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Abstract—Efficient operation of wireless networks requiresdis-
tributed routing and scheduling algorithms that take into account
interference constraints. Recently, a few algorithms for networks
with primary- or secondary-interference constraints have been
developed. Due to their distributed operation, these algorithms
can achieveonly a guaranteed fraction of the maximum possible
throughput. It was also recently shown that if a set of conditions
(known as Local Pooling) is satisfied, simple distributed scheduling
algorithms achieve 100% throughput. However, previous work
regarding Local Pooling focused mostly on obtaining abstract
conditions and on networks with single-hop interference orsingle-
hop traffic. In this paper, we identify several graph classesthat
satisfy the Local Pooling conditions, thereby enabling theuse of
such graphs in network design algorithms. Then, we study the
multihop implications of Local Pooling. We show that in many
cases, as the interference degree increases, the Local Pooling con-
ditions are more likely to hold. Consequently, although increased
interference reduces the maximum achievable throughput ofthe
network, it tends to enable distributed algorithms to achieve
100% of this throughput. Regarding multihop traffic, we show
that if the network satisfies only the single-hop Local Pooling
conditions, distributed joint routing and scheduling algorithms
are not guaranteed to achieve maximum throughput. Therefore,
we present new conditions for Multihop Local Pooling, under
which distributed algorithms achieve 100% throughout. Finally,
we identify network topologies in which the conditions holdand
discuss the algorithmic implications of the results.

Index Terms—Stability, Distributed algorithms, Wireless net-
works, Local Pooling, Interference, Scheduling, Routing.

I. I NTRODUCTION

A major challenge in the design and operation of wireless
networks is to jointly route packets and schedule transmissions
to efficiently share the common spectrum among links in the
same area. Acentralizedjoint routing and scheduling policy
that achieves the maximum attainable throughput region was
presented by Tassiulas and Ephremides [25]. However, the lack
of central control in wireless networks calls for the designof
distributed algorithms. Such algorithms can usually achieve
only a fraction of the maximum throughput. Recently, it has
been shown by Dimakis and Walrand [13] that there exist
network topologies in which distributedschedulingalgorithms
achieve100% throughput. In this paper, we focus on identify-
ing topologies in which distributed algorithms achieve100%
throughput and studying the effect ofmultihop interference on
these topologies. We also provide conditions under whichjoint

routing and schedulingalgorithms achieve 100% throughput.
The policy of [25] applies to a multihop wireless network

with a stochastic packet arrival process and is guaranteed to
stabilize the network (i.e. provide 100% throughput) whenever
the arrival rates are within the stability region. The results
of [25] have been extended to various settings of wireless
networks and input-queued switches. However, throughput op-
timal algorithms based on [25] require the repeated solution
of a global optimization problem, taking into account the
queue backlog information for every link in the network. For
example, even under simple primary interference constraints1

a maximum weight matching problem has to be solved in
every slot. Obtaining a centralized solution to such a problem
in a wireless network does not seem to be feasible, due
to the overhead associated with continuously collecting the
queue backlog information. Therefore, the design ofdistributed
algorithmshas attracted a lot of attention recently.

For single-hop traffic the joint problem reduces to aschedul-
ing problem. Lin and Shroff [21] studied the impact of
distributed imperfect scheduling on cross-layer rate control.
Regarding primary interference constraints, they showed that
using adistributed maximal matchingalgorithm along with a
rate control algorithm may achieve 50% throughput. Similar
results for different settings were also obtained in [10], [11],
[20]. It was also proved in [10], [20], [24], [27] that under
secondary interference constraints2 the throughput obtained by
a distributed maximal scheduling algorithm may be signifi-
cantly smaller than the throughput under a centralized (optimal)
scheduler. In particular, it was proved in [10] that a distributed
algorithm may achieve as low as1/8 of the possible throughput.

Dimakis and Walrand [13] recently showed that although in
arbitrary topologiesthe worst case performance of distributed
maximal scheduling algorithms can be very low, there are
some topologies in which100% throughput is achieved. In
particular, they consider a graph of interfering queues3 and

1Primary interference constraints imply that each pair of simultaneously
active links must be separated by at least one hop (i.e. the set of active links
at any point of time constitutes a matching) [10], [21], [22].

2Secondary interference constraints imply that each pair ofsimultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [10], [24], [27].

3Such graph is constructed from the network graph according to the
interference constraints and is referred to as interference or conflict graph [11].
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study the performance of agreedy maximal weight scheduling
algorithm (termed Longest Queue First - LQF) that selects the
set of served queues greedily according to the queue lengths.
They present sufficient conditions for such an algorithm to
provide 100% throughput (notice that unlike amaximumweight
solution, amaximalweight solution can be easily obtained in
a distributed manner [16], [19]). These conditions are referred
to as Local Pooling (LoP) and are related to the properties
of all maximal independent sets in the conflict graph. The
LoP conditions were recently generalized in [18] to provide
conditions under which a greedy maximal weight matching
algorithm obtains some guaranteed fractional throughput.

Identifying specific network topologies that satisfy LoP is
important, since it enables the design of algorithms that either
partition a wireless network into subnetworks with such topolo-
gies (e.g. via channel allocation) or add artificial interference
constraints that create such topologies. Hence, in [6] a few
interference graphs satisfying LoP were identified and it was
proved that under primary interference constraints, tree network
graphs yield interference graphs that satisfy LoP. Although
some knowledge about LoP has been acquired, [13] provided
mostly abstract conditions, while [6], [18] focused mostlyon
primary interference constraints. Despite the fact that these
constraints may hold for specific technologies, they are not
realistic in most practical settings. Therefore, in order to allow
the development of algorithms that take advantage of LoP, we
focus on identifying topologies of interference and network
graphs that satisfy the LoP conditions, and on studying the
effect of multihop interference on these topologies.

We first use the LoP conditions to identify several new
classes of LoP-Satisfying interference graphs. It is shownthat
within the class of perfect graphs, chordal graphs, chordal
bipartite graphs, cographs, and a subgroup of co-comparability
graphs all satisfy LoP. These observations increase the number
of graphs that are known to satisfy LoP by a few orders of
magnitude. We also show that all odd rings with at least 9
nodes and all even rings with at least 6 nodes do not satisfy
LoP. Using the latter observation, we show that all bipartite
graphs that are not chordal bipartite do not satisfy LoP.

We use the acquired knowledge about graph classes that
satisfy and fail LoP to study the effect of increased interference
on LoP. We focus on a generalization of the primary (1-hop) and
secondary (2-hop) interference models to ak-hop interference
model [24], wherek is termed the interference degree. We show
that under any interference degree, tree network graphs yield
interference graphs that satisfy LoP (i.e. under any interfer-
ence degree distributed algorithms achieve 100% throughput
in trees). We also show that in many cases, ask increases, it
is more likely that the LoP conditions hold, and thereby, it is
more likely that simple distributed algorithms achieve 100%
throughput. Moreover, for every network topology, there is
an interference thresholdk∗, above which the corresponding
interference graphs satisfy LoP. At first glance, it seems that
since it is known that the worst case performance deteriorates
as the interference degree increases [10], [27], the results are
counter-intuitive. Yet, the actual meaning of the results is that in

many topologies, ask increases, the resulting interference graph
is such that distributed maximal weight scheduling achieves the
maximum throughput instead of the worst case throughput.

In general, networking environments in which the traffic
is inherently single-hopand where packets must depart the
system upon transmission across a link are rare. This results
from the fact that many connections are necessarily multihop
connections, due to geographical and physical constraintson
user connectivity. Networks withmultihop traffic have been
studied in [20], [26], [27], where it was shown that, in general,
only a fraction of the throughput is attainable when using
distributed algorithms. Since the LoP results of [6], [13],[18]
have been constrained to single-hop traffic, it is desirableto
identify topologies in which distributed algorithms can obtain
100% throughput in the multihop traffic setting.

We show that the single-hop LoP conditions introduced in
[13] are insufficientto guarantee stability in the multihop rout-
ing environment. Therefore, we study the LoP properties of a
distributed routing and scheduling algorithm which is based on
the backpressure mechanism of [25]. In this algorithm the edge
weights are obtained by the backpressure mechanism but unlike
in [25], a distributedmaximal weight scheduling algorithm is
used to determine which edges should be activated. We present
new LoP conditions that are sufficient for guaranteeing thatthe
algorithm achieves100% throughput in the multihop routing
environment. Then, we present a specific network topology that
satisfies the multihop LoP conditions and show that the classof
topologies satisfying these conditions is strictly included within
the class of single-hop LoP-Satisfying graphs.

We note that the area of throughput maximization is some-
what related to the areas of distributed multicommodity routing
[2] and adversarial queueing [3]. The algorithms of [2], [25]
deal with a similar multihop setting by using similar backpres-
sure methods. The adversarial queueing model (e.g. [3]) differs
from the model of [25], mostly since usually in the former all
edges can be simultaneously active, while the latter imposes
constraints on the edge activations. Similarly to this work,
previous works on adversarial queueing (e.g. [14]) also focused
on identifying graph classes for which distributed algorithms
are stable (in the sense of adversarial queueing stability).

The main contributions of this paper are two-fold. First, we
identify several graph classes that satisfy Local Pooling,and
show that as the interference degree increases, it is more likely
that simple distributed algorithms achieve 100% throughput.
The second contribution is the derivation of novel Local Pooling
conditions for networks with multihop traffic. To the best of
our knowledge this is the first attempt to study the multihop
implications of Local Pooling. The obtained results can serve as
a basis for the development of Local Pooling based algorithms.

This paper is organized as follows. In Section II we present
the network model and the single-hop LoP conditions. In
Section III we present several new classes of conflict graphs
satisfying LoP. Then, in Section IV we discuss the effect of
multihop interference on the satisfaction of the LoP conditions.
New LoP conditions for networks with multihop traffic are
presented in Section V. In Section VI we show that the multihop
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Fig. 1. (a) Network graphGN , (b) the corresponding interference graphGI

under primary interference, and (c) the matrix of maximal link activations.

LoP conditions are distinct from the single-hop conditionsand
identify network topologies that satisfy them. We summarize
the results and discuss future research directions in Section
VII. Due to space constraints, the proofs are omitted and can
be found in [5, Chapters 8 and 9]. We also recently dedicated
[7] to a very detailed proof of Theorem 7.

II. N ETWORK MODEL AND STABILITY

Consider a wireless networkGN = (VN , EN ), where
VN = {1, . . . , n} is the set of nodes, andEN ⊆ {(i, j) :
i, j ∈ VN , i 6= j} is a set of directed links indicating pairs of
nodes between which data flows can occur, withm , |EN |.
The directionality of data flows across links necessitates the
treatment of the network graphGN as a directed graph.
Depending on the circumstances, we denote links as either
(i, j) or asek. In GN , if two nodesv1, v2 ∈ VN are within
communication range, then the directed edgese12 = (v1, v2)
and e21 = (v2, v1) both belong toEN . For a directed edge
e, let σ(e) denote the source (initial) vertex, andτ(e) denote
the terminal (destination) vertex. Throughout the paper, bold
symbols are associated with vectors and matrices.

The interference between network links can be summarized
in an interference graph(or conflict graph) GI = (VI , EI)
based on the network graphGN [17]. We assignVI , EN .
Thus, each edgeek in the network graph is represented by a
vertexvk of the interference graph, and an edge(vi, vj) in the
interference graph indicates a conflict between network graph
links ei and ej (i.e. transmissions onei and ej cannot take
place simultaneously).4 Fig. 1 contains a network graphGN

and the corresponding interference graphGI under primary
interference constraints.

Let Π(GN ) denote the set of available link activations in the
network graphGN : the vectorπ = (πe, e ∈ EN ) ∈ Π(GN ) is
a 0-1 column vector representing a possible link activation. The
setΠ(GN ) corresponds to all possible independent sets in the
interference graphGI = (VI , EI). Under primary interference,
Π(GN ) corresponds to the set of matchings inGN . We denote
by M(VI) the matrix ofmaximalindependent sets inGI ; that
is, the set of maximal column vectors inΠ(GN ). Continuing
the example of Fig. 1, the matrixM(VI) for interference graph
GI is contained in Fig. 1(c).

For simplicity, we assume that time is slotted and that packets
are of equal size, each packet requiring one time slot of service
across any link. There is no self-traffic. We will refer to packets
destined to nodej ∈ VN as commodityj packets. Let Aij(t)

4Although it has been recently shown that in some cases the conflict graph
does not fully capture the wireless interference characteristics [23], it still
provides a reasonable abstraction. Extending the results to general SINR-based
constraints is a subject for further research.

denote the number of exogenous commodityj packets that
arrived at nodei by the end of slott. We assume that the
arrivals have long term ratesλij = limt→∞ Aij(t)/t, with
overall system arrival rate vectorλ = (λij , i, j ∈ VN ). Every
node is assumed to have a queue for each possible destination.
For i, j ∈ VN , let Qij(t) be the number of packets enqueued
at nodei at time t, whose destination in the network is node
j. Assume thatQij(0) = 0 for all i, j.

Service is applied to the system at each time slot by activating
a set of edges, and routing a packet of a single commodity
across each active edge. We denote the correspondingm × n
service activation matrixby S = (Sej , e ∈ EN , j ∈ VN ).
Here, for edgee ∈ EN and commodityj ∈ VN , Sej can
have value0 or 1, depending on whethere is inactive or active
for serving commodityj, respectively. Note that an admissible
service activation matrix must have a valid underlying link
activation belonging toΠ(GN ). This property characterizes the
set of admissible service activation matrices,S:

S =
{

S ∈ {0, 1}m×n : πe =
∑

j∈VN
Sej , π ∈ Π(GN )

}

.

The matrixS ∈ S leads to packet transitions in the network.
Denote bydij(S) thenet amount of service, in packets per time
slot, to queueQij under activation matrixS.

A. Stability Considerations

We can now define the stability region of the network.
Definition 1 (Admissible Rate Vector): A non-negative ar-

rival rate vectorλ is admissible, if there existsL ≥ 1 and a
collection of service activation matricesSl ∈ S, 1 ≤ l ≤ L
such that

λij ≤
∑L

l=1 αldij(S
l), whereαl ≥ 0 ∀l,

∑L

l=1 αl ≤ 1.

The set of all admissible rate vectors is called the stability
region and is denoted byΛ∗.

At each time slot, a joint scheduling and routing algorithm
makes a link activation and routing decision that must satisfy
the interference constraints. A stable algorithm, which wealso
refer to as a throughput optimal algorithm or an algorithm that
achieves100% throughput, is defined as follows.

Definition 2 (Stable Algorithm): An algorithm is stable,
if for any arrival process with rate vectorλ ∈ Λ∗,
lim

t→∞
Qij(t)/t = 0 with probability 1∀i, j ∈ VN .

This stability criterion is termedrate stability [1], [10].
Tassiulas and Ephremides [25] developed a stable joint

routing and scheduling algorithm. At timet ≥ 0, the algorithm
computes for each edgee ∈ EN the maximum backpressure:

Z∗
e (t) = max

j∈VN

(Qσ(e)j(t)−Qτ(e)j(t)), (1)

which we express in vector form asZ∗(t) = (Z∗
e (t), e ∈ EN ).

Their algorithm then selects a link activation vector

π∗(t) = argmax
π∈Π(GN )

πTZ∗(t). (2)

Routing is carried out over each edgee havingπ∗
e(t) = 1, by

serving a commodity achieving the maximum in (1) across that
edge (for more details, see Section V-A).
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activations.

For general interference graphGI , the algorithm of [25]
must find themaximum weight independent setin GI at each
time slot5 to obtain an optimal solution to (2). Namely, it
must solve an NP-hard problem in every time slot or time
frame. Under primary interference, the graph is simpler and
the algorithm has to schedule the edges of amaximum weight
matchingin the network graph at each slot. This requiresO(n3)
computation time, using a centralized algorithm. In wireless
networks, implementing a centralized algorithm is often not
feasible and simple distributed algorithms usually obtainan ap-
proximate solution, resulting in a fractional throughput.Hence,
in general graphs, even under simple interference constraints it
is difficult to obtain 100% throughput in a distributed manner.
This motivates us to study in which graph topologies simple
distributed algorithmscan obtain 100% throughput.

B. Simplifications for Single-Hop Traffic

When the network is subjected exclusively to single-hop
traffic, a few simplifications occur in the model (see e.g. [1],
[10], [22]). In this case, by definition, each network linke
can only carry traffic destined to the terminal node ofe. In
other words, linke can only carry traffic of commodityτ(e).
Thus, the differential backlog (backpressure) of linke equals
the queue backlog of commodityτ(e). The algorithm of [25]
then specializes to require that single-hop service be applied at
each timet to a link activation vector

π∗(t) = argmax
π∈Π(GN)

πTQ(t). (3)

Above we understandQ(t) as the vectorQ(t) = (Qe(t), e ∈
EN ), whereQe(t) is the queue backlog of packets awaiting
single-hop service across linke.

Since routing plays no role in the single-hop scenario, it is
convenient to treat the network graphGN as undirected. This
simplifies the interference graph (an example of an undirected
graph and its interference graph under primary interference
appears in Figs. 2(a)-(b)). In this case, the weight at time
t of each undirected edgee = (u, v) equals the maximum
weight of the queues that can be served across that link:
max{Quv(t), Qvu(t)}. We will adopt this convention in our
study of Local Pooling in sections III and IV.

C. Local Pooling for Single-Hop Traffic

We briefly reproduce important definitions and implications
of Local Pooling (LoP) in networks with single-hop traffic,
presented in [6], [13]. In Section V we will introduce the LoP
conditions for themultihop traffic case. Recall thatM(VI)
is the collection of maximal independent vertex sets onGI ,
organized as a matrix (an example appears in Fig. 2(c)). We

5It can be shown that throughput optimality is maintained when solutions
are obtained at bounded time frames that are longer than a time slot (e.g. [22]).

designate bye the vector having each entry equal to unity. We
deliberately avoid specifying its size, because it will be obvious
by the context of its use.

Definition 3 (Subgraph Local Pooling - SLoP): An inter-
ference graphGI satisfies SLoP, if there exists nonzeroα ∈
R

|VI |
+ and c > 0 such thatαTM(VI) = ceT .
Definition 4 (Overall Local Pooling - OLoP): An interfer-

ence graphGI satisfies OLoP, if each induced subgraphover
the nodesV ⊆ VI satisfies SLoP.

Continuing with the example of Fig. 2, we can see that SLoP
is satisfied for the interference graphGI using the vectorαT =
(1 2 1): αTM(VI) = 2eT . In a similar manner, it can be easily
shown that all subgraphs ofGI satisfy SLoP, and therefore,GI

satisfies OLoP.
We can now describe the stability of the system when the

service in each time slot is scheduled according to the Maximal
Weight Independent Set (MWIS) algorithm. This algorithm
is an iterative greedy algorithm that selects the node ofGI

with the longest corresponding queue, and removes it and its
neighbors from the interference graph. This process is repeated
successively until no nodes remain. When multiple queues have
the same length, a tie-breaking rule is applied. The set of
selected nodes is a maximal independent set in the interference
graph. Such a greedy algorithm can be implemented in a
distributed manner and has the following property.

Theorem 1 (Dimakis and Walrand, 2006 [13]): If interfer-
ence graphGI satisfies OLoP, a Maximal Weight Independent
Set (MWIS) scheduling algorithm achieves100% throughput.

The fact that a graph satisfies OLoPdoes notguarantee that
a MWIS algorithm obtains an optimal solution to themaximum
weight independent set problem in that graph. When OLoP is
satisfied, despite the fact that in some time slots the MWIS
algorithm obtains an approximate solution to the maximum
weight problem, 100% throughputis achieved.

III. I NTERFERENCEGRAPHS SATISFYING LOCAL POOLING

Since Theorem 1 and Definitions 3 and 4 do not provide
a clear intuition regarding the graphs that satisfy OLoP, the
properties of such graphs are only beginning to be understood.
Small graphs were studied by exhaustive search [6]. Addition-
ally, structural properties were used in [6], [13] to show that
the following interference graphs satisfy OLoP: trees, forests,
clique trees, where each pair of cliques shares at most a single
vertex, and apair-of-cliquesconnected by disjoint edges.

In this Section, we use structural properties to identify
various graph classes that satisfy OLoP. We define a new class
of graphs as theOLoP-Satisfyingclass. We identify known
graph classes that are included within this class or intersect
with it. It turns out that all the graph classes that we identify
using structural properties are subclasses of the class of perfect
graphs.6 On the other hand, some of the graphs identified by
the exhaustive search [6] are not perfect graphs. Hence, in
the following discussion we differentiate between perfectand
non-perfect graphs. Our investigation leads to the taxonomy of

6A graph is perfect, if for each induced subgraph the size of the largest
clique equals the chromatic number.
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graph classes depicted in Fig. 3, showing the relationship of the
OLoP-Satisfying class to the graph classes considered here.

We will make use of the following graph properties and
definitions. For graphG = (V, E), the induced subgraphover
vertex setV ′ ⊆ V is the graphG′ = (V ′, E′), where E′

is the set of edges inE whose endpoints are inV ′. The
complementG = (V, E) of graph G = (V, E) is defined
by E = (u, v) : u, v ∈ V, u 6= v and(u, v) /∈ E. A chord of
a cycle (path) is an edge between two vertices of the cycle
(path) that is not an edge of the cycle (path). A cycle (path) is
chordless, if it contains no chords. We denote byCn and Pn

a chordless cycle and a chordless path, respectively, of length
n. We denote byKn a clique (complete graph) ofn nodes.

A. Perfect Graphs

Several classical graph classes such as bipartite graphs,
chordal graphs, comparability graphs, and their complements
are perfect [4]. Here, we will identify a number of important
classes of perfect graphs that are also subclasses of the OLoP-
Satisfying class. We will show that all of the graphs identified
in [6], [13] are simple special cases in these classes. Before
describing the results we introduce some classes of perfect
graphs [4].

Definition 5: A graphG is chordalif each cycle inG of at
least 4 nodes has at least one chord. A graphG is weakly
chordalif G and its complement contain no induced chordless
cycle Cn, n ≥ 5. A bipartite graphB is chordal bipartiteif
each cycle inB of length at least6 has a chord. A graph is a
cographif it does not contain the path graphP4 (depicted in
Fig. 2(a)) as an induced subgraph.
Notice that the chordal bipartite class is the intersectionof the
weakly chordal and bipartite classes.

The following theorem summarizes five results concerning
the OLoP properties of several large graph classes. The proof
can be found in [5, Chapter 8].

Theorem 2:
1) The following graph classes belong to the OLoP-

Satisfying class: Chordal Graphs, Chordal Bipartite
Graphs, and Cographs.

2) All even cyclesCn with n ≥ 6 fail SLoP.

Kn1
Kn2

Knj

Fig. 4. The structure of a strip-of-cliques.

3) Bipartite Graphs that are not Chordal Bipartite Graphs
do not belong to the OLoP-Satisfying class.

Fig. 3 illustrates the inclusion of the chordal, chordal bipar-
tite, and cograph classes within the OLoP-Satisfying class. The
class of chordal graphs has a few notable subclasses (i.e. classes
of special graphs that are known to be chordal), including the
strongly chordal, split, interval, threshold, and tree classes (for
more information see [4]). Theorem 2 implies that all these
subclasses satisfy OLoP. Therefore, the observation of [13]
that trees satisfy OLoP immediately follows from Theorem
2. Similarly, since a clique tree is chordal, the observation of
[6] that a clique tree satisfies OLoP is also a result of the
theorem. Theorem 2 also implies that all subclasses of chordal
bipartite graphs satisfy OLoP, including the convex and bipartite
∩ distance-heriditary classes.

The final contribution of Theorem 2 is its characterization
of a sharp boundary separating the chordal bipartite graphs
(OLoP-satisfying) from the bipartite graphs that are not chordal
bipartite (not OLoP-satisfying). This boundary is depicted as a
thick line in Fig. 3. This result follows directly from the failure
of the OLoP conditions in even cyclesCn with n ≥ 6. Hence,
any graph class that includes the bipartite graphs as a subclass
cannot be fully included within the OLoP-Satisfying class.This
allows us to exclude many of the major subclasses of perfect
graphs (e.g. preperfect, strongly perfect, quasi-parity,and bip*
[4]) from the list of classes that can be fully included in the
OLoP-Satisfying class.

Two major classes that have not been excluded as subclasses
of the OLoP-Satisfying class are weakly chordal and co-
comparability. In Fig. 3 we have shaded portions of the weakly
chordal and co-comparability classes to indicate the uncertainty
of their inclusion relations with OLoP-Satisfying. Determining
the nature of these shaded regions (whether or not they exist)
is left as an open problem.

We now present a subclass of the co-comparability class to
which we refer as astrip-of-cliques. A graph is in this class, if
it is composed from an ordered set of cliques1, . . . , j, where
two adjacent cliquesi, i + 1 are connected by any number
of disjoint edges, and cliques that are not adjacent are not
connected directly. Fig. 4 illustrates such a graph. Noticethat
the pair-of-cliques presented in [6] is a specific case of a
strip-of-cliques. The following lemmas show that a strip-of-
cliques graph satisfies OLoP and that any such graph is a co-
comparability graph.

Lemma 1: Every strip-of-cliques graph satisfies OLoP.
Lemma 2: Every strip-of-cliques is a co-comparability

graph.
We finish this section by providing some context regarding

the magnitude of the results. Consider the set of simple graphs
having 7 nodes, of which there are 1,044 distinct graphs. Of
these graphs,393 are chordal, and180 are cographs, with some
overlap between these two classes. These numbers can be com-
pared to the37 forests and11 trees that were known to satisfy



(a) (b)

Fig. 5. (a) 2-hop and (b) 3-hop interference graphs of a 6-ring network graph

OLoP. Similarly, when considering the set of simple11 node
graphs, the number of chordal graphs is 1,392,387, compared
to 710 forests and235 trees. To summarize, our understanding
of the OLoP-Satisfying class has expanded significantly beyond
the trees and forest graphs.

B. Non-Perfect Graphs

The OLoP-Satisfyingclass includes also graphs that are
not perfect. We first use the numerical observations of [6] to
identify non-perfect graphs that satisfy OLoP. The 5-ring,C5,
which is the only 5-node non-perfect graph, satisfies OLoP.
Moreover, since all 6-node graphs exceptC6 satisfy OLoP,
all non-perfect 6-node graphs satisfy OLoP. Finally, all 7-node
graphs satisfy OLoP besides a specific one illustrated in [6]
and those that have an induced 6-ring, which leads us to the
observation that134 out of the 138 non-perfect 7-node graphs
satisfy OLoP. In Fig. 3 all these graphs appear in a single class
(containingC5 andC7) within the OLoP-Satisfying class. The
4 graphs that fail OLoP are represented in the top-right corner.

We now show that all non-perfect graphs that have an
induced odd cycle with at least9 nodes fail OLoP (see the
Odd class in Fig. 3). This follows from the following theorem.

Theorem 3: All odd cyclesCn with n ≥ 9 fail SLoP.

IV. L OCAL POOLING UNDER MULTIHOP INTERFERENCE

In this section, we show that counter-intuitively,more inter-
ference often assists the operation of distributed algorithms.
Denote the stability region underk-hop interference byΛ∗

k. It
is clear thatΛ∗

k cannot increase withk (and often decreases
with k), as interference between the links of the network can
only increase. Thus, although an increase ink can lead to a
smaller stability region, such an increase makes it more likely
that the OLoP conditions hold, and thereby more likely that
simple distributed algorithms will achieveΛ∗

k.

A. Interference Graphs

We first demonstrate the intuition on which the above
observation is based. Consider the network graphC6 (a 6
node ring), whose interference graph under primary interference
is also C6. According to [13], C6 does not satisfy OLoP
and, in general, a MWIS algorithm does not achieve 100%
throughput. It has been recently shown in [18] that a MWIS
algorithm guarantees 66% throughput inC6. Under 2-hop
interference, the interference graph has 6 more edges (see
Fig. 5(a)). According to [6], this specific graph satisfies OLoP,
and therefore, a MWIS algorithm achieves 100% throughput.
Under 3-hop (or higher) interference, the interference graph
becomes a clique (see Fig. 5(b)) which satisfies OLoP [6].
Hence, although under 1-hop interference, a maximal weight
algorithm guarantees 66% throughput, underk-hop interference
(k ≥ 2) 100% throughput is guaranteed.

Underk-hop interference, the interference graph becomes an
OLoP-Satisfying clique whenk equals the network diameter.

It seems reasonable to expect that for many network graphs, as
the interference degree increases, there exists aninterference
thresholdabove which OLoP is satisfied. We tested this prop-
erty by considering small graphs. In [6] it was shown that out
of 1,252 simple interference graphs of up to7 nodes,14 fail
OLoP. The following observation is obtained by exhaustively
considering the correspondingk-hop (k ≥ 2) interference
graphs.

Observation 1: All k-hop (k ≥ 2) interference graphs
corresponding to network graphs with up to7 edges satisfy
OLoP.

Applying our acquired knowledge from Section III regarding
the OLoP-Satisfying class, we will now proceed to study
multihop interference properties of graphs. We focus on graph
classes that appear in Fig. 3.

First, we indicate that due to Observation 1, a number of
1-hop interference graphs outside the OLoP-Satisfying class
yield k-hop interference graphs that are OLoP-Satisfying. These
graphs are the 6-ring, the 6-wheel, and the four non-perfect7-
node graphs outside the OLoP-Satisfying class.

We next introduce the Strongly Chordal class, a subclass of
the chordal graphs, which exhibits an interference threshold
property.

Definition 6 (Strongly Chordal [4]): A graphG is strongly
chordalif G is chordal and each cycle inG of even length at
least6 has an odd chord (a chord(i, j) is odd if the distance
in the cycle betweeni and j is odd).

Denote byGk thek-th power ofG: Gk has the same vertex
setV asG, andu, v ∈ V are adjacent inGk, if the minimum
path length betweenu andv in G is at mostk. Given a 1-hop
interference graphG1

I , the correspondingk-hop interference
graph isGk

I .
Since the strongly chordal graphs belong to the chordal class,

Theorem 2 implies that strongly chordal graphs are OLoP-
Satisfying. A property of the strongly chordal class is thatit is
strongly closed under power. Namely, if an interference graph
Gk

I is strongly chordal, thenGk+j
I is strongly chordal for all

j ≥ 1 [4]. Therefore, even if the 1-hop interference graph is not
strongly chordal, once an interference graph becomes strongly
chordal (and thereby OLoP-Satisfying), increased interference
degree will generate OLoP-Satisfying graphs. Based on this
property, the following theorem establishes that every graph
has an interference thresholdk∗ above whichall interference
graphs satisfy OLoP.

Theorem 4:There exists ak∗ such that fork ≥ k∗, Gk
I

satisfies OLoP.
The following lemmas show that certain graphs, identified in

Section III-A, exhibit interference thresholdk∗ = 1 (Lemma 3
immediately follows from the above mentioned property of the
strongly chordal class).

Lemma 3: If the 1-hop interference graphG1
I is a strongly

chordal graph, such as a tree or a clique tree, thenGk
I satisfies

OLoP for everyk ≥ 1.
Lemma 4: If the 1-hop interference graphG1

I is a cograph
or a strip-of-cliques, thenGk

I satisfies OLoP for everyk ≥ 1.
When we study the transition fromGk

I to Gk+1
I , we find that



(a) (b)

Fig. 6. (a) A chordal 1-hop interference graph and (b) the corresponding
2-hop interference graph that fails OLoP.

there are cases where increasing the interference degree can
result in a graph that fails OLoP: although any interference
graph has an interference threshold, the transition to this
threshold may not be smooth. Namely, below the interference
threshold, the interference graphs may alternate between being
OLoP-Satisfying and OLoP-Failing for different values ofk.
The following lemma summarizes this result, and is based on
the 1-hop interference graph in Fig. 6(a). The corresponding
2-hop interference graph appears in Fig. 6(b). It can be seen
that the subgraph induced by the white nodes isC6, which fails
SLoP. Thus, OLoP fails in the overall graph.

Lemma 5: There are OLoP-Satisfyingk-hop interference
graphs for which OLoP is not satisfied in a correspondingj-
hop (j > k) interference graph.

B. Network Graphs

Thus far, we have studied the LoP properties under multihop
interference for most graphs represented in Fig. 3. We next
turn our attention to particularnetwork graphstructures. An
example of an interference graphG1

I resulting from 1-hop
interference is given in Fig. 2. A second example is the ring
network graphCn, whose 1-hop interference graph is alsoCn.
Recall from Section III thatCn fails OLoP for n = 6 and
n ≥ 8. Our numerical tests show that the 2-hop interference
graph of anyCn with n ≤ 8 satisfies OLoP. Hence, we observe
that rings are network graphs that benefit from additional
interference degrees.

Clearly, any network graph whose corresponding interference
graph is one of the structures indicated in Lemmas 3 and 4
satisfies OLoP for anyk ≥ 1. In particular, we can derive the
following result.

Theorem 5: Distributed MWIS algorithms achieve100%
throughput in a treenetwork graphunder any interference
degreek.

The 2-hop interference model is important, since it represents
the IEEE 802.11 transmission constraints [24], [27]. We obtain
the following result that applies to this model by using results
regarding squares of line graphs7 [8], [9].

Theorem 6: Distributed MWIS algorithms achieve 100%
throughput in a chordalnetwork graphunder a k-hop inter-
ference model, with any evenk.

Several subclasses of chordal graphs have the potential to
allow a MWIS algorithm to be throughput-optimal under ak-
hop interference model, with evenk. One of the subclasses
is the class of interval graphs.8 For that class the following

7In graph theoretic terminology, the interference graph resulting from 1-hop
interference is called line graph [15].

8An interval graph is the intersection graph of a set of intervals on the
real line. Intervals are represented by nodes and nodes are connected if they
correspond to intervals that intersect [4], [9].

stronger result holds.
Lemma 6: Distributed MWIS algorithms achieve 100%

throughput in an interval network graph under ak-hop in-
terference model, wherek ≥ 2.

V. L OP IN NETWORKS WITH MULTIHOP ROUTING

In this section, we study the LoP properties in networks
employing multihop routing, undergeneral interference con-
straints. We present a simple adaptation to the framework
of [25] that allows decentralized implementation by using a
distributed MWIS scheduling algorithm. We obtain multihop
local pooling conditions that are sufficient for guaranteeing
100% throughput under the presented algorithm.

A. Backpressure-based Routing and Scheduling

Recall from Section II-A that the optimal centralized sched-
uler (2) calculatesmaximumweight independent sets based
on backpressurelink weights. Instead, the algorithm presented
below findsMaximal Weight Independent Sets (MWIS) based
on the backpressure link weights. Similarly to the single-hop
traffic setting [13], we use a MWIS algorithm, but unlike in
[13], we use the backpressure link weights (instead of the queue
backlogs). The MWIS algorithm operates on the interference
graph and since it is a greedy algorithm, it can be easily
implemented in a distributed manner (e.g. the algorithm of [16]
that can be applied to a network with primary interference con-
straints). As in the single-hop case, the algorithm isindependent
of the global network topology and traffic statistics.

The Backpressure Routing and (Maximal) Scheduling
(BRMS) algorithm is presented below. In step 4, the algorithm
uses the MWIS algorithm as a subroutine in order to select
a maximal weight link activation based upon maximum link
backpressures, obtained in step 3 (notice that this is the differ-
ence from the algorithm of [25] that usedmaximumweight). In
step 5, the algorithm makes routing decisions in order to serve
commodities achieving maximum backpressure.

Algorithm 1 Backpressure Routing and (Maximal) Scheduling
(BRMS)

1: for time indext = 1, 2, . . . do
2: For each directed edgee ∈ EN assign

Ze,j(t)← (Qσ(e)j(t)−Qτ(e)j(t))

3: AssignZ∗
e (t) = maxj Zej(t)

4: Obtain a maximal link activationπ∗(t) ∈ Π(GN ) using
a decentralized MWIS algorithm, based on the edge
weight vectorZ∗(t) = (Z∗

e (t), e ∈ EN )
5: For eache ∈ EN such thatπ∗

e (t) = 1, choosej∗ =
argmaxj Zej(t). Route min{1, Qσ(e)j∗(t)} packets of
commodityj∗ acrosse

6: end for

Recall that the OLoP conditions consider all possible vertex
subsets of the interference graph,V ⊆ VI . By the definition of
the interference graph, the node setV corresponds to a subset



of the network graph edges,E ⊆ EN . Thus, the OLoP condi-
tions effectively consider every subset of network graph edges
E ⊆ EN . In the multihop routing scenario, we must again
consider each set of network graph edgesE ⊆ EN . Therefore,
we will refer toM(E) that similarly toM(V ) includes all the
maximal possible link activations. Since routing across network
graph edges is not unique in the multihop scenario, we must
additionally consider various combinations of commodities
associated with network graph edges. We formalize the possible
edge/commodity combinations by introducing the Maximum
Commodity Family.

Definition 7 (Maximum Commodity Family): ForE ⊆ EN ,
E 6= ∅, the Maximum Commodity Family is given by
JE = {(JQ

e , e ∈ EN ) : Q ∈ QE ,Q 6= 0}, where

QE = {(Qij , i, j ∈ VN , i 6= j) : Qij ∈ R+ ∀i, j,

E = arg maxe maxj(Qσ(e)j −Qτ(e)j)},

JQ
e = {j ∈ VN : j 6= σ(e),

Qσ(e)j −Qτ(e)j ≥ Qσ(e)j′ −Qτ(e)j′ ∀j
′ ∈ VN}.

The Maximum Commodity FamilyJE relates closely to a
system of differential equations called afluid limit model[12],
derived from the queueing system (more details and an illus-
trative example can be found in [7]). The following definitions
are necessary to introduce the multihop LoP conditions.

Definition 8 (Maximal Service Activation Set): ForE ⊆
EN and J = (Je, e ∈ EN ) ∈ JE , the Maximal Service
Activation Set is given by:

SE,J =
{

S ∈ S :
∑

j SEj ∈M(E),

Sej = 1 impliesj ∈ Je whene ∈ EN

}

Above, SEj is the vector (Sej , e ∈ E). The Maximal
Service Activation SetSE,J for a set of edgesE ∈ EN

consists of every service activation matrix whose underlying
link activation is maximal over the edges inE. Recall that
each edgee ∈ EN is a vertex in the interference graphGI .
In order to characterize the stability properties of the BRMS
algorithm, we will track the dynamics of the link differential
backlogs. Hence, we must understand how each service matrix
S ∈ S affects the distribution of commodity backpressures over
the network links. We now introduce the Backpressure Service
Vector (recall that the quantitydij(S) is the amount of service
at queueQij resulting from applying service activationS for
one time slot).

Definition 9 (Backpressure Service Vector): ForE ⊆ EN ,
J = (Je, e ∈ EN ) ∈ JE , and service matrixS ∈ S, the
Backpressure Service VectoruE,J(S) contains thedecreasein
differential backlog of commodityj across linke under service
matrixS for every edge/commodity pair(e, j) wheree ∈ E, j ∈
Je:

uE,J (S) = ((dσ(e)j(S)− dτ(e)j(S)), e ∈ E, j ∈ Je).

The Backpressure Service VectoruE,J(S) tracks the change
in backpressure incurred by a set of edge/commodity pairs,
when a particular service activation matrixS is employed for
a single time slot.

B. Stability of the BRMS Algorithm

Here, we study the stability of the BRMS algorithm, and
introduce new LoP conditions for stability. We denoted(S) =
(di,j(S), i, j ∈ VN ).

Definition 10 (Subgraph Multihop Local Pooling - SMLoP):
The directed network graphG = (V, E) satisfies SMLoP by
commodity collectionJ ∈ JE , if there exist vectorsα, β ≥ 0
with α 6= 0, and a constant scalarc ≥ 0 such that

αTuE,J(S) + βTd(S) ≤ c, ∀S ∈ S, (4)

αTuE,J(S) ≥ c, ∀S ∈ SE,J . (5)

The SMLoP conditions associate with each link/commodity
pair (e, j) a non-negative weightαe,j , wheree ∈ E, j ∈ Je.
Further, for each node/commodity pair(v, j), the conditions
associate a non-negative weightβv,j , wherev, j ∈ VN .

Definition 11 (Overall Multihop Local Pooling - OMLoP):
The network graphGN = (VN , EN ) satisfies OMLoP if
SMLoP is satisfied by each subgraphG′

N = (VN , E) and
commodity collectionJ ∈ JE , whereE ⊆ EN .

We next state the main theorem regarding the stability of the
BRMS algorithm. A detailed proof appears in [7].

Theorem 7: If network graphGN satisfies OMLoP, then the
BRMS algorithm achieves 100% throughput.

Theorem 7 demonstrates the sufficiency of the OMLoP
conditions for stability under the BRMS algorithm. In the next
section, we consider natural questions that arise out of these
conditions.

VI. STUDYING THE OMLOP CONDITIONS

We now show that the OMLoP conditions are distinct from
the single-hop Local Pooling conditions studied in [6], [13],
and demonstrate stability for a specific class of networks. We
first show that any network graphGN under which single-hop
LoP fails should also fail the OMLoP conditions.

Lemma 7: IfGN fails OLoP, then it also fails OMLoP.
In terms of Fig. 3, this implies that the class of graphs that are
not OLoP-Satisfying can not be OMLoP-Satisfying. Namely,
all network graphs having interference graphs with induced
subgraphs that are bipartite and not weakly chordal, or induced
Cn when n = 6 or n ≥ 8 must fail OMLoP. The next
theorem demonstrates that the OMLoP conditions are in fact
more restrictivethan their single-hop counterparts. Thus, the
family of OMLoP-satisfying graphs isstrictly smaller than that
depicted in Fig. 3. It was indicated in Section III-B that the
5-ring satisfies the single-hop OLoP conditions. Here we show
that OMLoP fails for the 5-ring.

Theorem 8: The 5-ring (C5) fails OMLoP.
We now verify that the OMLoP conditions hold for a class

of graphs in which the BRMS algorithm is known to achieve
100% throughput. This class is theforest of stars, where every
connected component of the network graph is a star graph,
consisting of a central nodev0, and non-v0 vertex degree of
1 for every edge incident onv0. Under anyk-interference
model, the star’s interference graph is a clique (appearingin
Fig. 3 within the intersection region of the chordal and cograph
classes). Therefore, only one edge can ever be active at once.



Accordingly, a maximal weight edge activation is identicalto
a maximumweight edge activation, thereby achieving 100%
throughput. The following lemma shows that OMLoP is indeed
satisfied in such graphs, and therefore, it is satisfied in a forest
of stars.

Lemma 8: The star network graph satisfies OMLoP.

VII. C ONCLUSIONS

The consideration of Local Pooling has the potential to
enable efficient distributed operation of wireless networks.
However, since previously LoP was studied mostly under the
assumptions of single-hop traffic and primary interference,
in this paper we focused on its multihop implications. We
identified several graph subclasses of the OLoP-Satisfyingclass
and increased the number of known graphs that satisfy LoP by a
few orders of magnitude. Using these observations, we showed
that as the interference degree increases, it is more likely
that simple distributed algorithms achieve 100% throughput.
For example, it was proved that undersecondaryinterference
constraints, a maximal weight scheduling algorithm achieves
100% throughput in chordal network graphs and that under any
interference degree, such an algorithm achieves 100% through-
put in trees. Moreover, we presented the LoP conditions for
networks with multihop traffic (OMLoP) and showed that they
are distinct from the single-hop conditions. Finally, we showed
that the class of graphs satisfying the OMLoP conditions is a
strict subclass of the OLoP-Satisfying class.

We emphasize that our objective in this paper is to obtain
a bettertheoretical understanding of LoP that will assist the
development of future algorithms. Hence, although a theoretical
contribution has been made, there remain many algorithmic
open problems. For example, LoP-based algorithms can par-
tition the network into LoP-satisfying subnetworks or add
artificial interference constraints to generate a LoP-satisfying
network. Our identification of several LoP-satisfying graph
classes that can serve as building blocks for these networks, and
the understanding of multihop traffic and interference effects
are advances toward such algorithms. For instance, one can now
develop algorithms that add artificial edges to the interference
graph to yield a chordal graph.

Moreover, there are a number of theoretical issues that
remain unresolved. For example, Lemma 5 demonstrates that
further study is necessary to determine the general evolution of
the LoP property with varying interference degree. The com-
plete characterization of the OLoP-Satisfying and the OMLoP-
Satisfying graph classes is also a subject for further research.
Finally, the effect of generalizing the interference modelfrom
a simplistick-hop model to a model based on SINR remains a
subject for future research.
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