
1

Distributed Mobile Disk Cover –
A Building Block for Mobile Backbone Networks

Anand Srinivas, Gil Zussman, and Eytan Modiano
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139

{anand3, gilz, modiano}@mit.edu

Abstract— The novel hierarchical architecture of Mobile
Backbone Networks has been recently studied by a few different
approaches. An important subproblem related to the design and
operation of such networks is the problem of constructing and
maintaining a Geometric Disk Cover (GDC) under mobility.
While from the context of static nodes and centralized solutions
the GDC problem has been extensively studied, the Mobile
GDC problem did not receive much attention. We present two
new algorithmic approaches for the solution of this problem.
These approaches significantly differ from previously presented
approaches. In order to analyze the worst case performance
of the algorithms, we develop a novel graph-based analysis
technique. Then, we develop a methodology to compute bounds
on the average case performance of recently presented strip-
based algorithms. We use these bounds along with simulation
results to evaluate the performance of the algorithms. It is
shown that the proposed algorithms perform very well under
mobility, thereby providing an important building block for the
construction and maintenance of Mobile Backbone Networks.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) and Mobile Ad Hoc
Networks (MANETs) can operate without any physical in-
frastructure (e.g. base stations). Yet, it has been shown that
it is sometimes desirable to construct a backbone over which
reliable end-to-end communication can take place [3]. In
particular, if some of the nodes are more capable than others,
these nodes can be dedicated to providing the backbone. A
novel hierarchical approach for a Mobile Backbone Network
operating in such a way was recently proposed and studied by
Rubin et al. and by Gerla et al. (see [15],[18] and references
therein).

Based on [15], and [18], a Mobile Backbone Network
was defined in [16] as composed of two types of nodes.
The first type includes static or mobile nodes (e.g. sensors
or MANET nodes) with limited capabilities. These nodes are
refered to as Regular Nodes (RNs). The second type includes
mobile nodes with superior communication, mobility, and
computation capabilities as well as greater energy resources
(e.g. Unmanned-Aerial-Vehicles). These nodes are termed
Mobile Backbone Nodes (MBNs). The main purpose of
the MBNs is to provide a mobile infrastructure facilitating
network-wide communication.

Fig. 1 illustrates an example of the architecture of a Mobile
Backbone Network. The set of MBNs has to be placed and
mobilized such that (i) every RN can directly communicate

MBN
RN

Fig. 1. A Mobile Backbone Network in which every Regular Node (RN)
can directly communicate with at least one Mobile Backbone Node (MBN).
All communication is routed through a connected network formed by the
MBNs.

with at least one MBN, and (ii) the network formed by the
MBNs is connected. We assume a disk connectivity model,
whereby two nodes can communicate if they are within a
certain range. We also assume that the communication range
of the MBNs is significantly larger than the communication
range of the RNs. The problem of placing the minimum
number of MBNs has been termed in [16] as the Connected
Disk Cover (CDC) problem. A similar problem has been
recently also formulated in [17].

The algorithms in [16] focus on controlling the mobility
of the MBNs in order to provide a backbone for reliable
communication. These algorithms are based on the fact that
the CDC problem can be decomposed into the Geometric
Disk Cover (GDC) problem and the and the Steiner Tree
Problem with Minimum Number of Steiner Points (STP-
MSP). It was shown in [16] that if the GDC and STP-MSP
subproblems are solved separately by γ and δ-approximation
algorithms, the approximation ratio of the joint solution is
γ+δ.

Motivated by this decomposition result, in this paper,
we focus on the GDC subproblem. This problem can be
stated as: given a set of points in the plane, place the
minimum number of disks such that all points are covered.
Due to the our focus on decentralized operation in a mobile
environment, we aim to develop distributed algorithms that
maintain a disk cover under mobility. It follows from the
decomposition result that any improvement in the approxima-
tion ratio of the GDC problem (γ) immediately improves the
approximation ratio of the overall CDC solution. Hence, the
developed algorithms are an important building block for any
decomposition-based Mobile Backbone Network algorithm.

The Mobile GDC problem also stands alone as an im-

2

portant problem and has several applications in MANETs
[5],[11], and in WSNs. For example, a possible application
is in the area of point coverage in sensor networks (e.g.
[13]), where sensors have to track or follow a set of moving
targets. Hershberger [8] points out applications in databases,
where clustering can support queries regarding time-varying
data. Finally, in the context of Mobile Backbone Networks,
assuming that MBNs can communicate with each other over
long distances ensures that the MBNs’ network is always
connected and reduces the CDC problem to GDC problem.

The static GDC problem has been extensively studied in
the past. Hochbaum and Maass [10] provided a Polynomial
Time Approximation Scheme (PTAS) for the problem. How-
ever, their algorithm is impractical for our purposes, since it
is centralized and has a high running time for reasonable
approximation ratios. Several other centralized algorithms
have been proposed. For example, Gonzalez [7] presented
an algorithm based on dividing the plane into strips, whose
approximation ratio has been recently shown to be 6 [16].
Franceschetti et al. [4] developed an algorithm that places
disks only on vertices of a mesh. A table comparing the
various centralized GDC algorithms can be found in [4].

As mentioned above, the properties of wireless networks
call for distributed disk cover algorithms that deal with RNs
mobility. However, only a few recent works have focused
on algorithms that maintain coverage under mobility (i.e.
solve the Mobile GDC problem) and even fewer proposed
distributed algorithms. We note that clustering given nodes
to form a hierarchical architecture has been extensively
studied in the context of wireless networks (e.g. [1],[2],[6]).
However, the idea of deliberately controlling the motion of
specific nodes in order to maintain some desirable network
property has been introduced only recently (e.g. [12],[16]).

In the specific context of the Mobile GDC problem, [11]
present a 7-approximation distributed algorithm. Hershberger
[8] presents a centralized 9-approximation algorithm for a
slightly different problem: the mobile geometric square cover
problem. Gao et al. [5] study a closely related problem in
which the centers have to be selected from the set of points
(i.e. RNs). Finally, [16] presented a number of distributed
approximation algorithms for the Mobile GDC problem.

Similarly to [16], we assume that all nodes can detect
their position via GPS or a localization mechanism. This
assumption allows to take advantage of location information
in designing distributed algorithms. However, in [16] the
Mobile GDC problem is solved by dividing the plane into
strips, solving the GDC problem locally within strips, and
finally combining these solutions to form an overall solution.
One of the advantages of this type of a strip-based algorithm
is that the optimization is easier within a narrow strip, as
opposed the whole plane. Another advantage is that the com-
putation is localized to within strips, yielding a sort of spatial
decentralization of both computation and communication.

However, a drawback of this approach is the fact that
cross-strip optimization cannot be exploited. A typical exam-
ple of the resulting inefficiency is depicted in Fig. 2, in which
a strip-based algorithm uses two MBNs to cover two RNs
that could obviously be covered by a single MBN. In this

RN

Optimal
“Strip-Based”

Algorithms

Fig. 2. Example of basic inefficiency of strip-based algorithms.

paper we present and analyze a number of new planar-based
distributed algorithms that do not use strips. Yet, we show
they are still able to distributedly solve the Mobile GDC
problem while providing good performance guarantees.

We start by presenting a novel family of algorithms
that periodically merge neighboring MBNs (if possible) and
spatially separate groups of neighboring MBNs (if required).
Analyzing the worst case performance of these algorithms
requires developing a novel graph-based technique. We use
this techniques to obtain the approximation ratios of the
algorithms. We later show via simulation that on average the
algorithms perform better than the strip-based algorithms.

We then present a very simple 5-approximation algorithm
that is based on an overlooked observation regarding the rela-
tion between the GDC problem and the maximal independent
set problem. We show that placing the MBNs (i.e. the disk
centers) on top of some of the RNs (points) yields a restricted
GDC problem, which is equivalent to a minimum dominating
set problem in a unit disk graph. We show that we can find an
approximate solution to the unrestricted problem by finding a
maximal independent set in the unit disk graph. This simple
observation is important, since it immediately provides a 5-
approximation distributed algorithm for the static and mobile
GDC problems, whereas in the past much effort has been
dedicated to developing centralized algorithms with higher
complexities and approximation ratios (see the table in [4]).

In order to evaluate the performance of the algorithms, we
revisit two of the algorithms presented in [16]. We present
a new methodology for average case performance analysis
of these algorithms. Based on this methodology, we show
that their average approximation ratios are bounded by 3,
whereas their worst case approximation ratios were shown
to be 4.5 and 6. Then, we evaluate the performance of the
algorithms via simulation. We start by studying the perfor-
mance under mobility and by comparing the performance of
the planar algorithms, presented in this paper, to a number
of previously presented Mobile GDC algorithms. Then we
compare average case and simulation results of the different
algorithms.

To summarize, our main contribution is the development
and analysis of distributed algorithms for the Geometric Disk
Cover problem in a mobile environment. These algorithms
may operate on a stand-alone basis or provide an important
building block for the Mobile Backbone Network algorithms.

This paper is organized as follows. In Section II we
formulate the problem. The new distributed planar algorithms
are presented and analyzed in Sections III and IV. The
average case analysis of the algorithms described in [16]
is presented in section V. In Section VI we evaluate and the

3

performance of the algorithms via simulation. We summarize
the results and discuss future research directions in Section
VII.

II. PROBLEM FORMULATION

We consider a set of Regular Nodes (RNs) distributed in
the plane and assume that a set of Mobile Backbone Nodes
(MBNs) has to be deployed to cover them. We denote by N
the collection of Regular Nodes {1, 2 , . . . , n} and by M =
{d1, d2 , . . . , dm} the collection of MBNs. The locations of
the RNs are denoted by the x − y tuples (ix, iy) ∀i and dij

denotes the distance between nodes i and j.
We assume that the RNs and MBNs have both a com-

munication channel (e.g. for data) and a low-rate control
channel. For the communication channel, we assume a disk
connectivity model. Namely, an RN i can communicate bi-
directionally with another node j (e.g. an MBN) if the
distance between i and j, dij ≤ r. We denote by D = 2r
the diameter of the disk covered by an MBN communicating
with RNs. For the control channel, we assume that both
RNs and MBNs can communicate over a much longer range
than their respective data channels. Since given a fixed
transmission power, the communication range is inversely
related to data rate, this is a valid assumption.

For this work, we assume that the number of available
MBNs is not bounded (e.g. if necessary, additional MBNs
can be dispatched). Yet in our analysis, we will try to
minimize the number of MBNs that are actually deployed.
We formulate the Geometric Disk Cover (GDC) problem
[10], as follows:

Problem GDC: Given a set of RNs (N) distributed in the
plane, place the smallest set of MBNs (M) such that for
every RN i ∈ N , there exists at least one MBN j ∈ M such
that dij ≤ r.

The Mobile GDC problem is implicit in the above for-
mulation, as the goal is to maintain a valid GDC under
RN mobility. We assume there exists some sort of MBN
routing algorithm, which routes specific MBNs to their new
locations. The actual development of such an algorithm is
beyond the scope of this paper.

Before proceeding, we introduce additional notation re-
quired for the presentation and analysis of the algorithms.
Note that in the formulation of the Mobile GDC problem it is
required that every RN is connected to at least one MBN. We
assume that even if an RN can connect to multiple MBNs,
it is actually assigned to exactly one MBN. Thus, we denote
by Pdi

the set of RNs connected to MBN di. We denote by
dL

i , dR
i , dB

i and dT
i the leftmost, rightmost, bottommost, and

topmost RNs connected to MBN di. Their (x, y) co-ordinates
are denoted with x − y subscripts, e.g. (dL

i)x, (dL
i)y .

III. PLANAR MERGE-AND-SEPARATE ALGORITHMS

In this section we present and analyze a family of
distributed algorithms for the Mobile GDC problem. We
refer to these algorithms as the Planar Merge-And-Separate
(PMAS) algorithms. These algorithms build upon the ideas

presented in the development of the in-strip Merge-And-
Separate (MAS) algorithm of [16]. However, as mentioned in
Section I, the PMAS algorithms are planar-based as opposed
to the strip-based algorithms of [16]. The advantage of this
approach is that it avoids inherent inefficiencies resulting
from dividing the plane into strips and takes advantage of
possible cross-strip optimizations.

A. Distributed Algorithms

Our presentation is in the form of a generic algorithm,
with three versions1: (i) Square-Cover with Rectangular
Separation (SC) (ii) Disk-Cover with Rectangular Separation
(DCR), and (iii) Disk-Cover with Circular Separation (DCC).
The two disk-cover versions, i.e. DCR-PMAS and DCC-
PMAS, constitute distributed algorithms for the Mobile GDC
problem. The Square Cover Planar MAS (SC-PMAS) is a
distributed algorithm that places the minimum number of
D × D squares to cover the RNs. Note that the SC-PMAS
algorithm is not applicable to the Mobile GDC problem. It
is presented here solely to serve as a simple demonstration
of the analysis technique that is developed for analyzing the
DCR-PMAS and DCC-PMAS algorithms.

Algorithm 1/2/3 SC-PMAS, DCR-PMAS, DCC-PMAS al-
gorithms (at MBN di, RN q)
Disconnection Rule (at RN q)

1: if q uncovered then
2: place MBN di, set Pdi

← q
Merge Rule (at MBN di)

3: call Chk-Sqr-Merge(di), or Chk-Dsk-Merge(di)
Separate Rule (at MBN di)

4: call SC-Separate(), DCR-Separate(), or DCC-
Separate()

Procedure Chk-Sqr-Merge(di)
5: for all MBNs dj within 3

√
2D of di do

6: if Pdi
∪Pdj

coverable by a single D×D square then
7: merge di and dj

Procedure Chk-Dsk-Merge(di)
8: for all MBNs dj within 2D of di do
9: if Pdi

∪ Pdj
coverable by a single disk then

10: merge di and dj

Procedure SC-Separate() (see Fig. 3(a))
11: if ∃ 9 MBNs a1, . . . , a9 (including di) such that all RNs

q ∈ ∪9
j=1Paj

lie within a 3D × 3D area then
12: separate and reorganize a1, . . . , a9

Procedure DCR-Separate() (see Fig. 3(b))
13: if ∃ 17 MBNs a1, . . . , a17 such that all RNs q ∈

∪17
j=1Paj

lie within a 3D × 3D area then
14: separate and reorganize a1, . . . , a17

Procedure DCC-Separate() (see Fig. 3(c))
15: if ∃ 14 MBNs a1, . . . , a14 such that all RNs q ∈

∪14
j=1Paj

lie in a circular area of diameter 3D then
16: separate and reorganize a1, . . . , a14

1In the description of the algorithm, it should be clear which procedure
applies to which algorithm version.

4

17 MBNs

14 MBNs

(a)

(b)

(c)

9 squares

di

aj

≤ 3D

≤ 3D≤ 3D

≤ 3D ≤ 3D

≤ 3D≤ 3D

≤ 3D

≤ 3D≤ 3D

≤ DD D

Fig. 3. Planar MAS separation rules: (a) SC-PMAS, (b) DCR-PMAS, and
(c) DCC-PMAS.

The generic PMAS algorithm is simple, and the basic idea
is that we periodically enforce a merge rule and a separate
rule at each MBN di. Additionally, a disconnection rule is
enforced at each RN q. Namely, if at any time q is not
covered by any MBN, assign a new MBN to cover q.

Initially, we assume that there is an MBN covering each
individual RN (i.e. as per the disconnection rule). The merge
rule states that if there exists another MBN dj that can
be merged with di (i.e. Pdi

∪ Pdj
coverable by a single

MBN), then merge di and dj . The separate rule states that
if the point-sets of too many mutually non-mergeable MBNs
simultaneously converge on a sufficiently small area, then
these MBNs should be separated (i.e. the MBNs relocated
and their point-sets reassigned), as illustrated in Fig. 3. The
reasoning behind the choice of the numbers defining too
many and sufficiently small area (e.g. 17 and a 3D × 3D
square for DCR-PMAS) will become clear in the next
section, when we bound the worst case performance of the
algorithms.

For correctness of the algorithm, we assume that both the
merge and separate operations can be executed atomically
(i.e. without any interrupting operation). We also use the
convention that an MBN can be placed arbitrarily within its
coverage disk, as long as it is within distance r from all the
RNs it is covering. For square MBNs (i.e. for the SC-PMAS),
we assume simply that the MBNs are placed somewhere in
the D×D coverage square. Finally, we assume that if at any
time an MBN does not cover any RNs (e.g. after a separation
operation), it is released.

Note that in the description of the PMAS algorithm, the

separate rules are described in general terms, as opposed
to an explicit implementation. The reason for this is that
there are several possible ways to implement the algorithm,
and our goal is to convey the general idea. An example of
a distributed implementation of the DCR-PMAS separation
rule at MBN di could be as follows. MBN di starts by
detecting all the MBNs (including itself) dj within dis-
tance 4

√
2D, and for which dL

j , dR
j , dB

j and dT
j all lie

within an x − y range of
[
(dL

i)x, (dL
i)x + 3D

]
,

[
(dT

i)y +
3D, (dB

i)y−3D)
]
. Next, these detected MBNs are sorted by

ascending bottommost point y-coordinate, yielding a sorted
list, denoted by {a1, a2, . . . , aQ}. Now, di can sequentially
check whether (aT

j+8)y − (aB
j)y ≤ 3D. If this condition

holds, then it can conclude that all of the RNs covered
by these 9 disks aj , . . . , aj+8 lie in a 3D × 3D area. At
this point, a separate operation can be initiated by sending
messages to the appropriate MBNs to move to their new
coordinates, and reassign RNs as illustrated in Fig. 3-b.
Note that the reassignment of RNs would require additional
messages in order to inform each RN of its new covering
MBN. The points of reference for the separation are (dL

i)x

and (aB
j)y , which are shown in the figure. In particular, the

left-bottommost corner of the 3D×3D area in Fig. 3-b would
be

[
(dL

i)x, (aB
j)y

]
.

B. Worst Case Performance

We now analyze the worst case performance of the PMAS
algorithms. The induction-based methodology used in the
analysis of the strip-based algorithms in [16] cannot be
extended to 2-dimensions, since there is no left-to-right
directionality that can be exploited. Thus, we develop a
novel graph-based analysis technique, which we demonstrate
by first analyzing the Square Cover version of the PMAS
algorithm (SC-PMAS). We then show how this can be
straightforwardly applied to the Disk-Cover versions of the
PMAS algorithm.

We use OPT = {d1, d2, . . . , d|OPT |} to denote an optimal
solution and ALGO = {a1, a2, . . . , a|ALGO|} for an SC-
PMAS solution. Let Pdi

and Pai
represent the sets of RNs

covered by the OPT square di and the ALGO square ai,
respectively. We define the notion of ai touches di (or vice
versa) as if and only if there exists at least one RN q, such
that q ∈ Pai

and q ∈ Pdi
. Finally, define the notion of the

PMAS algorithm being in steady state if there are no merge
or separate actions currently pending.

Lemma 1: In steady state, no more than 8 SC-PMAS
ALGO squares can touch a single OPT square di.

Proof: Suppose 9 ALGO squares each covered at least
one point from Pdi

. However, if this was the case then
all of the points covered by these 9 squares must lie in a
3D × 3D area, and would have been reorganized as per
the separation rule illustrated in Fig. 3(a). Once reorganized,
an OPT square can clearly touch at most 4 ALGO squares,
which is a contradiction.

Lemma 2: In steady state, at most one SC-PMAS ALGO
square ai can exclusively touch a single OPT square dj (i.e.
Pai

⊆ Pdj
).

5

(a) (b)

d1

d
2

d3

d4

d1

d
2

d3

d4

OPT

ALGO

RN

v ∈ V

Fig. 4. Demonstration of a graph transformation: (a) original network and
square cover, and (b) transformed graph.

Proof: Suppose there existed 2 ALGO squares a1, a2

that exclusively touched a single OPT square dj (i.e. Pa1 ∪
Pa2 ⊆ Pdj

). However, by definition this means that the set
of RNs covered jointly by a1 and a2 could be covered by
a single square. It follows that in steady state a1 and a2

would have been merged as per the merge rule, which is a
contradiction.

We are now ready to prove the performance guarantee of
the SC-PMAS algorithm.

Theorem 1: In steady state, the SC-PMAS algorithm is a
4.5-approximation algorithm.

Proof: We construct an undirected graph G = (V,E) as
follows. Define a vertex v ∈ V for each of the OPT squares.
For each ALGO square ai, we associate exactly one edge
according to two cases: (i) if ai only touches a single OPT
square dj , define a self-loop edge (dj , dj), and (ii) if ai

touches multiple OPT squares dp, dq, . . ., then pick two of
these OPT squares (arbitrarily) and define an edge between
them (e.g. (dp, dq)). Note that there could be both self-loops
and parallel edges in the resultant graph. An example of the
graph transformation is depicted in Fig. 4.

Finally, since we have associated exactly one ALGO
square with one edge, we have that |V | = |OPT | and
|E| = |ALGO|. Using the standard formula for counting
the number edges in an undirected graph with self-loops we
have that by lemmas 1 and 2,

|E| =
∑
v∈V

(
d(v) − s(v)

2
+ s(v)

)

≤
∑
v∈V

(
7
2

+ 1
)

=
9
2
|V |,

where d(v) represents the degree of node v, and s(v) the
number of self-loop edges at v.

At this point, the reasoning behind the exact numbers
defining the PMAS separation area (denoted A), and the
number of MBNs that must converge on A before separation
(e.g. 9 and 3D×3D square for the SC-PMAS), can be more
clearly understood. In turn with Lemma 1, A is defined to
be a minimal area satisfying the following: Consider some
optimal square (disk) d. For any algorithm square a to touch
d, it must only cover RNs which lie in A. Furthermore,
a valid separation and reorganization can only be ensured
if the squares involved can compactly cover the separation

area, so as to ensure all RNs within A are still covered
after the separation. Therefore, the number of separated
PMAS MBNs (e.g. 9, 17 and 14 respectively) represent the
minimum number of MBNs required to compactly cover
their respective separation areas.

We are now ready to analyze the disk cover versions,
starting with the DCR-PMAS. To do so, we can use the exact
same analysis as for the square cover version. To start, we
restate lemmas 1 and 2 (whose proofs are identical, except
reapplied to disks) in the context of disks, followed by the
approximation ratio theorem.

Lemma 3: In steady state, no more than 16 DCR-PMAS
ALGO disks can touch a single OPT disk di.

Lemma 4: In steady state, at most one DCR-PMAS
ALGO disk ai can exclusively touch a single OPT disk dj

(i.e. Pai
⊆ Pdj

).
Theorem 2: In steady state, the DCR-PMAS algorithm is

a 8.5-approximation algorithm.
Proof: Using the same definitions and graph trans-

formation as from the proof of Lemma 1, we have that,
|E| ≤ ∑

v∈V (15/2 + 1) = 8.5|V |.
For the DCC-PMAS algorithm, the proof is identical and

thus we simply state the result.
Theorem 3: In steady state, the DCC-PMAS algorithm is

a 7-approximation algorithm.

C. Complexity

When discussing the complexity of the distributed algo-
rithms presented in this paper, we will use two standard
measures, both with respect to the complexity expended in
reaction to a single RN movement. The first is the time com-
plexity, which we define as the number of communication
rounds and the second is the local computation complexity at
each MBN, which for a viable algorithm should be negligible
compared to a communication round length.

The local computation complexity of the DCR-PMAS
algorithm is a periodic O(C(n)) to evaluate the merge
rule, where C(n) is the running time of the decision 1-
center subroutine used. Various efficient algorithms exist
that solve the decision 1-center problem, an example being
an O(n log n) algorithm in [9]. The separate rule can be
evaluated in O(1), since a packing argument can be used
to show that at most 48 MBNs (i.e. a constant number)
need be detected by an MBN di before there must exist 17
MBNs whose points all lie within a 3D × 3D area. Since
all point transfers are local (i.e. only take place between
adjacent MBNs), the time complexity (number of rounds)
is O(1). Hence, this algorithm is implementable in realistic
scenarios.

While the merge rule of the DCC-PMAS algorithm also
entails a local, periodic O(C(n)) computation, implementing
the separation rule is much more complex. An example
implementation could be examining all circumcircles defined
by pairs and triplets of RNs whose ensuing radii are at
most 3D/2, and testing whether the point-sets of 14 MBNs
lie within. Note however, that this entails a centralized
O(n3C(n)) computation (e.g. by collecting all RN location

6

RN

Optimal
P-MAS ALGO
w/o Separate Rule

Fig. 5. A pathological example of arbitrarily bad performance of a PMAS
algorithm without the separate rule.

information at some MBN), which is much too high to
implement frequently.

Fortunately, an important note regarding the PMAS al-
gorithms is that the merge rule is far more important than
the separate rule. It turns out the merge rule is the one
that ensures good average performance, whereas the separate
rule protects against the rare, pathological yet theoretically
possible cases of extreme inefficiency. An example of such
a pathological situation is shown in Fig. 5, in which an
arbitrarily large number of mutually non-mergeable MBNs
cover points coverable by 2 optimal MBNs. However, such
situation would almost never occur in any practical scenario
and thus the separate rule need only be implemented very
rarely, perhaps making the DCC-PMAS also a viably imple-
mentable algorithm in certain scenarios.

IV. CLUSTER COVER ALGORITHM

In this section we present the Cluster Cover (CC) algo-
rithm which, like the PMAS algorithms, distributedly solves
the Mobile GDC problem without the use of strips. The
advantage of the CC algorithm over the PMAS algorithms is
that it is simpler to implement, and has a lower computational
complexity. Furthermore, we show that the approximation
ratio of the CC algorithm is lower than that of the PMAS
algorithms. Yet, as will be shown via simulation, on average
the PMAS algorithms perform significantly better than the
CC algorithm.

Before describing the algorithm we present the following
definitions. Given an undirected graph G(V,E), a dominat-
ing set is as a subset Q ⊆ V such that ∀i ∈ V , either
i ∈ Q or ∃(i, j) ∈ E for some j ∈ Q. An independent set is
defined as a subset Q ⊆ V such that ∀i, j ∈ Q, �(i, j) ∈ E.
Finally, given N points (RNs) distributed in the plane, a
unit disk graph G = (V,E) is defined such that V = N and
(i, j) ∈ E ⇔ dij ≤ r.

The CC algorithm is based on an overlooked observation
regarding the relation between the GDC problem and the
Maximal Independent Set (MIS) problem. Before describing
this relation, we note that restricting the locations of the
MBNs (i.e. the disk centers) to the locations of the RNs
(points) yields a restricted version of the GDC problem.
This restricted GDC problem is equivalent to a Minimum
Dominating Set (MDS) problem in a unit disk graph.
Hence, |GDCOPT | ≤ |MDSOPT |, where |GDCOPT | and
|MDSOPT | are the cardinalities of the optimal solutions to
the unrestricted GDC problem and to the MDS problem in
a unit disk graph.

An MIS is by definition a dominating set. Therefore,
finding an MIS provides an approximate solution to the MDS
problem. An MIS can be found in linear time by a simple
centralized algorithm that adds nodes to the set and then
deletes their neighbors from the graph. It was shown in [14,
Theorem 4.8] that in unit disk graphs the cardinality of an
MIS is at most 5 times the cardinality of the MDS. Namely,
|MIS| ≤ 5|MDSOPT |.

We now show that an MIS in the unit disk graph of the
RNs is a valid solution to the unrestricted GDC problem
and that its cardinality is at most 5 times the cardinality of
the optimal GDC solution. Namely, |MIS| ≤ 5|GDCOPT |.
Hence, an MIS algorithm operating on a unit disk graph
provides a 5-approximation not only to the MDS problem in
the unit disk graph but also to the unrestricted GDC problem
in the plane. Notice that this relation is not directly implied
by the above inequalities.

An MIS in the unit disk graph of the RNs is a feasible
solution to the GDC problem, since all RNs are within
distance r from an MBN. However, in general it is not
an optimal solution. This results from the fact that for the
GDC problem, MBNs can be placed anywhere in the plane.
On the other hand, in the unit disk graph problem, MBNs
are constrained to lie on top of RNs. As shown below the
approximation ratio obtained by finding an MIS can be easily
bounded.

Lemma 5: An MIS algorithm in the unit disk graph of
RNs is a 5-approximation algorithm for the GDC problem.

Proof: Let OPT and ALGO represent an optimal
and algorithmic GDC solutions (the algorithmic solution is
an MIS). As mentioned earlier, the algorithm maintains the
invariant that no two disk (MBN) centers are within distance
r from each other. Similarly to [14], it can be shown that
this implies that at most 5 disk centers can lie in a circular
area of radius r. Namely, at most 5 ALGO disk centers
can lie inside the area covered by an OPT disk. Since all
ALGO disk centers are placed on top of points (RNs) that
are covered by the optimal solution, all ALGO disk centers
are contained within some OPT disk. Since the number of
ALGO disk centers is same as the number of ALGO disks,
|ALGO| ≤ 5|OPT |.

A distributed implementation of the the Cluster Cover
(CC) algorithm that finds an MIS in a unit disk graph of the
RNs can be based on an algorithm developed by Baker and
Ephremides [1] for clustering in a mobile wireless network.
The local computation complexity of the CC algorithm is
O(1) since at each iteration simple decisions need to be
taken. However, the time complexity (number of rounds)
is O(n). We note that several more efficient distributed
implementations of MIS algorithms exist and can be easily
adapted to our scenario.

V. STRIP-BASED ALGORITHMS

A. Strip Cover Algorithm

For brevity, we only discuss the centralized versions of the
strip cover algorithm of [16] (the analysis applies also to the
distributed versions). We focus on the following algorithms:

7

(i) Strip Cover with Rectangles (SCR), and (ii) Strip Cover
with Disks (SCD). Both algorithms act upon RNs within
strips of width αD, α < 1 and work by iteratively locating
the leftmost yet uncovered RN i, and placing an MBN that
greedily covers as many RNs as possible given that i is also
covered. The solutions for each strip in the plane are then
combined for an overall solution.

The difference between the two algorithms is the manner
in which the RNs are greedily covered. The SCR algorithm
simply treats MBNs as αD × √

1 − α2D rectangles, and
therefore, covers all RNs with x-coordinate in [ix, ix +√

1 − α2D]. By contrast, the SCD algorithm utilizes the full
disk coverage area and covers as many RNs as possible such
that there do not exist any uncovered RNs to the left of the
rightmost covered RN.

The resulting worst-case approximation ratios, derived in
[16] are 6 and 4.5 for the SCR and SCD, respectively.
However, in general worst-case performance bounds are not
a good indicator of typical performance. Accordingly, in
the next section we provide a probabilistic analysis to show
that the expected performance of both algorithms is actually
much better than their worst-case performance ratios would
indicate.

B. Average Case Performance Analysis

For our analysis, we assume that the RNs are randomly
distributed according to a two dimensional Poisson process
of density λ nodes/unit2. Note that a key property of such
a distribution is that when the number of RNs is a-priori
given, their positions are independent and each is uniformly
distributed in the plane. Due to the random locations of the
RNs, the number of MBNs placed by an optimal algorithm,
|OPT | is a random variable. Similarly, we define |SCR| and
|SCD| as random variables corresponding to the number of
disks placed by the SCR and the SCD algorithms. We define
the average approximation ratios βSCR and βSCD as,

βSCR =
E[|SCR|]
E[|OPT |] , βSCD =

E[|SCD|]
E[|OPT |] . (1)

It should be noted that βSCR differs from the expected
value of the approximation ratio (e.g. E[|SCR|/|OPT |]).
Yet, it provides a good measure of the average performance.

The main result of this section is the following theorem
and corollary, which bound the average approximation ratios
of both the SCR and SCD algorithms (since SCD always
outperforms SCR).

Theorem 4: Given RNs distributed in the plane according
to a two dimensional Poisson process with density λ,

βSCD ≤ βSCR ≤ D2λ + 2D
√

λ + 1
α
√

1 − α2D2λ + 1
. (2)

Corollary 1: If q = D√
2

, then βSCD ≤ βSCR ≤ 3.
The consequence of the above is that even though the

worst case approximation ratios of the SCR/SCD algorithms
are 6 and 4.5 (respectively), selecting a specific strip width
results in an average approximation ratio which is bounded
by 3. We spend the remainder of the section proving these

d1 d2 d3 d4T’

…

T1 T’ T’

αD

Fig. 6. Probabilistic analysis of the performance of the SCR algorithm
within a strip.

results, for which the following 2 lemmas, which respectively
upper bound E[|SCR|] and lower bound E[|OPT |], are
required.

Lemma 6: Given a strip width q = αD, and an L×KαD
planar area,

E[|SCR|] ≤ λαDLK

λα
√

1 − α2D2 + 1
. (3)

Proof: Consider a single strip S and recall that the SCR
algorithm iteratively places disks by identifying the leftmost
uncovered RN i and fully covering the x-range between ix
and ix +

√
1 − α2D along the strip. The RNs are distributed

in the plane according to a two dimensional Poisson process
with density λ.

Therefore, the horizontal (x-coordinate) distance between
RNs is exponentially distributed with average 1

λαD . Thus,
the expected distance to the location of the first disk is
E[T1] = 1

λαD (see Fig. 6). Furthermore, once a disk
is placed, the expected distance between the end of its
coverage and the start of the next disk is E[T ′]. Due to the
memoryless property of the exponential random variable, we
can conclude E[T ′] = 1

λαD .
It therefore follows that the expected number of disks used

by the SCR algorithm within a strip is the total length of the
strip (less the initial space) divided by the expected distance
between the start of one disk and the start of another. Namely,

E[|SCR|S] =
L − 1

λαD√
1 − α2D + 1

λαD

≈ λαDL

λα
√

1 − α2D2 + 1
, (4)

where E[|SCR|S] is the expected number of disks used
by the SCR algorithm within strip S, and we assume that
L >> 1

λαD . The expected total number of disks used by
the algorithm over the entire plane is therefore this number
multiplied by the total number of strips in the plane, giving
us the desired result.

Lemma 7: Given an L × KαD planar area,

E[|OPT |] ≥ KLαD

D2 + 1
λ + 2D√

λ

. (5)

Proof: We divide the plane into D-spaced horizontal
strips of width q as shown in Fig. 7. We can lower bound the
expected number of disks used to cover RNs in a single strip
S by an optimal algorithm by noting that the area coverable
by each OPT disk is no more than a rectangle of size q×D.
Thus, using a similar argument to when we upper bounded

8

. .
 .

S1

S2

S3

q

D

L

KαD

Fig. 7. Dividing the plane into strips so as to lower bound E[|OPT |]

the number of SCR disks required to cover a strip, we have
that,

E[|OPT |S] ≥ L

D + 1
λq

, (6)

where E[|OPT |S] is the expected number of disks used
by the optimal solution within strip S. Next we note that an
upper bound on the expected number of OPT disks used to
cover RNs in the whole plane can be achieved by summing
over the disks used to cover each of the individual strips.
The reason we can do this is that since there is a distance
D between strips, it is impossible for a single OPT disk
to simultaneously cover RNs from two different strips. We
therefore have that,

E[|OPT |] ≥
(

L

D + 1
λq

)
·
(

KαD

D + q

)

=
KLαD

D2 + 1
λ +

(
Dq + D

λq

) . (7)

Next, since we have control over the strip size q, and want
to find the tightest possible lower bound, we can select q
so as to maximize E[|OPT |], i.e. minimize the bracketed
quantity in the denominator of (7). It turns out that setting
q =

√
1/λ achieves this. Substituting this into (7), yields

our desired result.
Proof of Theorem 4: Combining the results of lemmas

6 and 7, as well as (1) gives us our desired upper bound on
βSCR, i.e.,

βSCR ≤
(

λαDLK

λα
√

1 − α2D2 + 1

)
·
(

λD2 + 2
√

λD + 1
λαDLK

)

=
D2λ + 2D

√
λ + 1

α
√

1 − α2D2λ + 1
. (8)

Proof of Corollary 1: We derive the maximum value
of (8) by differentiating with respect to λ. Upon doing so
and plugging this value of λ into (8) gives us,

βSCR |λ=λmax
≤ α

√
1 − α2 + 1

α
√

1 − α2
, (9)

which is independent of D. For 1
2 ≤ α < 1, (9) is

minimized when α = 1/
√

2, at which point it attains a value
of exactly 3.

0 100 200 300 400 500

10

12

14

16

18

20

22

Time (t)

N
um

be
r

of
 M

B
N

s

CC
In−Strip MAS
PMAS
SCD

Fig. 8. The number of MBNs used by the GDC algorithms during a time
period of 500s in a network of 80 RNs.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of the algo-
rithms via simulation. The results have been obtained by a
model of our algorithms, developed in Java.

We start with the mobile RN scenario, comparing the
performance of the planar GDC algorithms developed in
this paper to some of the strip-based algorithms developed
in [16]. Figures 8 and 9 illustrate simulation results for
a network with mobile RNs. The mobility model used is
the Random Waypoint Model in which RNs continually
repeat the process of picking a random destination in the
plane and moving there at a random speed in the range
[Vmin, Vmax]. We used a plane of dimensions 600m×600m,
with Vmin = 10m/s and Vmax = 30m/s, and set the RNs
communication range as r = 100m. Finally, each simulation
was performed for 1000s from which we discarded the first
500s.

Fig. 8 illustrates the evolution of the algorithms over a
500s time period, with 80 RNs. It can be seen that the
simplest and least computationally complex algorithm, the
CC algorithm, has the poorest performance. Fig. 9 shows the
average number of MBNs used over a 500s time period as a
function of the number of RNs. Each data point is averaged
over 10 instances. As can be seen in the figure, when the
number of RNs is low, the PMAS is the best performing
algorithm. However, for a larger number of RNs, both of the
strip-based algorithms perform better. The reason for this
is that when the configuration of RNs is sparse, cross-strip
optimization is more important, since scenarios such as those
depicted in Fig. 2 can frequently occur. By contrast, as the
configuration of RNs grows more dense, MBNs will have to
be used in all strips regardless. Thus, in this case, the fact
that both the SCD and In-Strip MAS algorithms perform
better within a strip than the PMAS explains their superior
performance.

For a network with static RNs, Fig. 10 presents the the
average ratios between the solutions obtained by both the
planar and strip-based algorithms, and the optimal solution.
We used a plane of dimensions 1000m × 1000m and set
the RNs communication range as r = 100m. For each data
point, the average was obtained over 10 different random

9

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

Number of RNs

N
um

be
r

of
 M

B
N

s

CC
In−Strip MAS
PMAS
SCD

Fig. 9. The average number of MBNs used by GDC algorithms over a
time period of 500s.

20 40 60 80 100
1

1.5

2

2.5

3

Number of RNs

A
pp

ro
xi

m
at

io
n

R
at

io

Upper Bound on β
SCR

,β
SCD

CC
SCR
SCD
PMAS

Fig. 10. Ratios between the solutions by the SCD and SCR algorithms and
the optimal solution, and an upper bound on average approximation ratios.

instances in which the RNs are uniformly distributed in the
plane. The optimal solutions were obtained by formulating
each instance of the GDC problem as an Integer Program
and solving it using CPLEX. From the figure, it can be seen
that although the worst case performance ratios of the CC,
SCR, PMAS and SCD algorithms are 5, 6, 8.5 and 4.5,
their average performance ratios attained in simulation are
closer to 2, 1.7, 1.5 and 1.4, respectively. Furthermore, the
trend observed in the mobile scenarios, in which the PMAS
outperforms the SCD for sparse RN configurations and vice
versa for dense RN configurations, still holds.

Fig. 10 also presents the upper bound on the average
approximation ratios (βSCR and βSCD) derived in Theorem
4. The large gap between the bound on the average approx-
imation ratios and the actual ratios indicates that the bound
is somewhat loose.

VII. CONCLUSION

The architecture of a hierarchical Mobile Backbone Net-
work has been presented only recently. Such an architecture
can significantly improve the performance, lifetime, and reli-
ability of MANETs and WSNs. In this paper, we concentrate
on placing and mobilizing backbone nodes, dedicated to
maintaining connectivity of the regular nodes. Specifically,
we focus on the important subproblem of Mobile Geometric
Disk Cover. We have proposed a number of distributed

planner-based algorithms for this problem and bounded the
worst case performance of two of them using a new method-
ology. In addition, we analyzed the average case performance
of two algorithms recently presented in [16]. Finally, we
studied the performance under mobility via simulation.

A major future research direction is to generalize the
model to other connectivity constraints and objective func-
tions. For instance, we intend to extend the results to
connectivity models that are more realistic than the disk
connectivity model. Moreover, we intend to consider the
energy resources and the communication requirements of the
RNs when making the mobility decisions.

ACKNOWLEDGMENTS

This research was supported by Draper Laboratories, by
DARPA/AFOSR through the University of Illinois grant
no. F49620-02-1-0325, and by a Marie Curie International
Fellowship within the 6th European Community Framework
Programme.

REFERENCES

[1] D.J. Baker and A. Ephremides, “The Architectural Organization of
a Mobile Radio Network via a Distributed Algorithm,” IEEE Trans.
Commun., 29, 11, 1694-1701, 1981.

[2] S. Basagni, “Distributed Clustering for Ad Hoc Networks,” Proc. I-
SPAN’99, June 1999.

[3] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in Ad-Hoc
Networks Using a Virtual Backbone,” Proc. IEEE ICCCN’97, 1997.

[4] M. Franceschetti, M. Cook, and J. Bruck, “A Geometric Theorem for
Approximate Disk Covering Algorithms,” Technical Report ETR035,
Caltech, 2001.

[5] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Discrete
Mobile Centers,” Disc. Comput. Geom., 30, 1, pp. 45-63, 2003.

[6] M. Gerla and J. T. Tsai, “Multicluster, Mobile, Multimedia Radio
Network,” ACM/Baltzer WINET, 1, pp. 255-265, 1995.

[7] T. Gonzalez, “Covering a Set of Points in Multidimensional Space,”
Inf. Proc. Letters, 40, 4, pp. 181-188, 1991.

[8] J. Hershberger, “Smooth Kinetic Maintenance of Clusters,” Proc. ACM
SoGC’03, 2003.

[9] J. Hershberger and S. Suri, “Finding Tailored Partitions,” J. Algo-
rithms, 12, pp. 431-463, 1991.

[10] D.S. Hochbaum and W. Maass, “Approximation Schemes for Covering
and Packing Problems in Image Processing and VLSI,” J. ACM, 32,
1, pp. 130-136, 1985.

[11] H. Huang, A. Richa, and M. Segal, “Approximation Algorithms for
the Mobile Piercing Set Problem with Applications to Clustering in
Ad-Hoc Networks,” ACM/Kluwer MONET, 9, pp.151-161, 2004.

[12] A. Kansal, M. Rahimi, D. Estrin, W.J. Kaiser, G. J. Pottie, and M.
B. Srivastava, “Controlled Mobility for Sustainable Wireless Sensor
Networks,” Proc. IEEE SECON’04, 2004.

[13] M. Lu, J. Wu, M. Cardei, and M. Li, “Energy-Efficient Connected
Coverage of Discrete Targets in Wireless Sensor Networks,” Proc.
ICCNMC’05, Springer, Aug. 2005.

[14] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, D.J. Rosenkrantz,
“Simple Heuristics for Unit Disk Graphs,” Networks, 25, pp. 59-68,
1995.

[15] I. Rubin, A. Behzad, R. Zhang, H. Luo, and E. Caballero, “TBONE:
a Mobile-Backbone Protocol for Ad Hoc Wireless Networks,” Proc.
IEEE Aerospace Conf., 6, 2002.

[16] A. Srinivas, G. Zussman, and E. Modiano, “Mobile Backbone Net-
works - Construction and Maintenance,” Proc. ACM MOBIHOC’06,
May 2006.

[17] J. Tang, B. Hao, and A. Sen, “Relay Node Placement in Large Scale
Wireless Sensor Networks,” Computer Commun., 29, 4, pp. 490-501,
2006.

[18] K. Xu, X. Hong, and M. Gerla, “Landmark Routing in Ad Hoc
Networks with Mobile Backbones,” J. Parallel Distrib. Comput., 63,
2, pp. 110-122, 2003.

