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Abstract—We study a novel hierarchical wireless networking O vBN
approach in which some of the nodes are more capable than ® RN
others. In such networks, the more capable nodes can serve as o

1

Mobile Backbone Nodes and provide a backbone over which

end-to-end communication can take place. Our approach corts

of controlling the mobility of the Backbone Nodes in order to

maintain connectivity. We formulate the problem of minimizing D\.

the number of backbone nodes and refer to it as the Connected

Disk Cover (CDC) problem. We show that it can be decomposed Fig. 1. A Mobile Backbone Network in which every Regular Nd&®) can

into the Geometric Disk Cover (GDC) problem and the Steiner directly communicate with at least one Mobile Backbone N@d&N). All

Tree Problem with Minimum Number of Steiner Points (STP- communication is routed through a connected network fortnethe MBNs

MSP). We prove that if these subproblems are solved separdie

by v- and §-approximation algorithms, the approximation ratio of

the joint solution is y+4. Then, we focus on the two subproblems operating in such a way was recently proposed and studied by

and present a number of distributed approximation algorithms g hin et al. (see [23] and references therein) and by Gerla

that maintain a solution to the GDC problem under mobility. A et al. (e.g. [10],[30]). In this paper, we develop and anal

new approach to the solution of the STP-MSP is also described - (€.0. . ’ ’ IS pap - w v . p yz

We show that this approach can be extended in order to obtain Novel algorithms for the construction and maintenance ¢und

a joint approximate solution to the CDC problem. Finally, we node mobility) of a Mobile Backbone Network. Our approach

evaluate the performance of the algorithms via simulation ad  js somewhat different from the previous works, since we $ocu

show that the proposed GDC algorithms perform very well unde 4 controlling the mobilityof the more capable nodes in order

mobility and that the new approach for the joint solution can ¢ intai twork tivit dt id backb

significantly reduce the number of Mobile Backbone Nodes. 0 ma!n ain networ .cor_mec Vity and to provide a backbone
for reliable communication.

A Mobile Backbone Network is composed of two types
of nodes. The first type includes static or mobile nodes (e.g.
sensors or MANET nodes) with limited capabilities. We refer
. INTRODUCTION to them asRegular NodegRNs). The second type includes

IRELESS Sensor Networks (WSNs) and Mobile Adnobile nodes with superior communication, mobility, and
W Hoc Networks (MANETS) can operate without any:omputation capabilities as well as greater energy ressurc
b (€.9. Unmanned-Aerial-Vehicles). We refer to them\esbile

Backbone Node$MBNSs). The main purpose of the MBNs

backboneon which most of the multi-hop traffic will be routediS {© Provide a mobile infrastructure facilitating netweskde
[4]. If all nodes have similar communication capabilitiesda COmMmunication. We specifically focus on minimizing the num-

similar limited energy resources, the virtual backbone m%ﬁr of .MBNS needed for connech_wty. Yet, the constructién o
pose several challenges. For example, bottleneck formatidMobile Backbone Network can improve other aspects of the
along the backbone may affect the available bandwidth aRgtwerk performance, including node lifetime and Quality o
the lifetime of the backbone nodes. In addition, the virtust€"vice as well as network reliability and survivability.
backbone cannot deal with network partitions resultingrfro Fig. 1 illustrates an example of the architecture of a Mobile
the spatial distribution and mobility of the nodes. Backbone Network. The set of MBNs has to be placed such
Alternatively, if some of the nodes are more capable thiiat () every RN can directly communicate with at least
others, these nodes can be dedicated to providing a backb8Ag MBN, and (i) the network formed by the MBNs is
over which reliable end-to-end communication can takeelaconnected. We assume disk connectivity model, whereby

A novel hierarchical approach forMobile Backbone Network tWO nodes can communicate if and only if they are within
a certain communication range. We also assume that the
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physical infrastructure (e.g. base stations). Yet, it haen
shown that it is sometimes desirable to constructiraual



attempts to deal with the CDC problem. are the development and analysisdidtributed approximation

Our first approach is based on a framework thetomposes algorithmsfor the GDC problem in a mobile environment, as
the CDC problem into two subproblems. We view the CD@ell as the design of aovel Discretization Approacfor the
problem as a two-tiered problem. In the first phase, tts®lution of the STP-MSP and the CDC problem.
minimum number of MBNs such that all RNs arevered(i.e. This paper is organized as follows. In Section Il we review
all RNs can communicate with at least one MBN) is placedelated work and in Section Il we formulate the problem.
We refer to these MBNs aSover MBNsand denote them in Section IV presents the decomposition framework. Distadu
Fig. 1 by white squares. In the second phase, the minimapproximation algorithms for placing the Cover MBNs are
number of MBNs such that the MBNs' network is connectegresented in sections V and VI. A new approach to placing
is placed. We refer to them &elay MBNsand denote them in the Relay MBNs is described in Section VII. A joint solution
Fig. 1 by gray squares. In the first phase, the Geometric Diskthe CDC problem is discussed in Section VIII. In Section
Cover (GDC) problem [15] has to be solved, while in théX we evaluate the algorithms via simulation. We summarize
second phase, a Steiner Tree Problem with Minimum Numbkde results in Section X. Due to space constraints, someeof th
of Steiner Points (STP-MSP) [19] has to be solved. We shqwoofs are omitted and can be found in [25].
that if these subproblems are solved separately-bgnd §-
approximation algorithmsthe approximation ratio of the joint I
solution isy+d.

We then focus on the Geometric Disk Cover (GDC) prob- Several problems that are somewhat related to the CDC
lem. In the context of static points (i.e. RNs), this probleas Problem have been studied in the past. For simplicity, wreen d
been extensively studied in the past (see Section I1). Hewescribing these problems we will use our terminology (RNs and
much of the previous work is either (i) centralized in naturd1BNs). One such problem is the Connected Dominating Set
(ii) too impractical to implement (in terms of running time) Problem [4]. Unlike the CDC problem, in this problem there is
or (|||) has poor average or worst-case performance. Rbcenf]o distinction between the communication ranges of RNs and
a few attempts to deal with related prob'ems under noa@NS. Addltlonally, MBNS'’ locations are restricted to RNS’
mobility have been made [6],[13],[16]. locations. Similarly, the Connected Facility Location Iplem

We attempt to develop algorithms that do not fall in an}28] also restricts potential MBN locations. Furthermates
of the categories above. Thus, we develop a number Rjoblem implies a cost structure that is not directly adajeta
practically implementableistributed algorithmsgor covering 1O that of the CDC problem. Lu et al. [20] study a Connected
mobile RNs by MBNs. We assume that all nodes can dete2gnsor Cover problem [12], where the objective is to cover
their position via GPS or a localization mechanism. Thidiscrete targets while maintaining overall network coriivéy
assumption allows us to take advantage of location infdonat @nd maximizing network lifetime. The set of constraintstiist
in designing distributed algorithms. We obtain the worstecaProblem can be mapped to the CDC problem. However, the
approximation ratios of the developed algorithms and tijective function and algorithmic approach are different
average case approximation ratios for two of the algorithms We note that Tang et al. [29] have recently independently
Finally, we evaluate the performance of the algorithms vf@mulated and studied the CDC problem (termed in [29] as
simulation, and discuss the tradeoffs between the contjgexi the Connected Relay Node Single Cover). A centralized 4.5-
and approximation ratios. approximation algorithm for this problem is presented if][2

Regarding the STP-MSP, [19] and [2] propose 3- and n sect_ion IV, we Wi” shpw that our approach provides a
approximation algorithms based on finding a Minimum Spaféntralized3.5-approximation for the CDC problem.
ning Tree (MST). However, when applied to the STP-MSP, We propose to solve the CDC problem by decomposing
suchMST-basedalgorithms may overlook efficient solutionsit into two NP-Complete subproblems: the Geometric Disk
We present aDiscretization Approachthat can potentially Cover (GDC) problem and the Steiner Tree Problem with
provide improved solutions. In certain practical instantee Minimum number of Steiner Points (STP-MSP). Hochbaum
approach can yield a 2 approximate solution for the STP-M3gP!d Maass [15] provided a Polynomial Time Approximation

We extend the Discretization Approach and show that it catfheme (PTAS) for the GDC problem. However, their algo-
obtain a solution to thgoint CDC problem in a centralized Mithm is impractical for our purposes, since it is centrediz.
manner. Even for the CDC problem, using this approa&?q has a high running tl_me for reasonable approximation
enables &-approximationfor specific instances. Due to thef@lios. Several other algorithms have been proposed for the
continuous nature of the CDC problem, methods such §PC problem (see the review in [5]). For example, Gonzalez
integer programming cannot yield an optimal solution. ThuE?] presented an algorithm based on dividing the plane into

for specific instances this approach provides the lowesivknoStriPs- In [5] it is indicated that this is an 8-approximatio
approximation ratio. It is shown via simulation that thisalso ~ /gorithm. We will show that by a simple modification, the

the case in practical scenarios. approximation ratio is reduced to 6. -
To conclude, our first main contribution is a decomposition Problems related to the GDC problem under mobility are

result regarding the CDC problem. Other major contribuiorfddressed in [6],[13],[16]. In [16], a 4-approximate cehtr
ized algorithm and a 7-approximate distributed algorithm

1A ~-approximation algorithm for a minimization problem alvgafinds a are pre_zsen.ted. Her_Shberger [13] pre;entseatralized 9-
solution with value at mosy times the value of the optimal solution. approximation algorithm for a slightly different probleitine
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TABLE |

NOMENCLATURE 2) The undirected_ grapty = (M, E) impqsed onM (i._e.
Vk,l € M, define an edgék,l) € F if dy < R) is
Symbol Definition connected.
N={1,...,n} Set of RNs We will study both the case in which the nodes are static,
M ={di,...,dn} Se;gg'\"i‘(’)\‘;dmmes o RN and the case in which the RNs are mobile and some of the
R Communication ranges of RN and MBN  MBNS move around in order to maintain a solution the CDC
D Communication diameter of an RN)(= 2r)  problem. We assume that there exists some sort of MBN
Py, Set of RNs covered by MBM, routing algorithm, which routes specific MBNs from their old
qALGO Strip width for strip-based algorithm ALGO | ti to thei Th tual d | t of h
o Strip width as a fraction o (g = aD) ocations to their new ones. The actual development of suc
db, dft Leftmost, rightmost RNs covered by MBY¥;,  an algorithm is beyond the scope of this paper.
Meover (resp.Myeiay) || Set of MBNs that explicitly cover (resp. do We now introduce additional notation required for the
not cover) at least one RN ] . .
presentation and analysis of the proposed solutions (Table

includes some of the notation used throughout the paper). A

) ) , . few of the proposed algorithms operate by dividing the plane

mobile geometricsquarecover problem. We build upon hisn strips. When discussing such algorithms, we assunte tha
approach in order to developdistributed algorithm for the the RNs in a strip are ordered from left to right by their

GDC problem. Clustering nodes to form a hierarchical archiyrginate and that ties are broken by the RNs’ identities (e
tecture has been extensively studied in the context of @seel \,ac addresses). Namely,< 7, if i, < j. OF iy = j. and the

networks (€.g. [1],[4],[8]). However, the idea of delib&ly b of ; is lower than ID ofj. We note that in property (1) of

controlling the motion of specific node_s in order to m_aiqtai{he CDC problem it is required that every RN is connected to
some desirable network property (e.g. lifetime or CONNE®)i 4t |east one MBN. We assume that even if an RN can connect

has been introduced only recently (e.g. [17],[21]). to multiple MBNs, it is actually assigned to exactly one MBN.
Thus, we denote by, the set of RNs connected to MBN
[1l. PROBLEM FORMULATION d;. We denote byl” andd the leftmost and rightmost RNs

We consider a set oRegular Nodes(RNs) distributed connected to MBNY; (their z-coordinates will be denoted by
in the plane and assume that a set Mbbile Backbone (df). and(dff),). Similarly to the assumption regarding the

Nodes(MBNs) has to be deployed in the plane. We denof@Ns, we assume that the MBNs in a strip are ordered left to
by N the collection of Regular Nodes{1,2.,..., n}, by right by thex-coordinate of their leftmost RN(¢F)..).

M = {di.ds,...,dy} the collection of MBNs, and by, In order to evaluate the performance of tdestributed
the distance between nodeand j. The locations of the RNs @/gorithms we define the following standard performance
are denoted by the — y tuples (i, i,) Vi. measures. We define th@ime Complexityas the number

We assume that the RNs and MBNs have both a cof@f communication rounds required in reaction to an RN
munication channel (e.g. for data) and a low-rate contrBlovement. We assume that during each round a node can

channel. For the communication channel, we assume the dfjghange errorless control messages with its neighbors. We
connectivity model. Namely, an RN can communicate bi- define theLocal Computation Complexifys the complexity of

directionally with another nodg (i.e. an MBN) if the distance 1€ computation that may be performed by a node in reaction
betweeni and j, d;; < r. We denote byD = 2r the to its (or another node’s) movement. We assume that the nodes

diameter of the disk covered by an MBN communicating]aimain an ordered list of their neighbors. Hence, the Loca
with RNs. Regarding the MBNs, we assume that MBian omputation Complexity refers to the computation required
communicate with MBNj if dij,< R where R > r. For {0 maintain this list as well as to make algorithmic decision

the control channel, we assume that both RNs and MBNs can
communicate over a much longer range than their respective IV. DECOMPOSITIONFRAMEWORK

data channels. Since given a fixed transmission power, thqp this section we obtain an upper bound on the performance
communication range is inversely related to data rate,ithisof an approach that solves the CDC problem by decomposing
a valid assumption. it and solving each of the two subproblems separately. T fir
At this stage, we assume that the number of available MBNEbproblem is the problem of placing the minimum number
is not bounded (e.g. if required, additional MBNs can bgf Cover MBNssuch that all the RNs are connected to at
dispatched). Yet, in our analysis, we will try to minimizgeast one MBN. In other words, all the RNs have to satisfy
the number of MBNs that are actually deployed . Finally, wgnly property (1) in the CDC problem definition. This problem

assume that all nodes can detect their position, either 8 Gjs the Geometric Disk Cover (GDC) problem [15] which is
or by a localization mechanism. We shall refer to the problefgrmulated as follows:

of Mobile Backbone Nodes Pla_\cement as the Connected DE’P(oblem GDC: Given a setNV of RNs (points) distributed in
Cover (CDC) problem and define it as follows. the plane, place the smallest set of Cover MBNs (disks)
Problem CDC: Given a set of RNsX) distributed in the gych that for every RN € N, there exists at least one MBN
plane, place the smallest set of MBN&/{ such that: j € M such thatd,; < r.
1) For every RNi € N, there exists at least one MBN The second subproblem deals with a situation in which a
j € M such thatd;; <r. set of Cover MBNsis given and there is a need to place



the minimum number oRelay MBNssuch that the formed

C {Je (T O—e—

network is connected (i.e. satisfies only property (2) in the/d MmN < ‘o 2

CDC problem definition). This subproblem is equivalent to [® RN @)
e ——

the Steiner Tree Problem with Minimum Number of Steiner
Points (STP-MSP) [19] and can be formulated as follows: (b)

Problem STP-MSP: Given a set of Cover MBNSM .oye:r) Fi ) I ) .
L . ig. 2. Tight example of the approximation ratio of the deposition

distributed in the plane, place the smallest set of Relay BIBMigorithm: (a) optimal solution and (b) decomposition aigmn solution

(Myeiay) such that the undirected gragh= (M, E') imposed

onM = Meoper UMyeay (i.€.VE,l € M, define an edgék, )

if di; < R) is connected. small constant. Also shown is the optimal solution with cost

We now define @ecomposition Based CDC Algorithand MBNS. Fig. 2-b shows a potential solution obtained by using
bound the worst case performance of such an algorithm. the decomposition framework (with = 6 = 1), composed of
Definition 1: A Decomposition Based CDC Algorithm@" optimal disk cover and an optimal STP-MSP solution. The

solves the CDC problem by using approximation algo- €OSt isn +n —1 = 2n —1 MBNs. This example highlights
rithm for solving the GDC problem, followed by usingda the fact that under the Decomposition Framework, the cover

approximation algorithm for solving the STP-MSP. MBNSs are placed without considering the related problem of

Theorem 1:For R > 2r, the Decomposition Based cDcPlacing the relay MBNs. _ o
Algorithm yields a ¢+6)-approximation for the CDC problem. Although in the next sections we maln_ly focus on distributed
Proof: Define ALGO as the solution obtained by thedlgorithms, we note .that. if a f:entrallzed solution can be
Decomposition Based CDC Algorithm. Also, defidé.GO, ... tolerated, the approximation ratio of the GDC prqblem can
andALGO,., as the set o€overandRelayMBNs in ALGO. D€ Very close to 1 (e.g. using a PTAS [15]). Similarly, the
Specifically, an MBNa; is aCoverMBN if it covers at least 1 lowest known approximation ratio of the STP-MSP solution

RN (i.e.P,, # 0). Otherwiseq; is a Relay MBN. Next, define (obtained by a centralized algorithm) is 2.5 [3]. Therefdng

OPTepe as the overall optimal solution similarly broken up! €orem 1, theramework immediately yields a centralized

into OPT%%,. andOPTES, .. Thus we have that, 3.5-2pprpxi_mati0n algorithm for the sollution of the CDQ b+’O.
lem# This improves upon the centralized 4.5-approximation

|ALGO| = |ALGO.oy|+ |ALGO,..| algorithm, recently presented in [29]. Since both algaonish
< 4 |OPTeos| + 6 - |OPTALGO - cov—rel use a PTAS, their respective complexities are quite higle. Th

key point with respect to our Decomposition Framework is
where O PT.,, represents the optimal GDC of the RNs, an¢hatany future improvement to the approximation ratio of the
OPTALGO-cov—rel TEPresents the optimal STP-MSP solutioSTP-MSP will directly reduce the CDC approximation ratio
connecting the Cover MBNs placed by the approximate
GDC algorithm,ALGOcoy- _ V. PLACING THE COVER MBN'S - STRIP COVER
Next, we make use of the fact that givel.GO.,, as the .
input Cover MBNs, a candidate STP-MSP solution can be Hochbaum and Maass [15] introduced a method for ap-

constructed by placing MBNs in the positions defined by tyoaching the GDC problem by (i) dividing the plane into

nodes iNOPTope. This is a valid STP-MSP solution, sincefdual width strips, (i) solving the problem locally on the

ALGO.. is a valid GDC for the RNs. and therefore. ever oints within each strip, and (iii) taking the overall satut as

MBN in ALGO,,, is at most a distance away fromsome he union of all local lsolutlons. Below we prgsent algorithm
RN. SinceOPTE%.. is also a valid GDC, it follows that every that are based on this method. These algorithms are actually

MBN in ALGO... is at most a distancr from someMBN  tWO different versions of a single generic algorithm. Thetfir
in OPT<Y Tilogrefore as long a® > 2r, the MBNSs in version locally covers the strip with rectangles encapsdlan
cDe- , > 2r,

ALGO U OPTepe form a connected network. Finally disks while the second version locally covers the stripaliye
SiNCE OPT 4160 con_rer TEPrEsents an STP-MSP solutioﬁ’vith disks. We then generalize (to arbitrary strip widthsg t

that must have a lower cost than this candidate solution, WEECtS of solving the problem locally in strips and use this
extension to provide approximation guarantees. Finally, w

have that, . e . ) .
discuss distributed implementations of these algorithms.
|ALGO| < - [OPTep| +6 - (|OPTESc| + [OPTED )
< (Y+0) - |OPTES | + 6 - [OPTE Do A. Centralized Algorithms
< (y+9) |OPIcpel, For simplicity of the presentation, we start by describing

, . the centralized algorithms. The two versions of the Strip
where the second line follows from the fact that the optim over algorithm Strip Cover with Rectangles SCR and

GDC for the RNs is of lower cost tha@ PTE7 . . . . .
According to Theorem 1, even if the two subproblems arSetrlp Cover with Disks SCD) appear below. In line 6, the

solved optimally (i.e. withy = 6 = 1), this yields a 2- first version (SCR) calls th&kectanglesprocedure and the

approximation to the CDC problem. A tight example of thisSecond one (SCD) calls thBisks procedure. The input is
fact is illustrated in Fig. 2. Fig. 2-a shows amnode INStance  2when we useour distributed algorithms (presented in the following
of the CDC problem, where << r refers to a sufficiently sections) within the framework, the overall approximatiatio is higher.
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An example illustrating step 9 of the SCR algorithm

Fig. 3.

a set of points (RNs)V = {1,2,...,n} and their (z,y)

this problem exist, an example being @xn logn) algorithm
due to [14]. We will show that solving the 1-center problem
instead of compactly covering rectangles (as done in the SCR
algorithm) provides a lower approximation ratio.

The computational complexity of the SCR algorithm is
O(nlogn), resulting from sorting the points by ascending
coordinate. In the SCD algorithm the 1-center subrouting ma
potentially need to be executed as many(¥s) times for
each of theO(n) disks placed. Therefore, the computation

coordinates,(i,, i,) Vi. The output includes a set of diskscomplexity is O(C(n)n?), where C(n) is the running time

(MBNs) M = {d;,da,...,d,} and their locations such that

of the 1-center subroutine used in steps 12 and 17. By using

all points are covered. The first step of the algorithm is @ binary search technique to find the maxinfy), we can

divide the plane intoK strips of width¢sc = oD (recall
that D 2r). The values ofgsc that guarantee certain

lower the complexity taO(C(n)nlogn).

approximation ratios will be derived below. We denote the

strips by S; and the set of MBNs in strii; by M.

Algorithm 1 Strip Cover with Rectangles/Disks (SCR/SCD)

: divide the plane intoK strips of widthgsc = oD
Ms, —Q,Nj=1,...,K
: for all stripsS;,j =1,...,K do
while there exist uncovered RNs ifi; do
let 7 be the leftmost uncovered RN if};
call Rectangles() or call Disks()
Msj — Ms]. U dy
return Uj M,
Procedure Rectangles)

=

Nogahrwd

®

B. Worst Case Performance Analysis

Let algorithm A denote the local algorithm within a strip,
and let |Ag;| denote the cardinality of the GDC solution
found by algorithmA covering only the points in strif;.
Let algorithm B represent the overall algorithm, which works
by running algorithmA locally within each strip and taking
the union of the local solutions as the overall solution. im o
case algorithmB is either the SCR or SCD algorithm and
algorithm A is composed of steps 4-7 within the for loop.

Let |OPT| represent the cardinality of an optimal solution

9: placean MBN dj, such that it covers all RNs in the rectangula©f the GDC problem in the plane an@PT’s;, | the cardinality

area withz-coordinategis iz + v'1 — a2 D]
10: return  dg
Procedure Disks()

11: Py, « O {set of RNs covered by the current MBd. }

12: while P;, U1 coverable by a single MBN (diskjo

13: Pdk — Pdk Uz

14.  if there are no more RNSs in the sttippen

15: break

16:  let i be the next leftmost uncovered RN Ky not currently
in Py

17: place M%N (disk) di such that it covers the RNB;,

18: return dg

of an optimal solution for points exclusively within stri;.
Note thatOPT # US], OPTs,;, sinceOPT can utilize disks
covering points across multiple strips. Finally, 6t denote
the worst case approximation ratio of algorithén Namely,
Z 4 is the maximum of A, |/|OPTs, | over all possible point-
set configurations in a strifg;. Similarly, let Zp denote the
worst case approximation ratio of algorithth

We characteriz&/ g as a function ofZ 4. Namely, ifq < D,
the cardinality of the solution found by algorithBis at most
([%1 +1)Z 4 times that of the optimal solutionQ PT|. The
proof can be found in [25].

An example of the SCR algorithm and in particular of step Observation 1:1f the strip width isq < D, a single disk
9 in which disks are placed such that they compactly covean cover points from at mo$f§] + 1) strips.

all points in the rectangular area witlkcoordinate range,
to i, + v/1 — 2D is shown in Fig. 3.

Lemma 1:1f the strip width isq < D, Zp = ([2]+1)Za.
We now show that in the SCR algorithnt,, = 2. This

As mentioned above, Gonzalez [9] presented an algorittdpproximation ratio is tight, as illustrated in Fig. 4-a. We

for covering points with unit-squares. It is based on divgli
the plane into equal width strips and covering the points
each of the strips separately. In [5] it was indicated tha¢mvh

the same algorithm is applied to covering points with unit | amyma 2:1f the strip width gsc <

provide an inductive proof, since a similar proof methodglo
Will be used in order to obtain the approximation ratios @& th

other GDC algorithms.
V3D

5~ steps 4-7 of the

disks, the approximation ratio is 8. The SCR algorithm i§cR algorithm provide a 2-approximation algorithm for the

actually a slight modification to the algorithm of [9]. Undikn
[9], in our algorithm we allow the selection of the strip widt

This will enable us to prove that the approximation ratio foy

covering points with unit disks is actually 6.

The SCD algorithm requires to answer the following quea—_7) solution

tion (in Step 12): can a set of point8;, U ¢ be covered
by a single disk of radiusg? This is actually the decision
version of thel-center problerh Many algorithms for solving

3The 1-center problem for a set of poin&is to find the location of the
centerfrom which the maximum distance to any point fnis minimized.

GDC problem within a strip.

Proof: Consider some striy. Let OPTs = {d;,do, ...,
joprs|} @d ALGOgs = {a1,az,...,a/a5c04|} denote an
optimal in-strip solution and SCR in-strip subroutine fste
respectively. Recall that we assume that the
MBNs of bothOPTs and ALGOg are ordered from left to
right by z-coordinate of the leftmost covered point (iie< j
if (df'). < (d}).). Finally, defineas,, as theb!) algorithm
disk (from the left) corresponding to the disk that covers th
rightmost point covered by thet” OPTs disk d,,.



|®RN < OPT  SCR/SCD 7N C. Average Case Performance Analysis
P LN\

\' Up to now we discussed thsorst caseperformance. We
C“DI {\ \ N / now wish to bound the approximation ratios in theerage
S="~T7 case We assume that the RNs are randomly distributed
@ o -~ according to a two dimensional Poisson process of density
A nodes/unit?>. A key property of such a distribution is
that when the number of RNs is given, their positions are
independent and each imiformly distributedin the plane.
Due to the random locations of the RNs, the number of MBNs

Let gsc = D, < 1. We now prove by induction that if Placed by an optimal algorithnjO PT'| is a random variable.
a < \/3/2, the in-strip subroutine has approximation ratio opimilarly, we define[SC'R| and [SCD| as random variables
2, i.e. [ALGOs| = bjoprs| < 2|OPTs|. corresponding to the number of disks placed by the SCR and
Base CaseThe area covered byd; (the leftmost optimal the SCD algorithms. We define theverage approximation
disk) is bounded by a rectangle withcoordinate rangéd’).. ratios Sscr and Bscp as,
(the_ z-coordinate of the leftmost point) t()df)m +D. The E[|SCR|| E[|SCD|]
minimumarea covered by two SCR algorithm disks whose BsCcrR = wrAprne BSCD = SnAap-
RO e X . E[|OPT|) E[|OPT
leftmost point is(dy ). is a rectangle withe-coordinate range
(df). to (dF). + 21 —a2D. Thus, if 2v/1 —a2D > D, It should be noted thatscr differs from the expected value
by < 2. This condition is met ifgsc < v/3D/2. of the approximation ratio (e.gE[|SCR|/|OPT]]). Yet, it
Inductive Step:Assume that the in-strip algorithm usegprovides a good measure of the average performance.
no more than2m disks to cover all the points covered by The following theorem and corollary bound the average
di,...,dy (i.e.b,, < 2m). Consider the number of additionalapproximation ratios of both the SCR and SCD algorithms
disks it takes for the algorithm to cover the points covergd l{since SCD always outperforms SCR). The proof of the
dy,...,dm,dms1. Since all of the points up to the rightmostheorem is by combining the results of the following lemmas.
point of d,, are already covered, by the same argument @bke proofs of the lemmas and the corollary can be found in
the base case, the algorithm will use at most 2 extra distkee Appendix.
to cover the points covered b¥,, ;. It thus follows that if =~ Theorem 4:Given RNs distributed in the plane according
q<V3D/2, b1 <bp +2<2m+2=2(m+1). B to a two dimensional Poisson process with density
By combining the results of lemmas 1 and 2, we obtain the )
approximation ratio of the SCR algorithm. - < DAt 2DV +1 1
D V3D N Bscp < Bscr < — . (1)
Theorem 2:1f 5 < gs¢ < ¥5=, the SCR algorithm is a av1l—a2D2)\+1
6-approximation algorithm for the GDC problem.
Proof: Define algorithm A as the in-strip subroutine o . 2’ b ‘s that althouah th ¢
the SCR algorithm (steps 4-7) and algorithm B as the SC € consequence ot the above 1S hat atthough the worst case
algorithm. From Lemma 2, fog < v3D/2, Z4 — 2. From approximation ratios of the SCR/SCD algorithms are 6 and

Lemma 1,75 < Z4([D/q]+1), the minimum value of which 4.5 (respectively), selecting a specific strip width resuit
(for g < b) isEZA This is attéined when > D2 an average approximation ratio which is bounded by 3. It

In the lemma below we show that for the SCD algorithr# in'_ceresting to note that this str?p-width lies in the rang
74 — 1.5. The proof (omitted for brevity and can be found i €duired for the worst case analysis of theorems 2 and 3.
[25]) follows from an inductive argument very similar to tha  -€Mma 4:Given a strip widthg = aD, and anl, x KaD

Fig. 4. Tight examples of the 2 and 1.5 approximation ratibtioed by
the in-strip subroutines of the (a) SCR and (b) SCD algorithm

Corollary 1: If ¢ = L-, thenfscp < Bscr < 3.

of Lemma 2. The key difference is that given a leftmost Rﬁ'a“af area,

covered by an OPT disk;, if either (i) d; is the rightmost OPT XaDLK

disk or (ii) (d¥), < (d¥,,)., then the SCD algorithm will only E[|SCR[] < —

\ i i+l ) Aav1l—a2D? +1

use 1 disk to cover the RNs covereddy In contrast, in such .

a case the SCR algorithm may still use 2 disks. Lemma 5:Given anL x KaD planar area,
Lemma 3:1f gsc < @, steps 4-7 of the SCD algorithm KLaD

provide a 1.5-approximation algorithm for the GDC problem E[OPTI|] > F> TR
e : +5+32

within a strip. 2N

Combining this result with Lemma 1 (similarly to the Fingjly, note that for a large number of RNs, the assumption
derivation of Theorem 2), we obtain the approximation ratighat they are uniformly distributed is perhaps not realisti
of the SCD algorithm. The approximation ratio for the ingstr |y general, the RNs may tend to cluster together, resulting
subroutine of the SCD algorithm is tight, as shown in Fig. 4-kh nodes concentrated within single strips (rather thaampr
For the problem instance presented in the figure, the optimgloss a large number of strips). This will result in a better
solution requires 2 disks, whereas the SCD algorithm a|Wa¥§erage case performance, since the strip-based algerithen
places 3 disks. most effective when covering RNs within a single strip. Thus

Theorem 3:1f £ < g5 < Y32, the SCD algorithm is a Bscp and Bscr derived in this section are actually upper
4.5-approximation algorithm for the GDC problem. bounds on realistic average approximation ratios.



D. Distributed Implementation more tailored to frequent node movements. In particulas it

The SCR and SCD algorithms can be easily implementedqﬁs"able to develop_algorithms that azgaptive i.e. require
a distributed manner. The algorithms are executed at the RNYY 0cal updates in response to local node movements.
and operate within the strips. The SCR algorithm executed!8¢ this section we present such an algorithm which builds

an RN is described below. Recall that we denote the RNEPON ideas presented in [13]. Hershberger [13] studied the
within a strip according to their order from the left (ile< j Problem of covering moving points (e.g. RNs) with mobile

if i, < j.). Ties are broken by node ID. unit-squares (e.g. MBNs). Since thedimensionalsmooth
maintenance schemgroposed in [13] does not easily lend

Algorithm 2 Distributed SCR (at RN) itself to distributed implementation, we focus on thienple
initialization 1-D algorithmproposed there.

1: let G; be the set of RNg such thatj < i andi, — j» < D Applied to our context, the Simple 1-D algorithm covers

2. if G; = O then mobile RNs along the strip with length rectangles (MBNSs).

3:  call Place MBN The key feature is that point transfers between MBNs are
Construction and Maintenance localized Namely, changes do not propagate along the strip.

4: if MBN Placedmessage receivetthen . .
= call Place MBN According to [13], the algorithm has a worst case perforneanc

6: if 7 is disconnected from its MBN or enters from a neighborin§atio of 3" Extending theSimple 1-D algorithmof [13]

strip then to diameter D disks is not straightforward. We will first

7. if there is at least one MBN within distancethen show that an attempt to simply use rectangles encapsulated
gf nglsne %g‘ﬁ I;;LZGSK/?BNBNS in disks without any additional modifications results in a 4-
Procedure Place MBN approximation to the GDC problem within a strip. Then, we
10: let i"* be the rightmost RN s.(i"), < iz +v/1 —aZD will present the MObile Area Cover (MOAC) algorithm which

11: place MBN d}, covering RNsj, wherej, € [ix, (i7).] reduces the approximation ratio to 3.

12: it (1% 4+ 1), — (%), < D then We define the strip width agy,oac = aD. We reduce

13:  sendan MBN Placedmessage to" + 1 disks to the rectangles encapsulated in them and use these

rectangles to cover points within the strip, as was depitted

Every RN that has no left neighbors within distange Fig. 3. The rectangles cover the strip wid#I{) and their
initiates the disk placement procedure that propagatesgaldength isat mosty'1 —a?D. We setD = 1 anda = /5/3
the strip. The propagation stops once there is a gap betwéegsulting inv1 —a?D = 2/3). These are arbitrary values
nodes of at leasD. If an RN arrives from a neighboring selected for the ease of presentation. Yet, the algorithch an
strip or leaves its MBN’s coverage area, it initiates thekdighe analysis are applicable to ah§2 < o < v/5/3. We restate
placement procedure that may trigger an update of the MBNRe set of rules from [13] using our terminology and assuming
locations within the strip. Notice that MBNs only move wherfunlike [13]) that the rectangles’ lengths are at most 2/3.
a recalculation is required. Although the responsibility t
place and move MBNs is with the RNs, simple enhancememtigorithm 3 Simple 1-D [13] withv/1 — a2D = 2/3
would allow the MBNs to repOSitiOI’l themselves during th@ initialize the cover greedib{using the SCR a|gorithﬁn
maintenance phase. If after a recalculation, an MBN is notmaintain the leftmost RN and rightmost RN of each MBN
repositioned, then it is not required and can be used elsewhe rectangle .
The time complexity (i.e. number of rounds) @(n). The 2 if two adjacent MBN rectangles come into contten

. A ) . exchangetheir outermost RNs
computation complexity i$)(logn). Control information has 3 If a set of RNs covered by an MBN becomes too loftge

to be transmitted between RNs over a distante- 27. separation between its leftmost and rightmost RNs becomeesey
The distributed SCD algorithm is similar to the distributed than 2/3 then _ _
SCR algorithmThe main difference is that in Step 10Rifice split off its rightmost RN into a singleton MBN

check whether rule 4 applies
if two adjacent MBN rectangles fit in a 2/3 rectantfen
merge the two MBNs

MBN, :% is defined as the rightmost coverable point (by 3
single disk of radiusr), given thati is the leftmost point.

Finding this point requires solving 1-center problems. mhe
in Step 11 a disk that covers all the points betweeamd i ? . .
should be placed. The time complexity of the distributed SCD ' N€ following lemma provides the performance guarantee of

algorithm is agairO(n). The local computation complexity is this algorithm. The proof foIIovys a similar inductivg metho
O(C(n) log n) to calculate the value aft, whereC(n) is the ology as that of Lemma 2, with the key observation that at
running time of the 1-center subroutine used. most 5 algorithm MBNs can cover RNs covered by a single

optimal MBN. Notice that since the changes are kept local,
the approximation ratio holds at all time (i.e. there is nede
to wait until the changes propagate).

A. MObile Area Cover (MOAC) Algorithm Lemma 6: The Simple 1-D algorithm [13with /I — a2 =

In the SCR and SCD algorithms, an RN movement may/3 is at all timesa 4-approximation algorithm for the GDC

change the allocation of RNs to MBNs along the whole strip.
9 9 P 4We note that using the same inductive proof methodology] fsre emma

Thuls' althouQ_h Fhey may operate well in a r.elatively Stat.ﬁ‘: one can show that the simple 1-D algorithm actually maistea 2-
environment, it is desirable to develop algorithms that aegproximation at all times.

V1. PLACING THE COVER MBNS - MoBILE COVER
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Fig. 5. Worst case example for the performance of the Simydealgorithm: 8:

(a) algorithmic solution and (b) optimal solution. The nwentof optimal 9
MBNSs is denoted byk.

10:

11:

problem within a strip.
Recall that the overall solution to the GDC problem in thgs.
plane involves combining the solutions obtained in everipst 1a4:
Due to lemmas 1 and 6, if implemented simultaneously if5:
every strip, the algorithm provides a 12-approximationtfo
GDC problem in the plane, which is relatively high. We nowl?
focus on enhancements that reduce the approximation rajip
while maintaining the desired locality property. 19:
Fig. 5 presents an example which shows that the approx-
imation ratio described in Lemma 6 is tight. It is showr??:
that optimal MBNd; can cover RNs that are covered by 421,
algorithm MBNs. Two of these algorithm MBNs cover RNs
that are within2/3-length rectangles, while the two otherz2:
cover a single RN. Similarlyj, covers RNs from 4 additional 23:
algorithm MBNs, and so on. Optimal MBN,. covers RNs 24
from exactly 3 algorithm MBNSs that have not been covered b$>:
optimal MBNs {d, ..

.,dk_1}. The resulting approximation M%r e

Initialization
1: cover the RNs with MBNs using the SCR algorithm
2: for all MBNs : do

Li —df Ri —d + 2
Pdi < all RNs within [Li, RZ]

k Maintenance
5: if an RNp € P, movesright such thatp, > R; then

if Lj <p.<Rj,j#1i{pind;'sdomaint then
remove p from Py,
else if [p, — Li| < Z then
stretch L; and R; to maintain invariant (1) by setting
R; «— pz and L; < max(L;, px — %)
else{p not in the immediate domain of any MBN

remove p from Py,

Disconnection
12: if at any time there exists an uncovered Rihen

if for some MBNd;, L; < p, < R; then
Py, — Pa; Up
else If for some MBNd;, L; and R; can bestretchedto
include p while maintaining invariant (2Jjhen
de — de Up
stretch L; and R; to maintain invariants (1) and (2)
else{p cannot be covered by an existing MBN
let d;—1 andd,;+. represent the MBNs to the left and right
of p
if [Ljy1 — R;—1| > % {i.e. enough “open space” to
maintain invariant (2) then
create MBN d; with P;, = p and|R; — L;| > § while
maintaining invariant (3)
else{< 1 space aroung}
shrink MBN d;_; such thatR; 1 = p, — =
create MBN d; with L; = p, — + and R; = p.
Py;_, « all points in[L;_1, Rj—1]
Py; — all points in[L;, R]

ratio is(4(k—1)+3)/k ~ 4. One of the sources of inefficiency 27 if there exists MBNd; such that|(df), — (dF).| < 2 or

is the potential presence eflength MBNs (e.g. covering a
single RN) that cannot merge with theély3-length neighbor 28:

|(d?)z - (djL)z| S % then

merge d; into d;

MBNs. Thus, up to 5 MBNs deployed by the Simple 1-D

algorithm may cover points which are covered by a single t,o \oac algorithm is described above. It consists of

optimal MBN (e.g.d> in Fig. 5). As long as such narrow
MBNs can be avoided, a better approximation can be achieva

rules regarding construction and maintenance of the MBNS’
mains. In particular, thinitialization phase that places the

We now modify the Simple 1-D algorithm to yield the MOACMBNS and constructs their domains is described in lines 1-4.

algorithm in whiche-length MBNs cannot exist.

Before describing the algorithm, we make the followin
definitions. For MBN d;, in addition to its leftmost and
rightmost RNs, defined earlier, @ andd?, we also define
L; and R; as thex-coordinates of its left and righdomain
boundaries. The interpretation of MB&'s domain is that any

In order to initially cover all the RNs, the MBNs are placed
%ccording to the SCR algorithm. Then, for each MBN, the
left and right domain boundaried.( and R;) are set as the
z-coordinates of the leftmost RN covered by the MBN and
the rightmost edge of the rectangle generated by SCR (recall
the example in Fig. 3). In line 4 all the RNs within the

point in thez-range of[L;, R;] will automatically become a boundaries are associated with the MBN. Since dioto4c,

member point of MBNd;. Recall that by definition MBNi;
is to the left of MBNd; if (df), < (df)..

The MOAC algorithm operates within strips and maintains
the following invariantsin each strip (in order of priority) at
all times, for every MBNd;:

1) Domain definition:L; < (d¥), < (df), < R;.

2) Domain length: § <|R; — L;| < 2.

3) Domain disjointnesgL;, R;|(\[L;, R;] = ©,Vd; € M.

4) Domain influence¥Yp € N, L, < p, < R; < p, € Py,.

5The upper bound is the coverage length of a MOAC MBN (heretrariliy
chosen as/1 — a2D = 2/3). To maintain the algorithm’s properties, the
lower bound should be half of the upper bound and their sunuldhioe at
least one. In addition, due to Lemmad,> 0.5 has to hold.

SCR generate8/3-length rectangles, at the end of the phase
all the invariants hold.

The Maintenancephase (lines 5-11) accounts for the situ-
ation in which an RN leaves its MBN's domain boundéry.

If the RN moves into a domain of another MBN, it is

removed from the set of RNs covered by the MBN. The
Disconnection phase will immediately take care of assignin
it to the new MBN. Otherwise, the algorithm tries to move
the right boundary such that the RN will be covered and
the MBN’s domain will be at most 2/3 (we refer to such

SFor brevity, we only state the operations when an RN movesdaight
of the boundary (there are analogous operations for a leftwaovement).



an operation as stretching;). Finally, if the RN cannot non-mergeabldMBNs move into the same area. Based on

be covered by stretching;, it is removed from the set of this premise, we present the Merge-And-Separate (MAS)

points covered by the MBN. The Disconnection phase widlllgorithm as an algorithm which merges pairwise disks where

immediately create a new MBN for it. possible (similar to the MOAC algorithm), and separatekgdlis
The Disconnection phase takes care of cases in whichiftoo many mutually non-mergeable disks concentrate in a

RN is disconnected from its MBN (as described above) arsthall area. As will be shown, the MAS algorithm retains some

cases in which an RN enters from a neighboring strip. In tloé the localized features of the MOAC and obtains a better

simplest cases, such an RN joins an existing MBN whogerformance ratio. However, this comes at a cost of incrkase

boundaries may have to be stretched in order to cover it. Iscal computation complexity.

other cases, a new MBN is created in order to cover the RN.We define the strip-widths ag; 45 = oD and setD =1,

It has to be carefully created such that its domain length is@ = v/5/3, v1 —a? = 2/3. These are arbitrary values

least 1/3. Note that the operations in lines 22-26 can alwagglected for the ease of presentation, the algorithm and the

be accomplished without violating invariant (2). This iseduanalysis are applicable to afly5 < o < v/3/2. Let TR

to the fact that an MBNd; is created for poinp only if andzy, ., bethez-coordinates of the rightmost and leftmost

Ipx — Lj—1] > 2/3 (otherwise MBNd;_; would have been points of { Py, U Py; U Py, }. The algorithm is initialized by

stretched to covep), which implies there is enough space focovering the nodes within a strip with MBNs by using the

two MBNSs of size greater or equal to 1/3 to coexist. distributed SCR algorithm. The algorithm that then operate
Finally, in theMergephase, two neighboring MBNs have toat an MBN d; is described below. We note that as in the

be merged since all their RNs are within a 2/3-long intervaprevious algorithms, most of the operations are performed i

It can be initiated by movements of some of the RNs deaction to an RN movement. However, in order to maintain

immediately following the previous phases. Following th¢he locality of the algorithm, the Separation operation is

merge in line 28, the MBN should update ifs, and R; performed periodically at each MBN. Fig. 6 demonstrates the

such that the domain will include all RNs and will satisfySeparation done at lines 8-11. For correctness of the #igori

invariant (2). This is always possible, since the two mergade assume that both the merge and separate operations can be

MBNs satisfy the invariants prior to their merger. We notexecuted atomically (i.e. without any interrupting openay.

that the algorithm can be implemented in distributed manner

by applying some of the rules at the MBNs and some of thefdgorithm 5 Merge-and-Seperate (MAS)

at disconnected (i.e. uncovered) RNs (it should be clean frdnitialization _ _ _

the context where each rule should be applied). 1: cover the RNs W|.th.MBNs using the SCR algorithm

. . 2. Py «— all RNs within [L“RZ]

The following lemma provides the performance guarant%rgel

of the MOAC algorithm within the strip. Its proof is almost 3. for all MBNs d;, within 2D of d; do

identical to that of Lemma 6. The main difference is that4: if {P,, |J Pa,} can be covered by a single MBtien

due to the enforced Domain invariants, at most 4 algorithn¥®: ~merge d; anddy,

MBNSs can cover RNs covered by a single optimal MBN. FromepParation

. . . 6: for all MBN pairsd;, dr within 2D of d; do
Lemma 1 it follows that if MOAC is simultaneously executed ;. CRe, b — TLg, | < 2D then

in all strips, it is a 9-approximation algorithm. 8: separate and reassigrMBNs and RNs such that
Lemma 7:The MOAC algorithm is a 3-approximation al- 9: Py, —allRNs infzr, @, o + 3]

gorithmat all timesfor the GDC problem within a strip. 10: Py, —alRNsinfzr, o+ %00, ,, + 3]
The time complexity of the MOAC algorithm i£(1), 11 Py, —allRNsin[zr, .\ + 5, 2R 4]

since all node exchanges are local. The local computatigffation , , ,

c_omplexity is potentiallyO(lgg n), du_e to .the operation in 12: 'rfng?esgf &néeNri féc;r:ngtncf;ggsjzlqﬁeitrlp oran RNe Fa,,
I|r_1e 23. The only assumption requ_lred is _that MBNs ands;  create a virtual MBN for p

disconnected RNs have access to information regarding 14: if the virtual MBN cannot benergedwith any of its neighbors
d¥, df and R; of their inmediate neighbors to the right and then

left (as long as they are less thaf away). Thus, in terms of 1 create a new MBN to coverp

complexity, MOAC is the best of the distributed algorithms.

Define steady stateas any point in time in which there are
. no merge or separate actions currently possible. Below we
B. Merge-and-Separate (MAS) Algorithm describg the perfpormance of the MAS a>llggrithm.

The relatively high approximation ratio of the MOAC algo- Lemma 8:In steady state, the MAS algorithm is a 2-
rithm results from the fact that it reduces disks into regtas, approximation algorithm for the GDC problem within a strip.
thereby losing about5% of disk coverage area. The difficulty ~ Since point transfers are local (i.e. only take place betwee
in dealing with disks is that there are no cldaordersand adjacent MBNs), the time complexity i©(1). The compu-
that even confined to a single strip, many disks can overlggiion complexity isO(C(n)) to evaluate the merge and the
although they cover disjoint nodes. create rules, wher€'(n) is the running time of the 1-center

On average any algorithm with a merge rule should perforsubroutine used. In order to make the required decisions, we
well. However, just having a merge rule is not sufficient imssume that an MBN has access to all nearby (i.e. within a
the rare but possible case where many mutually pairwidéstance of3D) MBNs’ point-sets and locations.
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Fig. 6. The Separation rule of the MAS algorithm yielding an efficient approximate solution for the ESMT. We
present a somewhat similar approach for solving the STP-MSP
O My problem. Our approach is quite different from the approach
oM . of [22], since the STP-MSP problem is more sensitive to
>3R discretizing the plane than the ESMT problem.
R DefineV;, as the lattice of points in the plane generated by
R gridding the plane with horizontal/vertical spacingthe exact
) (b) value of which will be derived later. Next, defiig as the

set of pairwise intersection points of radiliscircles drawn
around each of the Cover MBNSs. For the intersection region
of any two circles, add three equally spaced points along the
line between the two intersection points. L&t denote the
VIl. PLACING THE RELAY MBNS set of these points. The sdtf, V; andV; are illustrated Fig.

) . 8. Finally, defineconv(M_ over) @s the convex hull of the of
Recall that in Section 1V we showed that the CDC probleqoyer MBNs. We can now define

can be decomposed into two subproblems. In this section, we
focus on the second subproblem that deals with a situation in V' = {(Vo UVi U Ve U Meoper) N conv(]V[cover)}.
which a set of nodesJover MBN3 is given and there is a need
to place the minimum number of nodeReglay MBN}¥ such where we define a special intersection operatorto ensure
that the resulting network is connected. Recall that theadie that we pick enough points to be i such thatconv(V) 2
between connected MBNs cannot excdedThis problem is conv(Meover)-
equivalent to the Steiner Tree Problem with Minimum number For all w,v € V, if d,, < R, we define an edge
of Steiner Points (STP-MSP) [19]. (u,v). We denote the set of edges Wy and theinduced

In [19] a 4-approximation algorithm that places nodes alor@faph by G = (V, E). Let the node weights be denoted by
edges of the Minimum Spanning Tree (MST) which connects,. We now state the Node-Weighted Steiner Tree (NWST)
the Cover MBNs was proposed. In [2] an improved MST-basdguoblem [11],[18],[24], which has to be solved as part of our
algorithm with an approximation ratio of 3 was proposed?iscretization algorithm, presented below.
These algorithms are simple and perform reasonably well ftoblem NWST: Given a node-weightedundirected graph
practice. However, their main limitation is that they onlgdi G = (V, E) with zero-cost edges and a terminal 8é,,.,, C
MST-basedsolutions. Namely, since the Relay MBNs are iV, find a minimum weight tred@ C G spanningM q.e; .
general placed along the edges of the MST, these algorithms
cannot _find _solutions in which a _Relay MBN is used as Rlgorithm 6 Discretization
central junction that (_:onne_cts_ mu_ltl_ple other Relay MBNH. A 1- create the setsvo, Vi, Vs, andV {A derived beloy
example demonstrating this inefficiency appears in Fig. 7. 2. ) 1o € V — Moyver

We now present and analyze Riscretization Approach 3: w, «— 0Yv € Meover
which provides a theoretical footing towards applying the4: create the setF
vast family of discrete and combinatorial approaches taat ¢ 5 find @ minimum weight NWST o7 = (V, E)
potentially rectify the above inefficiency. The approadns-
forms the STP-MSP from an Euclidean problem to a discreteThe set of nodes selected in step 5 correspond to the
problem on a graph. Although the transformed problem doRglay MBNs in the STP-MSP solution. We assume that step
not admit a constant factor approximation, in many pratticé is performed by a3ywsr-approximation algorithm. The
cases it can be solved optimally. We will show that if such fallowing theorem provides the performance guarantee ef th
solution is obtained, it is a 2-approximation for the STPMS Discretization algorithm.

Our approach is based on an idea used by Provan [22] foiTheorem 5:1f A < £, the Discretization algorithm is a
dealing with the continuous analog of the STP-MSP probler®gw sr-approximation algorithm for the STP-MSP.
the Euclidean Steiner Minimal Tree (ESMT) problem [7]. In  Our methodology in proving the theorem is as follows. We
[22] it was proposed to discretize the plane and to sohaart by assuming the optimal STP-MSP tree is known, and
a Network Steiner Tree problem [7] on the induced grapHescribe a method to construct a candidate SteinerZrae

Fig. 7. STP-MSP solutions: (a) Optimal (4 Relay MBNs) andNt§T-based
(6 Relay MBNSs)
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Regarding the edges @f (i.e. ET), note that those added
in steps 2 and 5 must be valid i, since by definition they
represent edges between node¥ithat are less thak apart.
The final part involves showing that edges added between new
Relay MBNSs (i.e. in steps 10 and 14) are of length at nfdst
This is done by using the triangle inequality and the debniti
of the setV/. A detailed proof appears in [25]. |

The next lemma shows that the number of Relay MBNSs in
T,ie |ML,,| = [M"] = My, is less than twice the
Fig. 9. An example of the construction of the candidate ffeérom the number of Relay MBNs in the optimal solution of the STP-
optimal STP-MSP tred o pr MSP (I'opr). The proof of the Lemma and that of Theorem
5 can be found in the appendix.

Lemma 10:In T, constructed by the CFS algorithm,

G from this optimal tree. We then use the definiton®fin  [M,, | < 2[M},,.|.

order to bound the ratio between approximate solutiorio It was shown in [18] that the NWST problem does not admit
the Node-Weighted Steiner Tree (NWST) problentirio the a constant factor approximation algorithm and that the best
optimal solutionof the STP-MSP in the plane. theoretically achievable approximation ratiolisk, wherek

Recall that the set of terminals/Cover MBN£.....- is given is the number of terminals (in our formulatidn= | M_ove|)-
as input to the problem. Defirle, pr = (M*, E*) as the opti- Indeed, for the case in which all node weights are equal, [11]
mal solution to the STP-MSP. The node 8¢t is composed of presented &ln k)-approximation algorithm. Thus, in general,
the Cover MBNsM...,..,. and the optimal set of Relay MBNsthe Discretization algorithm yields a worst case approxioma
denoted byM;,, . Below, we present an algorithm for theratio of 2In|Mcover|. However, in some cases the NWST
construction of a candidate tréé= (M7, ET) in the graph problem can be solved optimally by discrete methods such as
G = (V,E). T is constructed such that it is a feasible STPnteger programming [24]. Since in such caggsysr = 1,
MSP solution. An example of steps 4-5, 7, and 12-14 of tdibe approximation ratio will be 2. Notice that it is likely
algorithm is illustrated in Fig. 9. that the Discretization algorithm will have better average

performance than the MST-type algorithms, due to the use

Algorithm 7 Construction of a Feasible STP-MSP (CFS) ©f Relay MBNs as central junctions.
T M — M Since the Discretization algorithm takes care of placing

2. ET — edges(i, j) € E* where bothi, j € Meouer only the Relay MBNs it might be feasible to implement it
3: for all u € M}, that have edges (i) to a set of Cover in a centralized manner, as described above. Yet, if there
MBNSs (in Mcover) do is a need for a distributed solution, one of the MST-based

4: addto M" aRelay MBNu' € V' located at the nearest point g|gorithms [2],[19] should be used. Since these algoritdms

to u that can be directly connected to the same set of Cover . .
MBNS fot deal very well with the mobility of Cover MBNs, the

5. addto ET edges connecting’ and the set of Cover MBNs development of distributed algorithms for the STP-MSP that

6: for all u € M;,,,, that do not have edges (ifi*) to any Cover take into account mobility remains an open problem.
MBNS in M;oper dO
7:  addto M7T aRelay MBNw' € V located at the nearest point
to u VIIl. JOINT SOLUTION
8: for all Relay MBNsu,v € M/, s.t.(u,v) € E* do

o if dyy < R then Using the decomposition framework presented in Section

10: add to 7 an edge(«’,v") IV, the overall approximation ratio of the CDC problem is the

11:  else . sum of the approximation ratios of the algorithms used teesol

12: w « midpoint of the line segmentu, v) the subproblems. Hence, this framework yieldseatralized

13: Sgﬁ]tt?oMT a Relay MBNw’ € V located at the nearest 3 5_approximation algorithm. We note that the Discretized
w

algorithm developed in the previous section can be applied
towards solving the CDC problem. Accordingly, specific
instanceswhen the NWST problem can be solved optimally
In the following lemma we show thdf is also a feasible (e.g. using integer programming), a centralized 2-appnaxe

14: add to E7 edges(v/,w'), (w',v")

solution to the NWST problem . solution for the CDC problem can be obtained.
Lemma 9:1f A < %, then T, constructed by the CFS The key insight is that the CDC problem can be viewed as
algorithm, is a Steiner tree i@ an extended variant of the STP-MSP. Namely, given a set of

Proof outline: We have to show thaf’ connects all the RNs (terminals) distributed in the plane, place the smiafies
nodes from\/.,..,- by a tree whose nodes arelihand that the of MBNs (Steiner points) such that the RNs and MBNs form
edges added t&” are valid edges iff. The nodes of" (i.e. a connected network. Additionally, RNs mustleaves in the
MT™) are by definition inV, since they are selected froi. tree and edges connecting them to the tree must be of length
A node inV satisfying the condition in step 4 always existsat mostr. The other edges in the tree must be of at m®st
since V' includes the intersections of radius circles drawn  For the Discretization algorithm to apply, we need to make
around each of the Cover MBNs. the following modifications. First, in the definition of the
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TABLE Il 2

TIME COMPLEXITY (# OF ROUNDS), LOCAL COMPUTATION COMPLEXITY,
AND APPROXIMATION RATIO OF THE DISTRIBUTEDGDC ALGORITHMS
(C(n) 1S THE COMPLEXITY OF A DECISION1-CENTER ALGORITHM).
g
Algorithm Time Local In-Strip =
Complexity | Computation | Approximation o
Complexity Ratio é
MOAC o(1) O(logn) 3 2
SCR O(n) O(logn) 2 —— MOAC
MAS7 o(1) 0o(C(n)) 2 TR
SCD O(n) O(C(n)logn) 15 . scD
10 20 30 40 50 60 70 80 90 100

Number of RNs

vertex setV, M..... should be replaced with the set 01Fig. 10. Ths a\éerage number of Cover MBNs used by GDC algustbver
. .., a time period of500

RNs, N. Second,V; and V, should now be defined with P s

respect to the pairwise intersections of radiugrcles drawn o0 1000

@ RN
around each of the RNs. Finally, in the definition of the edge B e L O M,
set £, RNs should only have edges to verticeslinwithin "] ® 807 o @M,
distancer, and no two RNs should have an edge betweernoo- o 600+ .\DID
them. With these modifications, it can be shown tha i 2r wol @ VN a,
. . . . . b ——gf ® 400 o
and A < R/6, the Discretization algorithm is aGnw s7- 1 T b
approximation algorithm for the overall CDC problem. 2007 ' . o« 2007 - "
) o0
Ix PERFORMANCEEVALUAT|ON 260 460 660 860 1060 260 4(;0 660 860 1060
' €Y (b)

We now briefly discuss the tradeoffs between the CorEi-g. 11.  An example comparing solutions obtained by (a) atinth

plexities and qpprQXimaﬁon ratios of the _GDC ?lgorithm_%isk Cover and the STP-MSP algorithm from [2], and (b) thecBetization
and evaluate via simulation the GDC algorithms in a mobikdgorithm using an NWST algorithm [18]

environment. We also focus on the CDC problem and compare

results obtained by the Discretization Approach to those ) ) -

obtained by decomposing the problem. Additional results cgelution requires 12 MBNs while the decomposition based

be found in [25]. squpon requires 15 MBNS . .
Table Il shows the complexities and approximation ratios of F19- 12 presents similar results for a general case with

the distributed GDC algorithms. It can be seen that there afd'® Same parameters (areg, and i). The Decomposition

clear tradeoffs between decentralization and approxomati Tamework used the SCD algorithm along with the MST

These tradeoffs are further demonstrated by simulatiog. FRI90rithm [19] and along with the Modified MST-based al-

10 presents simulation results for a network with mobile RNgOTithm [2]. Each data point is averaged over 10 random

The Random Waypoint mobility model is used, wherein RNgstances. It can be seen that the joint solution provides a

continually pick a random destination in the plane and mowgnificant performance improvement (about 25% for a large
there at a random speed in the ran@&,in, Viwas], Where number of RNS). Yet, while the decomposition framework uses

Vinin = 10m/s and Vyex = 30m/s. We used a plane of distributed algorithms, the joint solution is centraliz&dhus,
dimension$00m x 600m and set = 100m. The figure shows & reasonable compromise could be to place the Cover MBNs

the average number of MBNs used oveitis time period as N @ distributed manner and to place the Relay MBNs by a
a function of the number of RNs. Each data point is an averag@tralized Discretization Approach.
of 10 instances (each instance was simulated o0@0s from
which the first500s were discarded). X. CONCLUSIONS

Next we compare solutions of the CDC problem obtained The architecture of a hierarchical Mobile Backbone Net-
by the decomposition framework to joint solutions obtainedork has been presented only recently. Such a design can
by the Discretization algorithm. Fig. 11 depicts a randomignificantly improve the performance, lifetime, and riiiiy
example of 10 RNs distributed in B000m x 1000m area® of MANETs and WSNSs. In this paper, we concentrate on
The communication ranges of the RNs and the MBNs aptacing and mobilizing backbone nodes, dedicated to main-
r = 100m and R = 200m, respectively. In the decompositiontaining connectivity of the regular nodes. We formulated th
framework, we used an optimal disk cover (obtained by integBackbone Node Placement problem as the Connected Disk
programming) and the 3-approximation STP-MSP algorith@over problem and showed it can be decomposed into two
from [2]. The Discretization algorithm uses the NWST apsubproblems. We proposed sevedatributed algorithms for
proximation algorithm from [18]. In this example, the jointhe first subproblem (Geometric Disk Cover), bounded their

worst case performance, and studied their performancerunde

. iggfegggrggga“on ratio of the MAS algorithm holds when thgoathm g jjity via simulation. As a byproduct, it has been shown

8We deliberately selected a small number of RNs in order toahestnate that the apprOXimation ratios of algorithms prgsented]m[ﬁj
a partitioned network that requires Relay MBNS. [13] are 6 and 2. A new approach for the solution of the second
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Fig. 13. Probabilistic analysis of the SCR algorithm witlairstrip

N
Q

PR \vv§§

d,

N
e

Number of MBNs
=
Q

D. We first lower bound the expected number of optimal

[
QR

DS e ST disks required t_o cover RNs in_(pwidth strip .S (denoted by
, ‘ ‘ . L=+ Joint Solution E[|OPT)|s]). Within such a strip, the area covered by each
51018 B0 RN 0 B OPT disk is at most a rectangle of sizex D. Using a

Fig. 12.  Number of MBNs as a function of the number of RNs cotagu similar argument to that of Lemma 4, On(.:e a disk is placed
by: (i) the decomposition approach using the SCD with the Maded [19] the expected distance between the end of its coverage adea an
algorithms, (ii) the decomposition approach using the SG the modified  the start of the next disk i/ \g. Assuming thatl >> 1/)\g,
MST-based [2] algorithm, and (i) the Discretization aigjom E[|OPT|s] is at least the strip length divided by the expected
distance between the start of one disk and the start of anothe

. Namely, E[|OPT|s] > L/(D +1/(Aq)).
subproblem (STP-MSP) and of the joint problem (CDC) has Since the distance betweenwidth strips is D, it is im-

also been proposed. We showed via S|mulat|9n that when it 3ssible for arO PT disk to cover RNs from multiple strips.
used to solve the CDC problem in a centralized manner, t

number of the required MBNs is significantly reduced. oreover, since there may be RNs between the strips, there

. : ) . ill be a need for more) PT' disks than the ones used to
This work is the first approach towards the design o : :
o . . . cover theg-width strips. Therefore, the expected number of
distributed algorithms for construction and maintenante o

Mobile Backbone Network. Hence, there are still many opeé%ﬁs; ?SIS:SIO:I?/g;JEiﬂ:]Z %r:(;: ;oeig\(/a?:; eo dnlrilu?n,\é;)nﬁtg“m;:gr(z
problems to deal with. For example, moving away from th equired for the whole plane. Such a bound can be found by

strip approach may be beneficial. There is also a need I o ) .
distributed algorithms for the STP-MSP, capable of dealing[JItIpIyIng E[|OPT|s] by the number ofi-width strips, i.e.,

with Cover MBNs mobility. A major future research direction E[|OPT|] > ( L ) . (KCVD ) )
is to generalize the model to other connectivity constsaamd T \D+ iq D+q

A
other objective functions. Finally, it is important to adds the : : o
T o For the tightest possible lower bound, we selgtd maximize

problem when the number of available MBNs is fixed. g & te

E[|OPT|]; g=+/1/X achieves this, and yields the resultm
Proof of Corollary 1: We derive the maximum value of

APPENDIX (1) by differentiating with respect td, obtaining
Proof of Lemma 4.Consider a single striy, of width ov1I—a2+1
aD. Since the RNs are distributed in the plane according to a BSCOR [x=hpae < ol-a2 ©)

two dimensional Poisson process, the horizontatgordinate) L ) o )
distance between RNs is exponentially distributed with meaFor z < @ <1, (3) is minimized wheny = 1/V/2, at which
1/XaD. Thus, the expected distance to the location of trRPINt it attains a value of 3. _ u
first disk is E[T1] = 1/AaD (see Fig. 13). Once a disk is Proof of Lemma 10:In the CFS algorithm, each Relay

placed, the expected distance between the end of its caverfpN « In Topr is replaced by a Relay MBN' in T (steps
and the start of the next disk is denoted BYI"]. Due to 47and 7). For each edg_e_ connecting a pair of Rela_y MBNSs in
the memoryless property of the exponential random varjabfeo 7, at most one additional MBN is added Tn (v’ in step
E[T"] = 1/xaD. Therefore, the expected number of diskd3): SinceTopr is a tree, there can be at mast/;,;,, [ —1
used within a strip (denoted b¥[|SCR|s]) is the total length ;uch gfdges. Therefore, the total number of Relay MBNS' in
of the strip (less the initial space) divided by the expectée (Myetay| < |Moay| + 1Mo, | =1 < 2[My,, | u
distance between the start of one disk and the start of anothe Proof of Theorem 5: Let the number of RelayTMBNs
Namely, assuming that >> 1/ \aD in Topr and T be [Topr| = |Myy,,| and|T| = [M,g,, |,
respectively. Recall that in the Discretization algorithtine

E[SCR|s] = L- 15 Cover MBNs inGG were assigned a weight of 0 and the other
ST T aeD 4 15 nodes were assigned a weight of 1. [8f¥"°7 be the optimal
xaDL “ (minimum weight) Node-Weighted Steiner Tree (NWST)dn
~ 1 L1’ and denote its weight byT’}¥/°7|. Due to Lemma 9 when
Aavl—aiD® +1 A < R/7, T is a feasible solution to the NWST problem in
The expected number of disks used in the planB[iSCR|s] G. Therefore, and due to Lemma 10,
multiplied by the number of strips. |
P oot of b ITARST| < |T| < 2[Topr]. (4)

Proof of Lemma 5To lower bound the expected number
of disks required by the optimal solution, we divide the jglan In Step 5 of the Discretization algorithm, the NWST prob-
into horizontal strips of widtly separated by vertical distancesem in G is solved by a5 yw s approximation algorithm. We
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denote the obtained solution @Y ;.o and denote the number[27] A. Srinivas, G. Zussman, and E. Modiano, “Distributedbite disk
of Relay MBNSs in this solution byT'41.co|. From (4) we get

that|Tarco| < Bnvwst|THPST| < 28nwst|Topr]- |
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