies satisfying these conditions is strictly inaddvithin
effect of multihopinterference on these topologies. the class of single-hop LoP-Satisfying graphs.

We first use the LoP conditions to identify several new We note that the area of throughput maximization is some-
classes of LoP-Satisfying interference graphs. It is shdvat what related to the areas of distributed multicommoditytiray
within the class of perfect graphs, chordal graphs, chorda] and adversarial queueing [3]. The algorithms of [2],][25
bipartite graphs, cographs, and a subgroup of co-compiyabideal with a similar multihop setting by using similar backpr
graphs all satisfy LoP. These observations increase théeumsure methods. The adversarial queueing model (e.g. [3Brdif
of graphs that are known to satisfy LoP by a few orders &fom the model of [25], mostly since usually in the former all
magnitude. We also show that all odd rings with at least @lges can be simultaneously active, while the latter imgpose
nodes and all even rings with at least 6 nodes do not satisfgnstraints on the edge activations. Similarly to this work
LoP. Using the latter observation, we show that all bipartipprevious works on adversarial queueing (e.g. [14]) alsosed
graphs that are not chordal bipartite do not satisfy LoP. on identifying graph classes for which distributed alduris

We use the acquired knowledge about graph classes tAeg stable (in the sense of adversarial queueing stability)
satisfy and fail LoP to study the effect of increased intemee The main contributions of this paper are two-fold. First, we
on LoP. We focus on a generalization of the primary (1-hopl) aridentify several graph classes that satisfy Local Poolary
secondary (2-hop) interference models té-hop interference show that as the interference degree increases, it is nmkailg i
model [24], wherek is termed the interference degree. We shothat simple distributed algorithms achieve 100% throughpu
that under any interference degree, tree network grapld yidhe second contribution is the derivation of novel Locallrap
interference graphs that satisfy LoP (i.e. under any iaterf conditions for networks with multihop traffic. To the best of
ence degree distributed algorithms achieve 100% throughpur knowledge this is the first attempt to study the multihop
in trees). We also show that in many caseskadBcreases, it implications of Local Pooling. The obtained results caveers
is more likely that the LoP conditions hold, and therebysit ia basis for the development of Local Pooling based algosthm
more likely that simple distributed algorithms achieve #0 This paper is organized as follows. In Section Il we present
throughput. Moreover, for every network topology, there e network model and the single-hop LoP conditions. In
an interference threshold*, above which the correspondingSection Il we present several new classes of conflict graphs
interference graphs satisfy LoP. At first glance, it seenat thsatisfying LoP. Then, in Section IV we discuss the effect of
since it is known that the worst case performance detegsratnultihop interference on the satisfaction of the LoP cdndi.
as the interference degree increases [10], [27], the seanét New LoP conditions for networks with multihop traffic are
counter-intuitive. Yet, the actual meaning of the resudtthat in presented in Section V. In Section VI we show that the mufiiho
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Fig. 1. (a) Network graplt,y. (b) the corresponding interference gragh node is assumed to have a queue for each possible destination

under primary interference, and (c) the matrix of maximak lactivations. Fori,j € Vy, let Qij (t) be the number of packets enqueued
at nodei at time ¢, whose destination in the network is node

LoP conditions are distinct from the single-hop conditiamsl ;. Assume that);;(0) = 0 for all 4, j.

identify network topologies that satisfy them. We summariz Service is applied to the system at each time slot by aatigati

the results and discuss future research directions in @ecth set of edges, and routing a packet of a single commodity

VII. Due to space constraints, the proofs are omitted and cabross each active edge. We denote the correspomding:

be found in [5, Chapters 8 and 9]. We also recently dedicatedrvice activation matrixoy S = (Sej,e € En,j € V).

[7] to a very detailed proof of Theorem 7. Here, for edgee € Ex and commodityj € Vy, S.; can

have valug) or 1, depending on whetheris inactive or active

for serving commodityj, respectively. Note that an admissible
Consider a wireless networkiy = (Vy,Ey), Where service activation matrix must have a valid underlying link

Vy = {1,...,n} is the set of nodes, andy C {(i,j) : activation belonging tal(G'x ). This property characterizes the

i,j € Vin,i # j} is a set of directed links indicating pairs ofset of admissible service activation matricss,

nodes between which data flows can occur, with® |Ex|.

The directionality of data flows across links necess|itat£r5 t S= {S €0, me = ZJ'GVN Sejym € H(GN)}'

treatment of the network graplry as a directed graph. The matrixS € S leads to packet transitions in the network.

Depending on the circumstances, we denote links as eitlmsnote byd;;(S) thenet amount of servicen packets per time

(4,7) or aseg. In Gy, if two nodesvy,v; € Vi are within  slot, to queua,; under activation matrixs.
communication range, then the directed edges= (v1, v2)

and es; = (vs,v1) both belong toEy. For a directed edge A Stability Considerations
e, let o(e) denote the source (initial) vertex, ande) denote ~ We can now define the stability region of the network.
the terminal (destination) vertex. Throughout the papetdb  Definition 1 (Admissible Rate Vector): A non-negative ar-
symbols are associated with vectors and matrices. rival rate vector A is admissible, if there exist6 > 1 and a
The interference between network links can be summarizeellection of service activation matrice8 € S,1 <1 < L
in an interference graph(or conflict grap) G; = (V7, E;) such that
based on the network grapfiy [17]. We assignl; £ Ey. L ! L
Thus, each edgey, in the network graph is represented by a Aig < 2ty udiy(S7), whereay = 091, 35,2, ar < 1.
vertexvy, of the interference graph, and an edge v;) in the The set of all admissible rate vectors is called the stapilit
interference graph indicates a conflict between networklgraregion and is denoted bjx*.
links e; ande; (i.e. transmissions om; and e; cannot take At each time slot, a joint scheduling and routing algorithm
place simultaneously).Fig. 1 contains a network grapfiy ~makes a link activation and routing decision that must Batis
and the corresponding interference gra@h under primary the interference constraints. A stable algorithm, whichals®
interference constraints. refer to as a throughput optimal algorithm or an algorithma th
Let IT(G ) denote the set of available link activations in th@chievesl00% throughput, is defined as follows.
network graphGGy: the vectorr = (wr.,e € En) € II(Gy) is Definition 2 (Stable Algorithm): An algorithm is stable,
a 0-1 column vector representing a possible link activafidre if for any arrival process with rate vectoA € A~
setII(G ) corresponds to all possible independent sets in ttiggo Qi;(t)/t = 0 with probability 1Vi, j € Vy.
interference graples; = (Vz, Er). Under primary interference, This stability criterion is termedate stability[1], [10].
II(G ) corresponds to the set of matchingsd,. We denote  Tassiulas and Ephremides [25] developed a stable joint
by M(V7) the matrix ofmaximalindependent sets i';; that routing and scheduling algorithm. At tinte> 0, the algorithm
is, the set of maximal column vectors Iii(G'y). Continuing computes for each edgec Ey the maximum backpressure:
the example of Fig. 1, the matri¥I(V;) for interference graph .
Gris con?ained ir? Fig. 1(c). V) e Ze(t) = }23’;@0(6)3' () = Qr(e); (1)), 1)
For simplicit.y, we assume that tim.e. is slotteq and that mk%vhich we express in vector form & (t) = (Z:(t), ¢ € Ex).
are of equal size, each packet requiring one time slot oﬁ«mrv.l.heir algorithm th lects a link activati € t
. : , . gorithm then selects a link activation vector
across any link. There is no self-traffic. We will refer to kets
destined to nodg € Vi ascommodity; packets Let A4;;(t) w*(t) = argmax 7l Z*(t). 2
TE(GN)

4Although it has been recently shown that in some cases thiiatagraph Routing is carried out over each edgéaving ﬂ'*(t) =1, by
does not fully capture the wireless interference charisties [23], it still ¢ ’

provides a reasonable abstraction. Extending the resufierieral SINR-based serving a CommOdlty_ achlevmg th_e maximum in (1) across that
constraints is a subject for further research. edge (for more details, see Section V-A).

II. NETWORK MODEL AND STABILITY



e T e T o © M= F) ?} designate by the vector having each entry equal to unity. We
10 deliberately avoid specifying its size, because it will lbwious

. . o by the context of its use.
Fig. 2. (a) Undirected network gragh, (b) the corresponding interference Definiti 3 (Sub hL | Pooli SLoP): An i
graph G; under primary interference, and (c) the matrix of maximak i efinition 3 (Subgraph Local Pooling - SLoP): n inter-

activations. ference graphG; satisfies SLoP, if there exists nonzeroc
RY"l and ¢ > 0 such thata”M(V;) = ce”.
Definition 4 (Overall Local Pooling - OLoP): An interfer-

(b) 01—0—0

For general interference grapf;, the algorithm of [25]
must find themaximum weight independent $etG; at each e ) .
time slof to obtain an optimal solution to (2). Namely, it gc;ag/mcz ‘s/atlsf@?_ OL(S)E’ g each induced subgraprer
must solve an NP-hard problem in every time slot or timggecnot_e .= _{hsgus 1es IO 'f Fig. 2 that SLoP
frame. Under primary interference, the graph is simpler and ontinuing with the example ot g. =, We can see Ta 0
the algorithm has to schedule the edges ofiaximum weight IS sat|sf|eciirfor the mterfgrence 9“’1@? using the_ vector” = .
matchingin the network graph at each slot. This requitis.®) (L 21). ﬁ‘ 1V{|(V12): 2eh ) Ior;a S|r_n|larSrr|1ar|13ner,c|jt %an bfe eé;asny
computation time, using a centralized algorithm. In wissle S QV\;M gtLa Psu graphs 6f; satisfy SLoP, and thereforé;,
networks, implementing a centralized algorithm is oftert ngatisties OLoP.

feasible and simple distributed algorithms usually obtairap- W_e can novr: tc_iescr:bte_ the ;t‘;b'l“tg of the(j_sys:er:{r;] WICI?:\?(' the
proximate solution, resulting in a fractional throughgdénce, service In each ime siot IS scheduled according fo the im

in general graphs, even under simple interference contdri WeighF Ind_ependen(; Selt (M\r/]VIS)halgorilthm. -:;his a(ljge([);ritfhm
is difficult to obtain 100% throughput in a distributed manne'S " lterative greedy algorithm that selects the node.o

This motivates us to study in which graph topologies simp?’é‘it.h the longest corresponding queue, a’.‘d removes it and its
distributed algorithmsan obtain 100% throughput. neighbors from the interference graph. This process isatepe
successively until no nodes remain. When multiple queues ha

B. Simplifications for Single-Hop Traffic the same length, a tie-breaking rule is applied. The set of

When the network is subjected exclusively to single-hofected nodes is a maximal independent set in the intedfere
traffic, a few simplifications occur in the model (see e.g, [Lprarh. Such a greedy algorithm can be implemented in a
[10], [22]). In this case, by definition, each network link distributed manner and has the following property.
can only carry traffic destined to the terminal nodeeofin ~ Theorem 1 (Dimakis and Walrand, 2006 [13]): If interfer-
other words, linke can only carry traffic of commodity(¢). €nce graphi; satisfies OLoP, a Maximal Weight Independent
Thus, the differential backlog (backpressure) of linkequals Set (MWIS) scheduling algorithm achievi)% throughput.
the queue backlog of commodity(e). The algorithm of [25] The fact tha}t a graph satisfies .OLdBes nofguarantee that
then specializes to require that single-hop service beieppt 2 MWIS algorithm obtains an optimal solution to thraximum

each timet to a link activation vector weight independent set problem in that graph. When OLoP is
. satisfied, despite the fact that in some time slots the MWIS
m(t) = irgnf(%ax)ﬂ Q(1). (3) algorithm obtains an approximate solution to the maximum

S N

weight problem, 100% throughpig achieved
Above we understan@)(¢) as the vectoQ(t) = (Qc(t),e €
Ey), whereQ.(t) is the queue backlog of packets awaitind”'
single-hop service across link Since Theorem 1 and Definitions 3 and 4 do not provide
Since routing plays no role in the single-hop scenario, it & clear intuition regarding the graphs that satisfy OLoR th
convenient to treat the network graghy as undirected. This properties of such graphs are only beginning to be undetstoo
simplifies the interference graph (an example of an undicectSmall graphs were studied by exhaustive search [6]. Aduitio
graph and its interference graph under primary interfezenglly, structural properties were used in [6], [13] to showatth
appears in Figs. 2(a)-(b)). In this case, the weight at tinige following interference graphs satisfy OLoP: treesgéts,
t of each undirected edge = (u,v) equals the maximum clique treeswhere each pair of cliques shares at most a single
weight of the queues that can be served across that liertex, and gair-of-cliquesconnected by disjoint edges.
max{Qu.(t), Quu(t)}. We will adopt this convention in our In this Section, we use structural properties to identify

| NTERFERENCEGRAPHS SATISFYING LOCAL POOLING

study of Local Pooling in sections Ill and IV. various graph classes that satisfy OLoP. We define a new class
_ ) ) of graphs as theOLoP-Satisfyingclass. We identify known
C. Local Pooling for Single-Hop Traffic graph classes that are included within this class or intérse

We briefly reproduce important definitions and implicationwith it. It turns out that all the graph classes that we idgnti
of Local Pooling (LoP) in networks with single-hop traffic,using structural properties are subclasses of the classrtéqt
presented in [6], [13]. In Section V we will introduce the LoRyraphs® On the other hand, some of the graphs identified by
conditions for themultihop traffic case. Recall thaM(V;) the exhaustive search [6] are not perfect graphs. Hence, in
is the collection of maximal independent vertex sets(®n the following discussion we differentiate between perfactl
organized as a matrix (an example appears in Fig. 2(c)). Wen-perfect graphs. Our investigation leads to the taxgnom

51t can be shown that throughput optimality is maintained mviselutions 6A graph isperfect if for each induced subgraph the size of the largest
are obtained at bounded time frames that are longer thanesstn (e.g. [22]). cliqgue equals the chromatic number.
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@ Fig. 4. The structure of a strip-of-cliques.

3) Bipartite Graphs that are not Chordal Bipartite Graphs
5-ring do not belong to the OLoP-Satisfying class.

Fig. 3 illustrates the inclusion of the chordal, chordalasip
tite, and cograph classes within the OLoP-Satisfying claks
class of chordal graphs has a few notable subclasses éssed
of special graphs that are known to be chordal), includirgy th

. strongly chordal, split, interval, threshold, and treessks (for
6-wheel more information see [4]). Theorem 2 implies that all these
Fig. 3. The relations between the OLoP-Satisfying class atheér graph subclasses Sa-uiSfy OLOP'. Therefore' the observation of [13
claéseé: P - perfecB - non-perfect, WC - weakly chordal, Ch - chordal, CBipthat _tr_ees sat_lsfy OLO_P 'mmed_'ately follows from Theorem
- chordal bipartite, Bip - bipartite, Co - cograph, Co-Comgo-comparability, 2. Similarly, since a clique tree is chordal, the observaté
Strip - strip-of-cliques, Even - cycleS,, with n even andh > 6, Odd - graphs  [6] that a clique tree satisfies OLoP is also a result of the
with inducedC with n odd andn > 9. theorem. Theorem 2 also implies that all subclasses of ahord
graph classes depicted in Fig. 3, showing the relationshtipeo  bipartite graphs satisfy OLoP, including the convex andie
OLoP-Satisfying class to the graph classes considered heren distance-heriditary classes.

We will make use of the following graph properties and The final contribution of Theorem 2 is its characterization
definitions. For graplé = (V, E), theinduced subgraplover of a sharp boundary separating the chordal bipartite graphs
vertex setV’ C V is the graphG’ = (V',E’), where E’ (OLoP-satisfying) from the bipartite graphs that are nairdial
is the set of edges iZ whose endpoints are ifv’. The bipartite (not OLoP-satisfying). This boundary is depicts a
complementG = (V,E) of graphG = (V,E) is defined thick line in Fig. 3. This result follows directly from theifare
by E = (u,v): u,v €V, u#wvand(u,v) ¢ E. A chord of of the OLoP conditions in even cycl€s, with n > 6. Hence,

a cycle (path) is an edge between two vertices of the cyday graph class that includes the bipartite graphs as aasshcl
(path) that is not an edge of the cycle (path). A cycle (path) ¢annot be fully included within the OLoP-Satisfying clashis
chordless if it contains no chords. We denote 6y, and P, allows us to exclude many of the major subclasses of perfect
a chordless cycle and a chordless path, respectively, gtHengraphs (e.g. preperfect, strongly perfect, quasi-paaity bip*

n. We denote byk,, a clique (complete graph) of nodes.  [4]) from the list of classes that can be fully included in the
A. Perfect Graphs OLoP—Sati.sfying class.

' Two major classes that have not been excluded as subclasses

Several classical graph classes such as bipartite grapifsthe OLoP-Satisfying class are weakly chordal and co-
chordal graphs, comparability graphs, and their complesne@omparability. In Fig. 3 we have shaded portions of the weak!
are perfect [4]. Here, we will identify a number of importanthordal and co-comparability classes to indicate the uairey
classes of perfect graphs that are also subclasses of thB-OLgx their inclusion relations with OLoP-Satisfying. Deténimg
Satisfying class. We will show that all of the graphs ideedfi the nature of these shaded regions (whether or not they) exist
in [6], [13] are simple special cases in these classes. Befofg left as an open problem.
describing the results we introduce some classes of perfecive now present a subclass of the co-comparability class to
graphs [4]. which we refer as atrip-of-cliques A graph is in this class, if

Definition 5: A graphG is chordalif each cycle inG of at it is composed from an ordered set of cliques. ., j, where
least 4 nodes has at least one chord. A graphis weakly two adjacent cliques, i + 1 are connected by any number
chordalif G' and its complement contain no induced chordless disjoint edges, and cliques that are not adjacent are not
cycle C,, n > 5. A bipartite graphB is chordal bipartiteif  connected directly. Fig. 4 illustrates such a graph. Noti
each cycle inB of length at least has a chord. A graph is a the pair-of-cliques presented in [6] is a specific case of a
cographif it does not contain the path grapR, (depicted in strip-of-cliques. The following lemmas show that a strip-0

7-ring

Fig. 2(a)) as an induced subgraph. cliques graph satisfies OLoP and that any such graph is a co-
Notice that the chordal bipartite class is the intersectibthe  comparability graph.
weakly chordal and bipartite classes. Lemma 1: Every strip-of-cliques graph satisfies OLoP.

The following theorem summarizes five results concerning Lemma 2: Every strip-of-cliques is a co-comparability
the OLoP properties of several large graph classes. The prggaph.
can be found in [5, Chapter 8]. We finish this section by providing some context regarding
Theorem 2: the magnitude of the results. Consider the set of simplehgrap
1) The following graph classes belong to the OLoPhaving 7 nodes, of which there are 1,044 distinct graphs. Of
Satisfying class: Chordal Graphs, Chordal Bipartitethese graphs393 are chordal, and80 are cographs, with some
Graphs, and Cographs. overlap between these two classes. These numbers can be com-
2) All even cycleg”,, with n > 6 fail SLoP. pared to the37 forests andl1 trees that were known to satisfy



@ @ (b) % It seems reasonable to expect that for many network graphs, a
the interference degree increases, there existmtanference
Fig. 5. (a) 2-hop and (b) 3-hop interference graphs of a -nietwork graph thresholdabo_ve WhICh OLoP is satlsﬁed._ We tested this prop-
o o _ erty by considering small graphs. In [6] it was shown that out
OLoP. Similarly, when considering the set of simgle node of 1,252 simple interference graphs of up tmodes,14 fail
graphs, the number of chordal graphs is 1,392,387, compatgtoP. The following observation is obtained by exhaustivel
to 710 forests and235 trees. To summarize, our understandingonsidering the correspondingthop & > 2) interference
of the OLoP-Satisfying class has expanded significantlypbdy graphs.
the trees and forest graphs. Observation 1: Allk-hop ¢ > 2) interference graphs
B. Non-Perfect Graphs corresponding to network graphs with up Toedges satisfy

e . OLoP.
The OLoP-Satisfyingclass includes also graphs that are Applying our acquired knowledge from Section Ill regarding

_not perfect. We first use the nume_rical observations F’f [6] tRe OLoP-Satisfying class, we will now proceed to study
identify non-perfect graphs that satisty OLoP. The 5-rig, multihop interference properties of graphs. We focus omplgra

which is the only 5-node non-perfect graph, satisfies OLoaasses that appear in Fig. 3
Moreover, since all 6-node graphs excefij satisty OLOP, First, we indicate that due to Observation 1, a number of

all non—perfect 6-node grqphs satisfy Q.LOP' F'T‘a”y' ahwg -hop interference graphs outside the OLoP-Satisfyingscla
graphs satisfy OLoP besldes a spe_cn‘lc one illustrated in |19Id k-hop interference graphs that are OLoP-Satisfying. These
and those that have an induced 6-ring, which leads us to phs are the 6-ring, the 6-wheel, and the four non-pefect
observation thal 34 out of the 138 non-perfect 7-node graphg o graphs outside ’the OLoP-Sa,tisfying class.

satisfy OLoPIn Fig. 3 all these graphs appear in a single class We next introduce the Strongly Chordal class, a subclass of

(containingC’s andC7) within the OLoP-Satisfying class. The ", 4a) graphs, which exhibits an interference thrigsho
4 graphs that fail OLoP are represented in the top-rightexorn roperty

We now show that all non-perfect graphs that have e?n . :
induced odd cycle with at least nodes fail OLoP (see the Defln!tlon .6 (Strongly Chordal [4]): A graptd; is strongly
- . : chordalif G is chordal and each cycle i of even length at
Odd class in Fig. 3). This follows from the following theorem R : .
) . : least6 has an odd chord (a chor¢t, j) is odd if the distance
Theorem 3: All odd cycle§’,, with n > 9 fail SLoP. . i s
in the cycle betweenand j is odd).

IV. LOCAL POOLING UNDERMULTIHOP INTERFERENCE Denote byG* the k-th power of G: G* has the same vertex

In this section, we show that counter-intuitivetgore inter- S€tV @G, andu,v € V are adjacent irG*, if the minimum
ference often assists the operation of distributed algong Path length betweenl andv in G is at mostk. Given a 1-hop
Denote the stability region undérhop interference by ;. It |nterferenie graplt:;, the corresponding:-hop interference
is clear thatA] cannot increase witlt (and often decreasesd9"@Ph iSGT.
with k), as interference between the links of the network can Since the strongly chordal graphs belong to the chordasclas
only increase. Thus, although an increasekinan lead to a Theorem 2 implies that strongly chordal graphs are OLoP-
smaller stability region, such an increase makes it mowehylik Satisfying. A property of the strongly chordal class is thas
that the OLoP conditions hold, and thereby more likely thé“ﬂongly closed under poweNngrn_e_ly, if an interference graph
simple distributed algorithms will achiev&. QI is strongly chordal, ther:; s strongly chordal for all

j > 1[4]. Therefore, even if the 1-hop interference graph is not
A. Interference Graphs strongly chordal, once an interference graph becomesgitron

We first demonstrate the intuition on which the abovehordal (and thereby OLoP-Satisfying), increased interfee
observation is based. Consider the network graph(a 6 degree will generate OLoP-Satisfying graphs. Based on this
node ring), whose interference graph under primary interfee  property, the following theorem establishes that everyplgra
is also Cs. According to [13], Cs does not satisfy OLoP has an interference threshold above whichall interference
and, in general, a MWIS algorithm does not achieve 1009saphs satisfy OLoP.
throughput. It has been recently shown in [18] that a MWIS Theorem 4:There exists a* such that fork > k*, G}
algorithm guarantees 66% throughput @%. Under 2-hop satisfies OLoOP.
interference, the interference graph has 6 more edges (se&he following lemmas show that certain graphs, identified in
Fig. 5(a)). According to [6], this specific graph satisfiesd®l. Section IlI-A, exhibit interference threshold = 1 (Lemma 3
and therefore, a MWIS algorithm achieves 100% throughpuimmediately follows from the above mentioned property @& th
Under 3-hop (or higher) interference, the interferenceplyrastrongly chordal class).
becomes a clique (see Fig. 5(b)) which satisfies OLoP [6].Lemma 3: If the 1-hop interference gragk is a strongly
Hence, although under 1-hop interference, a maximal weigtttordal graph, such as a tree or a clique tree, th&h satisfies
algorithm guarantees 66% throughput, unbdvop interference OLoP for everyk > 1.

(k > 2) 100% throughput is guaranteed. Lemma 4: If the 1-hop interference gragt is a cograph

Underk-hop interference, the interference graph becomes ana strip-of-cliques, therz¥ satisfies OLoP for every > 1.
OLoP-Satisfying clique whet equals the network diameter. When we study the transition fro¥ to G’;“, we find that



stronger result holds.

Lemma 6: Distributed MWIS algorithms achieve 100%
throughput in an interval network graph under /ahop in-
terference model, where > 2.

(@)

Fig. 6. (a) A chordal 1-hop interference graph and (b) theesmponding
2-hop interference graph that fails OLoP. V. LOPIN NETWORKS WITHMULTIHOP ROUTING

there are cases where increasing the interference degree cadn this section, we study the LoP properties in networks
result in a graph that fails OLoP: although any interferen@mnploying multihop routing, undegeneralinterference con-
graph has an interference threshold, the transition to tifigaints. We present a simple adaptation to the framework
threshold may not be smooth. Namely, below the interferene& [25] that allows decentralized implementation by using a
threshold, the interference graphs may alternate betweiag b distributed MWIS scheduling algorithm. We obtain multihop
OLoP-Satisfying and OLoP-Failing for different values iaf local pooling conditions that are sufficient for guarameei
The following lemma summarizes this result, and is based 80% throughput under the presented algorithm.
the 1-hop interference graph in Fig. 6(a). The correspandin _ _
2-hop interference graph appears in Fig. 6(b). It can be se&nBackpressure-based Routing and Scheduling
that the subgraph induced by the white nodeSgswhich fails ~ Recall from Section II-A that the optimal centralized sched
SLoP. Thus, OLoP fails in the overall graph. uler (2) calculatesmaximumweight independent sets based
Lemma 5. There are OLoP-Satisfyirighop interference on backpressurdink weights. Instead, the algorithm presented
graphs for which OLoP is not satisfied in a correspondjiig below findsMaximal Weight Independent Sets (MWIS) based
hop (j > k) interference graph. on the backpressure link weights. Similarly to the singbg@-h
B. Network Graphs traffic setting [13], we use a MWIS algorithm, but unlike in
' [13], we use the backpressure link weights (instead of threuqu
Thus far, we have studied the LoP properties under multihggcklogs). The MWIS algorithm operates on the interference
interference for most graphs represented in Fig. 3. We nejfaph and since it is a greedy algorithm, it can be easily
turn our attention to particulametwork graphstructures. An implemented in a distributed manner (e.g. the algorithnil 6] |
example of an interference graphi; resulting from 1-hop that can be applied to a network with primary interference-co
interference is given in Fig. 2. A second example is the ringraints). As in the single-hop case, the algorithinitependent
network graphC’,, whose 1-hop interference graph is asp.  of the global network topology and traffic statistics
Recall from Section Il thatC,, fails OLoP forn = 6 and The Backpressure Routing and (Maximal) Scheduling
n > 8. Our numerical tests show that the 2-hop interferenggrMS) algorithm is presented below. In step 4, the algatith
graph of anyC,, with n < 8 satisfies OLoP. Hence, we observg;ses the MWIS algorithm as a subroutine in order to select
that rings are network graphs that benefit from additiongl maximal weight link activation based upon maximum link
interference degrees. backpressures, obtained in step 3 (notice that this is tiferdi
Clearly, any network graph whose corresponding interfegenence from the algorithm of [25] that usesaximumweight). In
graph is one of the structures indicated in Lemmas 3 andstep 5, the algorithm makes routing decisions in order toeser

satisfies OLoP for any > 1. In particular, we can derive the commodities achieving maximum backpressure.
following result.

Theorem 5:  Distributed MWIS algorithms achie¥80%  Ajgorithm 1 Backpressure Routing and (Maximal) Scheduling
throughput in a treenetwork graphunder any interference (BRMS)
degreek.

The 2-hop interference model is important, since it reprse
the IEEE 802.11 transmission constraints [24], [27]. Weaobt
the following result that applies to this model by using tesu Zej(t) — (Qoe);(t) — Qr(e); ()
regarding squares of line gragh$], [9]. .

Theorem 6: Distributed MWIS algorithms achieve 100%3:
throughput in a chordahetwork graphunder ak-hop inter- '
ference model, with any evén

Several subclasses of chordal graphs have the potential to
allow a MWIS algorithm to be throughput-optimal undeka
hop interference model, with eveén One of the subclasses
is the class of interval grapfsFor that class the following

1: for time indext =1,2,... do
2:  For each directed edgec Fn assign

Assign Z} (t) = max; Z.;(t)

Obtain a maximal link activatiomr*(t) € II(Gy) using

a decentralized MWIS algorithm, based on the edge
weight vectorZ*(t) = (ZX(t),e € En)

For eache € Ey such thatr}(t) = 1, choosej* =
argmax; Z.;(t). Route min{1l, Qs ();-(t)} packets of
commodityj* acrosse

6: end for

In graph theoretic terminology, the interference graphultesy from 1-hop
interference is called line graph [15]. _ Recall that the OLoP conditions consider all possible werte
8An interval graph is the intersection graph of a set of irdésvon the b fthe i f c Bv the definiti h
real line. Intervals are represented by nodes and nodesoarected if they su _Sets ot the Interterence graph,_ V1. By the definition o
correspond to intervals that intersect [4], [9]. the interference graph, the node $étorresponds to a subset



of the network graph edge& C FEyn. Thus, the OLoP condi- B. Stability of the BRMS Algorithm

tions effectively consid.er every _subset of qenNork grapgeesd_ Here, we study the stability of the BRMS algorithm, and
E C Ey. In the multihop routing scenario, we must agaifhtroduce new LoP conditions for stability. We dendkS) =
consider each set of network graph edges. Ey . Therefore, (g, i(S), 1,5 € V).

we will refer to M(E) that similarly toM(V') includes all the  Definition 10 (Subgraph Multihop Local Pooling - SMLoP):
maximal possible link activations. Since routing acroSswek  The directed network graphi’ = (V,E) satisfies SMLoP by

graph edges is not unique in the multihop scenario, we ml&;mmodity collection/ € J, if there exist vectorgx, 3 > 0
additionally consider various combinations of commoditiegith o =« 0, and a constant scalar > 0 such that

associated with network graph edges. We formalize the plassi . .

edge/commodity combinations by introducing the Maximum a’ugy(8)+B°d(S)< ¢, VSES, (4)

Commodity Family. aTup ;(S) > ¢, VS€E Sk (5)
Definition 7 (Maximum Commodity Family): Fdf C Ey,

E + (), the Maximum Commodity Family is given by The SMLoP conditions associate with each link/commodity

—{(JQecEy):Qe ’ 0} where pair (e, 7) a non-negative Weighzty_e_,j, W_heree e Ej € _Je.
Te = {lJe ¥) Q€ Qr Q70 Further, for each node/commodity pdiv, j), the conditions
Qr ={(Qij, i,j € VNn,i # j) : Qij € Ry Vi, j, associate a non-negative weight ;, wherev, j € Vy.
E = argmax, max;(Qq(e); — @r(e);) 1 Definition 11 (Overall Multihop Local Pooling - OMLOP):

Q_y; . The network graphGy = (Vy,Ey) satisfies OMLoP if
Jo={j €V ij#ole), , SMLoP is satisfied by each subgraghy, = (Vy,E) and
Qo(e)j = Qr(e)j = Qo(e)y” = Qr(e)r V' €VN} commodity collection/ € Ji, where E C Ex.
The Maximum Commodity Family7; relates closely to a  We next state the main theorem regarding the stability of the
system of differential equations calledlaid limit model[12], BRMS algorithm. A detailed proof appears in [7].
derived from the queueing system (more details and an illus-Theorem 7: If network graply satisfies OMLOP, then the

trative example can be found in [7]). The following definito BRMS algorithm achieves 100% throughput.
are necessary to introduce the multihop LoP conditions. Theorem 7 demonstrates the sufficiency of the OMLoP

Definition 8 (Maximal Service Activation Set): Faf C conditions for stability under the BRMS algorithm. In thexhe
Ey and J = (J.,e € Ey) € Jg, the Maximal Service section, we consider natural questions that arise out afethe

Activation Set is given by: conditions.
VI. STUDYING THE OMLOP CONDITIONS

We now show that the OMLoP conditions are distinct from
the single-hop Local Pooling conditions studied in [6], J}13
Above, Sg; is the vector(S.;j,e € E). The Maximal and demonstrate stability for a specific class of networks. W
Service Activation SetSg ; for a set of edgesE € Ey first show that any network grapfiy under which single-hop
consists of every service activation matrix whose undedyi LoP fails should also fail the OMLoP conditions.
link activation is maximal over the edges ifi. Recall that Lemma 7: IfGy fails OLoOP, then it also fails OMLOP.
each edges € Ey is a vertex in the interference gragh;. In terms of Fig. 3, this implies that the class of graphs that a
In order to characterize the stability properties of the BRMnot OLoP-Satisfying can not be OMLoP-Satisfying. Namely,
algorithm, we will track the dynamics of the link differealti all network graphs having interference graphs with induced
backlogs. Hence, we must understand how each service mastitbgraphs that are bipartite and not weakly chordal, ordadu
S € S affects the distribution of commodity backpressures ovér, whenn = 6 or n > 8 must fal OMLoP. The next
the network links. We now introduce the Backpressure Servitheorem demonstrates that the OMLoP conditions are in fact
Vector (recall that the quantity;; (S) is the amount of service more restrictivethan their single-hop counterparts. Thus, the
at queue();; resulting from applying service activatidh for family of OMLoP-satisfying graphs istrictly smaller than that
one time slot). depicted in Fig. 3. It was indicated in Section 1lI-B that the
Definition 9 (Backpressure Service Vector): HBrC Ey, 5-ring satisfies the single-hop OLoP conditions. Here wawsho
J = (Je,e € Eny) € Jg, and service matrixS € S, the that OMLoP fails for the 5-ring.
Backpressure Service Vectar; ;(S) contains thedecreasén Theorem 8: The 5-ring({5) fails OMLOP.
differential backlog of commaodityacross linke under service ~ We now verify that the OMLOP conditions hold for a class
matrix S for every edge/commodity pdi¢, j) wheree € E, j €  of graphs in which the BRMS algorithm is known to achieve
Je: 100% throughput. This class is tiferest of starswhere every
_ connected component of the network graph is a star graph,
ug,7(8) = ((do(e);(8) = dr(e);(8)), ¢ € B, j € Je). consisting of a central node,, and nony, vertex degree of
The Backpressure Service Vectog, ;(S) tracks the change 1 for every edge incident ony. Under any k-interference
in backpressure incurred by a set of edge/commodity pairspdel, the star’s interference graph is a clique (appearing
when a particular service activation mat&xis employed for Fig. 3 within the intersection region of the chordal and eqdr
a single time slot. classes). Therefore, only one edge can ever be active at once

SE,J = {S eS: le SEj S M(E),
Se; = 1impliesj € J. whene € Ey }



Accordingly, a maximal weight edge activation is identital
a maximumweight edge activation, thereby achieving 100%y;
throughput. The following lemma shows that OMLOP is indeed
satisfied in such graphs, and therefore, it is satisfied iresfo
of stars.

Lemma 8: The star network graph satisfies OMLoP.

[2]

VII. CONCLUSIONS [3]

The consideration of Local Pooling has the potential to
enable efficient distributed operation of wireless network
However, since previously LoP was studied mostly under thgs)
assumptions of single-hop traffic and primary interference
in this paper we focused on its multihop implications. Weyg
identified several graph subclasses of the OLoP-Satistjass
and increased the number of known graphs that satisfy LoP by a
few orders of magnitude. Using these observations, we sdhowg]
that as the interference degree increases, it is more likefg]
that simple distributed algorithms achieve 100% throughpu
For example, it was proved that undezcondaryinterference [
constraints, a maximal weight scheduling algorithm acdksev[10]
100% throughput in chordal network graphs and that under any
interference degree, such an algorithm achieves 100%gh|=ou[ll
put in trees. Moreover, we presented the LoP conditions for
networks with multihop traffic (OMLoP) and showed that thelel
are distinct from the single-hop conditions. Finally, wewsed
that the class of graphs satisfying the OMLoP conditions is a
strict subclass of the OLoP-Satisfying class. [13]

We emphasize that our objective in this paper is to obtain
a bettertheoretical understanding of LoP that will assist the{14]
development of future algorithms. Hence, although a theaie

o . . [15]
contribution has been made, there remain many algorlthn%ig]
open problems. For example, LoP-based algorithms can par-
tition the network into LoP-satisfying subnetworks or adél’]
artificial interference constraints to generate a LoPsBatig
network. Our identification of several LoP-satisfying dnap[is]
classes that can serve as building blocks for these netyankis
the understanding of multihop traffic and interference atffe g
are advances toward such algorithms. For instance, oneavan n
develop algorithms that add artificial edges to the interiee [20]
graph to yield a chordal graph. [21

Moreover, there are a number of theoretical issues that
remain unresolved. For example, Lemma 5 demonstrates tﬁg.}
further study is necessary to determine the general evolw
the LoP property with varying interference degree. The com-
plete characterization of the OLoP-Satisfying and the ORt_o [23]
Satisfying graph classes is also a subject for further rebea o4
Finally, the effect of generalizing the interference mofilem
a simplistick-hop model to a model based on SINR remains[;éls]
subject for future research.
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