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Abstract— A major issue in the operation of ad hoc net-
works is the design of mechanisms for sharing the common
spectrum among links in the same geographic area. Band-
width allocation, to optimize the performance of networks
in which each station can converse with at most a single
neighbor at a time, has been recently studied in the context
of Bluetooth networks. There, centralized and distributed,
capacity assignment heuristics were developed, with appli-
cability to a variety of ad hoc networks. In this paper
we present our analytic results regarding these heuristics.
Specifically, we show that they are β-approximation (β < 2)
algorithms. Moreover, we show that even though the dis-
tributed and centralized algorithms allocate capacity in a
different manner, both algorithms converge to the same re-
sults. Finally, we present numerical results that demon-
strate the performance of the algorithms.

Index Terms— Bluetooth, Scatternet, Bandwidth alloca-
tion, Capacity assignment, Scheduling, Approximation al-
gorithms, Graph theory.

I. INTRODUCTION

In the last four decades, much attention has been given
to the research and development of bandwidth allocation
and scheduling schemes for wired and wireless networks
[4],[23],[26]. Due to various reasons (e.g. high mobility,
distributed operation, unique MAC layer), the bandwidth
allocation problem in wireless ad hoc networks signifi-
cantly differs from the problem in static communication
networks. For instance, one of the major problems in the
design and operation of ad hoc networks is sharing the
common spectrum among links in the same geographic
area. A unified framework for dealing with many varia-
tions of this problem has been presented in [23]. In this
paper, we focus on bandwidth allocation in networks in
which each station can converse with at most a single
neighbor at a time [13],[23]. This problem has been re-
cently studied mainly in the context of Bluetooth Personal
Area Networks [2],[18],[25],[27],[30],[31].
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Fig. 1. An example of a Bluetooth scatternet composed of 4 piconets.

Bluetooth enables portable mobile devices to connect
and communicate wirelessly via short-range ad-hoc net-
works [6],[7],[17]. The basic Bluetooth network topol-
ogy (referred to as a piconet) is a collection of slave de-
vices operating together with one master. A multihop ad-
hoc network of piconets in which some of the devices are
present in more than one piconet is referred to as a scat-
ternet (see for example Fig. 1). Efficient scatternet oper-
ation requires determining the link capacities that should
be allocated in each piconet, such that the network per-
formance is optimized. We envision that in the future, ca-
pacity assignment protocols will be invoked between scat-
ternet formation and scatternet scheduling protocols (see
Section II-B), and will be required in order to improve the
utilization of the scatternet bandwidth.

Unlike the issues of scheduling and topology construc-
tion, which have received considerable attention, the issue
of capacity assignment in scatternets has not been thor-
oughly investigated. Thus, in [30] and [31] an analyti-
cal model for the capacity assignment problem has been
presented, and distributed as well as centralized heuristics
for its solution have been developed. The analysis there
is based on a static model with stationary flows and un-
changing topology. Accordingly, the formulation of the
problem is based on the assumption that the flow rates
are given by higher layer protocols based on the traffic
statistics. We believe that the algorithms described in [30]
and [31] are expected to provide insight into the develop-
ment of good capacity allocation schemes. As argued by
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Sarkar and Tassiulas [25],[27], although those algorithms
have been developed in the context of Bluetooth scatter-
nets, they can be applied to any ad hoc network in which a
node transmits to a single neighbor at a time, and in which
multiple transmissions can take place as long as they do
not share a common node.

In this paper, we analyze the characteristics of the cen-
tralized and distributed heuristic algorithms presented in
[31] and show that although they allocate capacity in a dif-
ferent order, they converge to the same results. Moreover,
we show that the algorithms are actually β-approximation
(β < 2) algorithms for the solution of the capacity assign-
ment problem. We also derive an interesting property of
the upper bound on their performance. Finally, numeri-
cal results which demonstrate the difference between the
optimal solution, the approximate solution, and the up-
per bound on the performance of the approximation al-
gorithms are presented. We note that since performance
analysis of algorithms tailored for Bluetooth Scatternets
has been done mostly via simulation, an analytical ap-
proach that provides rigorous bounds on the performance
is of great importance.

This paper is organized as follows. Section II gives a
brief introduction to Bluetooth technology and discusses
related work. In Section III, we present the model and the
formulation of the scatternet capacity assignment prob-
lem. The heuristic algorithms presented in [31] are briefly
reviewed in Section IV. In Section V, we prove that
the distributed and centralized algorithms converge to the
same results. In Section VI, we show that the heuris-
tic algorithms are β-approximation (β < 2) algorithms.
Section VII presents numerical results and Section VIII
summarizes the main results and discusses possible ex-
tensions.

II. BACKGROUND

A. Bluetooth Technology

Bluetooth utilizes a short-range radio link, which oper-
ates in the 2.4 GHz license free ISM band. Since the radio
link is based on frequency-hop spread spectrum, multiple
channels (frequency hopping sequences) can co-exist in
the same wide band without interfering with each other.
Two or more units sharing the same channel form a pi-
conet, where one unit acts as a master controlling the
communication in the piconet and the others act as slaves.
Bluetooth uses a slotted scheme where the only allowed
communication is between a master and a slave and the
master-to-slave and slave-to-master transmissions happen
in alternate slots. Connected piconets in the same geo-
graphic area form a scatternet. In a scatternet, a unit can

participate in two or more piconets, on a time-sharing ba-
sis, and even change its role when moving from one pi-
conet to another (we refer to such a unit as a bridge). A
bridge can be a slave of a few masters or a master in one
piconet and a slave in another piconet. Notice that a unit
cannot be a master in more than one piconet. Fig. 1 above
illustrates an example of a scatternet including a bridge
which is a slave of two masters and a bridge which is also
a master of a piconet.

B. Related Work

The issue of capacity assignment in static communica-
tion network has been thoroughly studied in the past (e.g.
[4],[12],[26] and references therein). Moreover, many as-
pects of bandwidth allocation in packet radio networks as
well as in wireless ad hoc networks have been studied dur-
ing the last two decades (e.g. [4],[13],[23], and references
therein). However, due to the special characteristics of
Bluetooth networks, many theoretical and practical ques-
tions regarding capacity assignment have been recently
raised (a review of issues requiring research can be found
in [17]). Two main issues that are related to capacity as-
signment and which received relatively much attention are
scheduling and scatternet topology construction.

In the Bluetooth specifications [6], the capacity allo-
cation by the master to each link in its piconet is left
open. The master schedules the traffic within a piconet
by means of polling and determines how bandwidth ca-
pacity is to be distributed among the slaves. Numerous
heuristic intra-piconet scheduling algorithms have been
proposed and evaluated via simulation (e.g. [8],[10], and
references therein). Recently, analytical results regarding
the delay in piconets have been presented in [21],[32], and
[33]. Johansson et al. [17] presented an overall architec-
ture for handling scheduling in a scatternet and a fam-
ily of inter-piconet scheduling algorithms (algorithms for
masters and bridges). Accordingly, several inter-piconet
scheduling algorithms have been proposed and evaluated
(e.g. [2],[14],[15],[16],[22],[27],[29]).

According to the architecture presented in [17], inter-
piconet scheduling algorithms should deal with capacity
allocation requests from applications or forwarding func-
tions. Thus, the solution of the capacity assignment prob-
lem is a desirable input to scheduling algorithms such as
the ones discussed above. Baatz et al. [2] have identi-
fied the need to find a feasible capacity allocation. In [30]
the capacity assignment problem has been formulated as
a problem of minimizing a convex function over a convex
set contained in the matching polytope (a similar formu-
lation was derived in [27]). Optimal and heuristic algo-
rithms for the solution of the problem have been proposed
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in [30] and [31]. Baatz et al. [1] used the formulation of
[30] in order to develop a scatternet formation algorithm.
Sarkar and Tassiulas [25],[27] have studied the problem of
maxmin fair allocation of bandwidth in networks which
have similar characteristics to Bluetooth scatternets. Fi-
nally, the problem of maxmin fair allocation of bandwidth
in scatternets has also been studied in [18].

Capacity assignment protocols are the missing link be-
tween scheduling and scatternet formation algorithms.
Feasible scatternet topologies have been studied in [5]. On
the other hand, [9] and [20] formulate the topology con-
struction problem as an optimization problem. Moreover,
numerous heuristic scatternet topology construction algo-
rithms have been recently proposed (e.g. [3],[24],[28], and
references therein). The solution of the capacity assign-
ment problem enables the evaluation of different topolo-
gies and, therefore, improves the design of scatternet for-
mation algorithms.

III. MODEL AND PROBLEM FORMULATION

A. Model and Preliminaries

We model the scatternet by an undirected graph
G = (N, L), where N denotes the collection of nodes
{1, 2 , . . . , n}. Each of the nodes could be a master, a
slave, or a bridge. L denotes the set of bi-directional links
where the link connecting nodes i and j is denoted by
(i, j). We denote by Z(i) the neighbors of node i.

Due to the tight coupling of the uplink and downlink
in Bluetooth piconets1, we concentrate on the total bi-
directional link capacity. Hence, we assume that the av-
erage packet delay on a link is a function of the total link
flow and of the total link capacity. An equivalent assump-
tion is that the uplink and the downlink flows are equal
(symmetrical flows). Let Fij be the average bi-directional
flow on link (i, j) and let Cij be the capacity of link (i, j)
(the units of F and C are bits/second). We assume that
the average bi-directional flow is positive on every link
(Fij > 0 ∀ (i, j) ∈ L). We define fij as the ratio be-
tween Fij and the maximal possible flow on a Bluetooth
link when using a given type of packets. We also define
cij as the ratio between Cij and the maximal possible ca-
pacity of a link. It is obvious that 0 < fij ≤ 1 and that
0 < cij ≤ 1. We shall refer to fij as the flow on link (i, j)
and to cij as the capacity of link (i, j).

We define Dij as the total delay per unit time of all
traffic passing through link (i, j). We assume that the flow
rates (fij) are given and that Dij is a function of the link
capacity cij only. We use a delay function (neglecting the

1A slave is allowed to start transmission, only after a master had
addressed it in the preceding slot.

propagation and processing delay) based on Kleinrock’s
independence approximation [19] which is described in
the following definition:2

Dij(cij) =







fij/(cij − fij) cij > fij

∞ cij ≤ fij

.

The objective of the capacity assignment algorithms,
analyzed in this paper, is to minimize the average delay
in the scatternet. Since the total traffic in the network is
independent of the capacity assignment procedure, we can
minimize the average delay in the network by minimizing
the total delay.

B. Formulation of the Problem

Scatternet graphs can be bipartite graphs or nonbipar-
tite graphs [5] (a graph is called bipartite, if there is a par-
tition of the nodes into two disjoint sets S and T such
that each edge connects a node in S with a node in T ).
Any scatternet graph in which no master is allowed to be
a bridge is necessarily bipartite. For example, the scatter-
net graph described in Fig. 2–A is bipartite. If masters are
also bridges, the scatternet may be bipartite (e.g. Fig. 2–B)
or nonbipartite (e.g. Fig. 2–C). In [5] and [31] it is shown
that scatternet topologies which are nonbipartite may re-
sult in poor bandwidth utilization. Therefore, in this paper
we focus only on bipartite scatternet graphs.

The problem of scatternet capacity assignment in bi-
partite graphs (SCAB) is formulated as follows [31].
Problem SCAB
Given: Topology of a bipartite graph and flows (fij).
Objective: Find capacities (cij) such that the average de-
lay is minimized:

minimize
∑

(i,j)∈L

Dij (cij) (1)

subject to: cij > fij ∀ (i, j) ∈ L (2)
∑

j∈Z(i)

cij ≤ 1 ∀ i ∈ N . (3)

The first set of constraints (2) is obvious. The second
set of constraints (3) reflects the fact that the total capacity
of the links connected to a node cannot exceed the maxi-
mal link capacity. We note that constraints similar to (3)
appear in problems formulated in [1],[18],[25], and [27].

2To the best of our knowledge, analytic results regarding the delay
function are available only for simple scheduling regimes and simple
topologies (e.g. [21],[32],[33]). However, Kleinrock’s independence
approximation has been shown in the past to provide a relatively good
estimation for the delay in networks involving Poisson stream arrivals.
Therefore, it is used for the development of approximation capacity
assignment algorithms.
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Fig. 2. Scatternet graphs – A bipartite scatternet in which no master
is also a bridge (A), a bipartite scatternet in which a master is also a
bridge (B), and a nonbipartite scatternet (C).

Based on the Edmonds’ Theorem [11] and the analysis
of Hajek and Sasaki [13], in [31] it has been shown that
for nonbipartite scatternets it is sufficient to replace (3) by

∑

j∈Z(i)

cij ≤ 2/3 ∀ i ∈ N . (4)

Although (4) is a sufficient condition for feasible capacity
allocation in nonbipartite scatternets, it is not a necessary
condition, and therefore the obtained capacity allocation
may not be optimal. Finally, we note that henceforth we
will assume that there is a feasible solution to Problem
SCAB.

IV. APPROXIMATION ALGORITHMS

A capacity assignment algorithm has to obtain a solu-
tion to Problem SCAB (i.e. to determine what portion of
the slots should be allocated to each master-slave link).
In this section we briefly review the centralized and dis-
tributed approximation algorithms for bipartite scatter-
nets, presented in [31]. We shall refer to these algorithms
as the heuristic centralized/distributed scatternet capacity
assignment algorithms (Algorithm HCSCA/HDSCA re-
spectively).

First, we define the slack capacity of a node as follows:
Definition 1: The slack capacity of node i is the maxi-

mal capacity which can be added to links connected to the
node. It is denoted by si and is given by3:

si = 1 −
∑

j∈Z(i)

cij .

3In case the algorithms are applied to non bipartite scatternets (i.e.
(3) is replaced by (4)), si should be defined as 2/3 −

∑

j∈Z(i) cij .

In both algorithms, all link capacities are initially equal
to the flows on the links (cij = fij , ∀ (i, j) ∈ L)4. The
algorithms select a node and allocate the slack capacity
to some of the links connected to it. Then, another node
is selected, capacity is allocated and so on. In both al-
gorithms the nodes are selected according to their delay
derivative, which is defined below.

Definition 2: The delay derivative of node i is denoted
by di and is given by:

di =

∑

m: m ∈ Z(i)
cim = fim

√
fim

si
. (5)

Once a node k is selected, the slack capacity of this
node is allocated to those adjacent links, whose capacities
have not yet been assigned. The slack capacity is assigned
according to the square root assignment [19, p. 20]:

ckj = fkj +
sk

√

fkj
∑

m: m ∈ Z(k)
ckm = fkm

√
fkm

∀ j ∈ Z(k), ckj = fkj .

(6)
Capacity is allocated to a link only once. Hence, we

define the notions of a fully allocated node and a non-fully
allocated node as follows.

Definition 3: A fully allocated node is a node such that
all its adjacent link capacities have been assigned5.

Definition 4: A non-fully allocated node is a node such
that at least one of its adjacent link capacities has not been
assigned.

A. Centralized Algorithm (Algorithm HCSCA)

Node k, whose link capacities are next to be assigned,
is selected from the non-fully allocated nodes. The delay
derivatives di of these nodes are computed and the node
with the largest derivative is selected. Algorithm HCSCA,
which is based on this methodology, is described in Fig. 3.
The input is the topology and the flows (fij), and the out-
put is the link capacities: cij . It can be seen that the com-
plexity of the algorithm is O(n2), which is about the com-
plexity of a single iteration in the optimal algorithm, pre-
sented in [31]. Moreover, in [31] it has been shown that
the capacity values obtained by the algorithms are always
feasible.

B. Distributed Algorithm (Algorithm HDSCA)

In the distributed algorithm, a token is passed by the
nodes and only the node that holds the token is allowed

4In the distributed algorithm, when a node (i) receives a message of
the algorithm for the first time it sets cij = fij , ∀ j ∈ Z(i).

5A fully allocated node does not necessarily utilize its full capacity.
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1 set cij = fij ∀(i, j) ∈ L

2 set k = arg max
i∈N

⋂

i non-fully allocated
di

3 set ckj = fkj +
√

fkj/dk ∀ j : j ∈ Z(k), ckj = fkj

4 if there exists (i, j) ∈ L such that cij = fij

5 then go to 2

6 else stop

Fig. 3. Algorithm HCSCA for obtaining an approximate solution to
Problem SCAB.

to allocate capacity. The algorithm is initiated by an ar-
bitrary node that creates the token. Once a node receives
the token, it can either allocate its slack capacity or decide
to send the token to a neighbor. The assignment of slack
capacity is the same as in the centralized algorithm. How-
ever, the selection of the node which holds the token and
the decision whether it should allocate capacity or transfer
the token to a neighbor is different.

Each node keeps a stack, referred to as the parents
stack, that contains the identities of neighbors from which
it had previously received the token. Each node also main-
tains a list of non-fully allocated neighbors. We define two
possible states for the node holding the token:

• Allocation State – A non-fully allocated node enters
this state when it receives the token. At this time the
node pushes the identity of the neighbor, that sent
it the token, to the parents stack. The neighbor is
referred to as one of the node’s parents. The node
decides to either transfer the token to a neighbor or
allocate capacity and then move to the token transfer
state.

• Token Transfer State – A node enters this state af-
ter it allocates capacity or when it receives the to-
ken from a neighbor that popped its details from the
stack. In this state, one of the non-fully allocated
neighbors will receive the token. If all the neighbors
are fully allocated, the token will be returned to the
first neighbor in the stack and this neighbor will be
popped from the stack. The algorithm halts when
all the neighbors are fully allocated and the stack is
empty (it always terminates at the initiating node).

Fig. 4 presents the pseudocode of the procedure exe-
cuted by a node in the allocation state. Unlike the central-
ized algorithm in which a node allocates capacity, if its dk

is the largest in the network, in the distributed algorithm a
node allocates capacity, if it holds the token and its dk is
larger than the dks of its neighbors.

Fig. 5 describes the pseudocode of the procedure exe-
cuted by a node in the token transfer state. A node enters

1 push into the parents stack the details of the node
which sent the token

2 find the node with the largest dk among the non-
fully allocated neighbors and yourself

3 if it is a neighbor
4 then send the token to this neighbor
5 else
6 allocate capacity according to (6)
7 update the neighbors
8 change the state to token transfer state

Fig. 4. Algorithm HDSCA – the procedure executed by a node in the
allocation state.

1 find the node with the largest dk among the non-
fully allocated neighbors

2 if such a node exists
3 then send the token to this neighbor
4 else
5 if the stack is empty
6 then halt
7 else
8 pop the first node from the parents stack
9 send the token to that parent

Fig. 5. Algorithm HDSCA – the procedure executed by a node in the
token transfer state.

this state due to two possible events: capacity allocation
by the node or receipt of the token from a neighbor that
popped its details from the stack. In this state, it can ei-
ther send the token to its “best” neighbor or return it to
one of its parents.

V. CONVERGENCE OF THE DISTRIBUTED

ALGORITHM

Due to the differences between the algorithms, the
centralized algorithm (Algorithm HCSCA) and the dis-
tributed algorithm (Algorithm HDSCA) normally allocate
capacity in different order. However, in this section we
will show that the two algorithms always converge to the
same results. First, we show that the distributed algo-
rithm halts after all the link capacities have been allocated.
Then, we show that these link capacities are the same as
the link capacities allocated by the centralized algorithm.

The proof that the distributed algorithm halts after all
the link capacities have been allocated is based on the fact
that the token either does not traverse a link or traverses
it in both directions. Accordingly, since the token cannot
be returned to a parent before all the neighbors are fully
allocated, the algorithm cannot halt before all the link ca-
pacities have been allocated. The formal proof is based on
the following lemmas. The proofs of the lemmas appear
in the Appendix.
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Lemma 1: In Algorithm HDSCA, when a node i enters
the token transfer state, it is fully allocated (cij 6= fij ∀j ∈
Zi).

Lemma 2: When Algorithm HDSCA halts, every node
that has been in the allocation state has also been in the
token transfer state.

The proof of Lemma 2 implies that every node that has
been in the allocation state has also executed Step 4 de-
scribed in Fig. 5 (i.e. checked the status of the stack and
then either halted or returned the token to a parent). Us-
ing the above lemmas we shall now prove the following
proposition.

Proposition 1: When Algorithm HDSCA halts: cij 6=
fij ∀(i, j) ∈ L.

Proof: Assume that when the algorithm halts, there
is a link (i, j) for which cij 6= fij does not hold (either
cij is not defined or cij = fij). According to Lemma 1,
nodes i and j do not enter the token transfer state during
the execution of the algorithm. Consequently, according
to Lemma 2, node i and j do not enter the allocation state
during the execution. Since node j does not enter the al-
location state, none of its neighbors ever executes Step 4
described in Fig. 5 (since before its execution they would
send the token to node j which would enter the alloca-
tion state). Following the argument used in the proof of
Lemma 2, due to the fact that the protocol halts, every
node that has been in the allocation state has also executed
Step 4 described in Fig. 5. Thus, none of the neighbors of
j enters the allocation state and the capacities of the links
connecting them to j are not assigned.

Using a similar argument, it can be shown that none
of the link capacities of the neighbors of j are assigned.
Consequently, no node enters the allocation state and no
link capacity is assigned. This is a contradiction to the
fact that the algorithm halts.

We now need to show that the capacity allocated by
Algorithm HDSCA is equal to the capacity allocated by
Algorithm HCSCA. Thus, we first derive a property of
the delay derivative of a node in algorithms HDSCA and
HCSCA (this property will also be used in Section VI).
Then, we prove by induction that the capacities allocated
by the two algorithms are identical.

Lemma 3: When a node i allocates capacity the delay
derivatives (djs) of its non-fully allocated neighbors j ∈
Z(i) do not increase.

Proof: Let k be a non-fully allocated neighbor of i.
Let d−k and d+

k be its delay derivatives just before and just
after (respectively) i allocates capacity. Denote by M(k)
the set of k’s neighbors (m ∈ Z(k)) such that ckm = fkm

just before i allocates capacity. According to (5) and (6),

following the allocation:

d+
k =

∑

m∈M(k)

√
fkm −√

fik

sk − (cik − fik)

=

∑

m∈M(k)

√
fkm −√

fik

(
∑

m∈M(k)

√
fkm)/d−k −√

fik/d
−
i

. (7)

Since i allocates the capacity, just before the allocation
d−i ≥ d−k . Accordingly,

d+
k ≤

∑

m∈M(k)

√
fkm −√

fik

(
∑

m∈M(k)

√
fkm)/d−k −√

fik/d
−
k

= d−k . (8)

Theorem 1: The capacities (cij) obtained by Algorithm
HDSCA are identical to the capacities obtained by Algo-
rithm HCSCA.

Proof: According to Proposition 1, Algorithm HD-
SCA halts only after all the link capacities have been al-
located. Thus, we have to show that these link capacities
are the same as the link capacities assigned by Algorithm
HCSCA.

We need to show that when Algorithm HDSCA is exe-
cuted, at any given time, the following properties hold:

1) For every non-fully allocated node j, the neighbors
that allocate capacity after j in Algorithm HCSCA
are non-fully allocated (i.e. some or all neighbors
which allocate capacity before it in Algorithm HC-
SCA are fully allocated).

2) The values of the capacities that have already been
allocated are the same as in Algorithm HCSCA.

In order to prove it, we assume that the above proper-
ties hold at time t− and we show that if a node i allocates
capacity at time t (immediately after time t−), these prop-
erties continue to hold.

At time t, Algorithm HDSCA selects a non-fully allo-
cated node i with a delay derivative (di) higher than the
delay derivatives of its non-fully allocated neighbors and
allocates capacity (Step 6 in Fig. 4). We wish to show that
when i is selected, all (and not some) the neighbors which
allocate capacity before it in Algorithm HCSCA are fully
allocated.

Denote by di(t) the delay derivative of node i at time
t. Denote the set of the non-fully allocated neighbors
of i at time t− by M(i) (m ∈ M(i) if m ∈ Z(i)
and cim = fim at time t−). let tm be the time in
which a node m allocates capacity in Algorithm HC-
SCA. Due to the first property and due to Lemma 3,
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di(t
−) ≥ dm(t−) ≥ dm(tm), ∀m ∈ M(i). In order

for m ∈ M(i) to allocate capacity before i in Algorithm
HCSCA, dm(tm) ≥ di(tm) has to hold. However, in or-
der for di to become smaller than dm, one of the other
non-fully allocated neighbors of i has to allocate capacity
in Algorithm HCSCA before time tm. This cannot hap-
pen, since their delay derivatives are lower than the delay
derivative of i. Thus, the nodes in M(i) allocate capacity
after i.

Since at time t, all the neighbors of i which allocate ca-
pacity before it in Algorithm HCSCA are fully allocated,
i allocates the same capacities as in Algorithm HCSCA.
Thus, at time t+ (immediately after time t) the second
property holds. Moreover, since we have shown that in
Algorithm HCSCA, i allocates capacity before the nodes
in M(i), at time t+, the first property holds.

Finally, Since the properties 1 and 2 hold before the
first node allocates capacity, they also hold after the last
node allocates capacity, and therefore, the capacity values
allocated by Algorithm HDSCA are identical to the values
allocated by Algorithm HCSCA.

VI. APPROXIMATION RATIOS

In this section we show that algorithms HCSCA and
HDSCA are β-approximation (β < 2) algorithms for the
solution of Problem SCAB. First, we present a new algo-
rithm for the solution of Problem SCAB. Then, we prove
that the new algorithm outperforms any 2-approximation
algorithm. Finally, we prove that Algorithm HCSCA ob-
tains results which are equal or better than the results ob-
tained by the new algorithm. Since in Section V we have
shown that algorithms HCSCA and HDSCA converge to
the same solution, this implies that Algorithm HDSCA
has the same property. We note that in this section we
also present an interesting property, of the upper bound,
on the performance of the algorithms.

Let I(i) denote the set of links e ∈ L that are incident
on node i. By setting τe = ce−fe, e ∈ L in the non-linear
program for the Problem SCAB we obtain the following
equivalent non-linear program with variables τe, ∀e ∈ L.

minimize
∑

e∈L

fe

τe
(9)

subject to:
∑

e∈I(i)

τe ≤ si ∀i ∈ N

τe > 0 ∀e ∈ L .

We denote by τ ∗
e the optimal solution to (9). Recall that

according to Definition 1, initially (before the first phase
of any algorithm) si = 1 − ∑

e∈I(i) fe. As mentioned

before, we assume that the problem has a feasible solution
and therefore, si must be greater than zero for all i ∈ N .

Let us consider a set of |N | non-linear programs, one
for each i ∈ N :

minimize
∑

e∈I(i)

fe

τe
(10)

subject to:
∑

e∈I(i)

τe ≤ si

τe ≥ 0 ∀e ∈ L .

Note that (10) can be optimally solved in polynomial time
for each i and has a unique optimal solution (i.e. the
square root assignment [19, p. 20], see also (6)). We
denote the optimal solution of (10) for node i by τ i

e and
define the corresponding optimal value OPTi of the ob-
jective function as

OPTi =
∑

e∈I(i)

fe

τ i
e

=

(
∑

e∈I(i)

√
fe)

2

1 − ∑

e∈I(i)

fe
. (11)

We now present a simple algorithm, referred to as Al-
gorithm ASCA (Approximate Scatternet Capacity Assign-
ment), for obtaining an approximate solution to the Prob-
lem SCAB. We denote by τ̂ij the solution obtained by Al-
gorithm ASCA. For every node i, the algorithm computes
the optimal solution to (10) (i.e. τ i

e, ∀e ∈ L). Then, it sets
for all e = (i, j) ∈ L:

τ̂e = min (τ i
e, τ

j
e ). (12)

We first show that τ̂e is a feasible solution to Problem
SCAB (i.e. to (9)). It is easy to see that τ̂e > 0, ∀e ∈ L and
by construction τ̂ij ≤ τ i

ij . Since τ i
e is an optimal solution

to (10), for node i we have
∑

e∈I(i) τ i
e ≤ si and hence

∑

e∈I(i) τ̂e ≤ si.
We now show that Algorithm ASCA is better than a 2-

approximation algorithm for the problem SCAB. In order
to prove it, we first present the following lemma.

Lemma 4—Zussman and Segall, 2003 [31]: If dj >

di, then τ j
ij < τ i

ij . If dj = di, then τ j
ij = τ i

ij

Theorem 2: Algorithm ASCA is a β-approximation al-
gorithm (β < 2) for Problem SCAB.

Proof: For any node i ∈ N , τ ∗
e (the optimal solu-

tion to the non-linear program (9)) is a feasible solution
to the non-linear program (10). Hence, since OPTi is the
optimal value of the objective function for (10):

∑

e∈I(i)

fe

τ∗
e

≥ OPTi ∀i ∈ N. (13)
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Adding up for all i ∈ N and noting that the term for each
edge appears exactly twice in the sum we have

2
∑

e∈L

fe

τ∗
e

≥
∑

i∈N

OPTi. (14)

For each node i we define a set of incident edges J(i) ⊆
I(i) as those edges e = (i, j) ∈ L for which τ i

e < τ j
e , or

in the case of a tie (τ i
e = τ j

e ), the node index i < j. It is
easy to see that J(i) forms a partition of the set of edges
L. Thus:

∑

e∈L

fe

τ̂e
=

∑

i∈N

∑

e∈J(i)

fe

τ̂e
=

∑

i∈N

∑

e∈J(i)

fe

τ i
e

≤
∑

i∈N

OPTi,

where the last inequality follows from the definition of
OPTi in (11) and the fact that J(i) ⊆ I(i). However, for a
more tighter analysis we make the following observation.
From Lemma 4 it follows that the node j with the smallest
delay derivative dj (in case of a tie, j is selected to be the
node with the largest index) must have that J(j) = ∅.
Thus, there is at least one node j with J(j) = ∅, and
therefore since by definition OPTj > 0 we have

∑

e∈L

fe

τ̂e
≤

∑

i∈N,i6=j

OPTi <
∑

i∈N

OPTi

Combining this with (14)

∑

e∈L

fe

τ̂e
< 2

∑

e∈L

fe

τ∗
e

,

thus showing that Algorithm ASCA is a β-approximation
(β < 2) algorithm for the Problem SCAB.

Algorithm HCSCA (described in Section IV-A) can be
described as follows. Let τ ′

e be the solution obtained by
Algorithm HCSCA. At any phase, the algorithm starts out
with a graph (initially set to the original graph G) with
slack capacities si (initially set to the original graphs slack
capacities). In this graph, it finds the node i with the max-
imal value of di, solves the non-linear program (10) for
that node i optimally, and sets

τ ′
e = τ i

e ∀e ∈ I(i).

It then decreases the slack capacities sj for every node j,
which is a neighbor of i, by the sum of τ ′

e, e ∈ I(j) for
all τ ′

e that get set in this phase. This is done to reflect the
capacity that has been already allocated. Any node i with
si = 0 is removed from the graph. Also all the edges e
that are assigned a value τe in this phase are removed from
the graph. The new graph and the new slack capacities be-
come input for the next phase. The algorithm terminates
when no more edges are left in the graph.

Let Lp be the set of edges such that τ ′
e, e ∈ Lp is

set in phase p. Let τ i p
e be the optimal solution obtained

for the non-linear program (10) for node i for the graph
Gp used by Algorithm HCSCA in phase p along with the
slack capacities sp

i . Let the node delay derivatives in phase
p be dp

i . Note that G1 = G, s1
i = si, ∀i ∈ N , d1

i =
di, ∀i ∈ N , and τ i 1

e = τ i
e, ∀e ∈ I(i). Let Ip(i) be the set

of edges incident on node i in Gp. Due to Lemma 4 and
the fact that at each phase p, the node with the largest dp

i

is selected, at the end of phase p we have

τ ′
e = min (τ i p

e , τ j p
e ) ∀e ∈ Ip(i). (15)

We now show that for each edge the delay obtained by
the algorithm HCSCA is at most the delay obtained by the
Algorithm ASCA. In order to prove it, we first prove the
following lemma.

Lemma 5: τ i p+1
e ≥ τ i p

e for all nodes i and edges e ∈
Ip+1(i).

Proof: According to (5) and (6), and the definition
of τ i p

e , for all edges e ∈ Ip(i) we have τ i p
e =

√
fe/d

p
i .

According to Lemma 3, for all nodes i in Gp+1 we have
dp+1

i ≤ dp
i . Combining the above observations completes

the proof.
Proposition 2: Algorithm HCSCA is a β-

approximation algorithm (β < 2) for the Problem
SCAB.

Proof: We show that τ ′
e ≥ τ̂e, ∀e ∈ L 6, thus show-

ing that the value of the objective function of the non-
linear program (9) for the solution τ ′

e is at most the value
of the objective function of (9) for the solution obtained
by a β-approximation algorithm (β < 2). It follows from
Lemma 5 that for any node i and link e ∈ Ip(i):

τ i p
e ≥ τ i p−1

e . . . ≥ τ i 1
e = τ i

e.

Thus, τ i p
e ≥ τ i

e and τ j p
e ≥ τ j

e for a link e = (i, j) ∈
Lp. Thus, since for such a link e, we have τ ′

e =
min (τ i p

e , τ j p
e ) (see (15)) and τ̂e = min (τ i

e, τ
j
e ) (see

(12)), we have ∀e = (i, j) ∈ Lp:

τ ′
e = min (τ i p

e , τ j p
e ) ≥ min (τ i

e, τ
j
e ) = τ̂e.

Finally, we show that any upper bound on the perfor-
mance of Algorithm HCSCA which is based on the re-
lationships between OPTi and the optimal solution (i.e.
based on (14)) is not tight.

Proposition 3: Assume that there exists β (1 < β < 2)
such that

∑

e∈L

fe

τ ′
e

≤ β

2

∑

i∈N

OPTi ≤ β
∑

e∈L

fe

τ∗
e

, (16)

6Recall that τ ′
e and τ̂e are the solutions obtained by algorithms HC-

SCA and ASCA, respectively.
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thus implying that HCSCA is a β-approximation algo-
rithm, then there is no tight example in which the heuristic
solution (τ ′

e), obtained by HCSCA is exactly β times more
than the optimal solution. In other words there is no ex-
ample for which

∑

e∈L

fe

τ ′
e

= β
∑

e∈L

fe

τ∗
e

. (17)

Proof: Assume that an example in which (17) holds
exists. This implies that all inequalities in (16) must hold
with equalities. Specifically

∑

i∈N

OPTi = 2
∑

e∈L

fe

τ∗
e

.

Therefore, for any given node i, (13) holds with equality
(i.e. OPTi =

∑

e∈I(i) fe/τ
∗
e ). Consequently, since the

optimal solution for (10) is unique, we have for every link
e = (i, j).

τ i
e = τ∗

e = τ j
e .

Thus, the solution obtained by Algorithm ASCA (τ̂e) is
equal to the optimal solution (since τ̂e = min{τ i

e, τ
j
e }).

Finally, in the proof of Proposition 2, we have shown that
τ ′

e ≥ τ̂e, ∀e ∈ L. Thus

∑

e∈L

fe

τ ′
e

≤
∑

e∈L

fe

τ∗
e

,

which contradicts (17).

VII. NUMERICAL RESULTS

In this section we present a few numerical examples
that demonstrate the difference between the results ob-
tained by the Algorithms HCSCA and HDSCA, the results
obtained by Algorithm ASCA, and the optimal results.

From the observations made in Section VI it follows
that:

∑

e∈L

fe

τ∗
e

≤
∑

e∈L

fe

τ ′
e

≤
∑

e∈L

fe

τ̂e
<

∑

i∈N

OPTi ≤ 2
∑

e∈L

fe

τ∗
e

.

(18)
Namely: Optimal Solution ≤ Solution by HCSCA ≤ So-
lution by ASCA <

∑

i∈N OPTi ≤ 2∗(Optimal Solution).
Fig. 6 illustrates a scatternet with given flow rates (the

scatternet topology is based on the topology presented in
[24, Fig. 4]). Table I presents the corresponding values of
the measures presented in (18). It can be seen that there
is a small difference between the optimal and the approx-
imate solution, obtained by Algorithm HCSCA. A larger
difference exists between the solutions obtained by Algo-
rithm HCSCA and Algorithm ASCA. Furthermore, there

8
37

456 2

9

10.05

0.45

0.02
0.50.45

0.05
0.30.4

0.4

Fig. 6. A scatternet with given flow rates.

TABLE I
OPTIMAL SOLUTION, APPROXIMATE SOLUTIONS, AND THE UPPER

BOUND FOR THE SCATTERNET DESCRIBED IN FIG. 6

Notation Value
Optimal Solution

∑

e∈L fe/τ
∗
e 85.68

Solution by HCSCA
∑

e∈L fe/τ
′
e 86.03

Solution by ASCA
∑

e∈L fe/τ̂e 92.64
Upper Bound

∑

i∈N OPTi 138.36
2*Optimal Solution 2

∑

e∈L fe/τ
∗
e 171.36

is quite a large difference between the solution obtained
by Algorithm ASCA and its upper bound.

We note that in some cases the first two inequalities in
(18) as well as the last one hold with equality. For ex-
ample, in the simple scatternet presented in Fig. 7–A,
τ∗
e = τ ′

e = τ̂e = 0.5, ∀e and τ i
e = 0.5, ∀i, ∀e. There-

fore:

8 =
∑

e∈L

fe

τ∗
e

=
∑

e∈L

fe

τ ′
e

=
∑

e∈L

fe

τ̂e

<
∑

i∈N

OPTi = 2
∑

e∈L

fe

τ∗
e

= 16 .

The example described in Fig. 7–B illustrates a differ-
ent case. In this example τ ∗

e = τ ′
e = τ̂e = 1/7, ∀e. On the

other hand, τ 1
e = 1/7, ∀e and τ i

e = 1, ∀i 6= 1, ∀e. Thus,
when ε is close enough to 1/7, the approximate solu-
tion is relatively close to the upper bound (

∑

i∈N OPTi).

BA
Slave which is
also a Bridge

Master

Slave

6

8

4

3

5
7

2

1

Fig. 7. Simple scatternets with given flow rates: fe = 1/3∀e (A)
fe = ε∀e (B).
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Namely:

lim
ε→1/7

∑

i∈N OPTi
∑

e∈L
fe

τ ′
e

= lim
ε→1/7

1 +
1/7 − ε

1 − ε
= 1 .

However, in this case the upper bound significantly differs
from twice the optimal solution. Namely:

lim
ε→1/7

2
∑

e∈L
fe

τ∗
e

∑

i∈N OPTi
= 2 .

Fig. 8 illustrates a scatternet with different values of
flow. Fig. 9 presents the values of the optimal and ap-
proximate solutions as well as the upper bound for differ-
ent values of x. It can be seen that for all flow values,
the approximate solutions are very close to the optimal
solution and that there is a relatively large difference be-
tween

∑

i∈N OPTi and the approximate solutions. Fi-
nally, Fig. 10 illustrates a more complex scatternet based
on the topology described in [29, Fig. 1]. The correspond-
ing solutions and upper bound are presented in Fig. 11.
The results presented in this figure resemble the results
presented in Fig. 9. We note that in all the cases we have
checked, the ratio of the solution obtained by Algorithm
HCSCA to the optimal solution was much lower than 2.

VIII. CONCLUSIONS AND FUTURE STUDY

This paper analyzes the performance of centralized and
distributed capacity assignment algorithms, presented in
the past. Those algorithms have been designed for Blue-
tooth scatternets but can be applied to any ad hoc network
in which a node transmits to a single neighbor at a time,
and in which multiple transmissions can take place as long
as they do not share a common node.

We have defined a simple approximation algorithm and
shown that the ratio between the results obtained by this
algorithm and the optimal results is less than two. Then,
we have shown that the heuristic algorithms presented in
[31] obtain results which at the worst case are the same as

8
37

456 2

9

1

x
2x

3x

x

3x

x

3x

x
2x3x

Fig. 8. A scatternet with different flow values (an arrow denotes flow
along a path).
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Fig. 9. The optimal solution, approximate solutions (obtained by
Algorithms HCSCA and ASCA), and upper bound (

∑

i∈N
OPTi) in

the scatternet presented in Fig. 8.

4x 5x4x

7x
5x

x
4x

2x

x

2x 2x

3x

7x

Master

Slave

Fig. 10. A scatternet in which the flow values to the non-bridge slaves
in every piconet are identical to the values in the lowest piconet.

the results obtained by the new algorithm, thus establish-
ing that these algorithms are β-approximation (β < 2) al-
gorithms for the capacity assignment problem. Moreover,
we have shown that although the distributed and central-
ized algorithms allocate capacity in a different manner,
both algorithms converge to the same results. Finally, we
have presented numerical results and compared the ap-
proximate solutions to the optimal solution and the upper
bound.

There are still many open problems to deal with. For
example, it seems that the ratio between the approxi-
mate and the optimal solutions is much lower than 2.
However, proving this property requires further research.
Moreover, future study will focus on improving the dis-
tributed algorithm and on investigating its performance
in a dynamic topology maintained by a scatternet forma-
tion algorithm. Finally, we note that a major future re-
search direction is the development of bandwidth alloca-
tion methods that will be able to deal with various quality-
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Fig. 11. The optimal solution, approximate solutions, and upper
bound in the scatternet presented in Fig. 10.

of-service requirements and to interact with scatternet for-
mation, scheduling, and routing protocols.
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APPENDIX

Proof of Lemma 1: A node i enters the token transfer
state due to two possible events:

• Capacity allocation by the node (Step 6 in Fig. 4).
In this case it is obvious that following the capacity
allocation the node is fully allocated.

• Receipt of the token from a neighbor j that popped
its details from the stack (Step 9 in Fig. 5). Neighbor
j pops the details of its parent from the stack only if
all j’s neighbors (including i) are fully allocated.

Proof of Lemma 2: Denote by i the node which initiates
the algorithm. Assume that there exists a node j that has
been in the allocation state and has not been in the token
transfer state.

• If i = j, then i will not execute Step 6 (described in
Fig. 5), which is a contradiction to the fact that the
algorithm halts.

• If j received the token from i, then j will not pop
the details of i from the stack (Step 9 in Fig. 5) and
therefore, the algorithm will not halt, which is a con-
tradiction.

• Assume that the token traversed the following path
i, k1, k2, . . . , kl, j. Node j will not pop the details of
kl from the stack (Step 9 in Fig. 5). Thus, kl will not
pop the details of kl−1 and, for similar reasons, k1

will not pop the details of i. Accordingly, the algo-
rithm will not halt, which is a contradiction.
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