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Abstract A major issue in the design and operation of ad hoc

networks is sharing the common spectrum among links in the

same geographic area. Bandwidth allocation, to optimize the

performance of networks in which each station can converse

with at most a single neighbor at a time, has been recently

studied in the context of Bluetooth Personal Area Networks.

There, centralized and distributed, capacity assignment

heuristics were developed, with applicability to a variety of

ad hoc networks. Yet, no guarantees on the performance of

these heuristics have been provided. In this paper, we extend

these heuristics such that they can operate with general con-

vex objective functions. Then, we present our analytic results

regarding these heuristics. Specifically, we show that they are

β-approximation (β < 2) algorithms. Moreover, we show

that even though the distributed and centralized algorithms

allocate capacity in a different manner, both algorithms con-

verge to the same results. Finally, we present numerical re-

sults that demonstrate the performance of the algorithms.
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1. Introduction

In the last four decades, much attention has been given to

the research and development of bandwidth allocation and

scheduling schemes for wired and wireless networks [6, 23].

The bandwidth allocation problem in wireless ad hoc net-

works significantly differs from the problem in static commu-

nication networks. For instance, one of the major problems

in the design and operation of ad hoc networks is sharing the

common spectrum among links in the same geographic area.

A unified framework for dealing with many variations of this

problem has been presented in [23]. In this paper, we focus on

bandwidth allocation in networks in which each station can
converse with at most a single neighbor at a time. Namely,

we focus on networks in which the set of active links at any

point of time constitutes a matching1 in the network graph.

This bandwidth allocation problem has been studied by

Hajek and Sasaki [11], who proposed centralized algorithms

for finding a minimum length schedule to satisfy given traf-

fic requirements. The problem has been recently revisited

mainly due to the emergence of Bluetooth (IEEE 802.15.1)

Personal Area Networks (PANs) [8] and its solution is rel-

evant to other technologies in which a node can communi-

cate with at most a single neighbor at a time (such as IEEE

802.15.3 [15]).

In this paper we mainly focus on bipartite network graphs,

rather than on networks operating according to a specific

technology. Yet, since most of the recent research regard-

ing the considered problem has focused on PANs, we briefly

review the the main characteristics of Bluetooth and IEEE

802.15.3. Bluetooth enables portable mobile devices to con-

nect and communicate wirelessly via short-range ad-hoc

1 A set of links is a matching, if no two links are incident to the same
node.
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Fig. 1 An example of a Bluetooth scatternet composed of 4 piconets

networks. Since the radio link is based on frequency-hop

spread spectrum, multiple channels (frequency hopping se-

quences) can co-exist in the same wide band without inter-

fering with each other. Two or more units sharing the same

channel form a piconet, where one unit acts as a master con-

trolling the communication in the piconet and the others act

as slaves. Bluetooth uses a slotted scheme where the only al-

lowed communication is between a master and a slave and the

master-to-slave and slave-to-master transmissions happen in

alternate slots. Connected piconets in the same geographic

area form a scatternet (see for example Fig. 1). In a scat-

ternet, a unit can participate in two or more piconets, on a

time-sharing basis, and even change its role when moving

from one piconet to another (we refer to such a unit as a

bridge).

Another PAN technology is IEEE 802.15.3 [15], whose

Medium Access Control (MAC) standard is expected to

be used as one of the Ultra WideBand MAC standards

[19, 22]. The basic topology (piconet) is a collection of de-
vices (DEVs) operating together with one PicoNet Coordi-
nator (PNC), which allocates network resources. The timing

is based on a superframe which is comprised of three main

sections: the beacon, the optional Contention Access Period,

and the Channel Time Allocation Period (Fig. 2 illustrates the

structure of the superframe). The beacon is used to carry con-

trol information to the entire piconet. The Contention Access

Period is optional and is managed according to a CSMA/CA

mechanism. The Channel Time Allocation Period is com-

posed of Channel Time Allocations (CTAs), that are used for

isochronous streams and asynchronous data connections, as

well as Management CTAs (MCTAs) that are used for com-

mands. The CTAs are allocated by the PNC according to the

DEVs requests and can be used for PNC-DEV communi-

cation as well as for inter-DEV communication. The IEEE

802.15.3 standard supports the operation of a few piconets

in the same geographic area. However, the mechanisms for

inter-piconet communication are out of the scope of the

standard.

Efficient network operation requires determining the ca-

pacities that should be allocated to each link (e.g. portion of

slots in Bluetooth or allocation of CTAs in IEEE 802.15.3),

such that the network performance is optimized. The need to

find a feasible capacity allocation in Bluetooth scatternets has

been identified by Baatz et al. [3]. In [29] the scatternet ca-

pacity assignment problem has been formulated as a problem

of minimizing a convex function over a convex set contained

in the matching polytope (similar formulations appear in [2]

and [26]) and optimal as well as heuristic algorithms for its

solution have been proposed. Sarkar and Tassiulas [25, 26]

have studied the problem of maxmin fair allocation of band-

width in networks in which a node can converse with at most

a single neighbor at a time (similarly to the case in Blue-

tooth and in specific IEEE 802.15.3 networks). Finally, [9]

extended the model of Hajek and Sasaki [11] by replacing

the network graph with a SINR condition (i.e. links can be

simultaneously active, if a given signal to interference and

noise ratio is exceeded when transmitters use optimally cho-

sen transmit powers).

The work in [29] presents distributed and centralized

heuristics for the solution of the capacity assignment prob-

lem in Bluetooth scatternets, but does not include a detailed

analysis of the performance of the algorithms. In addition,

these heuristic algorithms have been developed under the as-

sumption that Kleinrock’s approximation assumption holds.

As argued by Sarkar and Tassiulas [25, 26], although the al-

gorithms have been developed in the context of Bluetooth

scatternets, they can be applied to any ad hoc network in

which a node transmits to a single neighbor at a time, and in

which multiple transmissions can take place as long as they

do not share a common node. Therefore, as mentioned above,

in this paper we focus on network graphs and not necessarily

on Bluetooth scatternets. We make similar assumption to the

ones made in [29]. Namely, the analysis is based on a static

model with stationary flows and unchanging topology. We

also assume that the network graph is bipartite2 and that the

capacities allocated to the links are the total bi-directional

capacities. This assumption holds in many networks of the

considered type. Specifically, in [7] and [29] it is shown that

Bluetooth scatternet topologies which are nonbipartite may

result in poor bandwidth utilization.

First, we extend the heuristics, presented in [29], such

that they can operate with general convex objective func-

tions. We then show that an optimal solution (to a degree of

accuracy of 1/M , where M is a large constant) can be ob-

tained in polynomial time. Yet, since in wireless networks

there is no central authority responsible for network opti-

mization and since the polynomial algorithms do not easily

lend themselves to distributed implementation, we focus on

the heuristic algorithms.

We analyze the performance of these heuristics and show

that they are actually β-approximation (β < 2) algorithms

2 A graph is called bipartite, if there is a partition of the nodes into two
disjoint sets S and T such that each edge connects a node in S with a
node in T .
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superframe in IEEE 802.15.3

for the solution of the capacity assignment problem. An im-

portant property regarding the tightness of the upper bound

on their performance is also presented. Then, we show that

although they allocate capacity in a different order, the dis-

tributed algorithm converges to the same results as the cen-

tralized one. Finally, numerical results are presented.

As mentioned above, Hajek and Sasaki [11] have pro-

posed centralized algorithms for finding a minimum length

schedule to satisfy given traffic requirements. In our context,

the scheduling problem studied in [11] can be viewed as a

feasibility test. Namely, given a set of capacities (larger than

the required flows), the algorithm provided in [11] can verify

whether or not these capacities could be allocated (without

violating the capacity constraints of the nodes and the net-

work). Recently, Sarkar and Tassiulas [25, 26] have proposed

maxmin fair scheduling algorithms for a similar setting. We

extend these models and try to obtain a set of capacities which

is not only feasible but also minimizes a general non-linear
objective function (e.g. average delay). The main contribution

of this paper is a rigorous analysis of this problem as well as

of centralized and distributed approximation algorithms for

its solution.

In the specific context of Bluetooth scatternets, we view

bandwidth allocation algorithms as the missing link between

topology construction and scheduling algorithms (see the

discussion in [29]). Numerous topology construction and

scheduling algorithms for Bluetooth scatternets have been

recently proposed (see for example the reviews in [4] and

[27]). Since analysis of algorithms tailored for Bluetooth

scatternets has been done mostly via simulation, an analytical

approach that provides rigorous bounds on the performance

is of great importance. Therefore, throughout the paper, we

try to map the connections between the analyzed algorithms

and Bluetooth scatternets. In addition, we note that the im-

plementation of the algorithms in networks based on IEEE

802.15.3 will be possible only in the case inter-DEV com-

munication is not used and DEVs do not operate as PNCs.3

This paper is organized as follows. Section 2 presents the

model and the formulation of the problem. In Section 3,

we show that the problem can be solved by centralized

polynomial-time algorithms. The heuristic algorithms pre-

sented in [29] are reviewed and extended for a general ob-

jective function in Section 4. In Section 5, we show that

3 If inter-DEV communication is allowed or if a DEV can also be a
PNC, the set of active links does not necessarily constitutes a matching
in a bipartite graph.

the heuristic algorithms are β-approximation (β < 2) algo-

rithms. In Section 6, we show that the distributed and cen-

tralized algorithms converge to the same results. Section 7

presents numerical results and Section 8 summarizes the

results.

2. Model and problem formulation

2.1. Model and preliminaries

We model the network by an undirected bipartite graph

G = (N , L), where N denotes the collection of nodes
{1, 2 , . . . , n} and L denotes the set of bi-directional links.

We denote by I (i) the set of links e = (i, j) ∈ L that are in-

cident on node i . We concentrate on the total bi-directional

link capacity. Hence, we assume that the performance of a

link (e.g. the average packet delay) is a function of the total

link flow and of the total link capacity. Let Fe be the aver-

age bi-directional flow on link e and let Ce be the capacity

of link e (the units of F and C are bits/second). We assume

that the average bi-directional flow is positive on every link

(Fe > 0 ∀ e ∈ L). We define fe as the ratio between Fe and

the maximal possible flow on a link 4. We also define ce as

the ratio between Ce and the maximal possible capacity of a

link. It is obvious that 0 < fe ≤ 1 and that 0 < ce ≤ 1. We

shall refer to fe as the flow on link e and to ce as the capacity
of link e.

The objective of the capacity assignment algorithms, an-

alyzed in this paper, is to minimize the sum of non-linear

decreasing functions of the links’ capacities. The function of

the capacity of link e shall be denoted by De. We assume that

the flow rates ( fe) are given and that De is a function of the

link capacity ce only. The derivative of De(ce) is denoted by

D′
e(ce). We assume the following properties of the function

De(·)

Definition 1. De(·) is defined such that all the following hold:� De is a nonnegative continuous decreasing function of ce

with continuous first and second derivatives.� De is convex.� limce→ fe = ∞.

4 For example, currently the maximal flow on a symmetrical Bluetooth
link is 867.8 Kb/s.
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One possible application of the analyzed algorithms is to

minimize the average delay in the network. Another appli-

cation is to attain proportional fair [17] capacities. In case

one wishes to minimize the average delay, De should be

defined as the total delay per unit time of all traffic pass-

ing through link e. Since the total traffic in the network is

independent of the capacity assignment procedure, we can

minimize the average delay by minimizing the total delay

(i.e. by minimizing
∑

e∈L De(ce)). For convenience, we shall

refer to the function that we wish to minimize as the delay.

We note that the properties presented in Definition 1 con-

form to the analytic and simulation results regarding packet

delay in Bluetooth piconets presented in [12, 21, 30], and

[31].

Alternatively, if one wishes to provide some degree of

proportional fairness to the links, the following definition of

De can be used5:

De(ce) =
{

−we log (ce − fe) ce > fe

∞ ce ≤ fe
. (1)

where we is a positive constant.

The heuristic algorithms in [29] have been developed as-

suming that the delay function is based on Kleinrock’s in-
dependence approximation [18] which is described in the

following definition:

De(ce) =
{

fe/(ce − fe) ce > fe

∞ ce ≤ fe
. (2)

We will show that these algorithms can be extended for the

general functions described in Definition 1. This extension

is important, since it allows using the algorithms with dif-

ferent delay functions as well as with proportional fairness

functions. We note that in order to obtain numerical results
and to provide some insight regarding the performance of the

algorithms, we shall use Kleinrock’s approximation6.

2.2. Formulation of the problem

The objective of the capacity assignment algorithms is to

minimize the sum of non-linear decreasing functions of

the capacity (i.e. the functions—De(ce) ). Accordingly, the

5 Within the feasibility region that shall be defined in Section 2.2, (1)
conforms to Definition 1.
6 Kleinrock’s independence approximation has been shown to provide a
relatively good estimation for the delay in networks involving Poisson
stream arrivals. Therefore, it is used for the numerical evaluation of
approximation capacity assignment algorithms.

problem of capacity assignment in bipartite graphs (CAB)

is formulated as follows [29]7.

Problem CAB

Given: Topology of a bipartite graph and flows ( fe).

Objective: Find capacities (ce) such that the average delay is

minimized:

minimize
∑
e∈L

De (ce) (3)

subject to: ce > fe ∀ e ∈ L (4)∑
e∈I (i)

ce ≤ 1 ∀ i ∈ N . (5)

The second set of constraints (5) reflects the fact that the

total capacity of the links connected to a node cannot exceed

the maximal link capacity. Constraints similar to (5) appear

in problems formulated in [2, 25], and [26]. Henceforth we

will assume that there is a feasible solution to Problem CAB.

We note that the formulation of the problem is based on

the assumption that the flow rates are given by higher layer

protocols, based on the traffic statistics.

Notice that based on the Edmonds’ Theorem [10] and the

analysis of Hajek and Sasaki [11], for nonbipartite graphs it

is sufficient to replace (5) by∑
e∈I (i)

ce ≤ 2/3 ∀ i ∈ N . (6)

Although (6) is a sufficient condition for feasible capacity

allocation in nonbipartite graphs, it is not a necessary condi-

tion, and therefore, the obtained capacity allocation may not

be optimal.

We note that when considering Bluetooth scatternets, one

might want to take into account the time that is wasted in

the process of moving a bridge from one piconet to another

(known as the guard time). In (5) we neglect these guard

times. In case they should be taken into account, (5) should

be replaced with:∑
e∈I (i)

ce ≤ 1 ∀ i ∈ N − B∑
e∈I (i)

ce ≤ b ∀ i ∈ B,

where B is the set of bridges and b is the normalized capacity

available to links connected to a bridge (b < 1).

In order to present an equivalent formulation of Problem

CAB, we define the slack capacity of a node as follows:

7 In [29] the problem is referred to as scatternet capacity assignment
in bipartite graphs (SCAB). In order to emphasize the generalization
of the analysis, we shall omit the term scatternet from the names of the
problem and the algorithms.
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Definition 2. The slack capacity of node i is the maximum

capacity which can be added to links connected to the node.

It is denoted by si and is given by si = 1 − ∑
e∈I (i) ce.

8

In both algorithms, considered in this paper, all link ca-

pacities are initially equal to the flows on the links (ce =
fe, ∀ e ∈ L). Therefore, by definition, initially (before the

first phase of any algorithm) si = 1 − ∑
e∈I (i) fe. Using the

definition of si and setting τe = ce − fe, e ∈ L , we obtain

the following formulation of Problem CAB:

minimize
∑
e∈L

De(τe) (7)

subject to:
∑

e∈I (i)

τe ≤ si ∀i ∈ N

τe > 0 ∀e ∈ L .

We denote by τ ∗
e the optimal solution to (7). As mentioned

before, we assume that the problem has a feasible solution

and therefore, si must be greater than zero for all i ∈ N . Thus,

0 < si ≤ 1 for all i . Additionally, since by definition fe > 0

and ce ≤ 1, τe < 1, for all e.

3. Transformation to a flow problem

In this section we show that Problem CAB can be transformed

to a minimum cost flow problem with a separable convex

objective function. The transformation is based on creating

a super-source and a super-sink as described in Fig. 3 and

on using directional edges instead of bi-directional edges.

The super-source is connected by directed edges to all the

nodes in one of the sets composing the bipartite graph. The

capacities of these edges are defined as the slack capacities

(si ) of the nodes to which they are connected. Similarly, the

nodes in the other set are connected to a super-sink by edges

with limited capacity. The edges connecting the nodes of the

bipartite graph have unlimited capacity. The super-sink and

super-source are also connected by an edge with unlimited

capacity. The flow values in the transformed network are τe.

The cost of a flow τe traversing an edge e connecting the

nodes of the bipartite graph is De(τe). The cost of a flow on

any other edge is 0. A minimum cost flow in the transformed

network provides a solution to Problem CAB.

The flow problem presented above is a specific case of

the convex cost flow problem discussed by Ahuja et al. [1,

p. 556]. In [1] a polynomial-time algorithm for finding an

8 In case the algorithms are applied to nonbipartite graphs (i.e. (5) is
replaced by (6)), si should be defined as 2/3 − ∑

e∈I (i) ce. Similarly,
in case one wishes to take into account the guard times in Bluetooth
scatternets, si should be defined as b − ∑

e∈I (i) ce for bridge nodes.

Fig. 3 An example of the transformation of a bipartite graph to a flow
network

integer solution to the minimum cost flow with convex sepa-

rable objective function is provided. If one needs to obtain a

more accurate solution than the integer solution (as required

in our case), he could substitute each τe by ye = Mτe, for suf-

ficiently large value of M , and adjust the objective function

and constraints accordingly. If y∗
e denotes an integer optimal

solution of the transformed problem, τ ∗
e = y∗

e /M is an opti-

mal solution of the original problem (to a degree of accuracy

of 1/M).

The method presented in [1] is a variant of the algorithm

presented by Minoux [20] and it is in the framework of the

scaling algorithm given by Hochbaum and Shanthikumar

[14]. Another algorithm for the minimum cost flow prob-

lem, which is based on the framework of [14], was presented

in [13]. Finally, Karzanov and McCormick [16] studied a

problem which generalizes the minimum non-linear cost cir-

culation problem and provided algorithms that differ from

the algorithms provided in [14]. Their polynomial-time al-

gorithm for obtaining an integer solution can be used in order

to obtain a solution to Problem CAB.

To conclude, there are a couple of polynomial algorithms

that can be used for obtaining an integer solution to Problem

CAB, thereby providing a non-integer solution (to a degree

of accuracy of 1/M). However, these algorithms cannot be

easily modified in order to allow distributed implementation

as required in wireless networks. Therefore, in this paper
we focus on approximation algorithms that can be easily
implemented in a distributed manner.

4. Approximation algorithms

A capacity assignment algorithm has to obtain a solution to

Problem CAB (e.g. to determine what portion of the slots

should be allocated to each link). In this section we briefly

review the centralized and distributed approximation algo-

rithms for bipartite graphs, presented in [29]. We shall refer

to these algorithms as the heuristic centralized/distributed
capacity assignment algorithms (Algorithm HCCA/HDCA
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respectively). Since these algorithms have been developed

with an objective function based on Kleinrock’s approxima-

tion (2), we extend them here for a general objective function,

based on the delay function described in Definition 1.

In both algorithms, all link capacities are initially equal to

the flows on the links (ce = fe, ∀ e ∈ L). The algorithms se-

lect a node, allocate the slack capacity to the links connected

to it, whose capacities are equal to the flows, and update

the slack capacities of the neighboring nodes. Then, another

node is selected, capacity is allocated, the slack capacities are

updated, and so on. In both algorithms the nodes are selected

according to their delay derivatives, which are computed in

the following manner.

Every node i , that has to compute its delay derivative, ob-

tains the optimal solution to the following local optimization

problem:

minimize
∑

e∈I (i),ce= fe

De(τe) (8)

subject to:
∑

e∈I (i),ce= fe

τe ≤ si

τe > 0 ∀e ∈ I (i), ce = fe.

This solution determines how the slack capacity of this node

should be allocated to those adjacent links, whose capaci-

ties have not yet been assigned, in case the node would be

selected for allocating capacity. The problem described in

(8) is an optimization of a convex function over a simplex

[5, p. 359] (notice that in the optimal solution, the first con-

straint must hold with equality). Therefore, it has a unique

optimal solution that can be obtained by using the method

of Lagrange Multipliers and solving the following system of

equations:

D′
e(τ ∗

e ) = λ∗
i ∀e ∈ I (i), ce = fe (9)∑

e∈I (i),ce= fe
τ ∗

e = si (10)

Since the number of node’s i neighbors (|I (i)|) is usually

bounded by a small constant (e.g. 7 in Bluetooth), and since

there is only one constraint in the non-linear program (8),

the solution to any degree of accuracy ε (for a fixed con-

stant ε) can be found in constant time. In the specific case

that Kleinrock’s independence approximation is assumed,

the optimal solution follows the square root assignment [18,

p. 20]:

τ ∗
e = si

√
fe∑

l∈I (i), cl= fl

√
fl

∀e ∈ I (i), ce = fe . (11)

After solving (9)–(10) a node computes its delay derivative

according to the following definition.

Fig. 4 Algorithm HCCA for obtaining an approximate solution to
Problem CAB

Definition 3. The delay derivative of node i is denoted by di

and is given by: di = |λ∗
i | .

For example, under Kleinrock’s approximation9:

di =

⎛⎜⎝
∑

e∈I (i), ce= fe

√
fe

si

⎞⎟⎠
2

. (12)

After a node k is selected, the slack capacity of this node is
allocated to those adjacent links, whose capacities have not
yet been assigned, according to the solution of (8). Capacity

is allocated to a link only once. Hence, we define a fully allo-
cated node as a node whose all adjacent link capacities have

been assigned10. Accordingly, a non-fully allocated node is

a node which has at least one adjacent link whose capacity

has not been assigned.

4.1. Centralized algorithm (algorithm HCCA)

Node k, whose link capacities are next to be assigned, is se-

lected from the non-fully allocated nodes. The delay deriva-

tives di of these nodes are computed and the node with the

largest derivative is selected. Algorithm HCCA, which is

based on this methodology, is described in Fig. 4. The in-

put is the topology and the flows ( fe), and the output is

the link capacities: ce. It can be seen that the complexity of

the algorithm is O(n2), since as mentioned earlier for all i
the di values can be computed in constant time to any fixed

degree of accuracy. Notice that O(n2) is about the complex-

ity of a single iteration in the optimal algorithm, presented

in [29].

9 We note that in [29], where kleinrock’s approximation was always
assumed, di was defined as the square root of its current value under this
assumption (i.e. di = ∑

e∈I (i), ce= fe

√
fe/si ). This modification does

not affect the performance of the algorithms. Yet, it simplifies their
analysis.
10 A fully allocated node does not necessarily utilize its full capacity.
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Fig. 5 Algorithm HDCA—the
procedure executed by a node in
the allocation state

4.2. Distributed algorithm (algorithm HDCA)

In the distributed algorithm, a token is passed by the nodes

and only the node that holds the token is allowed to allocate

capacity. The algorithm is initiated by an arbitrary node that

creates the token. Once a node receives the token, it can

either allocate its slack capacity or decide to send the token

to a neighbor. The assignment of slack capacity is the same

as in the centralized algorithm. However, the selection of

the node which holds the token and the decision whether it

should allocate capacity or transfer the token to a neighbor

is different.

Each node keeps a stack, referred to as the parents stack,

that contains the identities of neighbors from which it had

previously received the token. Each node also maintains a

list of non-fully allocated neighbors. We define two possible

states for the node holding the token:� Allocation State—A non-fully allocated node enters this

state when it receives the token. At this time the node

pushes the identity of the neighbor, that sent it the token,

to the parents stack. The neighbor is referred to as one of

the node’s parents.11 The node decides to either transfer

the token to a neighbor or allocate capacity and then move

to the token transfer state.� Token Transfer State—A node enters this state after it allo-

cates capacity or when it receives the token from a neighbor

that popped its details from the stack. In this state, one of

the non-fully allocated neighbors will receive the token.

If all the neighbors are fully allocated, the token will be

returned to the first neighbor in the stack and this neighbor

will be popped from the stack. The algorithm halts when

all the neighbors are fully allocated and the stack is empty

(it always terminates at the initiating node).

Figure 5 presents the pseudocode of the procedure exe-

cuted by a node in the allocation state. Unlike the centralized

algorithm in which a node allocates capacity, if its di is the

largest in the network, in the distributed algorithm a node

allocates capacity, if it holds the token and its di is larger

than the di s of its neighbors.

Figure 6 describes the pseudocode of the procedure ex-

ecuted by a node in the token transfer state. A node enters

11 Unlike other distributed protocols (such as Depth First Search), a
node can have a few parents.

this state due to two possible events: capacity allocation by

the node or receipt of the token from a neighbor that popped

its details from the stack. In this state, it can either send the

token to its “best” neighbor or return it to one of its parents.

5. Approximation ratios

In this section we show that Algorithm HCCA is

β-approximation (β < 2) algorithm for the solution of Prob-

lem CAB. First, we present a new algorithm for the solution

of Problem CAB. Then, we prove that the new algorithm out-

performs any 2-approximation algorithm. Finally, we prove

that Algorithm HCCA obtains results which are equal or bet-

ter than the results obtained by the new algorithm. We note

that in this section we also present an interesting property of

the upper bound on the performance of the algorithms.

Recall that in (8) we have defined a set of |N | non-linear

programs, one for each i ∈ N . We denote the optimal solution

of (8) for node i by τ i
e and define the corresponding optimal

value OPTi of the objective function as

OPTi =
∑

e∈I (i)

De(τ i
e ) . (13)

We now present a simple algorithm, referred to as Algo-
rithm ACA (Approximate Capacity Assignment), for obtain-

ing an approximate solution to the Problem CAB. We denote

by τ̂e the solution obtained by Algorithm ACA. For every

node i , the algorithm computes the optimal solution to (8)

(i.e. τ i
e , ∀i ∈ N , e ∈ I (i)). Then, it sets for all e = (i, j) ∈ L:

τ̂e = min (τ i
e , τ

j
e ). (14)

We first show that τ̂e is a feasible solution to Problem

CAB (i.e. to (7)). It is easy to see that τ̂e > 0, ∀e ∈ L and by

construction τ̂e ≤ τ i
e . Since τ i

e is an optimal solution to (8),

for node i we have
∑

e∈I (i) τ
i
e ≤ si and hence

∑
e∈I (i) τ̂e ≤

si .

Springer



596 Wireless Netw (2006) 12:589–603

Fig. 6 Algorithm HDCA—the
procedure executed by a node in
the token transfer state

We now show that Algorithm ACA is better than a 2-

approximation algorithm for the problem CAB. In order to

prove it, we first present the following lemma12.

Lemma 1 (Zussman and Segall, 2004 [29]). If d j > di ,
then τ

j
i j < τ i

i j . If d j = di , then τ
j

i j = τ i
i j .

Theorem 1. Algorithm ACA is aβ-approximation algorithm
(β < 2) for Problem CAB.

Proof: For any node i ∈ N , τ ∗
e (the optimal solution to the

non-linear program (7)) is a feasible solution to the non-linear

program (8). Hence, since OPTi is the optimal value of the

objective function for (8):

∑
e∈I (i)

De(τ ∗
e ) ≥ OPTi ∀i ∈ N . (15)

Adding up for all i ∈ N and noting that the term for each

edge appears exactly twice in the sum we have

2
∑
e∈L

De(τ ∗
e ) ≥

∑
i∈N

OPTi . (16)

For each node i we define a set of incident edges J (i) ⊆
I (i) as those edges e = (i, j) ∈ L for which τ i

e < τ
j

e , or in

the case of a tie (τ i
e = τ

j
e ), the node index i < j . It is easy to

see that J (i) forms a partition of the set of edges L . Thus:

∑
e∈L

De(τ̂e) =
∑
i∈N

∑
e∈J (i)

De(τ̂e)

=
∑
i∈N

∑
e∈J (i)

De(τ i
e ) ≤

∑
i∈N

OPTi ,

where the last inequality follows from the definition of OPTi

in (13) and the fact that J (i) ⊆ I (i). However, for a more

tighter analysis we make the following observation. From

12 Notice that [29] shows that the lemma holds for delay functions
following Kleinrock’s approximation assumption. It is easy to see that
it can be extended to delay functions with the properties defined in
Definition 1.

Lemma 1 it follows that the node j with the smallest delay

derivative d j (in case of a tie, j is selected to be the node

with the largest index) must have that J ( j) = ∅. Thus, there

is at least one node j with J ( j) = ∅, and therefore, since by

definition O PTj > 0 we have∑
e∈L

De(τ̂e) ≤
∑

i∈N ,i �= j

OPTi <
∑
i∈N

OPTi

Combining this with (16) we get∑
e∈L

De(τ̂e) < 2
∑
e∈L

De(τ ∗
e ),

thus showing that Algorithm ACA is a β-approximation

(β < 2) algorithm for the Problem CAB. �

Algorithm HCCA (described in Section 4.1) can be de-

scribed as follows. Let τ̄e be the solution obtained by Algo-

rithm HCCA. At any phase, the algorithm starts out with a

graph (initially set to the original graph G) with slack capac-

ities si (initially set to the original graphs slack capacities).

In this graph, it finds the node i with the maximal value of di ,

solves the non-linear program (8) for that node i optimally,

and sets

τ̄e = τ i
e ∀e ∈ I (i).

It then decreases the slack capacities s j for every node j ,

which is a neighbor of i , by the sum of τ̄e, e ∈ I ( j) for all τ̄e

that get set in this phase. This is done to reflect the capacity

that has been already allocated. Any node i with si = 0 is

removed from the graph. Also all the edges e that are assigned

a value τe in this phase are removed from the graph. The new

graph and the new slack capacities become input for the next

phase. The algorithm terminates when no more edges are left

in the graph.

Let L p be the set of edges such that τ̄e, e ∈ L p is set in

phase p. Let τ
i p
e be the optimal solution obtained for the

non-linear program (8) of node i for the graph G p used by

Algorithm HCCA in phase p along with the slack capacities

s p
i . Let the node delay derivatives in phase p be d p

i . Note

that G1 = G, s1
i = si , ∀i ∈ N , d1

i = di , ∀i ∈ N , and τ i 1
e =

τ i
e , ∀e ∈ I (i). Let I p(i) be the set of edges incident on node
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i in G p. Due to Lemma 1 and the fact that at each phase p,

the node with the largest d p
i is selected, at the end of phase

p we have

τ̄e = min (τ i p
e , τ j p

e ) ∀e = (i, j) ∈ L p. (17)

We now show that for each edge delay obtained by a algo-

rithm HCCA is at most the delay obtained by the Algorithm

ACA. In order to prove it, we first prove the following lemma.

Lemma 2. τ
i p+1
e ≥ τ

i p
e for all nodes i and edges e ∈

I p+1(i).

Proof: Consider a node i that does not have edges whose

capacities are set at phase p. For that node, τ
i p+1
e = τ

i p
e .

Now consider a node i that does not have the maximal di at

phase p but which has at least one edge whose capacity is

set at phase p (i.e. some of the edges in I p(i) are in L p). In

the optimal solution of (8) at phase p∑
e∈I p(i)

τ i p
e = s p

i . (18)

Similarly in the optimal solution at phase p + 1∑
e∈I p+1(i)

τ i p+1
e = s p+1

i . (19)

Since

s p+1
i = s p

i −
∑

e∈I p(i)
⋂

L p

τ̄e

and since according to (17) for e = (i, j) ∈ L p, τ̄e ≤ τ
i p
e , it

follows from (18) and (19) that:∑
e∈I p+1(i)

τ i p+1
e ≥

∑
e∈I p+1(i)

τ i p
e . (20)

According to Definition 1 and since ce = τe + fe, D′
e(τe)

is an increasing function. Due to (20) at least for one

link connected to i , τ
i p+1
e ≥ τ

i p
e . Therefore, for that link

D′
e(τ

i p+1
e ) ≥ D′

e(τ
i p
e ). According to (9) at each phase p, the

values of D′
e(τ

i p
e ) are equal for all e ∈ I p(i). Thus,

D′
e(τ i p+1

e ) ≥ D′
e(τ i p

e ) ∀e ∈ I p+1(i) .

Consequently, τ
i p+1
e ≥ τ

i p
e ∀e ∈ I p+1(i). �

Proposition 1. Algorithm HCCA is a β-approximation al-
gorithm (β < 2) for Problem CAB.

Proof: We show that τ̄e ≥ τ̂e, ∀e ∈ L13, thus showing that

the value of the objective function of the non-linear program

(7) for the solution τ̄e is at most the value of the objective

function of (7) for the solution obtained by aβ-approximation

algorithm (β < 2). It follows from Lemma 2 that for any node

i and link e ∈ I p(i):

τ i p
e ≥ τ i p−1

e . . . ≥ τ i 1
e = τ i

e .

Thus, τ
i p
e ≥ τ i

e and τ
j p

e ≥ τ
j

e for a link e = (i, j) ∈ L p.

Hence, since for such a link e = (i, j), we have τ̄e =
min (τ

i p
e , τ

j p
e ) (see (17)) and τ̂e = min (τ i

e , τ
j

e ) (see (14)),

we have ∀e = (i, j) ∈ L p:

τ̄e = min (τ i p
e , τ j p

e ) ≥ min (τ i
e , τ

j
e ) = τ̂e. �

Finally, we show that any upper bound on the performance

of Algorithm HCCA which is based on the relationships be-

tween OPTi and the optimal solution (i.e. based on (16)) is
not tight.

Proposition 2. Assume that there exists β (1 < β < 2) such
that

∑
e∈L

De(τ̄e) ≤ β

2

∑
i∈N

OPTi ≤ β
∑
e∈L

De(τ ∗
e ), (21)

thus implying that HCCA is a β-approximation algorithm,
then there is no tight example in which the heuristic solution
(τ̄e), obtained by HCCA is exactly β times more than the
optimal solution. In other words there is no example for which∑
e∈L

De(τ̄e) = β
∑
e∈L

De(τ ∗
e ). (22)

Proof: Assume that an example in which (22) holds exists.

This implies that all inequalities in (21) must hold with equal-

ities. Specifically∑
i∈N

OPTi = 2
∑
e∈L

De(τ ∗
e ).

Therefore, for any given node i , (15) holds with equality

(i.e. OPTi = ∑
e∈I (i) De(τ ∗

e )). Consequently, since the op-

timal solution for (8) is unique, we have for every link

e = (i, j): τ i
e = τ ∗

e = τ
j

e . Thus, the solution obtained by Al-

gorithm ACA (τ̂e) is equal to the optimal solution (since

τ̂e = min{τ i
e , τ

j
e }). Finally, in the proof of Proposition 1, we

13 Recall that τ̄e and τ̂e are the solutions obtained by algorithms HCCA
and ACA, respectively.
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have shown that τ̄e ≥ τ̂e, ∀e ∈ L . Thus∑
e∈L

De(τ̄e) ≤
∑
e∈L

De(τ ∗
e ),

which contradicts (22). �

6. Convergence of the distributed algorithm

Due to the differences between the algorithms, the central-

ized algorithm (Algorithm HCCA) and the distributed al-

gorithm (Algorithm HDCA) normally allocate capacity in

different order. However, in this section we will show that

the two algorithms always converge to the same results.

Since in Section 5 we have shown that Algorithm HCCA is a

β-approximation algorithm (β < 2), this implies that Algo-

rithm HDCA has the same property. First, we show that the

distributed algorithm halts after all the link capacities have

been allocated. Then, we show that these link capacities are

the same as the link capacities allocated by the centralized

algorithm.

The proof that the distributed algorithm halts after all the

link capacities have been allocated is based on the fact that

the token either does not traverse a link or traverses it in

both directions. Accordingly, since the token cannot be re-

turned to a parent before all the neighbors are fully allo-

cated, the algorithm cannot halt before all the link capaci-

ties have been allocated. The formal proof is based on the

following lemmas. The proofs of the lemmas appear in the

Appendix.

Lemma 3. In Algorithm HDCA, when a node i enters the
token transfer state, it is fully allocated (ce �= fe ∀e ∈ I (i) ).

Lemma 4. When Algorithm HDCA halts, every node that
has been in the allocation state has also been in the token
transfer state.

The proof of Lemma 4 implies that every node that has

been in the allocation state has also executed Step 4 de-

scribed in Fig. 6 (i.e. checked the status of the stack and

then either halted or returned the token to a parent). Us-

ing the above lemmas we shall now prove the following

proposition.

Proposition 3. When Algorithm HDCA halts: ce �=
fe ∀e ∈ L.

Proof: Assume that when the algorithm halts, there is a link

e for which ce �= fe does not hold (either ce is not defined or

ce = fe). According to Lemma 3, nodes i and j do not enter

the token transfer state during the execution of the algorithm.

Consequently, according to Lemma 4, node i and j do not

enter the allocation state during the execution. Since node j
does not enter the allocation state, none of its neighbors ever

executes Step 4 described in Fig. 6 (since before its execution

they would send the token to node j which would enter the

allocation state). Following the argument used in the proof of

Lemma 4, due to the fact that the protocol halts, every node

that has been in the allocation state has also executed Step 4

described in Fig. 6. Thus, none of the neighbors of j enters

the allocation state and the capacities of the links connecting

them to j are not assigned.

Using a similar argument, it can be shown that none of

the link capacities of the neighbors of j are assigned. Con-

sequently, no node enters the allocation state and no link

capacity is assigned. This is a contradiction to the fact that

the algorithm halts. �

We now need to show that the capacity allocated by Algo-

rithm HDCA is equal to the capacity allocated by Algorithm

HCCA. Thus, we first derive a property of the delay deriva-

tive of a node in algorithms HDCA and HCCA. Then, we

prove by induction that the capacities allocated by the two

algorithms are identical.

Lemma 5. When a node i allocates capacity the delay
derivatives (dks) of its non-fully allocated neighbors do not
increase.

Proof: Let k be a non-fully allocated neighbor of i . Let

d−
k and d+

k be its delay derivatives just before and just af-

ter (respectively) i allocates capacity. Denote by E(k) the

set of links that are incident on node k (E(k) ⊆ I (k)) such

that ce = fe just after i allocates capacity. Let τ k −
e and τ k +

e

be the optimal solutions of node k to (8) just before and

just after (respectively) i allocates capacity. According to (9)

and Definition 3, for all e ∈ E(k), d−
k = D′

e(τ k −
e ) and d+

k =
D′

e(τ k +
e ) . According to Lemma 2, τ k +

e ≥ τ k −
e ∀e ∈ E(k).

According to Definition 1, D′
e(τe) is an increasing function

and therefore, d+
k ≥ d−

k . �

We note that if the Kleinrock’s approximation (2) holds,

the lemma results directly from the definition of the delay

derivative of a node (12) and the square root assignment

(11). We present here a simple proof for that case. Let k
be a non-fully allocated neighbor of i . Let d−

k and d+
k be

its delay derivatives just before and just after (respectively)

i allocates capacity. Denote by B(k) the set of links adja-

cent to k (B(k) ⊆ I (k)) such that ce = fe just before i al-

locates capacity. According to (11) and (12), following the
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allocation:

d+
k =

⎛⎜⎝
∑

e∈B(k)

√
fe − √

fik

sk − (cik − fik)

⎞⎟⎠
2

=

⎛⎜⎜⎜⎝
∑

e∈B(k)

√
fe − √

fik( ∑
e∈B(k)

√
fe

)
/

√
d−

k − √
fik/

√
d−

i

⎞⎟⎟⎟⎠
2

. (23)

Since i allocates the capacity, just before the allocation d−
i ≥

d−
k . Accordingly,

d+
k ≤

⎛⎜⎜⎜⎝
∑

e∈B(k)

√
fe − √

fik( ∑
e∈B(k)

√
fe

)
/

√
d−

k − √
fik/

√
d−

k

⎞⎟⎟⎟⎠
2

= d−
k . (24)

Theorem 2. The capacities (ce) obtained by Algorithm
HDCA are identical to the capacities obtained by Algorithm
HCCA.

Proof: According to Proposition 3, Algorithm HDCA halts

only after all the link capacities have been allocated. Thus,

we have to show that these link capacities are the same as the

link capacities assigned by Algorithm HCCA.

We need to show that when Algorithm HDCA is executed,

at any given time, the following properties hold:

1. For every non-fully allocated node j , the neighbors that

allocate capacity after j in Algorithm HCCA are non-

fully allocated (i.e. some or all neighbors which allocate

capacity before it in Algorithm HCCA are fully allocated).

2. The values of the capacities that have already been allo-

cated are the same as in Algorithm HCCA.

In order to prove it, we assume that the above properties

hold at time t− and we show that if a node i allocates ca-

pacity at time t (immediately after time t−), these properties

continue to hold.

At time t , Algorithm HDCA selects a non-fully allocated

node i with a delay derivative (di ) higher than the delay

derivatives of its non-fully allocated neighbors and allocates

capacity (Step 6 in Fig. 5). We wish to show that when i
is selected, all (and not some) the neighbors which allocate

capacity before it in Algorithm HCCA are fully allocated.

Denote by di (t) the delay derivative of node i at time t .
Denote the set of the non-fully allocated neighbors of i at time

t− by M(i) (m ∈ M(i) , if e ∈ I (i), e ∈ I (m) , and ce = fe

at time t−). let tm be the time in which a node m allocates

capacity in Algorithm HCCA. Due to the first property and

due to Lemma 5, di (t−) ≥ dm(t−) ≥ dm(tm), ∀m ∈ M(i). In

order for m ∈ M(i) to allocate capacity before i in Algorithm

HCCA, dm(tm) ≥ di (tm) has to hold. However, in order for

di to become smaller than dm , one of the other non-fully

allocated neighbors of i has to allocate capacity in Algorithm

HCCA before time tm . This cannot happen, since their delay

derivatives are lower than the delay derivative of i . Thus, the

nodes in M(i) allocate capacity after i .
Since at time t , all the neighbors of i which allocate ca-

pacity before it in Algorithm HCCA are fully allocated, i al-

locates the same capacities as in Algorithm HCCA. Thus, at

time t+ (immediately after time t) the second property holds.

Moreover, since we have shown that in Algorithm HCCA, i
allocates capacity before the nodes in M(i), at time t+, the

first property holds.

Finally, since the properties 1 and 2 hold before the first

node allocates capacity, they also hold after the last node al-

locates capacity, and therefore, the capacity values allocated

by Algorithm HDCA are identical to the values allocated by

Algorithm HCCA. �

7. Numerical results

In this section we present a few numerical examples that

demonstrate the difference between the results obtained by

the algorithms HCCA and HDCA, the results obtained by

Algorithm ACA, and the optimal results. In order to obtain

numerical results, we assume in this section that the delay

function follows Kleinrock’s independence approximation

(i.e. De(τe) = fe/τe) and that the considered bipartite graphs

are Bluetooth scatternets. First, we assume that the guard

times are negligible, and therefore, no switching overheard is

incurred by the bridges. Then, we present results for the case

in which different nodes have different capacities (resulting,

for example, from the switching overhead).

From the observations made in Section 5 it follows that:∑
e∈L

De(τ ∗
e ) ≤

∑
e∈L

De(τ̄e) ≤
∑
e∈L

De(τ̂e) <
∑
i∈N

OPTi

≤ 2
∑
e∈L

De(τ ∗
e ) . (25)

Namely: Optimal Solution ≤ Solution by HCCA ≤ Solution

by ACA <
∑

i∈N OPTi ≤ 2∗(Optimal Solution).

Figure 7 illustrates a scatternet with given flow rates (the

scatternet topology is based on the topology presented in [24,

Fig. 4]). Table 1 presents the corresponding values of the mea-

sures presented in (25). It can be seen that there is a small

difference between the optimal and the approximate solution,

obtained by Algorithm HCCA. A larger difference exists be-

tween the solutions obtained by Algorithm HCCA and Al-

gorithm ACA. Furthermore, there is quite a large difference
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Table 1 Optimal solution, approximate solutions, and the
upper bound for the scatternet described in Fig. 7

Notation Value

Optimal Solution
∑

e∈L fe/τ
∗
e 85.68

Solution by HCCA
∑

e∈L fe/τ̄e 86.03

Solution by ACA
∑

e∈L fe/τ̂e 92.64

Upper Bound
∑

i∈N OPTi 138.36

2* Optimal Solution 2
∑

e∈L fe/τ
∗
e 171.36

between the solution obtained by Algorithm ACA and its

upper bound.

We note that in some cases the first two inequalities in (25)

as well as the last one hold with equality. For example, in the

simple scatternet presented in Fig. 8(A), τ ∗
e = τ̄e = τ̂e = 0.5,

∀e and τ i
e = 0.5, ∀i, ∀e. Therefore:

8 =
∑
e∈L

fe

τ ∗
e

=
∑
e∈L

fe

τ̄e
=

∑
e∈L

fe

τ̂e
<

∑
i∈N

OPTi

= 2
∑
e∈L

fe

τ ∗
e

= 16 .

The example described in Fig. 8(B) illustrates a different

case. In this example τ ∗
e = τ̄e = τ̂e = 1/7, ∀e. On the other

hand, τ 1
e = 1/7, ∀e and τ i

e = 1, ∀i �= 1, ∀e. Thus, when ε is

8
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Fig. 7 A scatternet with given flow rates
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Fig. 8 Simple scatternets with given flow rates: (A) fe = 1/3 ∀e, (B)
fe = ε ∀e

close enough to 1/7, the approximate solution is relatively

close to the upper bound (
∑

i∈N OPTi ). Namely:

lim
ε→1/7

∑
i∈N OPTi∑

e∈L
fe

τ̄e

= lim
ε→1/7

1 + 1/7 − ε

1 − ε
= 1 .

However, in this case the upper bound significantly differs

from twice the optimal solution. Namely:

lim
ε→1/7

2
∑

e∈L
fe

τ ∗
e∑

i∈N OPTi
= 2 .

Figure 9(A) illustrates a scatternet with different values

of flow represented in terms of the variable x . Figure 9(B)

presents the values of the optimal and approximate solutions

as well as the upper bound for different values of x . It can be

seen that for all flow values, the approximate solutions are

very close to the optimal solution and that there is a relatively

large difference between
∑

i∈N OPTi and the approximate

solutions. Figure 10(A) illustrates a more complex scatter-

net based on the topology described in [28, Fig. 1]. The cor-

responding solutions and the upper bound are presented in

Fig. 10(B). The results presented in this figure resemble the

results presented in Fig. 9(B). We note that in all the cases we

have checked, the ratio of the solution obtained by Algorithm

HCCA to the optimal solution was much lower than 2.
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Fig. 9 A scatternet: (A) flows expressed in terms of x (an arrow denotes flow along a path), (B) upper bound (
∑

i∈N OPTi ), optimal solution, and
approximate solutions (obtained by algorithms HCCA and ACA)
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Fig. 10 A scatternet: (A) flows expressed in terms of x (the flow values to the non-bridge slaves in every piconet are identical to the values in the
lowest piconet), (B) upper bound, optimal solution, and approximate solutions

Table 2 Two sets of node capacities in the scatternet illustrated in
Fig. 9(A)

Node 1 2 3 4 5 6 7 8 9

Capacity 1 1 0.7 0.6 1 1 0.7 0.8 1

Capacity 1 0.9 0.5 0.5 0.9 1 0.5 0.9 1

Finally, it has been mentioned in Section 2.2 that if we

wish to take into account the switching overhead incurred

by bridges in Bluetooth scatternets, the slack capacity (si ) of

bridge nodes should be defined as b − ∑
e∈I (i) ce, where b

is the normalized capacity available to the links connected

to a bridge. Actually, every node in the network can have a

different value of normalized capacity. This property can be

used not only to model the overhead incurred by bridges but

also to model nodes with different capabilities or different

channel conditions. It can be shown that the performance

guarantees provided in this paper still hold in this case.

We now present numerical results regarding such a net-

work. Consider the scatternet illustrated in Fig. 9(A). Table 2

presents two different sets of node capacities for this scatter-

net. Figures 11 and 12 present the corresponding solutions

and the upper bound for these two scenarios. It can be seen

that although the nodes have different capacities, the approx-

imation ratio is much lower than 2. We note that in most of

the cases that we have checked, Algorithm HCCA performed

even better than in the situation in which all the nodes have

the same capacity.

8. Conclusions and future study

This paper improves and analyzes heuristic centralized and

distributed capacity assignment algorithms and provides an

upper bound on their performance. Those algorithms have

been designed for Bluetooth scatternets but can be applied

to any ad hoc network in which a node transmits to a single

neighbor at a time, and in which multiple transmissions can

take place as long as they do not share a common node.

We have shown that in bipartite graphs, a centralized so-

lution can be obtained in polynomial time. Yet, due to the

need for low-complexity distributed algorithms, we have fo-

cused on approximate solutions. First, we have extended the

heuristic algorithms presented in [29] in order to allow them

to deal with general decreasing convex objective functions.

Then, we have defined a simple approximation algorithm and

shown that the ratio between the results obtained by this al-

gorithm and the optimal results is less than two. It has been

shown that the heuristic algorithms obtain results which at

the worst case are the same as the results obtained by the

new algorithm, thus establishing that these algorithms are
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Fig. 11 Upper bound, optimal solution, and approximate solutions in
the scatternet presented in Fig. 9(A) with the capacities presented in the
first line of Table 2
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Fig. 12 Upper bound, optimal solution, and approximate solutions in
the scatternet presented in Fig. 9(A) with the capacities presented in the
second line of Table 2

β-approximation (β < 2) algorithms for the capacity assign-

ment problem. Moreover, we have shown that although the

distributed and centralized algorithms allocate capacity in a

different manner, both algorithms converge to the same re-

sults. Finally, we have presented numerical results and have

compared the approximate solutions to the optimal solution

and the upper bound.

There are still many open problems to deal with. For ex-

ample, it seems that the ratio between the approximate and

the optimal solutions is much lower than 2. However, prov-

ing this property requires further research. In addition, from

a theoretical point of view, it would be interesting to de-

sign and analyze algorithms for nonbipartite graphs. On the

other hand, from a practical point of view, future study will

focus on improving the distributed algorithm and on inves-

tigating its performance in a dynamic topology. Finally, we

note that a major future research direction is the develop-

ment of bandwidth allocation methods that will be able to

deal with various quality-of-service requirements and to in-

teract with topology construction, scheduling, and routing

protocols.
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Appendix

Proof of Lemma 3. A node i enters the token transfer state

due to two possible events:

� Capacity allocation by the node (Step 6 in Fig. 5). In this

case it is obvious that following the capacity allocation the

node is fully allocated.� Receipt of the token from a neighbor j that popped its

details from the stack (Step 9 in Fig. 6). Neighbor j pops the

details of its parent from the stack only if all j’s neighbors

(including i) are fully allocated.

Proof of Lemma 4. Denote by i the node which initiates the

algorithm. Assume that there exists a node j that has been

in the allocation state and has not been in the token transfer

state.� If i = j , then i will not execute Step 6 (described in Fig. 6),

which is a contradiction to the fact that the algorithm halts.� If j received the token from i , then j will not pop the

details of i from the stack (Step 9 in Fig. 6) and therefore,

the algorithm will not halt, which is a contradiction.� Assume that the token traversed the following path

i, k1, k2, . . . , kl , j . Node j will not pop the details of kl

from the stack (Step 9 in Fig. 6). Thus, kl will not pop the

details of kl−1 and, for similar reasons, k1 will not pop the

details of i . Accordingly, the algorithm will not halt, which

is a contradiction.
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