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Abstract— Efficient operation of wireless networks requires
distributed scheduling and routing algorithms that take into
account interference constraints. Recently, a few algorithms for
networks with primary- or secondary-interference constraints
have been developed. Due to their distributed operation, these
algorithms can achieveonly a guaranteed fraction of the maxi-
mum possible throughput. It was also recently shown that if a
set of conditions (known as Local Pooling) is satisfied, simple
distributed scheduling algorithms achieve 100% throughput.
However, previous work regarding Local Pooling focused mostly
on single-hop interference or single-hop traffic. In this paper, we
study the multihop implications of Local Pooling. We show that
in many cases, as the interference degree increases, the Local
Pooling conditions are more likely to hold. Namely, multihop
interference improves the performance of distributed algorithms.
To prove this property, we identify several graph classes that
satisfy Local Pooling and analyze their behavior under multihop
interference. Regarding multihop traffic, we show that if the
network satisfies only the single-hop Local Pooling conditions,
distributed joint routing and scheduling algorithms are not
guaranteed to achieve maximum throughput. Therefore, we
present new conditions for Multihop Local Pooling, under which
distributed algorithms achieve 100% throughout. Finally, we
determine network topologies in which the conditions hold and
discuss the algorithmic implications of the results.

Index Terms— Stability, Distributed algorithms, Wireless net-
works, Local Pooling, Interference, Scheduling, Routing.

I. I NTRODUCTION

A major challenge in the design and operation of wireless
networks is to jointly route packets and schedule transmissions
to efficiently share the common spectrum among links in the
same area. Acentralizedjoint routing and scheduling policy
that achieves the maximum attainable throughput region was
presented in the seminal paper by Tassiulas and Ephremides
[23]. However, the lack of central control in wireless networks
calls for the design ofdistributedalgorithms. Such algorithms
can usually achieve only a fraction of the maximum through-
put. Yet, it has been shown by Dimakis and Walrand [10] that
there are network topologies in which distributedscheduling
algorithmsachieve100% throughput. In this paper we study
the effect of multihop interference on these topologies and
characterize topologies in which simple distributedjoint rout-
ing and schedulingalgorithms achieve100% throughput.

The policy of [23] applies to a multihop wireless network
with a stochastic packet arrival process and is guaranteed to
stabilize the network (i.e. provide 100% throughput) whenever

the arrival rates are within the stability region. The results
of [23] have been extended to various settings of wireless
networks and input-queued switches (e.g. [1], [18], [20], and
references therein). However, throughput optimal algorithms
based on [23] require the repeated solution of aglobal opti-
mization problem, taking into account the queue backlog infor-
mation for every link in the network. For example, even under
simple primary interference constraints1 a maximum weight
matching problem has to be solved in every slot. Obtaining a
centralized solution to such a problem in a wireless network
does not seem to be feasible, due to the overhead associated
with continuously collecting the queue backlog information.
Therefore, the design ofdistributed algorithmshas attracted a
lot of attention recently.

Assuming that the traffic is exclusively single-hop reduces
the joint problem to aschedulingproblem. Lin and Shroff
[16] studied the impact of distributed imperfect scheduling
on cross-layer rate control. Regarding primary interference
constraints, they showed that using adistributed maximal
matchingalgorithm along with a rate control algorithm may
achieve 50% throughput. Similar results for different settings
were also obtained in [7], [8], [15], [22]. It was also proved
in [7], [15], [22], [25] that under secondary interference con-
straints2 the stability region obtained by a distributed maximal
scheduling algorithm may be significantly smaller than the
stability region under a perfect (centralized) scheduler.In par-
ticular, Chaporkar et al. [7] showed that a distributed algorithm
may achieve as low as1/8 of the possible throughput.

Recently, Dimakis and Walrand [10] showed that although
in arbitrary topologies the worst case performance of dis-
tributed maximal scheduling algorithms can be very low,
there are some topologies in which theycan achieve100%
throughput. In particular, they consider a graph of interfering
queues3 and study the performance agreedy maximal weight
schedulingalgorithm (termed Longest Queue First - LQF)
that selects the set of served queues greedily according to

1Primary interference constraints imply that each pair of simultaneously
active links must be separated by at least one hop (i.e. the set of active links
at any point of time constitutes a matching) [7], [13], [16],[19], [26].

2Secondary interference constraints imply that each pair ofsimultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [7], [25].

3A graph of interfering queues can be constructed from the network graph
according to the interference constraints and is usually referred to as an
interference or conflict graph [8].
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the queue lengths. They present sufficient conditions for such
an algorithm to provide 100% throughput (notice that unlike
a maximumweight solution amaximal weight solution can
be easily obtained in a distributed manner). These conditions
are referred to asLocal Pooling (LoP) and are related to
the properties of all maximal independent sets in the conflict
graph. Using these conditions, in [10] it was shown that tree
interference graphs satisfy LoP. In [4] a few other graphs
satisfying LoP were identified and it was proved that under
primary interference constraints, tree network graphs yield
interference graphs that satisfy LoP.

Although some knowledge about LoP has been acquired,
the results of [4] and [10] are constrained to networking envi-
ronments that are inherentlysingle-hop, where packets must
depart the system upon transmission. This is an overly restric-
tive requirement in wireless networks. In addition, regarding
network topologies that satisfy LoP, [10] provided mostly
abstract conditions, while [4] focused on primary interference
constraints. Although these constraints may hold for specific
technologies, they are not realistic in most practical settings.
Hence, in order to allow the development of algorithms that
take advantage of LoP, we study thefundamental implications
of multihop interference and multihop traffic on LoP.

We begin by presenting motivating examples which show
that in many casesmultihop interferenceassists the LoP condi-
tions. For example, a 6-node ring network graph does not sat-
isfy LoP under primary interference, whereas it satisfies LoP
under secondary interference. Such examples demonstrate that
the performance of distributed algorithms may be improved
by increased interference, thereby motivating the systematic
study of the effect of multihop interference on LoP. However,
since the knowledge about graphs that satisfy LoP is limited,
we first focus on identifying several new classes of LoP-
Satisfying graphs. It is shown that within the class of perfect
graphs, chordal graphs, chordal bipratite graphs, cographs, and
a subgroup of co-comparability graphs all satisfy LoP. These
observations increase the number of graphs that are known to
satisfy LoP by a few orders of magnitude.

Subsequently, we use the acquired knowledge to study
the effect of increased interference on LoP. We focus on a
generalization of the primary (1-hop) and secondary (2-hop)
interference models to ak-hop interference model, wherek
is termed the interference degree. We show that in many
cases, ask increases, it is more likely that the LoP conditions
hold, and thereby, it is more likely that simple distributed
algorithms achieve 100% throughput. Moreover, for many
network topologies, there is an interference thresholdk, above
which the corresponding interference graphs satisfy LoP. At
first glance, it seems that since it is known that the worst case
performance deteriorates as the interference degree increases
[7], [15], [25], the results are counter-intuitive. However, the
actual meaning of the results is that in many topologies ask
increases, the resulting interference graph is such that maximal
scheduling achieves the maximum throughput instead of the
worst case throughput.

Networks withmultihop traffic, where packets follow a fixed
multihop path, have been studied by Wu and Srikant [24],
who proposed the use of regulators along with a maximal

matching scheduling algorithm. It was shown in [24] that
under primary interference constraints, the throughput may be
reduced to 50%. These results have been extended in [15],
[25] where it was also pointed out that only a fraction of the
throughput is attainable. Since the LoP results of [4], [10]
have been constrained to single-hop traffic, it is desirableto
identify topologies in which distributed algorithms can obtain
100% throughput in the multihop network setting.

In this paper, we show that the single-hop LoP conditions
introduced in [10] areinsufficientto guarantee stability in the
multihop routing environment. Therefore, we study the LoP
properties of a distributed routing and scheduling framework
which is based on the backpressure mechanism of [23]. In
this framework the edge weights are obtained by the back-
pressure mechanism but unlike in [23], adistributedmaximal
scheduling algorithm is used to determine which edges should
be activated. We derive new LoP conditions that are sufficient
for guaranteeing that the framework achieves100% throughput
in the multihop routing environment. Then, we present a
specific network topology that satisfies the multihop LoP
conditions and show that the class of topologies satisfying
these conditions is strictly included within the class of single-
hop LoP-Satisfying graphs.

The main contributions of this paper are two-fold. First, we
show that due to Local Pooling, as the interference degree
increases, it is more likely that simple distributed algorithms
achieve 100% throughput. The second contribution is the
derivation of novel Local Pooling conditions for networks
with multihop traffic. We note that an important byproduct
is the identification of several graph classes that satisfy Local
Pooling. To the best of our knowledge this is the first attempt
to study the multihop implications of Local Pooling. The
obtained results can serve as a basis for the development of
Local Pooling based algorithms.

This paper is organized as follows. In Section II we present
the network model and the single-hop LoP conditions. In
Section III we demonstrate cases in which additional inter-
ference assists the LoP conditions. In Section IV we present
several new classes of conflict graphs satisfying LoP. Then,in
Section V we discuss the effect of multihop interference on
the satisfaction of the LoP conditions. New LoP conditions for
networks with multihop traffic are presented in Section VI. In
Section VII we show that the multihop LoP conditions are
distinct from the single-hop conditions and identify network
topologies that satisfy them. We summarize the results and
discuss future research directions in Section VIII.

II. N ETWORK MODEL AND LOCAL POOLING

Consider a wireless networkGN = (VN , EN ), where
VN = {1, . . . , n} is the set of nodes, andEN ⊆ {(i, j) :
i, j ∈ VN , i 6= j} is a set of directed links indicating pairs of
nodes between which data flows can occur, withm , |EN |.
The directionality of data flows across links necessitates the
treatment of the network graphGN as a directed graph.
Depending on the circumstances, we denote links as either
(i, j) or asek. In GN , if two nodesv1, v2 ∈ VN are within
communication range, then the directed edgese12 = (v1, v2)
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Fig. 1. (a) Network graphGN , (b) the corresponding interference graphGI

under primary interference, and (c) the matrix of maximal link activations.

ande21 = (v2, v1) both belong toEN . For a directed edgee,
let σ(e) denote the source (initial) vertex, andτ(e) denote the
terminal (destination) vertex. Bold symbols are associated with
vectors and matrices. For matrixA, A·,j is the j-th column
of A, andAi,· is the i-th row. For vectora and index setE,
aE is the vector(ae : e ∈ E).

The interference between network links can be summarized
in an interference graph(or conflict graph) GI = (VI , EI)
based on the network graphGN [8]. We assignVI , EN .
Thus, each edgeek in the network graph is represented by a
vertexvk of the interference graph, and an edge(vi, vj) in the
interference graph indicates a conflict between network graph
links ei and ej (i.e. transmissions onei and ej cannot take
place simultaneously). Fig. 1 contains a network graphGN

and the corresponding interference graphGI under primary
interference constraints.

Let Π(GN ) denote the set of available link activations in the
network graphGN : the vectorπ = (πe, e ∈ EN ) ∈ Π(GN )
is a 0-1 column vector representing a possible link activation.
The setΠ(GN ) corresponds to all possible independent sets
in the interference graphGI = (VI , EI). Under primary
interference,Π(GN ) corresponds to the set of matchings in
GN . We denote byM(VI) the matrix ofmaximalindependent
sets in GI ; that is, the set of maximal column vectors in
Π(GN ). Continuing the example of Fig. 1, the matrixM(VI)
for interference graphGI is contained in Fig. 1(c).

For simplicity, we assume that time is slotted and that
packets are of equal size, each packet requiring one time
slot of service across any network link. There is no self-
traffic. We will refer to packets destined to nodej ∈ VN

as commodityj packets. Let Ai,j(t) denote the number of
exogenous commodityj packets that arrived at nodei by the
end of time slott. We assume that the arrivals have long term
ratesλi,j = limt→∞ Ai,j(t)/t, with overall system arrival rate
vectorλ = (λi,j , i, j ∈ VN ).

Every node is assumed to have a queue for each possible
destination. Fori, j ∈ VN , let Qi,j(t) be the number of packets
enqueued at nodei at timet, whose destination in the network
is nodej. Assume thatQi,j(0) = 0 for all i, j. Thedifferential
backlog (backpressure)of commodityj packets across edge
e ∈ EN at time t is Ze,j(t) = Qσ(e),j(t)−Qτ(e),j(t).

Service is applied to the system at each time slot by activat-
ing a set of edges, and routing a packet of a single commodity
across each active link. We denote the correspondingservice
activation matrix by S = (Se,j , e ∈ EN , j ∈ VN ), where
for edgee ∈ EN , and commodityj ∈ VN , Se,j can have
value0 or 1, depending on whethere is inactive or active for
servicing commodityj, respectively. Note that an admissible
service activation matrix must have a valid underlying link
activation belonging toΠ(GN ). This property characterizes

the set of admissible service activation matrices,S:

S =
{

S ∈ {0, 1}m×n :
∑

j∈VN
S·,j ∈ Π(GN )

}

.

The matrixS ∈ S leads to packet transitions through the
network. To model the queue evolution implied by invokingS,
we introduce for each commodityj ∈ VN the n×m routing
matrix Rj = (Rj

i,e, i ∈ VN , e ∈ EN ), where:Rj
i,e = 1 if

σ(e) = i; Rj
i,e = −1 if τ(e) = i and i 6= j; and Rj

i,e = 0
otherwise. Denote bydi,j(S) the service to queueQi,j under
activation matrixS. Using the above routing matrix we can
expressdi,j(S) = R

j
i,·S·,j.

A. Stability Considerations

We can now define the stability region of the network.
Definition 1 (Admissible Rate Vector): A non-negative ar-

rival rate vectorλ is admissible if there exists a collection
of service activation matricesSl ∈ S, 1 ≤ l ≤ L such that

λi,j ≤
∑L

l=1 αldi,j(S
l), whereαl ≥ 0 ∀l and

∑L

l=1 αl ≤ 1.

The set of all admissible rate vectors is called the stability
region and is denoted byΛ∗.

A scheduling algorithm at each time slot makes a link acti-
vation and routing decision that must satisfy the interference
constraints. A stable algorithm, which we also refer to as a
throughput optimal algorithm or an algorithm that achieves
100% throughput, is defined as follows.4

Definition 2 (Stable Algorithm): A scheduling algorithm is
stable if for any arrival process with rate vectorλ ∈ Λ∗,

lim
t→∞

Qi,j(t)/t = 0 w.p.1 ∀i, j ∈ VN .

Tassiulas and Ephrimedes developed a stable scheduling
algorithm that applies in this setting [23]. At timet ≥ 0, their
algorithm calculates for each link the maximum backpressure
among all commodities for that link. Denote this by vector
Z∗(t) = (Z∗

e (t), e ∈ EN ), whereZ∗
e (t) = maxj∈VN

Ze,j(t).
The algorithm then selects a link activation

π∗(t) ∈ arg max
π∈Π(GN )

πTZ∗(t). (1)

Routing is carried out over each edgee having π∗
e (t) = 1,

by servicing any commodityj ∈ argmaxj Ze,j(t) across that
edge (if any commodityj packets await service).

For general interference graphGI , the algorithm of [23]
must find themaximum weight independent setin GI at each
time slot to obtain an optimal solution to (1). Namely, it must
solve an NP-Complete problem in every slot. Under primary
interference, the graph is simpler and the algorithm has to
schedule the edges of amaximum weight matchingin the
network graph at each slot. This requiresO(n3) computation
time, using a centralized algorithm. In wireless networks,
implementing a centralized algorithm is often not feasible
and distributed algorithms can only obtain an approximate
solution, resulting in a fractional throughput. Hence, even
under simple traffic model and interference constraints, itis
difficult to obtain 100% throughput in a distributed manner.

4This stability criterion is often termedrate stability [1], [7], [9].
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Fig. 2. (a) Undirected network graphGN , (b) the corresponding interference
graph GI under primary interfernce, and (c) the matrix of maximal link
activations.

B. Simplifications for Single-Hop Traffic

When the network is subjected exclusively to single-hop
traffic, a few notable simplifications occur in the model (see
e.g. [7], [9], [15], [18], [19]). In this case, by definition,each
network linke can only carry the traffic of a single commodity:
τ(e). Thus, the differential backlog of linke equals the queue
backlog of commodityτ(e). The throughput optimal algorithm
of [23] specializes in this case to require that single-hop
service be applied at each timet to the link activation

π∗(t) ∈ argmax
π∈Π(GN )

πTQ(t). (2)

Above we understandQ(t) as the vectorQ(t) = (Qe(t), e ∈
EN ), whereQe(t) is the queue backlog of packets awaiting
single-hop service across linke.

Since routing plays no role in the single-hop scenario, it is
convenient to treat the network graphGN as undirected. This
simplifies the interference graph (an example of an undirected
graph and its primary interference graph appears in Figs. 2(a)-
(b)). In this case, the weight at timet of each undirected edge
e = {v1, v2} equals the maximum weight of the queues that
can be serviced across that link:max{Qv1,v2

(t), Qv2,v1
(t)}.

We will adopt this convention in our study of Local Pooling
under multihop interference in sections III-V.

C. Local Pooling Conditions - Single Hop Traffic

We briefly reproduce important definitions and implications
of Local Pooling (LoP) in networks with single-hop traffic,
presented in [4], [10]. In Section VI we will derive the
LoP conditions for themultihop case. Recall thatM(VI) is
the collection of maximal independent vertex sets onGI ,
organized as a matrix (an example appears in Fig. 2(c)). We
designate bye the vector having each entry equal to unity.
We deliberately avoid specifying its size, because it will be
obvious by the context of its use. We now define the following
notions.

Definition 3 (Subgraph Local Pooling - SLoP): An inter-
ference graphGI satisfies SLoP, if there exists nonzero
α ∈ R

|VI |
+ and c > 0 such thatαTM(VI) = ceT .

Definition 4 (Overall Local Pooling - OLoP): An interfer-
ence graphGI satisfies OLoP, if each induced subgraphover
the nodesV ⊆ VI satisfies SLoP.

Continuing with the example of Fig. 2, we can see that
SLoP is satisfied for the interference graphGI using the vector
α = (1, 2, 1): αTM(VI) = 2eT . In a similar manner, it can
be easily shown that all subgraphs ofGI satisfy SLoP, and
therefore,GI satisfies OLoP.

We can now describe the stability of the system when the
service in each time slot is scheduled according to the Maximal
Weight Independent Set (MWIS) algorithm. This algorithm
is an iterative greedy algorithm that selects the node ofGI

with the longest corresponding queue, and removes it and its

neighbors from the interference graph. This process is repeated
successively until no nodes remain. When multiple queues
have the same length a tie-breaking rule is applied. The set of
selected nodes is a maximal independent set in the interference
graph. Such a greedy algorithm can be easily implemented in
a distributed manner and has the following property.

Theorem 1 (Dimakis and Walrand, 2006 [10]): If interfer-
ence graphGI satisfies OLoP, a Maximal Weight Independent
Set (MWIS) scheduling algorithm achieves100% throughput.

III. M ULTIHOP INTERFERENCE- MOTIVATION

Here, we demonstrate the effect of multihop interference
on LoP. For simplicity of presentation, we focus on single-
hop traffic and use the model and LoP conditions of Sections
II-B and II-C. Multihop traffic is discussed in Section VI.

Primary interference constraints (referred to also as 1-
hop interference) are among the simplest possible constraints.
Most technologies impose more complicated constraints. For
example, in [2] and [25] it is indicated that in IEEE 802.11,
each pair of simultaneously active links must be separated by
at least two hops. Hence, the set of active links constitutes
a distance-2 matching, also known as aninduced matching
[2], [5]. We refer to such an interference model as 2-hop
interference and to the resulting constraints as secondary
interference constraints.

In this paper, we study the generalization of the 1- and 2-
hop interference models to ak-hop interference model, where
the set of active links at each time slot is a distance-k matching
[2], [6]. We refer tok as theinterference degree. We denote
the stability region underk-hop interference byΛ∗

k. It is clear
thatΛ∗

k cannot increase withk (and often decreases withk), as
interference between the links composing the network can only
increase. Moreover, according to [7], [15], [25], ask increases,
the worst case throughput fraction obtained by a distributed
MWIS algorithm significantly decreases. For example, recall
that in the 1-hop model, the stability region is reduced from
Λ∗

1 to Λ∗
1/2, while in the 2-hop model it can be reduced from

Λ∗
2 to Λ∗

2/8. Therefore, the intuition derived from these results
is that more interference negatively affects the performance of
simple distributed algorithms.

In this section and in Section V, we show that counter-
intuitively, in many casesmore interference assists the oper-
ation of distributed algorithms. Namely, ask increases, it is
more likely that the OLoP conditions hold, and thereby, it is
more likely that simple distributed algorithms will achieveΛ∗

k.
We now demonstrate the intuition on which this observa-

tion is based. Consider a ring network graph with 6 nodes
(referred to as the 6-ring), whose interference graph under
primary interference is also a 6-ring. According to [10],
the 6-ring interference graphdoes not satisfy OLoPand
in general amaximal weight matchingalgorithm does not
achieve 100% throughput. The best known result then provides
that a maximal weight matching algorithm guarantees 50%
throughput [16]. Under 2-hop interference, the interference
graph has 6 more edges (see Fig. 3(a)). According to [4],
this specific graph satisfies OLoP, and therefore, a MWIS
algorithm achieves 100% throughput. Under 3-hop (or higher)
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Fig. 3. (a) 2-hop and (b) 3-hop interference graphs of a 6-ring network graph

interference, the interference graph becomes a clique (see
Fig. 3(b)) which satisfies OLoP [4].5 Hence, although under
1-hop interference, a maximal weight algorithm guarantees
50% throughput, underk-hop interference (k ≥ 2) 100%
throughput is guaranteed.

Under k-hop interference, the interference graph becomes
an OLoP-Satisfying clique whenk equals the network diame-
ter. It seems reasonable to expect that for a particular network
graphGN , as the interference degree increases there exists an
interference threshold, below which OLoP fails, and above
which OLoP is satisfied. We demonstrate this property by
considering small graphs. In [4] it was shown that out of 1,252
simple interference graphs of up to7 nodes14 fail OLoP. The
following observation is obtained by exhaustively considering
the correspondingk-hop (k ≥ 2) interference graphs.

Observation 1: All k-hop (k ≥ 2) interference graphs
corresponding to network graphs with up to7 edges satisfy
OLoP.

The observations of this section motivate us to study general
multihop interference properties. We wish to understand how
an increased interference degree affects OLoP in different
classes of graphs. However, little is known about OLoP proper-
ties of graphs. Therefore, we next study this issue, which leads
us to Section V, where we use the acquired understanding of
OLoP to study the effect of increased interference.

IV. I NTERFERENCEGRAPHSSATISFYING LOCAL POOLING

The OLoP properties of graphs are only beginning to be
understood. Small graphs were studied by exhaustive search
[4]. Additionally, structural properties were used in [4],[10]
to show that the following interference graphs satisfy OLoP:
trees, forests,clique trees, where each pair of cliques shares
at most a single vertex, and apair-of-cliquesconnected by
disjoint edges.

In order to better understand the effect of interference on
LoP, we use structural properties to identify various graph
classes that satisfy OLoP. We define a new class of graphs as
the OLoP-Satisfyingclass. We identify known graph classes
that are included within this class or intersect with it. It turns
out that all the graph classes we identify using structural
properties are subclasses of the class of perfect graphs. Onthe
other hand, some of the graphs identified by the exhaustive
search [4] are not perfect graphs. Hence, in the following
discussion we differentiate between perfect and non-perfect
graphs. Our investigation leads to the taxonomy of graph
classes depicted in Fig. 4, showing the relationship of the
OLoP-Satisfying class to the graph classes considered here.

Before proceeding, we present some basic graph theoretic
definitions, required in the following sections. For brevity,
we will refer to an induced subgraph over the a subset of
nodesV ′ ⊆ VI as an induced subgraph. The complement

5This results from the fact that in a clique, a maximal weight algorithm
obtains the maximum weight solution.

P P̄
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Fig. 4. The relations between the OLoP-Satisfying class andother graph
classes: P - perfect,̄P - non-perfect, WC - weakly chordal, Ch - chordal, CBip -
chordal bipartite, Bip - bipartite, Co - cograph, Co-Comp - co-comparability,
Strip - strip-of-cliques, Even - cyclesCn with n even andn ≥ 6, Odd -
graphs with inducedCn with n odd andn ≥ 9.

G = (V, E) of a graphG = (V, E) is defined byE =
(u, v) : u, v ∈ V, u 6= v and(u, v) /∈ E. A chord of a cycle
(path) is an edge between two vertices of the cycle (path) that
is not an edge of the cycle (path). A cycle (path) ischordless,
if it contains no chords. We denote byCn andPn a chordless
cycle and a chordless path (respectively) of lengthn. We will
refer to a chordless cycleCn and to ann-ring interchangeably.
We denote byKn a clique (complete graph) ofn nodes.

A. Perfect Graphs

A graph is perfect, if for each induced subgraph the size
of the largest clique equals the chromatic number. Several
classical graph classes such as bipartite graphs, chordal graphs,
comparability graphs, and their complements are perfect [3].
Here, we will identify a number of important classes of perfect
graphs that are also subclasses of the OLoP-Satisfying class.
We will show that all of the graphs identified in [4], [10] are
simple special cases in these classes. Before describing the
results we introduce some classes of perfect graphs [3].

Definition 5: A graphG is chordal if each cycle inG of
at least4 nodes has at least one chord. A graphG is weakly
chordalif G and its complement contain no induced chordless
cycle Cn, n ≥ 5. A bipartite graphB is chordal bipartiteif
each cycle inB of length at least6 has a chord. A graph is
a cographif it does not contain the path graphP4 (depicted
in Fig. 2(a)) as an induced subgraph.
Notice that the chordal bipartite class is the intersectionof the
weakly chordal and bipartite classes.

The following theorem summarizes five results concerning
the OLoP properties of several large graph classes. The proof
can be found in Appendix A.

Theorem 2:

1) The following graph classes belong to the OLoP-
Satisfying class: Chordal Graphs, Chordal Bipartite
Graphs, and Cographs.

2) All even cyclesCn with n ≥ 6 fail SLoP.
3) Bipartite Graphs that are not Chordal Bipartite Graphs

do not belong to the OLoP-Satisfying class.

Fig. 4 illustrates the inclusion of the chordal, chordal bi-
partite, and cograph classes within the OLoP-Satisfying class.
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The class of chordal graphs has a few notable subclasses
(i.e. classes of special graphs that are known to be chordal),
including the strongly chordal, split, interval, threshold, and
tree classes (for more information see [3]). Theorem 2 implies
that all these subclasses satisfy OLoP. Therefore, the obser-
vation of [10] that trees satisfy OLoP immediately follows
from Theorem 2. Similarly, since a clique tree is chordal,
the observation of [4] that a clique tree satisfies OLoP is
also a result of the theorem. Theorem 2 also implies that all
subclasses of chordal bipartite graphs satisfy OLoP, including
the convex and bipartite∩ distance-heriditary classes.

The final contribution of Theorem 2 is its characteriza-
tion of a sharp boundary separating the chordal bipartite
graphs (OLoP-satisfying) from the bipartite graphs that are
not chordal bipartite (not OLoP-satisfying). This boundary is
depicted as a thick line in Fig. 4. This result follows directly
from the failure of the OLoP conditions in even cyclesCn

with n ≥ 6. Hence, any graph class that includes the bipartite
graphs as a subclass cannot be fully included within the OLoP-
Satisfying class. This allows us to exclude many of the major
subclasses of perfect graphs (e.g. preperfect, strongly perfect,
quasi-parity, and bip* [3]) from the list of classes that canbe
fully included in the OLoP-Satisfying class.

Two major classes that have not been excluded as subclasses
of the OLoP-Satisfying class are the weakly chordal class and
the co-comparability class, which is defined below.

Definition 6: Co-comparability graphscan be characterized
as intersection graphs of a set of curves between two parallel
lines in the plane, every curve has one endpoint on each of
the lines6 [11].
In Fig. 4 we have shaded portions of the weakly chordal
and co-comparability classes to indicate the uncertainty of
their inclusion relations with OLoP-Satisfying. Determining
the nature of these shaded regions (whether or not they exist)
is left as an open problem.

We now present a subclass of the co-comparability class to
which we refer as astrip-of-cliques. A graph is in this class, if
it is composed from an ordered set of cliques1, . . . , j, where
two adjacent cliquesi, i + 1 are connected by any number
of disjoint edges, and cliques that are not adjacent are not
connected directly. Fig. 5 illustrates such a graph. Noticethat
the pair-of-cliques presented in [4] is a specific case of a
strip-of-cliques. The following lemmas show that a strip-of-
cliques graph satisfies OLoP and that any such graph is a
co-comparability graph.

Lemma 1: Every strip-of-cliques graph satisfies OLoP.
Proof: Every connected induced subgraph of a strip-

of-cliques is a strip-of-cliques. If the induced subgraph is
disconnected, each component is a strip-of-cliques. According
to [4, Prop. 1], if each component satisfies SLoP, the disjoint
union satisfies SLoP. Thus, proving that a strip-of-cliques

6Since the graph is an intersection graph [17], every curve isrepresented
by a node and nodes are connected by an edge, if the curves theyrepresent
intersect.

(a) (b)

Fig. 6. Demonstrating that the strip-of-cliques is a co-comparability graph,
with (a) a set of curves whose intersection graph is a clique,and (b) the
introduction of a neighboring clique, where the curves corresponding to the
original clique are thinner than the new ones.

satisfies SLoP will yield that it satisfies OLoP.
If the strip-of-cliques is only a single clique, then according

to [4, Lemma 4] it satisfies SLoP. If this is not the case, we
shall refer to one of the two cliques that is connected to only
a single clique as anedge clique. For example, in Fig. 5Kn1

is an edge clique.
If the edge clique includes only a single nodev, then it is

connected by an edge to a nodeu in the neighboring clique.
One of these nodes will be active in any independent set.
Therefore, the vectorα having all zero entries except at the
indices corresponding to the verticesv andu, where the entries
are set to1, yieldsαTM(VI) = eT . If the edge clique includes
more than one node, one of the nodes in the edge clique
will be active in any independent set. Therefore, the vector
α having all zero entries except at the indices corresponding
to the vertices of the edge clique, where the entries are set to
1, yields αT M(VI) = eT . Hence, a strip-of-cliques satisfies
SLoP. Thus, we have that SLoP is satisfied in any subgraph
of a strip-of-cliques, and therefore, OLoP is satisfied.

Lemma 2: Every strip-of-cliques graph is a co-
comparability graph.

Proof: According to definition 6, if the strip-of-cliques
is a co-comparability graph, then each vertex of the strip-of-
cliques can be represented as a curve joining two parallel lines.
An edge exists between two vertices in the strip-of-cliquesif
and only if the corresponding curves intersect at some point.
We will describe a procedure for constructing the curves that
represent an arbitrary strip-of-cliques.

Begin with the leftmost clique, havingn1 vertices. Cascade
n1 curves as shown in Fig. 6(a), making sure that each of the
curves is exposed on the right, in a staircase fashion. Clearly,
each of the curves intersects with all others, which impliesa
clique intersection graph,Kn1

.
We next demonstrate how to introduce thej-th clique in

the strip-of-cliques,j ≥ 2. Consider the curves that represent
the (j − 1)-th clique, in order, by descending the staircase
on the right. If the vertexv1 corresponding to one of these
curves shares an edge with a vertexv2 in the j-th clique, then
a curve is drawn to representv2, by intersecting with the stair
corresponding tov1. This is depicted in Fig. 6(b), where the
first, third, and last curves on the staircase intersect withcurves
corresponding to the adjacent clique. Any remaining vertices
in thej-th clique that do not intersect vertices in the(j−1)-th
clique are simply included as curves that do not intersect the
staircase of the(j − 1)-th clique. There are two such curves
represented in Fig. 6(b). Note that the curves corresponding
to thej-th clique are once again organized to form a staircase
on the right.
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Clearly, the above procedure can be repeated iteratively
until the entire strip-of-cliques is represented as an intersection
graph of curves between two parallel lines. Consequently, the
strip-of-cliques is a co-comparability graph.

Fig. 4 depicts the strip-of-cliques class as intersecting with
the weakly chordal class and in particular with the subclass
of chordal bipartite. One such graph that is chordal bipartite
is C4, which can be viewed as two cliques connected by two
parallel links. Another such graph that is weakly chordal is
composed of twoK3’s connected by 2 disjoint links. On the
other hand, a graph composed of twoK3’s connected by 3
parallel links is actually aC6, and therefore, is not weakly
chordal.

Finally, we note that the strip-of-cliques class can be gener-
alized to a larger OLoP-Satisfying class by connecting cliques
in a tree structure such that pairs of cliques are connected by
a number of disjoint edges and no cycle-of-cliques is closed.
Proving that such a structure satisfies OLoP can be done using
similar arguments to the ones used in the proof of Lemma 1.

We finish this section by providing some context regarding
the magnitude of the results. Consider the set of simple graphs
having 7 nodes, of which there are 1,044 distinct graphs. Of
these graphs,393 are chordal, and180 are cographs, with
some overlap between these two classes. These numbers can
be compared to the37 forests and11 trees that were known
to satisfy OLoP. Similarly, when considering the set of simple
11 node graphs, the number of chordal graphs is 1,392,387,
compared to710 forests and235 trees. We summarize that
our understanding of the OLoP-Satisfying class has expanded
significantly beyond the trees and forest graphs.

B. Non-Perfect Graphs

The OLoP-Satisfyingclass includes also graphs that are
not perfect. We first use the numerical observations of [4] to
identify non-perfect graphs that satisfy OLoP. The 5-ring,C5,
which is the only 5-node non-perfect graph, satisfies OLoP.
Moreover, since all 6-node graphs exceptC6 satisfy OLoP, all
non-perfect 6-node graphs satisfy OLoP. Finally, all 7-node
graphs satisfy OLoP besides a specific one illustrated in [4]
and those that have an induced 6-ring, which leads us to the
observation that134 out of the 138 non-perfect 7-node graphs
satisfy OLoP. In Fig. 4 all these graphs appear in a single class
(containingC5 andC7) within the OLoP-Satisfying class.

We now show that all non-perfect graphs that have an
induced odd cycle with at least9 nodes fail OLoP (see the
Odd class in Fig. 4). This follows from the following theorem,
whose proof can be found in Appendix B.

Theorem 3: All odd cyclesCn with n ≥ 9 fail SLoP.

V. L OCAL POOLING UNDER MULTIHOP INTERFERENCE

In Section III we discussed thek-hop interference model
and showed that in several cases, increasing the interference
degree (k) results in an interference graph that satisfies OLoP.
We now use the acquired knowledge regarding the OLoP-
Satisfying class to study this phenomenon. We denote byGk

the k-th power of G: Gk has the same vertex setV as G,
andu, v ∈ V are adjacent inGk, if the minimum path length

betweenu andv in G is at mostk. Given a 1-hop interference
graphG1

I , the correspondingk-hop interference graph isGk
I .

We focus on graph classes that appear in Fig. 4. First, recall
that according to Observation 1, allk-hop (k ≥ 2) interference
graphs with up to 7 nodes satisfy OLoP. Therefore, a number
of 1-hop interference graphs outside the OLoP-Satisfying class
yield k-hop interference graphs that are OLoP-Satisfying.
These graphs are the 6-ring, the 6-wheel, and the four non-
perfect 7-node graphs outside the OLoP-Satisfying class.

We now define the following subclass of chordal graphs.
Definition 7 (Strongly Chordal Graph [3]): A graphG is

strongly chordal, if G is chordal and each cycle inG of even
length at least6 has an odd chord (a chord(i, j) is an odd
chord, if the distance in the cycle betweeni and j is odd).

Since the strongly chordal graphs belong to the chordal
class, Theorem 2 implies that strongly chordal graphs are
OLoP-Satisfying. It is known that the strongly chordal class is
strongly closed under power. Namely, if an interference graph
Gk

I is strongly chordal, thenGk+j
I is strongly chordal for all

j ≥ 1 [3]. Therefore, even if the 1-hop interference graph
is not strongly chordal, once an interference graph becomes
strongly chordal (and thereby OLoP-Satisfying), increased in-
terference degree will generate OLoP-Satisfying graphs. This
agrees with the intuition in Section III, of aninterference
thresholdk above which all interference graphs satisfy OLoP.

The strongly chordal class has a number of subclasses, the
simplest ones being a tree and a clique tree. On the other
hand, apair-of-cliqueswhich is a specific case of thestrip-
of-cliques(defined in Section IV-A) is not strongly chordal.
However, in the proof of the following lemma we show that its
corresponding 2-hop interference graph is chordal. By using
similar methods it can also be shown to be strongly chordal.

Lemma 3: If the 1-hop interference graphG1
I is a tree, a

clique tree, any strongly chordal graph, or a pair-of-cliques,
Gk

I satisfies OLoP for everyk ≥ 1.
Proof: A tree is strongly chordal, since it has no cycles.

The cycles in the tree of cliques have all possible the chords,
and therefore, a tree of cliques is strongly chordal. Strongly
chordal graphs are strongly closed under power. Therefore,
given an interference graphG1

I which is strongly chordal
(including a tree or a tree of cliques), the corresponding graphs
Gk

I ∀ k ≥ 1 are strongly chordal and satisfy OLoP.
A G1

I which is a pair-of-cliques (i.e.K1 andK2 connected
by a number of disjoint edges) is not strongly chordal, since
it can have an induced chordless cycleC4. We now show
that the correspondingG2

I is chordal.G2
I is composed of 2

cliques (K1 andK2) that share a number of nodes. The nodes
that are not shared are those that inG1

I are not connected
directly to the other clique. Assume thatG2

I is not chordal. In
such a case, there has to be a cycle of at least 4 nodes that
has no chords. Such a cycle must include at least one of the
non-shared nodes fromK1 and one of the non-shared nodes
from K2. It must also include 2 of the shared nodes. Since
the shared nodes are part of both cliques, they are connected
by a chord. Therefore, the cycle is not chordless, which is a
contradiction. Consequently,G2

I is chordal and satisfies OLoP.
The correspondingG3

I is a clique, and therefore, according to
[4], satisfies OLoP.Gk

I ∀ k > 3 is still a clique.
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The following lemma shows that other graphs, identified in
Section IV-A, that in general are not strongly chordal, also
satisfy OLoP for any interference degree.

Lemma 4: If the 1-hop interference graphG1
I is a cograph

or a strip-of-cliques,Gk
I satisfies OLoP for everyk ≥ 1.

Proof: According to [3] every connected subgraph of a
cograph has diameter of at most 2. Therefore, the correspond-
ing Gk

I ∀ k ≥ 2 is a clique and according to [4] satisfies OLoP.
We now use similar terminology to the one used in the

proof of Lemma 1. According to Lemma 1, ifG1
I is a

strip-of-cliques, it satisfies OLoP. The interference graph Gk
I

corresponding toG1
I is composed of cliques that share some

nodes with their neighboring cliques. In particular, the nodes
of the edge clique ofG1

I are included in a clique containing
several other nodes. We refer to this clique as thek-edge-
clique.

If the k-edge-clique includes all the nodes, then it satisfies
OLoP. Otherwise, there are nodes of theG1

I edge clique that
are not shared with neighboring cliques. In that case, one
node of thek-edge-clique will be active in any independent
set. Therefore, the vectorα having all zero entries except at
the indices corresponding to the vertices of thek-edge-clique,
where the entries are set to1, yieldsαT M(VI) = eT . Hence,
the interference graphGk

I satisfies SLoP. Using a similar
reasoning it can be shown that any subgraph ofGk

I satisfies
SLoP, and therefore,Gk

I satisfies OLoP.
Thus far, we have studied the LoP properties under multihop

interference for most graphs represented in Fig. 4. We next
turn our attention to particularnetwork graphstructures. An
example of an interference graphG1

I resulting from 1-hop
interference is given in Fig. 2. A second example is then-
ring network graphCn, whose 1-hop interference graph is
also Cn. Recall from Section IV thatCn fails OLoP for
n = 6 and n ≥ 8. Our numerical tests show that the 2-
hop interference graph of anyCn with n ≤ 8 satisfies OLoP.
Hence, we observe that rings are network graphs that benefit
from additional interference degrees.

Clearly, any network graph whose corresponding interfer-
ence graph is one of the structures indicated in Lemmas 3 and
4 satisfies OLoP for anyk ≥ 1. In particular, we can derive
the following result.

Theorem 4: Distributed MWIS algorithms achieve100%
throughput in a treenetwork graphunder any interference
degreek.

Proof: The interference graphG1
I of a tree network

graph is a tree of cliques. According to Lemma 3 for such
an interference graph, the correspondingGk

I satisfies OLoP
for any k ≥ 1.

The 2-hop interference model is important, since it rep-
resents the IEEE 802.11 transmission constraints [2], [25].
We obtain the following result regarding this model by using
results regarding squares of line graphs7 studied in [5], [6]

Theorem 5: Distributed MWIS algorithms achieve 100%
throughput in a chordalnetwork graphunder secondary
interference constraints (2-hop interference model).

7In graph theoretic terminology, the interference graph resulting from 1-hop
interference is called line graph [14].

(a) (b)

Fig. 7. (a) A chordal 1-hop interference graph and (b) the corresponding
2-hop interference graph that fails OLoP.

Proof: According to [5], given a chordal network
graphGN , the corresponding 2-hop interference graphsG2

I

is chordal. According to Theorem 2, OLoP is satisfied in a
chordal interference graph, and therefore, Distributed MWIS
algorithms achieve 100% throughput.

Several important subclasses of chordal graphs have the
potential to allow a MWIS algorithm to be throughput-optimal
under 2-hop interference. One of the subclasses is the classof
interval graphs [3], [6]. For that class the following stronger
result holds.

Lemma 5: Distributed MWIS algorithms achieve maximum
throughput in an interval network graph under ak-hop
interference model (k ≥ 2).

Proof: According to [6], given an interval network graph
GN , the corresponding 2-hop interference graphsG2

I is an
interval graph. Interval graphs are strongly chordal [3], and
therefore, the correspondingk-hop (k ≥ 2) interference graphs
Gk

I are is strongly chordal and OLoP-Satisfying.
Although for some chordal network graphs that are also

strongly chordal distributed MWIS algorithms can be shown
to achieve100% throughput under ak-hop interference model
(k ≥ 2), this is not in general the case with the entire class of
chordal graphs. In fact, ifGk is chordal, thenGk+2 is chordal
but it is not guaranteed thatGk+1 is chordal [3]. Therefore, if
the 2-hop interference graphG2

I is chordal, the corresponding
k-hop interference graphGk

I when k is even satisfies OLoP.
When we study the transition fromGk

I to Gk+1
I , we find that

thereare rare caseswhere increasing the interference degree
can result in a graph that fails OLoP. The following lemma
summarizes this result.

Lemma 6: There are OLoP-Satisfyingk-hop interference
graphs for which OLoP is not satisfied in a corresponding
j-hop (j > k) interference graph.

Proof: Assume that there are no such graphs. Consider
the 1-hop interference graphGI in Fig. 7(a). This is a chordal
graph, and therefore, according to Theorem 2 it satisfies OLoP.
The corresponding 2-hop interference graphG2

I appears in
Fig. 7(b). The subgraph induced by the white nodes is a 6-
ring, which fails SLoP. Therefore, OLoP fails in the 2-hop
interference graph, which is a contradiction.

To conclude, this section has demonstrated that several (but
not all) graph classes have the desirable property of havinga
threshold of interference degree above which the interference
graphs are OLoP-Satisfying. In these instances, increasing in-
terference degree positively affects the performance of simple
distributed scheduling algorithms.

VI. L OP IN NETWORKS WITH MULTIHOP ROUTING

In this section, we study the LoP properties in networks
employing multihop routing, undergeneral interference con-
straints. We focus on a framework based on a distributed
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MWIS scheduling algorithm using backpressure link weights.
We obtain multihop local pooling conditions that are sufficient
for guaranteeing 100% throughput under this framework.

A. Backpressure-based Scheduling and Routing

Recall from Section II-A that the optimal centralized sched-
uler (1) calculatesmaximumweight independent sets based
on backpressurelink weights. In our framework we consider
the distributedMaximal Weight Independent Set (MWIS)
algorithm used in the single-hop setting, but change the
link weights to backpressure link weights. Thus, the MWIS
algorithm operates on the interference graph with node weights
derived from the backpressure link weights. This enables
scheduling decisions for joint link activation and packet rout-
ing. As in the single-hop case, the framework isindependent
of the global network topology and traffic statistics.

Algorithm 1 Backpressure-based scheduling framework
1: for time indext = 1, 2, . . . do
2: For each directed edgee ∈ EN assign

Ze,j(t)← (Qσ(e),j(t)−Qτ(e),j(t))

3: AssignZ∗
e (t) = maxj Ze,j(t)

4: Obtain a maximal link activationπ∗(t) ∈ Π(GN ) using
a decentralized MWIS algorithm, based on the edge
weight vectorZ∗(t) = (Z∗

e (t), e ∈ EN )
5: For eache ∈ EN such thatπ∗

e (t) = 1, choosej∗ ∈
arg maxj Ze,j(t). Routemin{1, Qσ(e),j∗(t)} packets of
commodityj∗ acrosse

6: end for

In step 4, the framework uses the MWIS algorithm to select
a maximalweight link activation based upon maximum link
backpressures, obtained in step 3. In step 5, the framework
makes routing decisions to service commodities achieving
maximum backpressure.

Recall that the OLoP conditions consider all possible vertex
subsets of the interference graph,V ⊆ VI . By the definition
of the interference graph, the node setV corresponds to a
subset of the network graph edges,E ⊆ EN . Thus, the OLoP
conditions effectively consider every subset of network graph
edgesE ⊆ EN . In the multihop routing scenario, we must
again consider each set of network graph edgesE ⊆ EN .
Additionally, givenE ⊆ EN , we must consider for each edge
the set of possible combinations of commodities, subject to
some restrictions. We formalize the possible edge/commodity
combinations considered by introducing the Maximum Com-
modity Family (an example is given in Section VI-B).

Definition 8 (Maximum Commodity Family -JE): The
Maximum Commodity Family forE ⊆ EN , E 6= ∅, is given
by JE = {(JQ̃

e , e ∈ EN ) : Q̃ ∈ QE , Q̃ 6= 0}, where

QE = {(Q̃i,j, i, j ∈ VN , i 6= j) : Q̃i,j ∈ R+ ∀i, j,

E = argmaxe maxj(Q̃σ(e),j − Q̃τ(e),j)},

JQ̃
e = {j ∈ VN : j 6= σ(e),

Q̃σ(e),j − Q̃τ(e),j ≥ Q̃σ(e),j′ − Q̃τ(e),j′ ∀j
′ ∈ VN}.

The above definition relates closely to the fluid limit model
for the queueing system. In order to better understand the
Maximum Commodity Family, we next explore some of its
properties. To this end, we introduce for each commodity
j ∈ VN the directedcommodity graphGj = (VN , Ej), where
Ej = {e ∈ E : j ∈ Je}.

Lemma 7: ForE ⊆ EN , E 6= ∅, the commodity collection
J = (Je, e ∈ EN ) ∈ JE satisfies:

1) Je 6= ∅, ∀e ∈ EN .
2) Je ⊆ VN \ {σ(e)}.
3) For j ∈ ∪e∈EJe, Gj has no directed cycles.
4) If Gj has a directed path between verticesv1, v2 ∈ VN

of lengthL, then

a) the minimum length path betweenv1 andv2 in the
network graphGN is L, and

b) the edges of all paths inGN betweenv1 andv2 of
lengthL are in Gj .

5) If Gj has a path of lengthL originating at vertexv,
then

a) GN has no paths of length less thanL originating
at vertexv and terminating at vertexj, and

b) the edges of all paths of lengthL in GN , originat-
ing at vertexv and terminating at vertexj belong
to Gj .

Proof: See Appendix C.
Under the backpressure framework, when the set of directed

edgesE ⊆ EN have backpressures exceeding those of the
other edges in the graph, there must exist a commodity
collection (Je, e ∈ EN ) ∈ JE for which Je is the set of
commodities maximizing differential backlog acrosse ∈ EN .
In this case, a MWIS algorithm must select a link activation
π∗ that is maximal among the edges inE: i.e. π∗

E ∈M(E).
Additionally, the commodityj that is routed across edge
e ∈ EN must belong toJe. These properties characterize
the Maximal Service Activation Set (an example is given in
Section VI-B):

Definition 9 (Maximal Service Activation Set -SE,J ): For
E ⊆ EN and J = (Je, e ∈ EN ) ∈ JE ,

SE,J =
{

S ∈ S :
∑

jSE,j ∈M(E),

Se,j = 1 impliesj ∈ Je whene ∈ EN

}

In order to characterize the stability properties of the back-
pressure framework, we will track the dynamics of the link
differential backlogs. Hence, we must understand how each
service matrixS ∈ S affects the distribution of commodity
backpressures over the network links. We next introduce the
Backpressure Service Vector. Recall thatdi,j(S) is the service
to queueQi,j under activation matrixS: di,j(S) = R

j
i,·S·,j .

Definition 10 (Backpressure Service Vector -uE,J(S)):
For E ⊆ EN , J = (Je, e ∈ EN ) ∈ JE , and service

matrix S ∈ S, the vectoruE,J(S) contains thedecrease
in differential backlog of commodityj across link e under
service matrixS for every edge/commodity pair(e, j) where
e ∈ E, j ∈ Je:

uE,J(S) = ((dσ(e),j(S)− dτ(e),j(S)), e ∈ E, j ∈ Je).
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Fig. 8. (a) Network graphGN , (b) the subsetE of network graph edges,
with corresponding commodity sets labeled at each edge, and(c) commodity
graphsGv1

(left) andGv2
(right) for a particular maximal service activation.

B. Some Examples

In this section, we consider the network graphGN of
Fig. 8(a), with the convention that the directed edge from node
vi to vj is labeledeij .

We begin by considering a specific feasible combination
of edges and commodities. In the next section we will show
that certain conditions have to hold for each such combi-
nation. The subsetE of network edges of interest isE =
{e32, e35, e42, e53, e54}, as depicted in Fig. 8(b). Each edge in
E has associated with it a set of commodities:Je32

= {v1, v2},
Je35

= {v2}, Je42
= {v1}, Je53

= {v1}, Je54
= {v1}.

These commodity sets are elements of commodity collection
J = (Je, e ∈ EN ). This collection is a member of the
Maximum Commodity Family.

Assuming primary interference constraints, the Maximal
Service Activation SetSE,J is summarized by the following
table of valid edge/commodity pairs. For example, activation
(e32, v1) means that commodityv1 is sent over linke32.
Additionally, each activationS is translated in the table
below to backpressure service vectorsuE,J(S). The service
vectors are ordered by (link, commodity) pairs as follows:
(e32, v1), (e42, v1), (e53, v1), (e54, v1), (e32, v2), (e35, v2).

Service activationS Backpressure service vectoruE,J(S)

{(e32, v1), (e54, v1)} (2, 0, 0, 2, 0, 0)
{(e42, v1), (e53, v1)} (0, 2, 2, 0, 0, 0)
{(e32, v2), (e54, v1)} (0,−1, 1, 2, 1, 1)
{(e35, v2), (e42, v1)} (1, 2, 0,−1, 1, 2)

Consider the third service activation from the table, which
activates edgee32 for service of commodityv2, and edgee54

for service of commodityv1. We have depicted in Fig. 8(c) the
active link for servicing commodityv1 packets in the graph
on the left, and the active link for servicing commodityv2

packets in the graph on the right. At each node of the graph,
we indicate the number of packetsdepartedfrom that node
under that service activation. The backpressure service for each
edge/commodity combination(e, j), wheree ∈ E andj ∈ Je,
is then obtained by calculating on the graph corresponding
to commodityj the difference between the quantity indicated
at the source node ofe and that indicated at the destination
node ofe. Edgee54 has a+1 at its source and a−1 at its
destination in the graph for commodityv1, which indicates
a backpressure service of2 commodityv1 packets. Through
similar computation, we find that edgee32 sees a backpressure
service of1 commodityv2 packet. Note that although no other
edge is active, some inactive edges do incur service under
this service activation: edgee53 sees a backpressure service
of 1 commodityv1 packet, while edgee42 sees anincrease
of commodityv1 backpressure of1 packet (this implies−1

(a) (b) (c) (d) (e)

Fig. 9. Commodity graphs for commodityv1, that are invalid based on the
properties of Lemma 7.

units of backpressure service). Finally, edgee35 sees a service
of 1 commodityv2 packet. No other edge/commodity pairs
(e, j) where e ∈ E and j ∈ Je, see service. Thus, we
have determined each entry in the backpressure service vector
corresponding to this particular service activation.

We next provide examples to illustrate the properties of
Lemma 7. Figs. 9(a)-9(d) show graphs that are inadmissible as
the commodityv1 graph,Gv1

, for the network graph depicted
in Fig. 8(a): Fig. 9(a) fails Property 3 becauseGv1

contains
a directed cycle; Fig. 9(b) fails Property 4a since edgee53

provides a shorter path between verticesv5, v3; Fig. 9(c) fails
Property 4b since edgese53, e32 are not included inGv1

;
Fig. 9(d) fails Property 5a since the pathv2 → v3 → v5

belongs toGv1
, while path v2 → v1 belongs toGN ; and

Fig. 9(e) fails Property 5b since edgee21 does not belong to
Gv1

.

C. Stability of the Backpressure-Based Scheme

Here, we study the stability of the backpressure framework,
and introduce new LoP conditions for stability. Recall that
the quantitydi,j(S) is the amount of service at queueQi,j

resulting from service activationS. Denote vectord(S) =
(di,j(S), i, j ∈ VN ).

Definition 11 (Subgraph Multihop Local Pooling - SMLoP):
The directed network graphG = (V, E) with commodity
collection J ∈ JE satisfies SMLoP if there exist vectors
α, β ≥ 0 with α 6= 0, and a constantc ≥ 0 such that

αTuE,J(S) + βTd(S) ≤ c, ∀S ∈ S, (3)

αTuE,J(S) ≥ c, ∀S ∈ SE,J . (4)
The SMLoP conditions associate with each link/commodity

pair (e, j) a non-negative weightαe,j , wheree ∈ E, j ∈ Je.
Further, for each node/commodity pair(v, j), the conditions
associate a non-negative weightβv,j , wherev, j ∈ VN .

Definition 12 (Overall Multihop Local Pooling - OMLoP):
The network graphGN = (VN , EN ) satisfies OMLoP if
SMLoP is satisfied by each subgraphG′

N = (VN , E) with
commodity collectionJ ∈ JE , whereE ⊆ EN .

We next state the main theorem regarding the stability
of the backpressure-based framework. The proof appears in
Appendix D.

Theorem 6: If network graphGN satisfies OMLoP, then
the backpressure-based scheduling framework achieves 100%
throughput.

Theorem 6 demonstrates the sufficiency of the OMLoP con-
ditions for stability under the backpressure-based framework.
In the next section, we consider natural questions that arise
out of these conditions.
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VII. STUDYING THE OMLOP CONDITIONS

We now show that the OMLoP conditions are distinct from
the single-hop Local Pooling conditions studied in [4], [10],
and demonstrate stability for a specific class of networks. We
first show that any network graphGN under which single-hop
LoP fails should also fail the OMLoP conditions.

Lemma 8: IfGN fails OLoP, then it also fails OMLoP.

Proof: SupposeGN fails single-hop OLoP. Then there
exists a set of edgesE of GN for which the single-hop SLoP
conditions fail.E can be considered without loss of generality
as a set of directed edges, each of arbitrary directionality
between its end nodes.

To demonstrate that SMLoP fails, consider the set of di-
rected edgesE, and commodity setsJe = {τ(e)} for e ∈ EN .
It can be seen thatJ = (Je, e ∈ EN ) ∈ JE . By definition, any
active edge in a service activationS ∈ SE,J must be employed
for single-hop service. This implies for eachS ∈ SE,J that
vector β can only lead to nonnegative contributions on the
lefthand side of (3), as follows: each active edge has a value1
associated with its origin vertex and a value0 associated with
its destination vertex, for the commodity being single-hopped
across it. Since we requireβ ≥ 0, this implies that we can at
best treat the second term on the left in (3) as zero for every
S ∈ SE,J .

Thus we must find nonzeroα ≥ 0, c ≥ 0 such that
αTuE,J (S) = ceT for eachS ∈ SE,J . For any suchS, each
active edgee services a packet to vertexτ(e), leading to a
backpressure reduction acrosse of a single commodityτ(e)
packet. Because each edge services a different commodity, all
inactive edges inE see no change in the backpressure of their
respective single-hop commodities. This impliesuE,J(S) ∈
M(E). Since all maximal activations over the edge setE
are included inSE,J , the set of backpressure service vectors
overSE,J must then equalM(E). But M(E) fails the SLoP
conditions: there does not exist nonzeroα ≥ 0, c > 0 such
that αTM(E) = ceT . Finally, c = 0 is invalid, because by
its definition as the set of maximal link activations, each row
of M(E) is nonzero, which means the inner product of any
nonzeroα ≥ 0 with some column ofM(E) exceedsc = 0.
ThusGN fails OMLoP.

In terms of Fig. 4, Lemma 8 implies that the class of graphs
that are not OLoP-Satisfying can not be OMLoP-Satisfying.
Namely, all network graphs having interference graphs with
induced subgraphs that are bipartite and not weakly chordal,
or inducedCn whenn = 6 or n ≥ 8 must fail OMLoP. The
next theorem demonstrates that the OMLoP conditions are in
fact more restrictivethan their single-hop counterparts. Thus,
the family of OMLoP-satisfying graphs isstrictly smaller than
that depicted in Fig. 4. It was indicated in Section IV-B that
the 5-ring satisfies the single-hop OLoP conditions. Here we
show that OMLoP fails for the 5-ring.

Theorem 7: The 5-ring (C5) fails OMLoP.

Proof: Consider the network graphGN depicted on the
left below, and the subset of edgesE depicted on the right.
We denote byeij the directed edge from vertexvi to vj .

v1v1

v2

v3

v4

v5

We consider the commodity collectionJ = (Je, e ∈ EN ),
where fore ∈ EN , Je = JQ̃

e and

Q̃ =













0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0













.

It can be seen that̃Q ∈ QE , which implies thatJ is a member
of the maximum commodity familyJE .

Each of the following edge/commodity activations is repre-
sented in the maximal service activation setSE,J :

{(e21, v1), (e45, v1)}, {(e51, v1), (e32, v1)}.

When we consider the backpressure service vectors associated
with these activations, the second SMLoP conditions (4) re-
quire the existence ofα, c ≥ 0, α 6= 0, such thatαT M1 ≥ c,
where

M1 =

[

1 −1
−1 1

]

.

Sincec is required to be nonnegative, this immediately implies
that c = 0.

Each of the following edge/commodity activations is repre-
sented in the setS:

{(e21, v1), (e54, v1)},

{(e51, v1), (e23, v1)},

{(e21, v1), (e34, v1)},

{(e51, v1), (e34, v1)},

{(e32, v1), (e45, v1)},

{(e32, v1)},

{(e45, v1)}.

When we consider the backpressure service vectors and queue
backlog service associated with these activations, the first
SMLoP conditions (3) require the existence ofα, β ≥ 0,
α 6= 0, such thatαTM2 + βTM3 ≤ 0, where

M2 =

[

1 1 1 0 −1 −1 0
1 1 0 1 −1 0 −1

]

,

M3 =













0 0 0 0 0 0 0
1 1 1 0 −1 −1 0
0 −1 1 1 1 1 0
−1 0 −1 −1 1 0 1
1 1 0 1 −1 0 −1













.

Simple algebraic manipulation (which we forgo) can be used
to demonstrate that there exists no suchα, β. Thus, the5-ring,
C5, fails SMLoP under edge setE and commodity collection
J , which implies thatC5 fails OMLoP.

We now verify that the OMLoP conditions hold for a
class of graphs in which the backpressure-based framework is
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known to achieve 100% throughput. This class is theforest of
stars, where every connected component of the network graph
is a star graph, consisting of a central nodev0, connected to
one or more vertices of degree1. Under anyk-interference
model, the star’s interference graph is a clique (appearingin
Fig. 4 within the intersection region of the chordal and cograph
classes). Therefore, only one edge can ever be active at once.
Accordingly, a maximal weight edge activation is identical
to a maximum weight edge activation, thereby achieving
100% throughput. The following lemma shows that OMLoP
is satisfied in such graphs. The proof appears in Appendix E.

Lemma 9: The star network graph satisfies OMLoP.
Applying a result similar to [4, Prop. 1], we have the

following corollary.
Corollary 1: Every forest of stars satisfies OMLoP.

VIII. C ONCLUSIONS

The consideration of Local Pooling has the potential to
enable efficient distributed operation of wireless networks.
However, since previously LoP was studied mostly under the
assumptions of single-hop traffic and primary interference, in
this paper we focused on its multihop implications. We identi-
fied several graph subclasses of the OLoP-Satisfying class and
increased the number of known graphs that satisfy LoP by a
few orders of magnitude. Using these observations, we showed
that increasing the interference degree usually has a positive
effect on the performance of simple distributed algorithms.
For example, it was proved that undersecondaryinterference
constraints, a maximal weight scheduling algorithm achieves
100% throughput in chordal network graphs. Moreover, we
obtained the LoP conditions for networks with multihop traffic
(OMLoP) and showed that they are distinct from the single-
hop conditions. Finally, we showed that the class of graphs
satisfying the OMLoP conditions is a strict subclass of the
OLoP-Satisfying class.

We emphasize that our objective in this paper is to obtain
a bettertheoreticalunderstanding of LoP that will assist the
development of future algorithms. Hence, although a theoret-
ical contribution has been made, there remain many algorith-
mic open problems. For example, LoP-based algorithms can
partition the network into LoP-satisfying subnetworks or add
artificial interference constraints to generate a LoP-satisfying
network. Our identification of several LoP-satisfying graph
classes that can serve as building blocks for these networks,
and the understanding of multihop traffic and interference
effects are advances toward such algorithms. For instance,one
can now develop algorithms that add artificial edges to the
interference graph to yield a chordal graph.

Moreover, there are a number of theoretical issues that
remain unresolved. For example, the analysis of multihop
interference under multihop traffic requires further investiga-
tion. Additionally, Lemma 6 demonstrates that further study
is necessary to determine the general evolution of the LoP
property with varying interference degree. Finally, the com-
plete characterization of the OLoP-Satisfying and the OMLoP-
Satisfying graph classes is a subject for further research.
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APPENDIX A
PROOF OFTHEOREM 2

In order to prove the theorem, we prove the following
lemmas. In the proofs we denote the set of neighbors of node
v by N(v).

Lemma A.1: Any chordal graph satisfies OLoP.
Proof: First, we prove that any chordal graph satisfies

SLoP. It was shown in [21] that any chordal graphG has at
least one vertexv for which N(v) is a clique inG (such a
vertex is called a simplicial vertex). SinceN(v) is a clique,
any maximal independent set in a chordal interference graph
GI will include either the simplicial vertexv or exactly one of
the nodes inN(v). Consequently, the vectorα having all zero
entries except at the indices corresponding to the simplicial
vertexv and to the vertices inN(v), where the entries are set
to 1, yieldsαTM(VI) = eT . Thus, any chordal graph satisfies
SLoP.

According to [17], any induced subgraph (with respect to
node removal) of a chordal graph has a simplicial vertex.
Hence, by using the vectorα described above, we find that any
induced subgraph of a chordal graph satisfies SLoP. Therefore,
any chordal graph satisfies OLoP.

Lemma A.2: Any chordal bipartite graph satisfies OLoP.
Proof: Following [3], given a bipartite graphB, we

define (u, v) ∈ E as a bisimplicial edge, ifN(u) ∪ N(v)
induces acompletebipartite subgraph inB. It was shown
in [12] that if a graphB is chordal bipartite, any induced
subgraph (with respect to node removal)B′ has a bisimplicial
edge. Therefore, we have to show that a bipartite graph
B′ which has a bisimplicial edge satisfies SLoP. This will
establish that a any chordal bipartite graph satisfies OLoP.

Denote by(u, v) the bisimplicial edge ofB′ and assume
that there exists an independent set inB′ that does not include
nodesu andv. Such an independent set must include a neigh-
bor of u and a neighbor ofv. However, sinceN(u) ∪ N(v)
induces acompletebipartite subgraph, an independent set can-
not include nodes from bothN(u) and N(v), and therefore,
such an independent set cannot exist. This contradicts the
assumption. Therefore, any independent set must include at
least one node fromu and v. Since u and v are adjacent,
an independent set can include eitheru or v. Consequently,
the vectorα having all zero entries except at the indices
corresponding to the nodes of the bisimplicial edge(u, v),
where the entries are set to1, yields αTM(VI) = eT . Thus,
any bipartite graph that has a bisimplicial edge satisfies SLoP.

Lemma A.3: Any cograph satisfies OLoP.
Proof: In everyinduced subgraphof a cograph, the inter-

section of any maximal clique and any maximal independent
set contains precisely one vertex [3]. Hence, given an induced
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subgraph of a cograph, there is a maximal clique that has an
active node in each independent set. Consequently, the vector
α having entries of one at the indices corresponding to nodes
in this clique and having entries of zero otherwise, yields
αTM(VI) = eT . Therefore, SLoP holds for all the induced
subgraphs of a cograph and OLoP holds for any cograph.

Lemmas A.1-A.3 establish the first part of the Theorem.
The second part is established by the following lemma.

Lemma A.4:All even cyclesCn with n ≥ 6 fail SLoP.
Proof: For the 6-ring interference graph, denoted by

C6 = (V6, E6), it was shown in [10] that there is noα ≥
0, c > 0 such thatαTM(V6) = ceT . Considern ≥ 8, with
n even. We label the nodes of then-ring, Cn = (Vn, En),
using v1, v2, . . . , vn. Then, the following are valid maximal
independent sets

{v1, v3, v5, . . . , vn−7, vn−4, vn−2} (5)

{v1, v3, v5, . . . , vn−7, vn−4, vn−1} (6)

{v2, v4, v6, . . . , vn−6, vn−4, vn−2, vn} (7)

{v2, v4, v6, . . . , vn−6, vn−4, vn−1} (8)

{v2, v4, v6, . . . , vn−6, vn−3, vn−1} (9)

{v2, v4, v6, . . . , vn−6, vn−3, vn} (10)

From the requirement ofαTM(Vn) = ceT under then-ring
Cn = (Vn, En), we draw the following conclusions. Equations
(5) and (6) implyαn−2 = αn−1. Combining this fact with
(7) and (8) yieldsαn = 0. Finally, combining the fact that
αn = 0 with (9) and (10) providesαn−1 = 0. Thus, it is
without loss of generality that we discard the two rows of
M(Vn) corresponding to nodesvn−1, vn.

We now claim that the remaining rows ofM(V ) provide
all the constraints corresponding to the(n−2)-ring. Consider
any independent set of then-ring containing nodev1 and node
vn−1. Note that this configuration mimics the(n− 2)-ring by
disallowing nodevn−2 to be active simultaneously withv1.
Thus, all maximal independent sets of this type in then-ring
are maximal in the(n−2) ring, and it can be easily seen that
all (n− 2)-ring maximal independent sets containingv1 yield
maximal independent sets in then-ring whenvn−1 is active.
Further, consider any maximal independent set of then-ring
containing nodev2 and nodevn. Similar reasoning to above
provides that all maximal independent sets in the(n−2)-ring
containingv2 are represented under this configuration. Finally,
consider any maximal independent set of then-ring containing
nodesv3, vn−2, vn. Again, it can be easily shown that all
maximal independent sets in the(n − 2)-ring containingv3

andvn−2 are represented. This completes the characterization
of all maximal independent sets of the(n−2)-ring, since each
independent set inCn−2 contains eitherv1 or v2, or contains
both v3 and vn−2. Thus, it must be true that the matrix of
maximal independent sets ofCn−2, M(Vn−2), is a submatrix
of that of Cn, M(Vn).

Sinceαn−1 = αn = 0, the existence ofα ≥ 0 and c > 0
such thatαTM(Vn) = ceT implies that

(α1, . . . , αn−2)M(Vn−2) = ceT .

Applying this reasoning inductively, if the SLoP conditionfor
any n-ring havingn ≥ 8 and n even is satisfied, then SLoP

must be satisfied for the6-ring. This is a contradiction and we
conclude that everyn-ring fails SLoP forn ≥ 8 andn even.

The third part of the theorem holds because if a bipartite
graph is not weakly chordal (i.e. not chordal bipartite), it
includes an even cycleCn with at least 6 nodes. This cycle is
an induced subgraph that according to Theorem A.4 does not
satisfy SLoP. Hence, OLoP fails in bipartite graphs that are
not weakly chordal.

APPENDIX B
PROOF OFTHEOREM 3

In Lemma A.4 it was shown by contradiction that everyn-
ring fails SLoP forn ≥ 8 and n even. The proof forCn =
(Vn, En), n ≥ 9 andn odd is based on a similar idea. First,
the matrix of maximal independent sets for the9-ring C9 =
(Vn, En) is a characterized:

M(V9) =





























1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0
1 1 1 0 0 0 0 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 1 1 1 0
0 0 1 1 0 1 1 0 0 0 0 1
1 0 0 0 1 0 0 1 1 0 1 0
0 1 1 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 1





























.

Using the same node labeling described above, we study the
equationαT M(V9) = ceT . Columns 1 and 2 ofM(V9) imply
α7 = α8. Columns 2 and 3 implyα5 = α6. Columns 3 and 4
imply α3 = α4. Columns 4 and 6 implyα1 = α2. Columns
6 and 7 implyα8 = α9. Columns 7 and 8 implyα6 = α7.
Columns 8 and 9 implyα4 = α5. Columns 9 and 11 imply
α2 = α3. Thus, all valuesαi must be equal. But, note that
columns 11 and 12 implyα5 + α7 = α6, which must give
α5 = 0, and consequentlyαi = 0 for all i. We conclude that
the 9-ring C9 fails SLoP.

The remainder of the proof demonstrating that all ringsCn,
for n ≥ 9, with n odd fail SLoP follows identically to the
even case considered in Lemma A.4, by reducing any such
case to the9-ring SLoP condition, which is not satisfied.

APPENDIX C
PROOF OFLEMMA 7

Let E ⊆ EN , with E 6= ∅. Consider anyJE ∈ JE , and
supposeJE = (JQ̃

e , e ∈ EN ) for Q̃ ∈ QE. Item 1 follows
because the setJQ̃

e can never be empty. Item 2 follows by the
definition of JQ̃

e . For Item 3, suppose that graphGj contains
a directed cycle,v1 → v2 → · · · → vL → v1. Then since
Q̃ ∈ QE , it must be true that̃Qvi,j strictly decreases across
each edge in the cycle. This is clearly a contradiction. For
Item 4a, suppose verticesv1, v2 are joined by a path of length
L in Gj , and there exists a shorter path betweenv1, v2 in
GN . Then there must exist an edgee on this shorter path
for which Q̃σ(e),j − Q̃τ(e),j exceeds the corresponding value
across edges in the path joiningv1, v2 in Gj . This violates
thatQ̃ ∈ QE, which provides a contradiction. Item 4b follows
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similarly: suppose there exist two paths of lengthL in GN ,
with every edge in the first path belonging toGj . By definition,
every edgee in the first path must have equal valuesQ̃σ(e),j−
Q̃τ(e),j. If this is not the case for the second path, then there
must exist some edgee′ whose corresponding value exceeds
that of the edges in the first path. This violates thatQ̃ ∈
QE , which provides a contradiction. Item 5a follows by noting
that Q̃j,j = 0, which implies that the differential backlog of
commodityj along at least one edge on the shortest path from
v to j exceeds that of the edges along the path of lengthL
originating atv. This contradicts the setE. Item 5b follows
similarly.

APPENDIX D
PROOF OFTHEOREM 6

The proof of stability makes use of thefluid limit tech-
nique. We consider a countably infinite sequence of queueing
systems, indexed byr, subject to the same arrival process,
Ai,j(t), i, j ∈ {1, . . . , n}, for t ≥ 0. The queueing variables of
ther-th system are given byQr

i,j(t), A
r
i,j(t) = Ai,j(t), U

r
i,j(t)

for all i, j ∈ {1, . . . , n}, and F r
S(t) for all S ∈ S. At time

t = 0, ther-th system is assumed to contain a total of0 packets
in queue. The following are the queue evolution properties of
the r-th system:

Qr
i,j(t) = Ar

i,j(t)− U r
i,j(t), t ≥ 0

U r
i,j(t) =

∑

S∈S

di,j(S)F r
S(t), t ≥ 0

∑

S∈S

F r
S(t) = t, andFS is non-decreasing, t ≥ 0

Ar
i,j(0) = 0, U r

i,j(0) = 0, ∀i, j, F r
S(0) = 0, ∀S ∈ S

We extend the queueing variables to the reals usingY (t) =
Y (⌊t⌋) for Y = Qr

i,j , A
r
i,j , U

r
i,j , F

r
S. Now each of these

processes is scaled according toqr
i,j(t) = Qr

i,j(rt)/r. We
obtain the scaled processesqr

i,j , a
r
i,j, u

r
i,j , f

r
S. As in [?], we

can infer the convergence with probability1 of the scaled
processes over some subsequence of system indices{rk}
to a fluid limit (qi,j , ai,j , ui,j, fS) having the following key
properties:

qi,j(t) = ai,j(t)− ui,j(t), t ≥ 0

ai,j(t) = λi,jt, t ≥ 0

ui,j(t) =
∑

S∈S

di,j(S)fS(t), t ≥ 0

∑

S∈S

fS(t) = t, andfS is non-decreasing, t ≥ 0

ai,j(0) = 0, ui,j(0) = 0, ∀i, j, fS(0) = 0, ∀S ∈ S

The convergence of each process is uniform on compact sets
for t ≥ 0, and it easily follows that the limiting processes
qi,j , ai, j, ui,j , fS are Lipschitz-continuous in[0,∞).

Considerze,j(t) = qσ(e),j(t)− qτ(e),j(t), the fluiddifferen-
tial backlogof commodityj across the directed linke. Define
the functionh : [0,∞)→ [0,∞) whereh(t) = maxe,j ze,j(t).

Consider a regular time8 t ≥ 0, at whichh(t) > 0. Assign

E = {e ∈ EN : ∃j such thatze,j(t) = h(t)}, (11)

and for e ∈ EN , assignJe = argmaxj ze,j(t). Note that
using Q̃ = (qi,j(t), i, j ∈ VN ), we haveJ , (Je, e ∈ EN ) ∈
JE . Under the backpressure-based algorithm, it is simple to
demonstrate that no link activation outside ofSE,J can have
an increasing valuefS(t). Thus we have,

∑

S∈SE,J

ḟS(t) = 1.

Assuming an admissible arrival rate vectorλ = (λi,j , i, j ∈
VN ), we have fore ∈ E andj ∈ Je,

że,j(t)

= λσ(e),j − λτ(e),j −
∑

S∈SE,J

ḟS(t)(dσ(e),j(S)− dτ(e),j(S))

=
∑

S∈S

φS(dσ(e),j(S)− dτ(e),j(S))

−
∑

S∈SE,J

ḟS(t)(dσ(e),j(S)− dτ(e),j(S))

=
∑

S∈S

φSue,j(S)−
∑

S∈SE,J

ḟS(t)ue,j(S) (12)

for someφ = (φS,S ∈ S) satisfyingφS ≥ 0,
∑

S∈S φS ≤ 1.
The following lemma provides a condition under which the
fluid differential backlogs are guaranteed to benon-increasing
at any regular time.

Lemma D.1:Let t ≥ 0 be a regular time at whichh(t) >
0. Let E ⊆ EN satisfy (11) andJe = arg maxj ze,j(t) for
eache ∈ EN . Suppose that the solutionθ∗ to the following
optimization problem isθ∗ ≤ 0:

Maximize θ (13)

Subject to
∑

S∈S

µSuE,J(S) ≥
∑

S∈SE,J

νSuE,J(S) + θe

eT µ ≤ 1
∑

S∈S

µSR
j
i,·S·,j ≥ 0 i, j = 1, . . . , n (14)

eT ν = 1 (15)

µS ≥ 0 ∀S ∈ S

νS ≥ 0 ∀S ∈ SE,J (16)

Then ḣ(t) ≤ 0.
Proof: Supposeθ∗ ≤ 0. For an admissible arrival

rate vector λ = (λi,j , i, j ∈ VN ), we have λi,j =
∑

S∈S φSdi,j(S) ≥ 0, whereφS ≥ 0 ∀S, and
∑

S∈S φS ≤ 1.
Furthermore,

∑

S∈SE,J
ḟS(t) = 1 and ḟS(t) ≥ 0 ∀S. Thus,

the vectors(φS,S ∈ S) and (fS(t),S ∈ SE,J) are feasible
as vectorsµ, ν respectively, in the linear program (13). The
solutionθ∗ ≤ 0 in the optimization clearly implies that there
must existe ∈ E andj ∈ Je such that

∑

S∈S

φSue,j(S)−
∑

S∈SE,J

ḟS(t)ue,j(S) ≤ 0. (17)

8A regular time is a point at which the system is differentiable. By the
Lipschitz continuity of the fluid limit, almost every time in[0,∞) is regular.
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By (12), equation (17) implies thaṫze,j(t) ≤ 0. Since t is
a regular time,że,j(t) = ḣ(t), which providesḣ(t) ≤ 0, as
desired.

It only remains to demonstrate that the multihop local
pooling conditions (3)-(4) are sufficient for stability. The
following lemma demonstrates this property by studying the
dual optimization problem to that in (13).

Lemma D.2:Consider graphG = (VN , E), where E ⊆
EN . ThenG satisfies SMLoP under commodity collectionJ ∈
JE if and only if the corresponding optimization problem (13)
has solutionθ∗ ≤ 0.

Proof: Suppose that the optimization (13) has solution
θ∗ ≤ 0. This implies that there exists a dual solution and com-
plementary slackness conditions hold. It is a simple exercise
to demonstrate that the dual problem to (13) is:

Minimize c1 + c2 (18)

Subject to αTuE,J(S) + βTd(S) ≤ c1, ∀S ∈ S

αTuE,J(S) ≥ −c2, ∀S ∈ SE,J

eT α = 1

α, β, c1 ≥ 0

Since the solution to (13) isθ∗ ≤ 0, the dual solution is
attained at the point(α∗, β∗, c∗1, c

∗
2), where c∗1 + c∗2 ≤ 0.

Then the valuesα = α∗, β = β∗, c = c∗1 satisfy the SMLoP
conditions, as desired.

Conversely, suppose that the SMLoP conditions are sat-
isfied, with values(α, β, c) ≥ 0, where α 6= 0. Then,
the point(α/(eT α), β, c,−c) is a feasible point in the dual
optimization problem (18). This feasible point has cost0. By
duality, this implies that the primal problem must attain a
solutionθ∗ ≤ 0, as desired.

Combining Lemmas D.1 and D.2, we conclude that if
SMLoP is satisfied for anyE ⊆ EN , with commodity
collection J ∈ JE , then ḣ(t) ≤ 0 for any regular timet
at which h(t) > 0. Noting thath(0) = 0, and applying [9,
Lemma 1], Lemma D.1 allows us to conclude thath(t) = 0 for
almost everyt ≥ 0. This immediately implies thatqi,j(t) = 0
for almost everyt ≥ 0, which gives the rate stability of the
backpressure based algorithm. Thus the OMLoP conditions
are sufficient for stability, as desired.

APPENDIX E
PROOF OFLEMMA 9

Consider a set of edgesE ⊆ EN and the commodity
collectionJ = (Je, e ∈ EN ) ∈ JE . Consider the commodity
graphGj = (VN , Ej), whereEj = {e ∈ E : j ∈ Je}. By the
definition of JE , therecan notexist two oppositely directed
edges(v, v′), (v′, v) in Ej for all j. GraphGj = (VN , Ej) is
a star havingk ≥ 0 edges facing outward fromv0 and l ≥ 0
edges facing inwards tov0, with k + l ≥ 1, as depicted in
Fig. 10.

For the proof, we will use the valuec = 1. Recall that only
a single edge in the star can ever be active at one time. Thus,
if we arrange in a matrix the backpressure service vectors
corresponding to allS ∈ S, the columns of the matrix can
be arranged to yield a block diagonal matrixU, with each

kl
v0

Fig. 10. GraphGj of edges carrying commodityj in the commodity
collection JE .

block corresponding to service activations involving different
commodities. We will consider each commodityj ∈ ∪e∈EJe

in turn and determine the required assignment of the elements
of α for j.

Consider commodityj ∈ ∪e∈EJe:
Case 1.Suppose thatv0 = j. Then by the definition ofJE ,

we must havek = 0. In this case, if edgee ∈ Ej is selected for
service of commodityj, link e sees a decrease in backpressure
of 1 commodityj packet, and no other of thel links sees a
change in backpressure, since the packet departs atv0. If any
other edge not inEj is selected for service of commodityj
packets tov0, no change in backpressure occurs for any of the
l links. Thus, the non-zero component of the block-diagonal
matrix corresponding to commodityj is an identity matrix. In
this case we assignαe,j = 1 for all (e, j) wheree ∈ Ej . We
also assignβv,j = 0 for all v.

Case 2.Suppose thatv0 6= j and that none of thek outward-
facing links terminates at nodej. In this case, if an outward-
facing edgee ∈ Ej is selected for service of commodityj,
e sees a service of2 units, each of the other outward facing
edges inEj sees a service of1 unit, and each of thel inward-
facing edges sees a service of−1 units. Similarly, if an inward-
facing edgee ∈ Ej is selected for service of commodityj, e
sees a service of2 units, each of the other inward-facing edges
in Ej sees a service of1 unit, and each of thek outward-facing
edges sees a service of−1 units. If any other edgee not in Ej

is selected for service of commodityj, this leads to a service
of 1 at all links facingv0 in the same direction ase and a
service of−1 at all links facingv0 in the opposite direction
to e. The non-zero component of the block-diagonal matrix
corresponding to commodityj has the form,

[

Ik + ek,k −ek,l ek,1 −ek,1

−el,k Il + el,l −el,1 el,1

]

, (19)

where Ip is the identity matrix of sizep, and ep,q is the
p × q matrix of ones. The separator in (19) separates the
activations inSE,J (at left) from the remaining commodity
j edge activations (at right). The rightmost two columns of
(19) may or may not exist and there may be multiple copies of
either column. Also these columns can dominate other inferior
service vectors. In this case, we setαe,j = (2l+1)/(k+ l+1)
for eache ∈ Ej facing outwards fromv0, and setαe,j =
(2k + 1)/(k + l + 1) for eache ∈ Ej facing inwards tov0.
It can be verified that fork, l ≥ 0 with k + l ≥ 1, the inner
product ofα with the leftmost columns before the separator
in (19) yields1, while the remaining nonzero columns result
in values less than1. We assignβv,j = 0 for all v.

Case 3.Suppose one of thek outward-facing links ter-
minates at nodej. Through similar analysis as above, we
obtain the non-zero component of the block-diagonal matrix
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corresponding to commodityj as,




Ik′ + ek′,k′ ek′,1 −ek′,l ek′,1 −ek′,1

e1,k′ 1 −e1,l 1 −1
el,k′ el,1 Il,l + el,l −el,1 el,1



 , (20)

wherek′ = k−1. Note that (20) only differs from (19) in one
column to the left of the separator, where the2 is replaced
by a 1. This corresponds to the edge whose destination isj.
We assignαe,j = 2 for each of the inward-facing links, and
αe,j = (1 + 2l)/k for each of the outward-facing links. In
this case, the inner product ofα with the firstk− 1 columns
of (20) yields 1 + (1 + 2l)/k, and the remaining columns
to the left of the separator yield1. Since we seek the value
c = 1, the values1 + (1 + 2l)/k are too high to satisfy (3).
Consequently, we assignβv,j = (1 + 2l)/k for all vertices
v terminating thek outward-facing edges. Thus, activation of
any one of these edges leads to a contribution of theβ term
in (3) of −(1+2l)/k, leading to satisfaction of (3) as desired.

For every commodityj not belonging to∪e∈EJe we assign
αe,j = 0 for all e, andβv,j = 0 for all v. The vectorsα, β
are then guaranteed to satisfy SMLoP, as desired. Since this
holds for anyE ∈ EN , and anyJ ∈ JE , OMLoP is satisfied.
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