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Abstract. Bluetooth enables portable electronic devices to communicate
wirelessly via short-range ad-hoc networks. Initially Bluetooth will be used as a
replacement for point-to-(multi)point cables. However, in due course, there will
be a need for forming multihop ad-hoc networks over Bluetooth, referred to as
scatternets. This paper investigates the capacity assignment problem in
Bluetooth scatternets. The problem arises primarily from the special
characteristics of the network and its solution requires new protocols. We
formulate it as a problem of minimizing a convex function over a polytope
contained in the matching polytope. Then, we develop an optimal algorithm
which is similar to the well-known flow deviation algorithm and that calls for
solving a maximum-weight matching problem at each iteration. Finally, a
heuristic algorithm with a relatively low complexity is developed and numerical
examples are presented.

1 Introduction

Recently, much attention has been given to the research and development of Personal
Area Networks (PAN). These networks are comprised of personal devices, such as
cellular phones, PDAs and laptops, in close proximity to each other. Bluetooth is an
emerging PAN technology which enables portable devices to connect and
communicate wirelessly via short-range ad-hoc networks  [5], [6], [7], [14], [18]. Since
its announcement in late spring 1998, the Bluetooth technology has attracted a vast
amount of research. However, the issue of capacity assignment in Bluetooth networks
has been rarely investigated. Moreover, most of the research regarding network
protocols has been done via simulation. In this paper we formulate an analytical
model for the analysis of the capacity assignment problem and propose optimal and
heuristic algorithms for its solution.

Bluetooth utilizes a short-range radio link. Since the radio link is based on
frequency-hop spread spectrum, multiple channels (frequency hopping sequences) can
co-exist in the same wide band without interfering with each other. Two or more units
sharing the same channel form a piconet, where one unit acts as a master controlling
the communication in the piconet and the others act as slaves.
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Bluetooth channels use a frequency-hop/time-division-duplex (FH/TDD) scheme.
The channel is divided into 625-�sec intervals called slots. The master-to-slave
transmission starts in even-numbered slots, while the slave-to-master transmission
starts in odd-numbered slots. Masters and slaves are allowed to send 1,3 or 5 slots
packets which are transmitted in consecutive slots. A slave is allowed to start
transmission in a given slot if the master has addressed it in the preceding slot.
Information can only be exchanged between a master and a slave, i.e. there is no
direct communication between slaves. Although packets can carry synchronous
information (voice link) or asynchronous information (data link), in this paper we
concentrate on networks in which only data links are used.

Multiple piconets in the same area form a scatternet. Since Bluetooth uses packet-
based communications over slotted links, it is possible to interconnect different
piconets in the same scatternet. Hence, a unit can participate in different piconets, on
a time-sharing basis, and even change its role when moving from one piconet to
another. We will refer to such a unit as a bridge. For example, a bridge can be a
master in one piconet and a slave in another piconet. However, a unit cannot be a
master in more than one piconet.

Initially Bluetooth piconets will be used as a replacement for point-to-(multi)point
cables. However, in due course, there will be a need for multihop ad-hoc networks
(scatternets). Due to the special characteristics of such networks, many theoretical and
practical questions regarding the scatternet performance are raised. Nevertheless, only
a few aspects of the scatternet performance have been studied. Two issues that
received relatively much attention are: research regarding scatternet topology and
development of efficient scatternet formation protocols (see  [4], [16], [24] and
references therein).

Much attention has also been given to scheduling algorithms for piconets and
scatternets. In the Bluetooth specifications  [6], the capacity allocation by the master to
each link in its piconet is left open. The master schedules the traffic within a piconet
by means of polling and determines how bandwidth capacity is to be distributed
among the slaves. Numerous heuristic polling/scheduling algorithms for piconets
have been proposed and evaluated via simulation (see for example  [8], [9], [10], [13]
and references therein). In  [14] an overall architecture for handling scheduling in a
scatternet has been presented and a family of inter-piconet scheduling algorithms
(algorithms for masters and bridges) has been introduced. Inter-piconet scheduling
algorithms have also been proposed in  [1] and  [21].

Although scatternet formation as well as piconet and scatternet scheduling have
been studied, the issue of capacity assignment in Bluetooth scatternets has not been
investigated. Moreover, Baatz et al.  [1] who made an attempt to deal with it have
indicated that it is a complex issue1. Capacity assignment in communication networks
focuses on finding the best possible set of link capacities that satisfies the traffic
requirements while minimizing some performance measure (such as average delay).
We envision that in the future, scatternet capacity assignment protocols will start
operating once the scatternet is formed and will determine link capacities that will be

1 In  [1] the term piconet presence schedules is used to refer to a notion similar to capacity
assignment.
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dynamically allocated by scheduling protocols1. Thus, capacity assignment protocols
are the missing link between scatternet formation and scatternet scheduling protocols.
A correct use of such protocols will improve the utilization of the scatternet
bandwidth. We also anticipate that the optimal solution of the capacity assignment
problem will improve the evaluation of heuristic scatternet scheduling algorithms.

Most models of capacity assignment in communication networks deal mainly with
static networks in which a cost is associated with each level of link capacity (see  [3]
and  [22] for a review of models and algorithms). For example, in the problem
presented by Bertsekas and Gallager [3, p. 439], the objective is to select link
capacities so as to minimize the total cost, subject to the constraint that the average
delay per packet should not exceed a given level.

The following discussion shows that there is a need to study the capacity
assignment problem in Bluetooth scatternets in a different manner:
�� In contrast with a wired and static network, in an ad-hoc network, there is no

central authority responsible for network optimization, there is no cost associated
with each link and no budget constraint.

�� The nature of the network allows frequent changes in the topology and requires
frequent changes in the capacities assigned to every link.

�� There are constraints imposed by the tight master-slave coupling and by the time-
division-duplex (TDD) scheme.

�� Unlike other ad-hoc networks technologies in which all nodes within direct
communication from each other share a common channel, in Bluetooth only a
subgroup of nodes (piconet) shares a common channel and capacity has to be
allocated to each link.
A scatternet capacity assignment protocol has to determine the capacities that each

master should allocate in its own piconet, such that the network performance will be
optimized. Currently, our major interest is in algorithms for quasi-static capacity
assignment that will minimize the average delay in the scatternet. The analysis is
based on a static model with stationary flows and unchanging topology. To the best of
our knowledge, the work presented in this paper is the first attempt to analytically
analyze the capacity assignment problem in Bluetooth scatternets.

In this paper we focus on formulating the problem and developing centralized
algorithms. The development of the distributed protocols is subject of further
research.

In the sequel we show that the scatternet capacity assignment problem is more
complex than it seems at first glance and that different formulations apply to bipartite
and nonbipartite scatternets. We prove that the problem can be formulated as a
minimization of a convex function over a polytope contained in the polytope of the
well-known matching problem ( [17],[19, p. 608]) and use this formulation in order to
identify a few properties of the problem. The methodology used by Gerla et al. [12]
and Pazos-Rangel and Gerla  [20] is used in order to develop an optimal scatternet
capacity assignment algorithm which is similar to the well-known flow deviation
algorithm  [11]. The main difference between the algorithms is that at each iteration

1 This model conforms to the model presented in  [14] in which the inter-piconet scheduling
algorithm deals with capacity allocation requests from applications or forwarding functions.
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there is a need to solve a maximum-weight matching problem instead of a shortest
path problem.

We also introduce a heuristic algorithm whose complexity is much lower than the
complexity of the optimal algorithm and whose performance is often close to that of
the optimal algorithm. Finally, numerical examples regarding the optimal and
heuristic algorithms are presented.

This paper is organized as follows. In Section  2, we present the model and in
section  3 we formulate the scatternet capacity assignment problem for bipartite and
nonbipartite scatternets. An algorithm for obtaining the optimal solution of the
problem is presented in Section  4. In Section  5, we develop a heuristic algorithm for
obtaining the solution in a bipartite scatternet. Section  6 presents numerical examples
and Section  7 summarizes the main results and discusses possible extensions.

2 Model and Preliminaries

Consider the connected undirected scatternet graph G = (N ,L). N will denote the
collection of nodes {1,2,…,n}. Each of the nodes could be a master, a slave, or a
bridge1. The bi-directional link connecting nodes i and j will be denoted by (i, j) and
the collection of bi-directional links will be denoted by L. For each node i, denote by
Z(i) the collection of its neighbors. We denote by L(U) (U�N) the collection of links
connecting nodes in U.

Usually, capacity assignment protocols deal with the allocation of capacity to
directional links. However, due to the tight coupling of the uplink and downlink in
Bluetooth piconets2, we concentrate on the total bi-directional link capacity. Hence,
we assume that the average packet delay on a link is a function of the total link flow
and the total link capacity. An equivalent assumption is that the uplink and the
downlink flows are equal (symmetrical flows).

Let Fij be the average bi-directional flow on link (i, j) and let Cij be the capacity of
link (i, j) (the units of F and C are bits/second). Without loss of generality, we assume
that at every link the average bi-directional flow is positive (Fij > 0 �(i, j)�L). We
define fij as the ratio between Fij and the maximal possible flow on a Bluetooth link
when using a given type of packets3. We also define cij as the ratio between Cij and
the maximal possible capacity of a link4. It is obvious that 0 < fij � 1 and that 0 � cij �

1. In the sequel, fij will be referred to as the flow on link (i, j) and cij will be referred to
as the capacity of link (i, j). Accordingly, c will denote the vector of the link
capacities and will be referred to as the capacity vector.

The objective of the capacity assignment algorithms, described in this paper, is to
minimize the average delay in the scatternet. Following Segall’s formulation in  [23],

1 A bridge participates in different piconets, on a time-sharing basis. It can be a slave of a few
masters or a master which is also a slave.

2 A slave is allowed to start transmission only after a master addressed it in the preceding slot.
3 For example, currently the maximal flow on a symmetrical link, when using five slots

unprotected data packets (DH5), is 867.8 Kbits/second.
4 The maximal capacity of a link is equal to the maximal flow on a link.
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we define Dij as the total delay per unit time of all traffic passing through link (i, j),
namely:

Definition 1. Dij is the average delay per unit of the traffic multiplied by the amount
of traffic per unit time transmitted over link (i, j).

We assume that Dij is a function of the link capacity cij only. We should point out
that the optimal algorithms require no explicit knowledge of the function Dij(cij). We
shall need to assume only the following reasonable properties of the function Dij( · ) .

Definition 2. Dij( · ) is defined such that all the following holds:
1. Dij is a nonnegative continuous decreasing function of cij with continuous first and

second derivatives.
2. Dij is convex.
3. lim ( )

ij ij
ij ij

c f
D c

�

� �

4. Dij'(cij) < 0 for all cij where Dij' is the derivative of Dij.

Using Definition 1, we define the total delay in the network:

Definition 3. The total delay in the network per unit time is denoted by DT and is
given by:

( , )

( )T ij ij
i j L

D D c
�

� �

Since the total traffic in the network is independent of the capacity assignment
procedure, we can minimize the average delay in the network by minimizing DT.

In Section  5 we will develop a heuristic algorithm and use a delay function based
on Kleinrock’s independence approximation  [15] which is described in the following
definition. We will employ the same approximation in Section  6 in order to describe a
few computational results regarding the optimal algorithm.

Definition 4. (Kleinrock’s independence approximation) When neglecting the
propagation and processing delay, Dij(cij) is given by:

( )

ij
ij ij

ij ijij ij

ij ij

f
c f

c fD c

c f

�

��

� �

As we have mentioned, slot allocation is dynamic and it is managed by the masters.
Accordingly, a capacity assignment algorithm has to determine what portion of the
slots should be allocated to each master-slave link. On the other hand, a scheduling
algorithm has to determine which master-slave links should use any given slot pair.
Hence, we define a scheduling algorithm as follows.

Definition 5. A Scheduling Algorithm determines how each slot pair is allocated. It
does not allow transmission on two adjacent links in the same slot pair.

The Bluetooth Specifications  [6] do not require that different masters’ clocks will
be synchronized. On the contrary, since the clocks not synchronized a guard time is
needed in the process of moving a bridge from one piconet to another. Yet, in order to
formulate a simple analytical model we assume the following.
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Assumption 1. The guard times are negligible.

This assumption allows us to consider a scheduling algorithm for the whole scatternet
(which master-slave links are active in each slot pair).

3 Formulation of the Problem

Scatternet graphs can be bipartite graphs or nonbipartite graphs  [4] (see Fig. 1). For
example, all the scatternets in which no master is allowed to be a bridge are bipartite1.
In this section, we shall show that the formulation of the capacity assignment problem
for nonbipartite scatternets is more complex than the formulation for bipartite
scatternets. We will also identify a few properties of the capacity vector.

Y

X

A B

Master

Slave

Slave which is also a Bridge

Master which is also a Bridge

C

Fig. 1. Scatternet graphs – A bipartite scatternet (A), a bipartite scatternet in which no master is
also a bridge (B), and a nonbipartite scatternet (C)

3.1 Bipartite Scatternets

When a bipartite scatternet graph is given, the nodes can be partitioned into two sets S
and T such that no two nodes in S or in T are adjacent. Accordingly, the problem of
scatternet capacity assignment in bipartite graphs (SCAB) can be formulated as
follows.

Problem SCAB
Given: Topology of a bipartite graph and flows (fij).
Objective: Find capacities (cij) such that the average packet delay is minimized:

( , )

min min ( )T ij ij
i j L

D D c
�

� � (1)

Subject to: ( , )ij ijc f i j L� � � (2)

( )

1ij
j Z i

c i S
�

� � �� (3)

1 Although it may be inefficient, according to Bluetooth specifications  [6] a master can be a
bridge.
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( )

1ij
j Z i

c i T
�

� � �� (4)

The first set of constraints (2) is obvious. Constraints (3) and (4) result from the
TDD scheme and reflect the fact that the total capacity of the links connected to a
node cannot exceed the maximal capacity of a link. Due to Assumption 1, in (3) and
(4) we neglect the guard time needed in the process of moving a bridge from one
piconet to another. Notice that it is easy to see that the polytope defined by (2) - (4) is
contained in the bipartite matching polytope  [19].

3.2 Nonbipartite Scatternets

We shall now show that a formulation similar to the formulation of Problem SCAB is
not valid for nonbipartite scatternets. A simple example of a nonbipartite scatternet,
given in  [1], is illustrated in Fig. 2-A. In this example, constraint (2) and the
constraint: 

( )

1ij
j Z i

c i N
�

� � �� (5)

are not sufficient in order for the capacity vector to be feasible. The capacities
described in Fig. 2-A satisfy (2) and (5) but are not feasible because in any scheduling
algorithm no two neighboring links can be used simultaneously. If links (1,2) and
(1,3) are in use for distinct halves of the available time slots, there are no free slots in
which link (2,3) can be in use. Thus, if c12 = 0.5 and c13 = 0.5, there is no feasible way
to assign any capacity to link (2,3), i.e., there is no scheduling algorithm that can
allocate the capacities described in the figure.

Baatz et al. [1] suggest that a methodology for finding a feasible (not necessarily
efficient) capacity assignment1 will be based on minimum coloring of a graph. They
do not develop this methodology and indicate that: “the example gives an idea of how
complex the determination of piconet presence schedules may get”. In this paper, we
propose a formulation of the problem that is based on the formulations of Problem
SCAB and of the matching problem  [19]. This formulation allows obtaining an
optimal capacity allocation.

1

32

f = 0.2
c = 0.4

f = 0.2
c = 0.4

f = 0.1
c = 0.2

54

f = 0.2
c = 0.4

f = 0.2
c = 0.4

f = 0.2
c = 0.4

B

1

32

f = 0.2
c = 0.5

f = 0.2
c = 0.5

f = 0.2
c = 0.5

A

52

f = 0.2
c = 0.4

f = 0.2
c = 0.4

f = 0.2
c = 0.6

f = 0.2
c = 0.4

f = 0.2
c = 0.4f = 0.2

c = 0.6
C

43

61

7
f = 0.1
c = 0.2

f = 0.1
c = 0.2

Fig. 2. Examples of scatternets with capacity vectors which are not feasible

1 Baatz et al. [1] refer to piconet presence schedule instead of capacity assignment. A piconet
presence schedule determines in which parts of its’ time a node is present in each piconet. It is
very similar to link capacity assignment as it is described in this paper.
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It is now obvious that the formulation of the capacity assignment problem for
nonbipartite scatternets requires additional constraints to the constraints described in
Problem SCAB. For example, one could conclude that the capacity of the links
composing the cycle described in Fig. 2-A should not exceed 1. Moreover, one could
further conclude that the total capacity of links composing any odd cycle should not
exceed: (|links|-1)/2. Namely:

( , )

1
, odd cycle

2ij
i j C

C
c C L C

�

�
� � �� (6)

However, in the examples given in Fig. 2-B and Fig. 2-C, although the capacities
satisfy (6), they cannot be scheduled in any way. Thus, in the following theorem we
define a new set of constraints (9) such that the capacity of links connecting nodes in
any odd set of nodes U will not exceed (|U|-1)/2. These constraints and the proof of
the theorem are based on the properties of the matching problem.

Theorem 1. The capacity vector must satisfy the following constraints:

( , )ij ijc f i j L� � � (7)

( )

1ij
j Z i

c i N
�

� � �� (8)

( , ) ( )

1
, , 3

2ij
i j L U

U
c U N U odd U

�

�
� � � �� (9)

The proof appears in the appendix.

Notice that the polytope defined by (7) - (9) is included in the matching polytope
corresponding to the scatternet graph. Notice also that constraint sets (7) - (9) include
linearly dependent constraints. A similar theorem can be formulated without linearly
dependent constraints by using the properties of two-connected factor-critical graphs  
[17]. However, since that formulation does not provide more insight regarding the
problem and does not improve the optimal algorithm, we ignore it at this stage. We
should also point out that for bipartite scatternets the constraints described in
Theorem 1 reduce to constraints (2) - (4) described in Problem SCAB.

The scatternet capacity assignment problem (SCA) can now be formulated as
follows (for bipartite graphs it reduces to Problem SCAB).

Problem SCA
Given: Topology and flows (fij).
Objective: Find capacities (cij) such that the average packet delay is minimized: (1)
Subject to: (7) - (9)

3.3 Properties of the Capacity Vector

Each of the constraint sets (2) - (4) and (7) - (9) forms a convex set. These sets consist
of all the feasible capacity vectors ( c ) for the corresponding problem (SCAB and
SCA). A capacity vector that achieves the minimal delay will be denoted by *c .

Up to now we have formulated the problem and defined the conditions that must be
satisfied by a capacity vector. Yet, we have not shown that a feasible capacity vector
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has a corresponding scheduling algorithm. Namely, that it is possible to determine
which links are used in each slot pair such that no two adjacent links are active at the
same slot pair and the capacity used by each link is as defined by the capacity vector
( c ). This result is shown by the following proposition. We note that the proof of the
proposition and the transformation of a capacity vector to a scheduling algorithm are
based on the fact that the vertices of the matching polytope are composed of (0,1)
variables.

Proposition 1. If a capacity vector c satisfies (7) - (9), there is a corresponding
scheduling algorithm.
The proof appears in the appendix.

Finally, it is easy to see that due to Definition 2. 4, in an optimal allocation, some of
the nodes must utilize their full capacity (i.e. for such nodes (3),(4) or (8) is satisfied
with equality). Such nodes are connected to at least one node which has a single
neighbor. On the other hand, in a scatternet consisting of more than two nodes, nodes
that have a single neighbor cannot utilize their full capacity. For example, in an
optimal allocation, master X in Fig. 1 must utilize its full capacity and slave Y cannot
utilize its full capacity. These two properties are useful when trying to solve simple
capacity assignment problems in scatternets composed of a few nodes and a few links,
using the method of Lagrange multipliers. They are also useful in order to construct
optimal capacity assignment algorithms.

4 Optimal Algorithm for Problems SCA and SCAB

In this section a centralized scatternet capacity assignment algorithm for finding an
optimal solution of Problem SCA, defined in Section  3.2, is introduced1. The
algorithm is based on the conditional gradient method also known as the Frank-Wolfe
method [2, p. 215], which was used for the development of the flow deviation
algorithm  [11]. Therefore, we refer to the algorithm as the scatternet capacity
deviation (SCD) algorithm.

Gerla et al.  [12] and Pazos-Rangel and Gerla  [20] have used the Frank-Wolfe
method in order to develop bandwidth allocation algorithms for ATM networks.
Following their approach, we shall now describe the optimality conditions and the
algorithm.

Since the objective of Problem SCA is to minimize a convex function (DT) over a
convex set (7) - (9), any local minimum is a global minimum. Thus, necessary and
sufficient conditions for the capacity vector *c to be a global minimum are derived
from the optimality conditions of convex functions over convex sets [2, p. 194] and
are formulated as follows.

1 The algorithm for the solution of Problem SCAB is similar (the changes are outlined in the
sequel).
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Proposition 2 The capacity vector *c minimizes the average delay for Problem
SCA, if and only if:
��

*c satisfies constraints (7) - (9) of Problem SCA.
�� There are no feasible directions of descent at *c ; i.e. there does not exist c such

that1:
* *( )( ) 0TD c c c� � � (10)

( )

1ij
j Z i

c i N
�

� � �� (11)

( , ) ( )

1
, , 3

2ij
i j L U

U
c U N U odd U

�

�
� � � �� (12)

As we have mentioned, the proposition is derived from a well-known theorem and,
therefore, its proof is omitted. Notice that equation (10) means that DT cannot be
reduced by moving to c , whereas (11) and (12) restrict c to the feasible region.
Notice also that due to the property described in Definition 2. 3 (DT ��� when
ci � fi), the first set of constraints of Problem SCA (7) is included in the objective
function as a penalty function and is not needed in order to restrict c to the feasible
region. It is easy to see that a similar optimality condition holds for Problem SCAB
(explicitly, (11) and (12) should be replaced with (3) and (4)).

Proposition 1 suggests a steepest descent algorithm in which we can find a feasible
direction of descent c at any feasible point Kc by solving the following problem:

min ( )K
TD c c� (13)

s.t.

( )

1ij
j Z i

c i N
�

� � �� (14)

( , ) ( )

1
, , 3

2ij
i j L U

U
c U N U odd U

�

�
� � � �� (15)

0 ( , )ijc i j L� � � (16)

Since the constraint set (15) may include exponentially many constraints, this
problem cannot be easily solved using a linear programming algorithm such as the
simplex. Yet, since Dij'(cij) < 0 for all cij (according to Definition 2. 4), the formulation
of the problem conforms to the formulation of the maximum-weight matching
problem [19, p. 610], which has a polynomial-time algorithm (O(n 3)):

max ( )K
TD c c��� �� � (17)

s.t.

( )

1ij
j Z i

c i N
�

� � �� (18)

� �0,1 ( , )ijc i j L� � � (19)

1 *( )TD c� is the gradient of DT with respect to c evaluated at *c .
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This result and the optimality conditions are the basis for Algorithm SCD,
described in Fig. 3. The input to the algorithm is the scatternet topology, the flows
(fij), a feasible initial solution ( 0c ), and the tolerance (t). The output is the optimal
capacity vector (within the desired tolerance) - *c .

1 Set K = 0
2 Find the vector #c - the optimal solution of (17) - (19) (i.e. solve a

maximum-weight matching problem)
3 Find the value �

* that minimizes #( (1 ) )K
TD c c� �� � (�* may be

obtained by any line search method [2, p. 723])
4 Set 1 * * #(1 )K Kc c c� �

�
� � �

5 If #( )( )K K
TD c c c t� � � then stop

6 Else set K = K+1 and go to 2

Fig. 3. Algorithm SCD for obtaining an optimal solution to Problem SCA

We emphasize that unlike the flow deviation algorithm  [11], in which at each
iteration a feasible direction is found by solving a shortest path problem, in Algorithm
SCD there is a need to solve a maximum-weight matching problem (O(l2 n)) at each
iteration. In case Algorithm SCD is applied to Problem SCAB, the constraints (14) -
(16) reduce to the constraints of the bipartite maximum-weight matching problem.

5 Heuristic Algorithm for Problem SCAB

When considering bipartite scatternets (Problem SCAB), the initial solution for
Algorithm SCD, introduced in the previous section, can be obtained using a low
complexity heuristic centralized scatternet capacity assignment (HCSCA) algorithm,
presented in this section. In our experiments (see Section  6), the results of the
heuristic algorithm are very close to the optimal results.

The algorithm is based on the assumption that the delay function conforms to
Kleinrock’s independence approximation (i.e. the delay function presented in
Definition 4). It assigns capacity to links connected to bridges and to masters which
have at least two slaves. Accordingly, we define N ' as follows:

Definition 6. N ' is a subgroup of N consisting of bridges and masters which have at
least two slaves. Namely:

� �' ( ) 1N i i N j Z i� � � � �

We also define the slack capacity of a node as follows:

Definition 7. The slack capacity of node i is the maximal capacity which can be
added to links connected to the node. It is denoted by si and is given by:

( )

1i ij
j Z i

s c
�

� � �
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The algorithm selects a node from the nodes in N ' and allocates the slack capacity
to some of the links connected to that node. Then, it selects another node, allocates
capacity and so on. The process of capacity assignment will be described first and
then the process of node selection will be described.

Initially all the link capacities are equal to the flows on the links (cij = fij �(i, j)�L).
Once a node (k) is selected, the slack capacity of this node is allocated to its links
whose capacities have not yet been assigned (links in which ckj = fkj). Thus, capacity is
assigned to a link only once and the assignment affects the slack capacity of the
selected node as well as the slack capacity of the neighboring nodes. The slack
capacity is assigned to these links according to the square root assignment [15, p. 20]:

: ( ),

: ( ),

km km

k kj

kj kj kj kj

km
m m Z k c f

s f
c f j j Z k c f

f
� �

� � � � �

�
(20)

According to  [15] the square root assignment is the optimal capacity allocation.
Therefore, if the links, which are connected to node k and whose capacities have not
been assigned yet, were the only links in the network, the capacity would have been
assigned optimally.

There are various ways to define process of node selection, i.e. to determine the
order of capacity assignment to the nodes and, consequently, to the links connected to
them. For example, nodes can be selected according to their slack capacity or their
average slack capacity (slack per link). However, some of the possible selection
methodologies require taking special measures in order to ensure that the obtained
capacity vector is feasible (satisfies constraints (2) - (4) of Problem SCAB). We
propose a selection methodology that not only guarantees a feasible capacity vector
but also usually obtains a vector which is close to the optimal capacity vector. The
selection methodology is based on a useful property of the square root assignment
(20), described below.

Observe that when we use the delay function presented in Definition 4 and assign
the capacity according to (20), the delay derivative of link (k, j) after the capacity of
the links connected to k have been assigned is:

2 2

: ( ),

2

: ( ),

'( )
( )

km km

km km
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k kj m m Z k c fkj

kj kj kj
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D c f
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� �
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� � � �

� � � � � �� � � �
� � � � �

� � � �

�

�
(21)

It can be seen that Dkj'(ckj) is a function of the flows and the capacities of the links
connected to node k, and is independent of the specific value of ckj. Therefore, when
capacity is assigned to a subgroup of the links connected to a node (i) (links whose
capacities have not been assigned before), the delay derivatives (Dij'(cij)) of all these
links will be equal. Accordingly, we can define the delay derivative of a node as
follows.
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Definition 8. The delay derivative of node i is proportional to the absolute value of
the delay derivatives of the links1 connected to node i, whose capacities have not yet
been assigned. Its value is computed as if node i has been selected as the node whose
capacity has to be assigned and the capacities of these links have been assigned
according to (20). It is denoted by di and it is given by:

: ( ), im im

im
m m Z i c f

i

i

f

d
s

� �

�

�
(22)

We shall now define the notion of fully allocated node.

Definition 9. A fully allocated node is a node that all its link capacities have been
assigned2.

Node k, whose link capacities are going to be assigned, is selected from the nodes
in N ' which are not fully allocated. The delay derivatives (di’s) of all these nodes are
computed according to (22) and the node with the largest delay derivative is selected.
Notice that since the delay derivatives are computed according to Definition 8, the
delay derivative of a node is computed before the selection as if the node has been
selected and its link capacities have been assigned.

Consequently, the capacities of links with high absolute value of delay derivative,
whose delay is more sensitive to the level of capacity, are assigned first. Moreover,
the following proposition shows that the capacity vector obtained by the algorithm is
always feasible.

Proposition 3. Algorithm HCSCA results in an allocation { c } that satisfies
constraints (2) - (4) of Problem SCAB.
The proof appears in the appendix.

Algorithm HCSCA, which is based on the above methodology, is described in Fig.
4. The input to the algorithm is the topology and the flows (fij), and the output is a
capacity vector: c . It can be seen that the complexity of the algorithm is O(n2), which
is about the complexity of an iteration in the optimal algorithm (Algorithm SCD).

1 Set cij = fij �(i, j)�L

2 Set
: ( ),

'
not fully allocated

( )

arg max
1

im im

im
m m Z i c f

i N im
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3 Set
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kj kj kj kj
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m m Z k c f
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�

4 If there exists (i, j)�L such that cij = fij then go to 2
5 Else stop

Fig. 4. Algorithm HCSCA for obtaining a heuristic solution to Problem SCAB

1 According to Definition 2. 4 the delay derivative of a link is always negative.
2 Notice that a fully allocated node does not necessarily utilize its full capacity.
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6 Numerical Examples

The optimal algorithm (Algorithm SCD, presented in Section  4) and the heuristic
algorithm (Algorithm HCSCA, presented in Section  5) were implemented1 and tested
on several representative cases. In this section we briefly describe the numerical
results obtained for a few simple scatternets.

6.1 Bipartite Scatternets

Fig. 5 illustrates two bipartite scatternets whose capacity vectors were obtained by
both algorithms2. The results obtained by the algorithms for different flow values are
described in tables 1 and 2. We note that since the scatternet described in Fig. 5-A is
relatively simple, the optimal capacities can also be easily computed using the method
of Lagrange multipliers.

8

37

45

B

6 2

9

1

A

53

2

1

4

6

Fig. 5. Bipartite scatternets

Table 1. The results obtained by algorithms SCD and HCSCA for different flow values in the
scatternet described in Fig 5-A

Link (1,2) (2,3) (3,4) (4,5) (4,6) DT

Flows (fij) 0.25 0.45 0.4 0.2 0.1 -

Optimal capacities ( *
ijc ) 0.4713 0.5287 0.4713 0.3339 0.1948 15.01

Heuristic capacities ( ijc ) 0.4728 0.5272 0.4728 0.3331 0.1941 15.01

Flows (fij) 0.2 0.4 0.2 0.01 0.1 -

Optimal capacities ( *
ijc ) 0.3964 0.6036 0.3964 0.1283 0.4753 4.35

Heuristic capacities ( ijc ) 0.3657 0.6343 0.3657 0.1360 0.4983 4.45

1 For the implementation of Algorithm SCD, we used a delay function based on Kleinrock’s
independence approximation (presented in Definition 4).

2 An arbitrary vector was used as an initial solution to Algorithm SCD and the tolerance (t) was
0.005.
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Table 2. The results obtained by algorithms SCD and HCSCA for different flow values in the
scatternet described in Fig 5-B

Link (1,2) (2,3) (2,4) (4,5) (5,6) (5,7) (3,8) (7,8) (8,9) DT

Flows (fij) 0.02 0.4 0.5 0.45 0.05 0.45 0.3 0.4 0.05 -

Optimal capacities ( *
ijc ) 0.0291 0.4405 0.5304 0.4696 0.0576 0.4728 0.3975 0.5126 0.0898 85.68

Heuristic capacities ( ijc ) 0.0294 0.4420 0.5286 0.4714 0.0571 0.4714 0.3975 0.5126 0.0898 86.03

Flows (fij) 0.1 0.2 0.5 0.4 0.1 0.3 0.1 0.2 0.1 -

Optimal capacities ( *
ijc ) 0.1608 0.2860 0.5531 0.4469 0.1560 0.3971 0.2757 0.4487 0.2757 28.73

Heuristic capacities ( ijc ) 0.1610 0.2862 0.5528 0.4472 0.1559 0.3969 0.2757 0.4485 0.2757 28.73

In general, there are cases in which Algorithm SCD converges after a large number
of iterations. However, we note that after a few iterations, the algorithm usually
converges to a vector which is close to the optimal vector. Moreover, it was found
that there is usually a small difference between the optimal average delay and the
average delay obtained by the heuristic algorithm. Accordingly, when the vector
obtained by Algorithm HCSCA is used as an initial solution for Algorithm SCD, the
algorithm converges relatively fast. Table 3 shows the number of iterations required
for obtaining the optimal solution when the initial solution is an arbitrary vector and
when it is computed by Algorithm HCSCA.

Table 3. The number of iterations required for obtaining the optimal solution by Algorithm
SCD with an arbitrary initial solution and with an initial solution computed by Algorithm
HCSCA

Initial solution
Scatternet and flows Arbitrary vector Obtained by HCSCA
Fig 5-A and upper part of Table 1 220 84
Fig 5-A and lower part of Table 1 30 2
Fig 5-B and upper part of Table 2 4,621 196
Fig 5-B and lower part of Table 2 1,194 118

6.2 Nonbipartite Scatternets

Fig. 6 illustrates two nonbipartite scatternets whose capacity vectors were obtained by
Algorithm SCD1 (the figure includes the given flows and the capacities found by the
algorithm). Table 4 includes the values of total delay and the number of iterations
required to obtain the optimal solutions.

It can be seen that in the scatternet described in Fig. 6-A, no node utilizes its full
capacity (every node is idle for at least 10% of its time slots). In the scatternet
described in Fig. 6-B, only two nodes utilize their full capacity (nodes 2 and 5).
Moreover, in this scatternet significantly different capacities are allocated to links
with identical flow requirement. Allocations in which most of the nodes are idle
during some of the time slots are typical to nonbipartite scatternets. Thus, it seems

1 An arbitrary vector was used as an initial solution and the tolerance (t) was 0.005.
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that a scatternet with a nonbipartite topology may utilize its resources in an inefficient
manner. However, this issue requires further research.
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Fig. 6. Nonbipartite scatternets and the optimal capacities (c*) found by Algorithm SCD for
given values of flow ( f )

Table 4. The total delay (DT) and the number of iterations required for obtaining the results
described in Fig. 6

DT Number of iterations (K)
Scatternet described in Fig. 6-A 53.48 150
Scatternet described in Fig. 6-B 13.21 1,367

7 Conclusions and Future Study

This paper analytically analyzes the problem of capacity assignment in Bluetooth
scatternets. The problem has been formulated for bipartite and nonbipartite
scatternets, using the properties of the matching polytope. Then, we have introduced a
centralized algorithm for obtaining its optimal solution. A heuristic algorithm for the
solution of the problem in bipartite scatternets, which has a relatively low complexity,
has also been described. Finally, several numerical examples have been described.

The work presented here is the first approach towards an analytical analysis of the
scatternet performance. Hence, there are still many open problems to deal with. For
example, distributed protocols are required for actual Bluetooth scatternets and,
therefore, future study will focus on developing optimal and heuristic distributed
protocols. Moreover, according to Assumption 1, the guard times are negligible. This
is of course not the situation in a real scatternet. Thus, in the future we intend to
investigate the effect of more realistic assumptions on the formulation of the problem
and its solution.

Furthermore, recall that Definition 2 describes a few assumptions regarding the
properties of the delay function, and that we have assumed that the average packet
delay on a bi-directional link is a function of the total link flow and capacity. An
analytical model for the computation of bounds on the delay is required in order to
evaluate these assumptions. In addition, it might enable developing efficient piconet
scheduling algorithms.

Finally, we note that in the future, capacity assignment protocols will interact with
protocols responsible for scatternet formation, scheduling, and routing. Thus, the
main challenge is to develop a combined capacity assignment and inter-piconet
scheduling protocol that will operate efficiently in the presence of other protocols.
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Appendix

Proof of Theorem 1

According to Assumption 1, the guard times are negligible. Consequently, when a
bridge moves from one scatternet to another it can start transmitting (in case it is a
master) or receiving (in case it is a slave) immediately. Thus, according to
Assumption 1 the slots at neighboring scatternets are synchronized and, therefore, the
slots throughout the scatternet are synchronized.

Hence, we can define the following binary variables:

� �
1 if link ( , ) is active at slot pair

( , ) , 1,2,3,....
0 otherwise

t
ij

i j t
x i j L t� � � � � (23)

In slot pair t (an even slot and an odd slot) an active link (i, j) can be in one of the
following states:
�� The master transmits and the slave responds.
�� The master or the slave transmits during the two slots a part of a 3 or 5 slots

packet.
Therefore, an active link uses both slots in the slot pair. Thus, the definition of cij

conforms to:

1lim

n
t
ij

t
ij

n

x
c

n
�

��

�

�
(24)

Moreover, in any slot pair t no more than a single link connected to a node can be
active and, therefore, the following must hold for every t:

( )

1t
ij

j Z i

x i N
�

� � �� (25)

For a given t, constraint set (25) and the definition of the (0,1) variables in (23)
describe a matching polytope, corresponding to the scatternet graph. This polytope
can also be described by (25) and the following constraints  [19]:

( , ) ( )

1
, , 3

2
t
ij

i j L U

U
x U N U odd U

�

�
� � � �� (26)

0 ( , )t
ijx i j L� � � (27)

Combining (25) and (26) with (24), and adding the flow constraints:
cij > fij �(i, j)�L completes the proof. ■

Proof of Proposition 1

Constraint sets (7) - (9) define a polytope contained in the matching polytope
corresponding to the scatternet graph. The matching polytope has only (0,1) vertices
and, therefore, a vertex vector ( kc ) can be interpreted as a regime in which the links
whose capacity is 0 are not active and the links whose capacity is 1 are active. Since a
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vertex is a feasible solution of the matching problem, no two adjacent links can be
active.

Since every feasible capacity vector c satisfies (7) - (9), it is a convex
combination of the vertices of the matching polytope (denoted here by 1 2, , , mc c c� ).
Namely:

1 1 2 2
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1

0

m m

m

k
k

k

c c c c
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�

� �

�

�

In the proof of Theorem 1, we have mentioned that according to Assumption 1, the
slots throughout the scatternet are synchronized. Therefore, every feasible capacity
vector c can be interpreted as a scheduling regime, such that �k of the slot pairs the
links whose value in kc equals 1 are active and the other links are not active. In this
scheduling regime no two neighboring links are active at the same slot pair and the
capacity used by each link is as defined by c . ■

Proof of Proposition 3

We shall introduce a series of lemmas regarding Algorithm HCSCA (described in Fig.
4) that are required in order to prove the proposition. The first lemma establishes the
basis for the proof and the other lemmas construct a proof by induction. Note that in
this section we use the notion of fully allocated node (defined in Definition 9) and
refer to a node which is not fully allocated as a partially allocated node. We also refer
to an execution of steps 2-4 of the algorithm as iteration.

Lemma 1. If in step 2 of Algorithm HCSCA, node p is selected and in step 3 capacity
is allocated to the link (p,q), then this capacity is smaller or equal to the capacity
which would have been allocated to the link, in case node q had been selected in step
2.

Proof: Denote by cpq[p] the capacity of link (p,q) as it is allocated in step 3, following
the selection of node p in step 2. Similarly, denote by cpq[q] the capacity of link (p,q)
that would have been allocated in step 3, if node q had been selected in step 2.

In step 2, dp and dq are computed as if the nodes have been selected and the
capacities have been assigned. Since node p is selected in step 2 and due to the
selection procedure: dp � dq . According to ( 21 ) and Definition 8: Dpq'(cpq[p]) = �dp

2.
Therefore: Dpq'(cpq[p]) � Dpq'(cpq[q]).

According to Definition 2. 2, Dij'(cij) is an increasing function of cij and therefore:
cpq[p] � cpq[q] ■

Lemma 2. If before an iteration, si > 0 for every partially allocated node i, then after
the iteration, si > 0 for every partially allocated node i.

Proof: In step 3, the capacities of the links connected to a certain partially allocated
node (k) are computed. This step affects the slack capacity of node k and of the
neighboring nodes connected to k by a link whose capacity has not yet been assigned.
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Among these nodes, the only nodes that will still be partially allocated nodes after the
iteration are neighboring nodes that have more than one link whose capacity has not
yet been allocated.

Consider a node p, connected to node k by a link whose capacity has not yet been
assigned, that has more than one link whose capacity has not been allocated (without
loss of generality we assume that such a node exists). It follows from Lemma 1 that
ckp is smaller or equal to the capacity that would have been allocated to link (k,p), if
node p had been selected in step 2. Due to (20), if node p had been selected in step 2,
after the iteration the following would hold:

( )

1pi
i Z p

c
�

��

Therefore, when node k is selected in step 2, after the iteration the following holds:

( )

1pi
i Z p

c
�

��

and obviously: sp > 0 also holds.
After the iteration, si > 0 for every partially allocated node i which is not a

neighboring node of k.1 We have shown that after the iteration, si > 0 for every
partially allocated node i which is a neighboring node of k. Hence, after the iteration,
si > 0 for every partially allocated node i. ■

Lemma 3. Algorithm HCSCA results in an allocation { ĉ } that satisfies
cij > fij �(i, j)�L.

Proof: Problem SCAB has a feasible solution only if after step 1: si > 0 �i�N.
Therefore, according to Lemma 2, si > 0 for every partially allocated node i at the end
of any iteration.

In step 3 of any iteration, the capacities of the links connected to a certain partially
allocated node (k) are computed. In this step the capacity is allocated to links,
connected to node k, whose capacities have not yet been assigned. Due to (20) and the
fact that sk > 0, the capacity is allocated such that ckj > fkj for each of these links. It
follows that when the algorithm halts: cij > fij �(i, j)�L. ■

Lemma 4. Algorithm HCSCA results in an allocation { ĉ } that satisfies: 

( )

1ij
j Z i

c i N
�

� � ��  (28)

Proof: In step 3 of any iteration, the capacities of the links connected to a certain
partially allocated node (k) are computed. Then, node k becomes a fully allocated
node. Due to (20), after the iteration the following holds:

( )

1ki
i Z k

c
�

��

Other nodes that may become fully allocated are neighbors of node k connected to
k by a link whose capacity has not been assigned. There could be two types of such a
neighboring node p:

1 The slack capacities of these nodes are not affected by the iteration.
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�� A node p such that p � N ' (node p is neither a relay nor a master with at least two
slaves). It is obvious that for such a node the following holds:

( )

1pi
i Z p

c
�

�� (29)

�� A node p such that p � N ' and the only link whose capacity has not been assigned
until the iteration is (k,p). It follows from Lemma 1 that ckp is smaller or equal to
the capacity that would have been allocated to the link, if node p had been selected
in step 2. Thus, for such a node (29) is satisfied.
Thus, if before the iteration:

( )

1 , fully allocatedij
j Z i

c i N i
�

� � ��  (30)

after the iteration, (30) is still satisfied.
Problem SCAB has a feasible solution only if after step 1 the following holds:

( )

1ij
j Z i

c i N
�

� � ��  

Thus, (30) holds after the first iteration and, consequently, it is satisfied at the end of
any iteration. Since at the end of the last iteration all the nodes are fully allocated, at
that stage (28) holds. ■
Proof of Proposition 3: The proposition follows from lemmas 3 and 4. ■
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