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Abstract— Efficient operation of wireless networks requires
distributed scheduling and routing algorithms that take into
account interference constraints. Recently, a few algoritms for
networks with primary- or secondary-interference constrants
have been developed. Due to their distributed operation, thse
algorithms can achieveonly a guaranteed fraction of the maxi-
mum possible throughput. It was also recently shown that if a
set of conditions (known as Local Pooling) is satisfied, sin@
distributed scheduling algorithms achieve 100% throughpt.
However, previous work regarding Local Pooling focused maty
on single-hop interference or single-hop traffic. In this paer, we
study the multihop implications of Local Pooling. We show that
in many cases, as the interference degree increases, the hbc
Pooling conditions are more likely to hold. Namely, multihg
interference improves the performance of distributed algoithms.
To prove this property, we identify several graph classes tht
satisfy Local Pooling and analyze their behavior under multhop
interference. Regarding multihop traffic, we show that if the
network satisfies only the single-hop Local Pooling conditins,
distributed joint routing and scheduling algorithms are not
guaranteed to achieve maximum throughput. Therefore, we
present new conditions for Multihop Local Pooling, under which
distributed algorithms achieve 100% throughout. Finally, we
determine network topologies in which the conditions hold ad
discuss the algorithmic implications of the results.

Index Terms— Stability, Distributed algorithms, Wireless net-
works, Local Pooling, Interference, Scheduling, Routing.

I. INTRODUCTION

the arrival rates are within the stability region. The résul
of [23] have been extended to various settings of wireless
networks and input-queued switches (e.g. [1], [18], [20 a
references therein). However, throughput optimal alborg
based on [23] require the repeated solution afl@bal opti-
mization problemtaking into account the queue backlog infor-
mation for every link in the network. For example, even under
simple primary interference constraihta maximum weight
matching problem has to be solved in every slot. Obtaining a
centralized solution to such a problem in a wireless network
does not seem to be feasible, due to the overhead associated
with continuously collecting the queue backlog informatio
Therefore, the design dafistributed algorithmsas attracted a
lot of attention recently.

Assuming that the traffic is exclusively single-hop reduces
the joint problem to aschedulingproblem. Lin and Shroff
[16] studied the impact of distributed imperfect schedulin
on cross-layer rate control. Regarding primary interfeeen
constraints, they showed that usingdéstributed maximal
matchingalgorithm along with a rate control algorithm may
achieve 50% throughput. Similar results for differentiagt
were also obtained in [7], [8], [15], [22]. It was also proved
in [7], [15], [22], [25] that under secondary interferename
straintg the stability region obtained by a distributed maximal
scheduling algorithm may be significantly smaller than the
stability region under a perfect (centralized) schedutepar-

A major challenge in the design and operation of wirelesigular, Chaporkar et al. [7] showed that a distributed &thm
networks is to jointly route packets and schedule transoniss may achieve as low ak/8 of the possible throughput.
to efficiently share the common spectrum among links in the Recently, Dimakis and Walrand [10] showed that although
same area. Aentralizedjoint routing and scheduling policy in arbitrary topologiesthe worst case performance of dis-
that achieves the maximum attainable throughput region whuted maximal scheduling algorithms can be very low,
presented in the seminal paper by Tassiulas and Ephremittese are some topologies in which thesn achievel 00%
[23]. However, the lack of central control in wireless neti® throughput In particular, they consider a graph of interfering
calls for the design oflistributedalgorithms. Such algorithms queue3 and study the performancegaeedy maximal weight
can usually achieve only a fraction of the maximum througchedulingalgorithm (termed Longest Queue First - LQF)
put. Yet, it has been shown by Dimakis and Walrand [10] th@tat selects the set of served queues greedily according to
there are network topologies in which distributecheduling
algorithmsachieve100% throughput In this paper we study 1_Prirr_1ary interference constraints imply that each pair ofidfaneously
the effect of multihop interference on these topologies an(ztctg’r%'g(':ifnmolf‘sﬁtn:’g fgﬁﬁﬁfei k;yrﬁgiﬁfﬁg()"ﬁfffs](f'fig T?g}/-e links
characterize topologies in which simple distribujetht rout- 2Secondary interference constraints imply that each pasirofiltaneously
ing and schedulin@lgorithms achieve 00% throughput. active links must be separated by at least two hops (linkisgs& constraints
The policy of [23] applies to a multihop wireless network"e usually used to model IEEE 802.11 networks [7], [25]
. . . . A graph of interfering queues can be constructed from thevorét graph
with a stochastic packet arrival process and is guaranteedaécording to the interference constraints and is usualfgrmed to as an
stabilize the network (i.e. provide 100% throughput) wheame interference or conflict graph [8].



the queue lengths. They present sufficient conditions foh sumatching scheduling algorithm. It was shown in [24] that
an algorithm to provide 100% throughput (notice that unlikender primary interference constraints, the throughput brea

a maximumweight solution amaximal weight solution can reduced to 50%. These results have been extended in [15],
be easily obtained in a distributed manner). These comditig25] where it was also pointed out that only a fraction of the
are referred to ad.ocal Pooling (LoP) and are related to throughput is attainable. Since the LoP results of [4], [10]
the properties of all maximal independent sets in the cdnfliscave been constrained to single-hop traffic, it is desiradble
graph. Using these conditions, in [10] it was shown that tregentify topologies in which distributed algorithms cantaib
interference graphs satisfy LoP. In [4] a few other grapH®0% throughput in the multihop network setting.

satisfying LoP were identified and it was proved that under In this paper, we show that the single-hop LoP conditions
primary interference constraints, tree network graphsdyieintroduced in [10] arénsufficientto guarantee stability in the
interference graphs that satisfy LoP. multihop routing environment. Therefore, we study the LoP

Although some knowledge about LoP has been acquirggtoperties of a distributed routing and scheduling franméwo
the results of [4] and [10] are constrained to networkingi-enwhich is based on the backpressure mechanism of [23]. In
ronments that are inherentingle-hop where packets mustthis framework the edge weights are obtained by the back-
depart the system upon transmission. This is an overlyicestpressure mechanism but unlike in [23]distributed maximal
tive requirement in wireless networks. In addition, regagd scheduling algorithm is used to determine which edges shoul
network topologies that satisfy LoP, [10] provided mostlpe activated. We derive new LoP conditions that are sufficien
abstract conditions, while [4] focused on primary integfeze for guaranteeing that the framework achie¥88% throughput
constraints. Although these constraints may hold for $geciin the multihop routing environment. Then, we present a
technologies, they are not realistic in most practicalisgst specific network topology that satisfies the multihop LoP
Hence, in order to allow the development of algorithms thagbnditions and show that the class of topologies satisfying
take advantage of LoP, we study thandamental implications these conditions is strictly included within the class ofgié-
of multihop interference and multihop traffic on LoP hop LoP-Satisfying graphs.

We begin by presenting motivating examples which show The main contributions of this paper are two-fold. First, we
that in many casesultinop interferencassists the LoP condi- show that due to Local Pooling, as the interference degree
tions. For example, a 6-node ring network graph does not sifereases, it is more likely that simple distributed alguris
isfy LoP under primary interference, whereas it satisfie® Laachieve 100% throughput. The second contribution is the
under secondary interference. Such examples demonstedte dlerivation of novel Local Pooling conditions for networks
the performance of distributed algorithms may be improvegith multihop traffic. We note that an important byproduct
by increased interference, thereby motivating the sydfiemas the identification of several graph classes that satisfyal
study of the effect of multihop interference on LoP. HowevePooling. To the best of our knowledge this is the first attempt
since the knowledge about graphs that satisfy LoP is limited study the multihop implications of Local Pooling. The
we first focus on identifying several new classes of LoRybtained results can serve as a basis for the development of
Satisfying graphs. It is shown that within the class of petrfeLocal Pooling based algorithms.
graphs, chordal graphs, chordal bipratite graphs, cogtaptud  This paper is organized as follows. In Section Il we present
a subgroup of co-comparability graphs all satisfy LoP. Eheshe network model and the single-hop LoP conditions. In
observations increase the number of graphs that are knowrstsction 11l we demonstrate cases in which additional inter-
satisfy LoP by a few orders of magnitude. ference assists the LoP conditions. In Section IV we present

Subsequently, we use the acquired knowledge to stuggveral new classes of conflict graphs satisfying LoP. Timen,
the effect of increased interference on LoP. We focus onSgction V we discuss the effect of multihop interference on
generalization of the primary (1-hop) and secondary (2+hoghe satisfaction of the LoP conditions. New LoP conditionrs f
interference models to &-hop interference model, where networks with multihop traffic are presented in Section Wil. |
is termed the interference degree. We show that in maggction VIl we show that the multihop LoP conditions are
cases, ag increases, it is more likely that the LoP conditionglistinct from the single-hop conditions and identify netiwo
hold, and thereby, it is more likely that simple distributedopologies that satisfy them. We summarize the results and

algorithms achieve 100% throughput. Moreover, for manyiscuss future research directions in Section VIII.
network topologies, there is an interference threskolabove

which the corresponding interference graphs satisfy LaP. A
first glance, it seems that since it is known that the worst cas
performance deteriorates as the interference degreeasese Consider a wireless networkiy = (Vn, En), Where
[7], [15], [25], the results are counter-intuitive. Howevethe Vy = {1,...,n} is the set of nodes, anfly C {(i,j) :
actual meaning of the results is that in many topologies asi,j € Vi, # j} is a set of directed links indicating pairs of
increases, the resulting interference graph is such thginmad nodes between which data flows can occur, with® |Ey|.
scheduling achieves the maximum throughput instead of tiibe directionality of data flows across links necessitahes t
worst case throughput. treatment of the network graptiy as a directed graph.
Networks withmultihop traffic where packets follow a fixed Depending on the circumstances, we denote links as either
multihop path, have been studied by Wu and Srikant [24(];, j) or aseg. In Gy, if two nodesvy,ve € Vi are within
who proposed the use of regulators along with a maximebmmunication range, then the directed edggs= (v1, v2)

II. NETWORK MODEL AND LOCAL POOLING
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v vg U6 The matrixS € S leads to packet transitions through the
Fig. 1. (a) Network grapl@?yy, (b) the corresponding interference graph  network. To model the queue evolution implied by invokiig
under primary interference, and (c) the matrix of maximik lactivations. we introduce for each CommOdiyye Vy then xm routing
_ matrix R7 = (R/_,i € Vy,e € Ey), where: R/, = 1 if
andes; = (ve,v1) both belong toF . For a directed edge, ole) =ii R = —1if 7(e) = i andi # j: andR/ =0
L. 1 i,e ! 7,e
let o(e) denot_e thg source (initial) vertex, ante) denoFe lthe otherwise. Denote by; ;(S) the service to queud);; under
terminal (destination) vertex. Bold symbols are assodiatith activation matrixs. Usi'ng the above routing matrix we can
vectors and matrices. For matr, A. ; is the j-th column expressd; ;(S) = RIS
0] = A .95

of A, andA;. is thei-th row. For vectora and index set?,
ap is the vector(a. : e € E). ._ . .

The interference between network links can be summariz8d Stability Considerations
in an interference graphor conflict graph) G; = (Vi, Ey) We can now define the stability region of the network.
based on the network grapliy [8]. We assignV; £ Ey. Definition 1 (Admissible Rate Vector): A non-negative ar-
Thus, each edge;. in the network graph is represented by aival rate vector A is admissible if there exists a collection
vertexuv;, of the interference graph, and an edgg v;) in the  of service activation matriceS’ € S, 1 <1 < L such that
interference graph indicates a conflict between networklgra L I
links e; and e; (i.e. transmissions on; ande; cannot take Aij < Yty adi(S'), whereay > vl and 35 ar < 1.

place simultaneously). Fig. 1 contains a network grépt The set of all admissible rate vectors is called the stabilit

and the corresponding interference gragh under primary region and is denoted b *.

interference constraints. A scheduling algorithm at each time slot makes a link acti-
Let II(G'w) denote the set of available link activations in thgation and routing decision that must satisfy the interfese

network graphG'y: the vectorr = (m.,e € Ey) € II(Gy) constraints. A stable algorithm, which we also refer to as a

is a 0-1 column vector representing a possible link actvati throughput optimal algorithm or an algorithm that achieves

The setlI(Gy) corresponds to all possible independent set$0% throughput, is defined as follow’s.

in the interference graple’; = (V7, E;). Under primary  Definition 2 (Stable Algorithm): A scheduling algorithm is

interference I1(Gx) corresponds to the set of matchings istable if for any arrival process with rate vectdre A*,

G n. We denote byM (V;) the matrix ofmaximalindependent

sets inGr; that is, the set of maximal column vectors in Jm Qi ;(t)/t =0 wpl Vi, jeVy.
II(Gy). Continuing the example of Fig. 1, the matid (V;) Tassiulas and Ephrimedes developed a stable scheduling
for interference grapl&; is contained in Fig. 1(c). algorithm that applies in this setting [23]. At tinte> 0, their

For simplicity, we assume that time is slotted and thalgorithm calculates. for each link _the maximum packprecssur
packets are of equal size, each packet requiring one tif@°nd all commodities for that link. Denote this by vector
slot of service across any network link. There is no selff’ (t) = (Z:(t),e € En), where Zg (i) = maxjevy Ze;(t)-
traffic. We will refer to packets destined to nogec Vy 'ne algorithm then selects a link activation
as commodity;j packets Let A; ;(t) der_10te the number of 7 (t) € argmax w7 Z*(t). 1)
exogenous commodity packets that arrived at nodeby the TEN(Gn)
end of time slott. We assume that the arrivals have long ter
rates); ; = lim; . A4; ;(t)/t, with overall system arrival rate
vectorh = (A 5, 4,5 € V).

Every node is assumed to have a queue for each possi%?é
destination. Foi, j € Vi, letQ; ;(t) be the number of packets
enqueued at nodeat timet, whose destination in the netwo

rIﬁouting is carried out over each edgehaving 7 (t) = 1,

by servicing any commodity € argmax; Z. ;(t) across that

e (if any commodity packets await service).

or general interference graph;, the algorithm of [23]

must find themaximum weight independent $etG; at each

. ) o : X rk’(ime slot to obtain an optimal solution to (1). Namely, it rhus

is nodey. Assume thaty; ;(0) = 0 f(_)r gII i,J. Thedifferential solve an NP-Complete problem in every slot. Under primary

backlog (ba}ckprgssura)f commodity j packets across edgeinterference, the graph is simpler and the algorithm has to

e € By attimet is Ze ;(t) = Qo(c),;(t) = Qr(e),5(1): schedule the edges of maximum weight matching the
Service is applied to the system at each time slot by activ@fatwork graph at each slot. This requi@$n?) computation

ing a set of edges, and routing a packet of a single commodiffe, using a centralized algorithm. In wireless networks,

across each active link. We denote the corresponsiémgice jmplementing a centralized algorithm is often not feasible

activation matrixby S = (S.;,e € En,j € Vy), where ang distributed algorithms can only obtain an approximate

for edgee € Ey, and commodityj € Vy, Sc; can have sojytion, resulting in a fractional throughput. Hence, reve

value0 or 1, depending on whetheris inactive or active for ynder simple traffic model and interference constraintss it

servicing commodity;, respectively. Note that an admissiblgjifficult to obtain 100% throughput in a distributed manner.
service activation matrix must have a valid underlying link

activation belonging tdI(Gy). This property characterizes “This stability criterion is often termethte stability [1], [7], [9].



(@ e1 €2 es © M) - [(1) [1]} neighbors from the interference graph. This process isatepe
0

1 successively until no nodes remain. When multiple queues
Fig. 2. (a) Undirected network gragh, (b) the corresponding interference have the same [ength a.tle-b_reaklng rule is ar_)plled._ Thefset o
graph G; under primary interfernce, and (c) the matrix of maximalklin selected nodes is a maX|maI_ mdependent Se.t 'n_the intedere .
activations. graph. Such a greedy algorithm can be easily implemented in
TP - . a distributed manner and has the following property.
B. Simplifications for Single-Hop Traffic . . :
P ] ¢ ) P _ i Theorem 1 (Dimakis and Walrand, 2006 [10]): If interfer-
When the network is subjected exclusively to single-nog, e graph; satisfies OLoP, a Maximal Weight Independent

traffic, a few notable simplifications occur in the model (segg; (MWIS) scheduling algorithm achievié®)% throughput.
e.g. [7], [9], [15], [18], [19]). In this case, by definitioeach

network linke can only carry the traffic of a single commodity:

7(e). Thus, the differential backlog of link equals the queue I1l. M ULTIHOP INTERFERENCE- MOTIVATION

backlog of commodity-(e). The throughput optimal algorithm - Here, we demonstrate the effect of multihop interference
of [23] specializes in this case to require that single-hagh LoP. For simplicity of presentation, we focus on single-

(b) *—————eo—o

service be applied at each timeo the link activation hop traffic and use the model and LoP conditions of Sections
7*(t) € argmax 77 Q(t). ) I1-B gnd II-(;. Multihop traffic is Q|scussed in Section VI.
TE(Gy) Primary interference constraints (referred to also as 1-

hop interference) are among the simplest possible conttrai
Most technologies impose more complicated constraints. Fo
%xample, in [2] and [25] it is indicated that in IEEE 802.11,
Ieach pair of simultaneously active links must be separayed b
& least two hops. Hence, the set of active links constitutes

Above we understan€)(t) as the vectoQ(t) = (Q.(t),e €
Ey), whereQ.(t) is the queue backlog of packets awaitin
single-hop service across link

Since routing plays no role in the single-hop scenario, it
cpnvgment to _treat the network graghy as undirected, T.hls a distance-2 matching, also known as iaduced matching
simplifies the interference graph (an example of an undicec .

raph and its primary interference graph appears in Figae-Z(.Z]’ [5]. We refer to such an |_nterference_ model as 2-hop
9 . interference and to the resulting constraints as secondary

(b)). In this case, the weight at timeof each undirected edge. .
interference constraints.

e = {v1, 12} equals the maximum weight of the queues that In this paper, we study the generalization of the 1- and 2-

can b.e serV|ced_ across th_at “.mklax{@vl’”z (), Qv 01 (t)}'. hop interference models tofahop interference model, where
We will adopt this convention in our study of Local Poollng(he set of active links at each time slot is a distakhaeatchin
under multihop interference in sections IlI-V. . 9
[2], [6]. We refer tok as theinterference degreéWVe denote
) N ) ] the stability region undek-hop interference by ;. It is clear
C. Local Pooling Conditions - Single Hop Traffic thatA} cannot increase with (and often decreases wikf), as
We briefly reproduce important definitions and implicationgterference between the links composing the network cén on
of Local Pooling (LoP) in networks with single-hop traffic,increase. Moreover, according to [7], [15], [25],/agcreases,
presented in [4], [10]. In Section VI we will derive thethe worst case throughput fraction obtained by a distrihute
LoP conditions for themultihop case. Recall thaM (V;) is MWIS algorithm significantly decreases. For example, flecal
the collection of maximal independent vertex sets @p, that in the 1-hop model, the stability region is reduced from
organized as a matrix (an example appears in Fig. 2(c)). 8 to A7/2, while in the 2-hop model it can be reduced from
designate bye the vector having each entry equal to unityA; to A3 /8. Therefore, the intuition derived from these results
We deliberately avoid specifying its size, because it wél bis that more interference negatively affects the perforreasf
obvious by the context of its use. We now define the followingimple distributed algorithms.
notions. In this section and in Section V, we show that counter-
Definition 3 (Subgraph Local Pooling - SLoP): An interintuitively, in many casesnore interference assists the oper-
ference graphG; satisfies SLoP, if there exists nonzeration of distributed algorithmsNamely, ask increases, it is
ac R‘f" and c > 0 such thataTM(V;) = ce”. more likely that the OLoP conditions hold, and thereby, it is
Definition 4 (Overall Local Pooling - OLoP): An interfer- more likely that simple distributed algorithms will acheex ;..
ence graphG; satisfies OLoP, if each induced subgraprer We now demonstrate the intuition on which this observa-
the nodes/ C V; satisfies SLoP. tion is based. Consider a ring network graph with 6 nodes
Continuing with the example of Fig. 2, we can see thdteferred to as the 6-ring), whose interference graph under
SLoP is satisfied for the interference graphusing the vector primary interference is also a 6-ring. According to [10],
a = (1,2,1): «™™M(V;) = 2e. In a similar manner, it can the 6-ring interference grapkoes not satisfy OLoPRand
be easily shown that all subgraphs @f satisfy SLoP, and in general amaximal weight matchinglgorithm does not
therefore,G; satisfies OLoOP. achieve 100% throughput. The best known result then previde
We can now describe the stability of the system when thieat a maximal weight matching algorithm guarantees 50%
service in each time slot is scheduled according to the Makinthroughput [16]. Under 2-hop interference, the interfesen
Weight Independent Set (MWIS) algorithm. This algorithngraph has 6 more edges (see Fig. 3(a)). According to [4],
is an iterative greedy algorithm that selects the node5ef this specific graph satisfies OLoP, and therefore, a MWIS
with the longest corresponding queue, and removes it and algorithm achieves 100% throughput. Under 3-hop (or higher
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Fig. 3. (a) 2-hop and (b) 3-hop interference graphs of a §-nigtwork graph

interference, the interference graph becomes a clique (see
Fig. 3(b)) which satisfies OLoP [4]Hence, although under
1-hop interference, a maximal weight algorithm guarantees
50% throughput, undek-hop interference { > 2) 100%
throughput is guaranteed.

Under k-hop interference, the interference graph becomes
an OLoP-Satisfying cligue wheh equals the network diame-
ter. It seems reasonable to expect that for a particularar&tw
graphG, as the interference degree increases there existsF@i4. The relations between the OLoP-Satisfying class a@ther graph
interference thresholdbelow which OLoP fails, and aboveclasses: P - perfed? - non-perfect, WC - weakly chordal, Ch - chordal, CBip -
which O.LoP is satisfied. We Qemonstrate this property ﬁ;d?ls?rl%a}gﬁ[iq?}gsi béﬂiﬁ't?’cﬁﬁgéf %;?tﬂhhcec\)/_eior;rfg;zwg %?r(a)kggn{’
considering small graphs. In [4] it was shown that out of 2,2%raphs with induced”,, with » odd andn > 9.
simple interference graphs of up Tmodesl 4 fail OLoP. The __ _ _ ) _
following observation is obtained by exhaustively consiig G = (V. E) of a graphG = (V, E) is defined byE' =
the corresponding-hop (: > 2) interference graphs. (u,v) : w,v €V, u#vand(u,v) ¢ E. A chord of a cycle

Observation 1: All k-hop ( > 2) interference graphs (Path) is an edge between two vertices of the cycle (path) tha
corresponding to network graphs with up foedges satisfy S not an edge of the cycle (path). A cycle (pathgiirdiess
OLoP. if it contains no chords. We denote 6}, and P,, a chordless

The observations of this section motivate us to study génef¥cle and a chordless path (respectively) of lengtiwe will
multihop interference properties. We wish to understana hd€fer to a chordless cycl€,, and to an-ring interchangeably.
an increased interference degree affects OLoP in differeffe denote by, a clique (complete graph) of nodes.

classes of graphs. However, little is known about OLoP prope
ties of graphs. Therefore, we next study this issue, whiatlde A perfect Graphs

us to Section V, where we use the acquired understanding ofA\ hi toct if f h induced sub h the si
OLoP to study the effect of increased interference. graph isperfect It for each induced subgraph the size

of the largest clique equals the chromatic number. Several
classical graph classes such as bipartite graphs, choaiaisg
comparability graphs, and their complements are perfdct [3

The OLoP properties of graphs are only beginning to kdere, we will identify a number of important classes of petfe
understood. Small graphs were studied by exhaustive seagchphs that are also subclasses of the OLoP-Satisfying.clas
[4]. Additionally, structural properties were used in [§10] We will show that all of the graphs identified in [4], [10] are
to show that the following interference graphs satisfy OLoRimple special cases in these classes. Before describing the
trees, forestsclique trees where each pair of cligues sharesesults we introduce some classes of perfect graphs [3].
at most a single vertex, and gair-of-cliquesconnected by  Definition 5: A graphG is chordalif each cycle inG of
disjoint edges. at least4 nodes has at least one chord. A graghis weakly

In order to better understand the effect of interference @hordalif G and its complement contain no induced chordless
LoP, we use structural properties to identify various grapycle C,,, n > 5. A bipartite graphB is chordal bipartiteif
classes that satisfy OLoP. We define a new class of graphsash cycle inB of length at least has a chord. A graph is
the OLoP-Satisfyingclass. We identify known graph classesa cographif it does not contain the path grapR, (depicted
that are included within this class or intersect with it.Utrts in Fig. 2(a)) as an induced subgraph.
out that all the graph classes we identify using structurbliotice that the chordal bipartite class is the intersectibthe
properties are subclasses of the class of perfect graphtheOnweakly chordal and bipartite classes.
other hand, some of the graphs identified by the exhaustiveThe following theorem summarizes five results concerning
search [4] are not perfect graphs. Hence, in the followirthe OLoP properties of several large graph classes. Thd proo
discussion we differentiate between perfect and non-perfean be found in Appendix A.
graphs. Our investigation leads to the taxonomy of graphTheorem 2:
classes depicted in Fig. 4, showing the relationship of thel) The following graph classes belong to the OLoP-

OLoP-Satisfying class to the graph classes considered here Satisfying class: Chordal Graphs, Chordal Bipartite
Before proceeding, we present some basic graph theoretic Graphs, and Cographs.

definitions, required in the following sections. For brgyit 2) All even cycleg’,, with n > 6 fail SLoP.

we will refer to an induced subgraph over the a subset of3) gipartite Graphs that are not Chordal Bipartite Graphs
nodesV’ C V; as aninduced subgraphThe complement do not belong to the OLoP-Satisfying class.

5-ring

IV. INTERFERENCEGRAPHS SATISFYING LOCAL POOLING

5This results from the fact that in a clique, a maximal weiglgogthm Fi.g. 4 illustrates the inCIUSiqn .Of the chordal, _chqrdal bi-
obtains the maximum weight solution. partite, and cograph classes within the OLoP-Satisfyiag<l
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Fig. 5. The structure of a strip-of-cliques. ‘

The class of chordal graphs has a few notable subclasses @ (b)

,(I'e' Cl_asses of speC|aI graphs thaF are known to be Chord@B. 6. Demonstrating that the strip-of-cliques is a co-pamability graph,
including the strongly chordal, split, interval, thresthoind with (a) a set of curves whose intersection graph is a cliGuel (b) the
tree classes (for more information see [3]). Theorem 2 iegpliintroduction of a neighboring clique, where the curves esponding to the
that all these subclasses satisfy OLoP. Therefore, ther-ob$&9inal clique are thinner than the new ones.

vation of [10] that trees satisfy OLoP immediately follows

from Theorem 2. Similarly, since a clique tree is Chordalsatisﬁes SLoP will yield that it satisfies OLoP.

the observation of [4] that a clique tree satisfies OLOP is If the strip-of-cligues is only a single clique, then acdag]

also a result of the theorem. Theorem 2 also implies that ?cl)l [4, Lemma 4] it satisfies SLoP. If this is not the case, we

subclasses of chqrdal_b|pa_rt|te graphs_ s_at|sfy OLoP, s shall refer to one of the two cliques that is connected to only
the convex and bipartite distance-heriditary classes. . . : -
a single clique as aadge cliqueFor example, in Fig. 9¢,,,

The final contribution of Theorem 2 is its characteriz S an edge clique.

tion of a sharp boundary separating the chordal bipartite . . . _
graphs (OLoP-satisfying) from the bipartite graphs that ar If the edge clique includes only a single nodethen it is

not chordal bipartite (not OLoP-satisfying). This bounder connected by an edge to a noden the neighboring clique.

depicted as a thick line in Fig. 4. This result follows difgct One of these nodes wil pe active in any independent set.
Therefore, the vectorx having all zero entries except at the

from the failure of the OLoP conditions in even cyclés . di di h . d h h .
with n > 6. Hence, any graph class that includes the bipartiiré Ices corresponding to the verticeandu, w efe‘ gentnes
= : e settd, yieldsa”M(V;) = e’ If the edge clique includes

graphs as a subclass cannot be fully included within the (DLomore than one node. one of the nodes in the edae clique
Satisfying class. This allows us to exclude many of the major. - ; 9 q

will be active in any independent set. Therefore, the vector
subclasses of perfect graphs (e.g. preperfect, strongfeqie

quasi-parity, and bip* [3]) from the list of classes that «a having all zero entries except at the indices corresponding
. - o to the vertices of the edge clique, where the entries arenset t
fully included in the OLoP-Satisfying class.

ields a”M(V;) = e Hence, a strip-of-cliques satisfies

Two major clagseg that have not been excluded as SUbCIalﬁ_e}éP. Thus, we have that SLoP is satisfied in any subgraph
of the OLoP-Satisfying class are the weakly chordal class Bt a strip-of-cliques, and therefore, OLOP is satisfied. ®

the co-comparability class, which is defined below. . . : ;
Definition 6: C bil hean be ch ved Lemma 2: Every strip-of-cliques graph is a co-
efinition 6: Co-comparability graphsan be characterize %)mparability graph.

as intersection graphs of a set of curves between two péral Proof: According to definition 6, if the strip-of-cliques

lt'r?gslir:gg}il?lane’ every curve has one endpoint on eaChié)fa co-comparability graph, then each vertex of the stfip-o

: . cligues can be represented as a curve joining two parailes li
In Fig. 4 we have shaded portions of the weakly chordg‘n edge exists between two vertices in the strip-of-cligifies

;nd_ go-(lzomparalrlJn;'_Ly Clasiﬁsotf glolslc?te Fhe Lglctertgl_rity 8nd only if the corresponding curves intersect at some point
€Ir Inclusion refations Wi -or-sa isfying. Deterrinig We will describe a procedure for constructing the curves tha
the nature of these shaded regions (whether or not they) ex@present an arbitrary strip-of-cliques

IS \I/(\e/ft as an open probIErr;. fth bility cl Begin with the leftmost clique, having, vertices. Cascade
Ve now present a subclass o the co-compara lity c afssrz? curves as shown in Fig. 6(a), making sure that each of the
which we refer as atrip-of-cliques A graph is in this class, if

- . curves is exposed on the right, in a staircase fashion. Iglear
it is composed from an ordered set of cligues. ., j, where P v g

each of the curves intersects with all others, which impéies

two adjacent cliques, ¢ + 1 are connected by any numberC”que intersection graph,,, .

of disjoint eqlges, an_d cliques that are not adjacent are NO{ye next demonstrate how to introduce theh clique in
connec_ted d'TeC“V- Fig. 5 |Ilustrates S.UCh a graph' Nz e strip-of-cliques;j > 2. Consider the curves that represent
the pair-of-cliques presented in [4] is a specific case of g, ( — 1)-th clique, in order, by descending the staircase
strip-of-cliques. The following lemmas show that a strip-o on the right. If the vertex; corresponding to one of these

cliques graph_satisfies OLoP and that any such graph iSCl?rves shares an edge with a vertgxn the j-th clique, then
co-compara@hty graph_. ) - a curve is drawn to represent, by intersecting with the stair
Lemma.l. Every strlp-of—chq_ues graph satisfies OLoP. _corresponding ta;. This is depicted in Fig. 6(b), where the

Proof: - Every connected induced subgraph of a striggot third, and last curves on the staircase intersect evithes

of-cliques is a strip-of-cliques. If the induced subgrash i responding to the adjacent clique. Any remaining vestic
disconnected, each component is a strip-of-cliques. ABOQr i, the j-th clique that do not intersect vertices in thie- 1)-th

to [4, Prop. 1], if each component satisfies SLoP, the disjoigjique are simply included as curves that do not intersegt th
union satisfies SLoP. Thus, proving that a strip-of-cliquegaircase of théj — 1)-th clique. There are two such curves

b _ _ _ _ represented in Fig. 6(b). Note that the curves correspgndin
Since the graph is an intersection graph [17], every curvepsesented

by a node and nodes are connected by an edge, if the curvesefesent to thej't_h C”que are once again organized to form a staircase
intersect. on the right.



Clearly, the above procedure can be repeated iterativélgtweerw andv in G is at mostk. Given a 1-hop interference
until the entire strip-of-cliques is represented as aréetetion graphG}, the corresponding-hop interference graph i€%.
graph of curves between two parallel lines. Consequethty, t We focus on graph classes that appear in Fig. 4. First, recall
strip-of-cliques is a co-comparability graph. B that according to Observation 1, &Hhop (¢ > 2) interference

Fig. 4 depicts the strip-of-cliques class as intersectitity w graphs with up to 7 nodes satisfy OLoP. Therefore, a number
the weakly chordal class and in particular with the subclas$ 1-hop interference graphs outside the OLoP-Satisfylagsc
of chordal bipartite. One such graph that is chordal bigartiyield k-hop interference graphs that are OLoP-Satisfying.
is Cy4, which can be viewed as two cliques connected by twbhese graphs are the 6-ring, the 6-wheel, and the four non-
parallel links. Another such graph that is weakly chordal igerfect 7-node graphs outside the OLoP-Satisfying class.
composed of twak'3’s connected by 2 disjoint links. On the We now define the following subclass of chordal graphs.
other hand, a graph composed of tuig’s connected by 3  Definition 7 (Strongly Chordal Graph [3]): A grapl& is
parallel links is actually &, and therefore, is not weakly strongly chordalif G is chordal and each cycle it of even
chordal. length at leasts has an odd chord (a chor¢i, j) is an odd

Finally, we note that the strip-of-cliques class can be genehord, if the distance in the cycle betweeand j is odd).
alized to a larger OLoP-Satisfying class by connectinguely  Since the strongly chordal graphs belong to the chordal
in a tree structure such that pairs of cliques are connegteddlass, Theorem 2 implies that strongly chordal graphs are
a number of disjoint edges and no cycle-of-cliques is close@LoP-Satisfying. It is known that the strongly chordal slés
Proving that such a structure satisfies OLoP can be done usstigngly closed under poweNamely, if an interference graph
similar arguments to the ones used in the proof of Lemma@¥ is strongly chordal, theﬂ?’;” is strongly chordal for all

We finish this section by providing some context regarding > 1 [3]. Therefore, even if the 1-hop interference graph
the magnitude of the results. Consider the set of simplehgraps not strongly chordal, once an interference graph becomes
having 7 nodes, of which there are 1,044 distinct graphs. &fongly chordal (and thereby OLoP-Satisfying), increlise
these graphs393 are chordal, and80 are cographs, with terference degree will generate OLoP-Satisfying graphss T
some overlap between these two classes. These numbersagares with the intuition in Section Ill, of aimterference
be compared to th87 forests andl1 trees that were known thresholdk above which all interference graphs satisfy OLoP.
to satisfy OLoP. Similarly, when considering the set of dnp  The strongly chordal class has a number of subclasses, the
11 node graphs, the number of chordal graphs is 1,392,38implest ones being a tree and a clique tree. On the other
compared to710 forests and235 trees. We summarize thathand, apair-of-cliqueswhich is a specific case of th&trip-
our understanding of the OLoP-Satisfying class has exghnd#-cliques(defined in Section IV-A) is not strongly chordal.
significantly beyond the trees and forest graphs. However, in the proof of the following lemma we show that its
corresponding 2-hop interference graph is chordal. Bygusin
similar methods it can also be shown to be strongly chordal.

Lemma 3: If the 1-hop interference gragh} is a tree, a
Elique tree, any strongly chordal graph, or a pair-of-cleg

B. Non-Perfect Graphs

The OLoP-Satisfyingclass includes also graphs that ar
not perfect. We first use the numerical observations of [4] t@’; satisfies OLoP for every > 1.

identify non-perfect graphs that satisfy OLoP. The 5-riag, Proof: A tree is strongly chordal, since it has no cycles.

VI\\/'lhiCh s the_ Only”sémdj non-pherfect grf\prtl_, sagsiie; OI:‘OPhe cycles in the tree of cliques have all possible the chords
oreover, since all 6-node graphs excéftsatisty OLoP, a nd therefore, a tree of cliques is strongly chordal. Stiyong

non-perfecF 6-node graphs satisfy O_L_OP' Fin.ally, all 7@0 ordal graphs are strongly closed under power. Therefore,
graphs satisfy OLoP besides a specific one illustrated in

. : . en an interference grapti} which is strongly chordal
and thos.e that have an induced 6-ring, which leads us to ifcluding a tree or a tree of cliques), the correspondiraplys
observation that34 out of the 138 non-perfect 7-node graphg.t ;. <7 gre strongly chordal and satisfy OLoP

satisfy OLoPIn Fig. 4 all these graphs appear in a single cIassIA G which is a pair-of-cliques (i.ef; and > connected

(containingC’; andC7) within the OLoP-Satisfying class. 5 \ymper of disjoint edges) is not strongly chordal, since
We now show that all non-perfect graphs that have #can have an induced chordless cydg. We now show
induced qu c_ycle With. at least nodes fail OLO.P (see thethat the corresponding? is chordal.G% is composed of 2
Odd class in Fig. 4). This fo!lows from_the following theoremCquues (&, and k) that share a number of nodes. The nodes
whose proof f:an be found in Append|x B. that are not shared are those thatGt are not connected
Theorem 3: All odd cycle€y, with n > 9 fail SLoP. directly to the other clique. Assume th@¢ is not chordal. In
such a case, there has to be a cycle of at least 4 nodes that
V. LOCAL POOLING UNDERMULTIHOP INTERFERENCE  pag no chords. Such a cycle must include at least one of the
In Section Il we discussed thk-hop interference model non-shared nodes frodi; and one of the non-shared nodes
and showed that in several cases, increasing the intederefrom K. It must also include 2 of the shared nodes. Since
degree k) results in an interference graph that satisfies OLothe shared nodes are part of both cliques, they are connected
We now use the acquired knowledge regarding the OLoBy a chord. Therefore, the cycle is not chordless, which is a
Satisfying class to study this phenomenon. We denoté&by contradiction. Consequentig? is chordal and satisfies OLoP.
the k-th power of G: G* has the same vertex skt as G, The corresponding is a clique, and therefore, according to
andu,v € V are adjacent irG*, if the minimum path length [4], satisfies OLoPG¥ vV k > 3 is still a clique. ]



The following lemma shows that other graphs, identified in
Section IV-A, that in general are not strongly chordal, also @)
satisfy OLoP for any interference degree.
Lemma 4: If the 1-hop interference grapH is a cograph
or a strip-of-cliques G satisfies OLoP for every > 1. Fig. 7. (a) A chordal 1-hop interference graph and (b) theesmonding
Proof: According to [3] every connected subgraph of @-hop interference graph that fails OLoP.
cograph has diameter of at most 2. Therefore, the correspond
ing G¥ vk > 2 is a clique and according to [4] satisfies OLoP.
We now use similar terminology to the one used in th

Proof: According to [5], given a chordal network
raph Gy, the corresponding 2-hop interference grajg¥s
13 chordal. According to Theorem 2, OLOP is satisfied in a

) I
ptr(_)of fofI_Lemmi 1-t_'A]fC°rg'CgPt(_)l_hLemtmaf‘ 1 i} 'Zﬁf‘ chordal interference graph, and therefore, Distributed IBW
strip-of-cliques, it satisfies OLoP. The interference @r algorithms achieve 100% throughput. .

corresponding ta7; is composed of cliques that share some Several important subclasses of chordal graphs have the

n??ﬁs V\gth thﬁ'r nelgt?lbormg cI:qgez. _In paT_t|cuIar, thtedem potential to allow a MWIS algorithm to be throughput-optima
ot the edge clique ot,; are Included In a clique containing,, , yq 2-hop interference. One of the subclasses is the @lass
several other nodes. We refer to this clique as thedge- . .

: interval graphs [3], [6]. For that class the following stgen
clique. result holds.

Olif geoﬁhedgg-ch?ﬁe mcIudes;II th? %Odej’ thelf‘ it S?rt]'s:'es Lemma 5: Distributed MWIS algorithms achieve maximum
or erwise, there are nodes of (i edge clique tha throughput in an interval network graph under &-hop

are not shared with neighboring cliques. In that case, o Rerference modeli(> 2)
node of thek-edge-clique will be active in any independent Proof: According_to [6], given an interval network graph

;sr?t._Tg_erefore, the ve(;:_tor that\ang allt_zero fe;;[rlzs ex?ept atGN, the corresponding 2-hop interference grags is an
€ indices corresponding fo the Verices ol lReCge-Clque, oy q) graph. Interval graphs are strongly chordal [3]d a

. . o T
\t/;/]heretth(fe entries are fGe,ﬁ on;gISSa Sll\_/I(F‘)/})U_.e ' Her_lcgl, therefore, the corresponditighop (¢ > 2) interference graphs
€ Interierence graplt-; sausfies SLoF. Using a sim arG;; are is strongly chordal and OLoP-Satisfying. [ ]

reasoning it can be shown that any subgraplitifsatisfies Although for some chordal network graphs that are also

P
SLoP, and thereforeyy satisfies OLoP. strongly chordal distributed MWIS algorithms can be shown

, Thfus far, er have studiedhthe LoP propzrt_ies gnder mumh%)achieveloo% throughput under &-hop interference model
Interference for most graphs represented in Fig. 4. We n%tz 2), this is not in general the case with the entire class of

turn our attention to particulanetwork graphstructures. An chordal graphs. In fact, i&* is chordal, therG¥+2 is chordal
example of an interference grayff; resulting from 1-hop but it is not guaranteed th&t**! is chordal [3]. Therefore, if

interferencekis givEn in FLg. 2. Ahsecc_)nd fexample is ﬂ;e_ the 2-hop interference gragh? is chordal, the corresponding

ring network graphC’,, w ose 1-hop inter erence grap '%c-hop interference grapt¥® whenk is even satisfies OLoP.

also C,,. Recall from Section IV thatC,, fails OLoP for When we study the transition fro@’; to GlIchl we find that

;‘ — 6 afnd n = 8 Ci]urfnumenclarll tests ShO\_Nf.that the 23pereare rare casesvhere increasing the interference degree
op interference graph of ary, with n < § satisfies OLoP. can result in a graph that fails OLOP. The following lemma

Hence, we observe that rings are network graphs that bengfj - i-es this result

from additional interference degrees. . Lemma 6: There are OLoP-Satisfyirighop interference
Clearly, any network graph whose corresponding 'nterfeé'raphs for which OLoP is not satisfied in a corresponding
ence graph is one of the structures indicated in Lemmas 3 "’}Qﬂop (i > k) interference graph.

4 satisfies_ OLoP for any > 1. In particular, we can derive Proof: Assume that there are no such graphs. Consider
the following result. _ _ the 1-hop interference graghy; in Fig. 7(a). This is a chordal

Theorem 4: Distributed MWIS algorithms achie¥60% graph and therefore, according to Theorem 2 it satisfiesOLo
throughput in a treenetwork graphunder any interference 0 corresponding 2-hop interference graph appears in
degreek.. _ Fig. 7(b). The subgraph induced by the white nodes is a 6-

Proof: The interference grap_ki;} of a tree network ying which fails SLoP. Therefore, OLoP fails in the 2-hop

graph is a tree of cliques. According to Lemma 3 for suGerference graph, which is a contradiction. [
an interference graph, the correspondifify satisfies OLOP 14 conclude, this section has demonstrated that severl (bu
foranyk > 1. o _ B ot all) graph classes have the desirable property of haaing

The 2-hop interference model is important, since it reRpreshold of interference degree above which the intenfexe
resents the IEEE 802.11 transmission constraints [2],. [Z@aphs are OLoP-Satisfying. In these instances, incrgasin
We obtain the following result regarding this model by using:rference degree positively affects the performancerpls
results regarding squares of line grapbgudied in [5], [6] distributed scheduling algorithms.

Theorem 5: Distributed MWIS algorithms achieve 100%
throughput in a chordalnetwork graphunder secondary VI
interference constraints (2-hop interference model).

. LOPIN NETWORKS WITHMULTIHOP ROUTING

In this section, we study the LoP properties in networks

7In graph theoretic terminology, the interference graphiltiesy from 1-hop employing mU|tih0p rOUting* und@eneral interference_ an'
interference is called line graph [14]. straints. We focus on a framework based on a distributed



MWIS scheduling algorithm using backpressure link weights The above definition relates closely to the fluid limit model

We obtain multihop local pooling conditions that are suéfiti for the queueing system. In order to better understand the

for guaranteeing 100% throughput under this framework. Maximum Commodity Family, we next explore some of its
properties. To this end, we introduce for each commodity

A. Backpressure-based Scheduling and Routing j € Vi the directedccommodity grapiz; = (Viv, £), where

;= E:je .}
Recall from Section II-A that the optimal centralized schedEJ fee i J€Jek . .
. . . Lemma 7: ForE C En, E # 0, the commodity collection
uler (1) calculatesnaximumweight independent sets based, ~ e
. . o J=(Je,e € En) € Jg satisfies:
on backpressurdink weights. In our framework we consider
the distributedMaximal Weight Independent Set (MWIS) 1) Je #0, Ve € Ey.
algorithm used in the single-hop setting, but change the2) Je S Vi \{o(e)}. _
link weights to backpressure link weights. Thus, the MWIS 3) For j € UcerJe, G; has no directed cycles.
algorithm operates on the interference graph with nodelweig 4) If G has a directed path between vertices v, € Vi
derived from the backpressure link weights. This enables Of lengthL, then

scheduling decisions for joint link activation and packetitr a) the minimum length path betweenandw, in the
ing. As in the single-hop case, the frameworkridependent network graphGy is L, and
of the global network topology and traffic statistics b) the edges of all paths it¥y betweerv; and v, of
length L are in G;.
Algorithm 1 Backpressure-based scheduling framework 5) If G, has a path of length. originating at vertexw,
1: for time indext =1,2,... do then
2. For each directed edgec E assign a) Gy has no paths of length less thdnoriginating
Zei(t) — (Qu(e).; (1) = Qreys(t at vertexv and terminating at vertey, and
. 10 = (@t ©3() b) the edges of all paths of lengthin Gy, originat-
3 AssignZ(t) = max; Z ;(t) ing at vertexv and terminating at vertey belong
4:  Obtain a maximal link activation™*(¢) € II(G ) using to G,.

a decentralized MWIS algorithm, based on the edge
weight vectorZ*(t) = (Z}(t),e € Ey)

5.  For eache € Ey such thatr}(t) = 1, choosej* €
argmax; Z ;(t). Routemin{1l, Q, ) ;~(t)} packets of
commodity;* acrosse

6: end for

Proof: See Appendix C. [ ]
Under the backpressure framework, when the set of directed
edgesEl C Ey have backpressures exceeding those of the
other edges in the graph, there must exist a commodity
collection (J.,e € En) € Jg for which J. is the set of
commodities maximizing differential backlog acrasg F .

) In this case, a MWIS algorithm must select a link activation
In step 4, the framework uses the MWIS algorithm to selegt inat is maximal among the edges 1 i.e. =%, € M(E).

a maximalweight link activation based upon maximum "nkAdditionaIIy, the commodityj that is routed across edge
backpressures, obtained in step 3. In step 5, the framewgrk- Ex must belong toJ,. These properties characterize

makes routing decisions to service commodities achievifge Maximal Service Activation Set (an example is given in
maximum backpressure. Section VI-B):

Recall that thg OLoP conditions consider all possi_bl_e_\xerte Definition 9 (Maximal Service Activation SeSSg._;): For
subsets_ of the interference gragh,C V;. By the definition g C EyandJ = (J.,e € Ex) € Jg,
of the interference graph, the node $étcorresponds to a
subsq of the ne'Fwork graph edgésC Ey. Thus, the OLoP Spy = {S €8:Y .Sk, € M(B),
conditions effectively consider every subset of networkpdr ’ Jo
edgesE C Ey. In the multihop routing scenario, we must Se,; =1 impliesj € J. whene € Ey }
again consider each set of network graph edfes Ey. In order to characterize the stability properties of thekbac
Additionally, given E C E, we must consider for each edgedressure framework, we will track the dynamics of the link
the set of possible combinations of commodities, subject @ferential backlogs. Hence, we must understand how each
some restrictions. We formalize the possible edge/comtyodpervice matrixS € S affects the distribution of commodity
combinations considered by introducing the Maximum Conkackpressures over the network links. We next introduce the
modity Family (an example is given in Section VI-B). Backpressure Service Vector. Recall tHaj(S) is the service
Definition 8 (Maximum Commodity Family#z):  The tO queueQ; ; under activation matri8: d; ;(S) = R} S. ;.
Maximum Commaodity Family foE C Ey, E # 0, is given Definition 10 (Backpressure Service Vectoug ;(S)):

by e = {(JQ,e € Ex): Q € Qr,Q # 0}, where For £ C En, J = (Je,e € En) € Jp, and service
- - matrix S € S, the vectorug ;(S) contains thedecrease
Qp ={(Qij, i,j € VN, i #j) : Qij € Ry Vi, j, in differential backlog of commodity across linke under
E = argmax, maxj(Qa(e)_j - QT(E)J)}, service matrixS for every edge/commodity pafe, j) where

ec E,je Je:

JR={jeVy:j#ale),
Qo(e)j — Rr(e)j = Qu(e).g’ = Qr(e)r V' € Viv}- up,1(S) = ((de(e) ;(S) — dr(e).;(S)) e € E,j € Je).
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. properties of Lemma 7.
Fig. 8. (a) Network graplGy, (b) the subsef of network graph edges,

with corresponding commodity sets labeled at each edge(@rmbmmodity
graphsG,, (left) andG., (right) for a particular maximal service activation.

units of backpressure service). Finally, edgeg sees a service
B. Some Examples of 1 commodityv, packet. No other edge/commodity pairs

In this section, we consider the network graphy of (e,j) wheree € E andj € J., see service. Thus, we
Fig. 8(a), with the convention that the directed edge fromeno have determined each entry in the backpressure servicervect
v; to v; is labelede;;. corresponding to this particular service activation.

We begin by considering a specific feasible combination We next provide examples to illustrate the properties of
of edges and commodities. In the next section we will sholkemma 7. Figs. 9(a)-9(d) show graphs that are inadmissible a
that certain conditions have to hold for each such comhlihe commoditys; graph,G,,, for the network graph depicted
nation. The subseE of network edges of interest i& = in Fig. 8(a): Fig. 9(a) fails Property 3 becaug, contains
{es2, e35, €42, €53, €54}, @s depicted in Fig. 8(b). Each edge ira directed cycle; Fig. 9(b) fails Property 4a since edge
E has associated with it a set of commoditiés;, = {v1,v2}, provides a shorter path between vertiegsvs; Fig. 9(c) fails
Jess = {v2}, Jey, = {1} Jews = {01}, Jes, = {v1}. Property 4b since edgess,ess are not included inG,,;
These commodity sets are elements of commodity collectiéig. 9(d) fails Property 5a since the path — v — wvs
J = (Je,e € Ey). This collection is a member of thebelongs toG,,, while pathv, — wv; belongs toGy; and
Maximum Commaodity Family. Fig. 9(e) fails Property 5b since edgg, does not belong to

Assuming primary interference constraints, the Maxima},, .

Service Activation SetSg, ; is summarized by the following
table of valid edge/commodity pairs. For example, actirati
(es2,v1) means that commodity; is sent over linkess. C. Stability of the Backpressure-Based Scheme

Additionally, each activationS is translated in the table o6 e study the stability of the backpressure framework,
below to backpressure service vectars,,; (S). The service 5,y introduce new LoP conditions for stability. Recall that
vectors are ordered by (link, commodity) pairs as followsj,, quantityd; ;(S) is the amount of service at quew@
(€32, v1), (€az, v1), (€53, v1), (€54, v1); (€32, v2), (€35, v2)- resulting from service activatio8. Denote vectord(S) =

(di ;(S), 1,7 € V).

Service activatiorS Backpressure service vectarg 5 (S)

HEERTIR TR (2,0,0,2,0,0) Definition 11 (Subgraph Multihop Local Pooling - SMLoP):

{(eaz,v1), (es3,v1)} (0,2,2,0,0,0) The directed network graplty = (V, E) with commodity

EE@%’W%’E@MW%% E?;%lfig collection J € Jy satisfies SMLoP if there exist vectors
€35,V2), (€42, V1 y4,Y, —4, 4,

o, 8 > 0 with a # 0, and a constant > 0 such that

C_:onsider the third seryice activation f_rom the table, which aTup ;(S) + BTd(S) < ¢, VSES, 3)
activates edgess for service of commodity., and edgess, ’ T

for service of commodity;. We have depicted in Fig. 8(c) the o ug,;(S) Z & _VS € SE-,_J' (4) )
active link for servicing commodity; packets in the graph '_I'he SMLoP cond|t|0_ns associate with each link/commodity
on the left, and the active link for servicing commodity Par (¢,j) a non-negative weight.. ;, wheree € E,j € J..
packets in the graph on the right. At each node of the gragrHrther, for each node/commodity pdir, j), the conditions
we indicate the number of packetiepartedfrom that node @ssociate a non-negative weight;, wherev,j € Vy.

under that service activation. The backpressure serviceaich ~ Definition 12 (Overall Multihop Local Pooling - OMLoP):
edge/commodity combinatiofe, j), wheree € E andj € J., The network graphGy = (Vy,Ey) satisfies OMLoP if

is then obtained by calculating on the graph correspondifILoP is satisfied by each subgraghy = (V, E) with

to commodity; the difference between the quantity indicate@ommodity collection/ € Jg, whereE C E.

at the source node aof and that indicated at the destination We next state the main theorem regarding the stability
node ofe. Edgees, has a+1 at its source and a-1 at its Of the backpressure-based framework. The proof appears in
destination in the graph for commodity, which indicates Appendix D.

a backpressure service fcommodityv; packets. Through Theorem 6: If network graptiyy satisfies OMLoP, then
similar computation, we find that edge, sees a backpressurethe backpressure-based scheduling framework achieve® 100
service ofl commodityv, packet. Note that although no otheithroughput.

edge is active, some inactive edges do incur service undeifheorem 6 demonstrates the sufficiency of the OMLoP con-
this service activation: edges; sees a backpressure servicditions for stability under the backpressure-based fraomkew

of 1 commodityv; packet, while edge> sees arincrease In the next section, we consider natural questions thae aris
of commodityv; backpressure of packet (this implies-1 out of these conditions.
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V2
.

VIl. STUDYING THE OMLOP CONDITIONS ’1)1.4//'\ Vg "
We now show that the OMLoP conditions are distinct from U5ty .
the single-hop Local Pooling conditions studied in [4], J}10 v

and demonstrate stability for a specific class of networks. W

first show that any network grapgh under which single-hop We consider the commodity collectioi = (J.,e € Ey),
LoP fails should also fail the OMLoP conditions. where fore € Ey, J. = JQ and

Lemma 8: IfG fails OLoP, then it also fails OMLoP.

Pu—_—

Proof: SupposeGy fails single-hop OLoP. Then there (1) 8 8 8 8
exists a set of edgeB of G for which the single-hop SLoP Q=1[1 00 0 0
conditions fail. £ can be considered without loss of generality 100 0 0
as a set of directed edges, each of arbitrary directionality 100 0 0

between its end nodes.

To demonstrate that SMLoP fails, consider the set of di-Can be seen tha) € Qp, which implies that/ is a member
rected edge#, and commodity setd, = {r(e)} fore € Ey. of the maximum commodity family/p. o
It can be seen that = (J, e € Ex) € Jg. By definition, any Each.of the follqwmg edg.e/commoc.hty activations is repre-
active edge in a service activatiSne Sx_; must be employed Sentéd in the maximal service activation sgf. :
for single-hop service. This implies for eaﬂﬂg S_EJ that {(ea1,v1), (eas,v1)}, {(e51,v1), (es2,v1)}.
vector 3 can only lead to nonnegative contributions on the
lefthand side of (3), as follows: each active edge has a valu&Vhen we consider the backpressure service vectors asswbciat
associated with its origin vertex and a valuassociated with With these activations, the second SMLoP conditions (4) re-
its destination vertex, for the commodity being single-peg duire the existence ak, ¢ > 0, a # 0, such thaia"M' > ¢,
across it. Since we requir@ > 0, this implies that we can at Where 1 1
best treat the second term on the left in (3) as zero for every M! = [ 1 _1 ] .
S e SE,J. -

Thus we must find nonzerae > 0, ¢ > 0 such that Sincec is required to be nonnegative, this immediately implies
aTug ;(S) = ceT for eachS € S . For any sucl, each thatc=0. _ _ S
active edgee services a packet to vertexe), leading to a Each.of the following edge/commodity activations is repre-
backpressure reduction acrosof a single commodity-(¢) Sented in the ses:
packet. Because each edge services a different commaldlity, a {
inactive edges irP see no change in the backpressure of their
respective single-hop commodities. This implies ;(S) € {
M(E). Since all maximal activations over the edge #et {
are included inSg, s, the set of backpressure service vectors {
over Sg,; must then equaM (E). But M(F) fails the SLoP {
conditions: there does not exist nonzeko> 0, ¢ > 0 such
that a’ M(E) = cel. Finally, ¢ = 0 is invalid, because by
its definition as the set of maximal link activations, eactv ro {(eas,v1)}-

of M(E) is nonzero, which means the inner product of anyhen we consider the backpressure service vectors and queue
nonzeroc 2 0 with some column ofM(E) exceeds: = 0. backlog service associated with these activations, thé firs
ThusGy fails OMLoP. SMLOP conditions (3) require the existence af3 > 0,

In terms of Fig. 4, Lemma 8 implies that the class of graphs £ 0, such thata”M?2 + 37M3 < 0, where
that are not OLoP-Satisfying can not be OMLoP-Satisfying.

Namely, all network graphs having interference graphs with M? = o =1 -1 0 ,
induced subgraphs that are bipartite and not weakly chordal rro -1 0o -l

or inducedC,, whenn = 6 or n > 8 must fail OMLoP. The [0 0 0 0 0 0 0
next theorem demonstrates that the OMLoP conditions are in 1 1 1 0 -1 -1 0
fact more restrictivethan their single-hop counterparts. Thus, M3=|0 -1 1 1 1 1 0
the family of OMLoP-satisfying graphs &rictly smaller than -1 0 -1 -1 1 0 1
that depicted in Fig. 4. It was indicated in Section IV-B that 1 1 0 1 -1 0 -1

the 5-ring satisfies the smgle—hop.OLoP conditions. Here Vé‘?mple algebraic manipulation (which we forgo) can be used
show that OMLoP fails for the 5-ring. to demonstrate that there exists no suct8. Thus, thes-ring,
Theorem 7: The 5-ring({5) fails OMLoP. Cs, fails SMLoP under edge sé and commodity collection
Proof: Consider the network grapiy depicted on the .J, which implies thatC; fails OMLOP. ]
left below, and the subset of edgésdepicted on the right. We now verify that the OMLoP conditions hold for a
We denote by,; the directed edge from vertex to v;. class of graphs in which the backpressure-based framework i
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known to achieve 100% throughput. This class isfthrest of ACKNOWLEDGMENTS
stars where every connected component of the network graphris \work was supported by a Marie Curie International

is a star graph, consisting of a central nade connected {0 g iowship within the 6th European Community Framework
one or more vertices of degrde Under anyk-interference Programme, by NSF ITR grant CCR-0325401, by ONR grant

model, the stars interference graph is a clique (appearingnymher NO00140610064, and by DARPA/ AFOSR through
Fig. 4 within the intersection region of the chordal and e@dr o University of lllinois grant no. F49620-02-1-0325.
classes). Therefore, only one edge can ever be active at once

Accordingly, a maximal weight edge activation is identical
to a maximumweight edge activation, thereby achieving
100% throughput. The following lemma shows that OMLoP
is satisfied in such graphs. The proof appears in Appendix EIn order to prove the theorem, we prove the following

APPENDIXA
PROOF OFTHEOREM 2

Lemma 9: The star network graph satisfies OMLOP. lemmas. In the proofs we denote the set of neighbors of node
Applying a result similar to [4, Prop. 1], we have the’ by N(v). o
following corollary. Lemma A.1: Any chordal graph satisfies OLoP.

Proof: First, we prove that any chordal graph satisfies
SLoP. It was shown in [21] that any chordal graghhas at
least one vertex for which N(v) is a cliqgue inG (such a

VIIl. CONCLUSIONS vertex is called a simplicial vertex). Sind€(v) is a clique,
any maximal independent set in a chordal interference graph
The consideration of Local Pooling has the potential t@; will include either the simplicial vertex or exactly one of
enable efficient distributed operation of wireless networkthe nodes inV(v). Consequently, the vectar having all zero
However, since previously LoP was studied mostly under tk@itries except at the indices corresponding to the singplici
assumptions of single-hop traffic and primary interferemee vertexv and to the vertices iV (v), where the entries are set
this paper we focused on its multihop implications. We identto 1, yieldsa?M(V7) = e’ Thus, any chordal graph satisfies
fied several graph subclasses of the OLoP-Satisfying class &LoP.
increased the number of known graphs that satisfy LoP by aAccording to [17], any induced subgraph (with respect to
few orders of magnitude. Using these observations, we sthowsbde removal) of a chordal graph has a simplicial vertex.
that increasing the interference degree usually has aiysitHence, by using the vecter described above, we find that any
effect on the performance of simple distributed algorithmiduced subgraph of a chordal graph satisfies SLoP. Thexefor
For example, it was proved that undscondaryinterference any chordal graph satisfies OLoP. [ |
constraints, a maximal weight scheduling algorithm aakéev Lemma A.2: Any chordal bipartite graph satisfies OLoOP.
100% throughput in chordal network graphs. Moreover, we Proof: Following [3], given a bipartite graptB, we
obtained the LoP conditions for networks with multihopfiaf define (u,v) € E as a bisimplicial edge, ifV(u) U N(v)
(OMLoP) and showed that they are distinct from the singlénduces acompletebipartite subgraph inB. It was shown
hop conditions. Finally, we showed that the class of graplis [12] that if a graphB is chordal bipartite, any induced
satisfying the OMLoP conditions is a strict subclass of theubgraph (with respect to node removal)has a bisimplicial
OLoP-Satisfying class. edge. Therefore, we have to show that a bipartite graph
We emphasize that our objective in this paper is to obtai® which has a bisimplicial edge satisfies SLoP. This will
a bettertheoreticalunderstanding of LoP that will assist theestablish that a any chordal bipartite graph satisfies OLoP.
development of future algorithms. Hence, although a theore Denote by(u,v) the bisimplicial edge ofB’ and assume
ical contribution has been made, there remain many algorithat there exists an independent seBinthat does not include
mic open problems. For example, LoP-based algorithms casdesu andv. Such an independent set must include a neigh-
partition the network into LoP-satisfying subnetworks dda bor of u and a neighbor of.. However, sincelV(u) U N (v)
artificial interference constraints to generate a LoPsBatig induces acompletebipartite subgraph, an independent set can-
network. Our identification of several LoP-satisfying dmapnot include nodes from bothV(u) and N (v), and therefore,
classes that can serve as building blocks for these networksch an independent set cannot exist. This contradicts the
and the understanding of multihop traffic and interferenegssumption. Therefore, any independent set must include at
effects are advances toward such algorithms. For instamee, least one node fromx and v. Sincew and v are adjacent,
can now develop algorithms that add artificial edges to th independent set can include eitheor v. Consequently,
interference graph to yield a chordal graph. the vectora having all zero entries except at the indices
Moreover, there are a number of theoretical issues thatrresponding to the nodes of the bisimplicial edgev),
remain unresolved. For example, the analysis of multihephere the entries are set tg yields a”M(V;) = e’ Thus,
interference under multihop traffic requires further iiggs  any bipartite graph that has a bisimplicial edge satisfiesPSL

Corollary 1: Every forest of stars satisfies OMLOP.

tion. Additionally, Lemma 6 demonstrates that further gtud ]
is necessary to determine the general evolution of the LoPLemma A.3: Any cograph satisfies OLoP.
property with varying interference degree. Finally, theneo Proof: In everyinduced subgrapbf a cograph, the inter-

plete characterization of the OLoP-Satisfying and the OMHLo section of any maximal clique and any maximal independent
Satisfying graph classes is a subject for further research. set contains precisely one vertex [3]. Hence, given an iaduc
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subgraph of a cograph, there is a maximal clique that has st be satisfied for théring. This is a contradiction and we

active node in each independent set. Consequently, thervecbnclude that every-ring fails SLoP forn > 8 andn even.

a having entries of one at the indices corresponding to nodes ]

in this clique and having entries of zero otherwise, yields The third part of the theorem holds because if a bipartite

a’M(V;) = eT. Therefore, SLoP holds for all the inducedyraph is not weakly chordal (i.e. not chordal bipartite), it

subgraphs of a cograph and OLoP holds for any cogramh. includes an even cycl€),, with at least 6 nodes. This cycle is
Lemmas A.1-A.3 establish the first part of the Theorenan induced subgraph that according to Theorem A.4 does not

The second part is established by the following lemma.  satisfy SLoP. Hence, OLoP fails in bipartite graphs that are

Lemma A.4:All even cyclesC,, with n > 6 fail SLoP. not weakly chordal.
Proof: For the 6-ring interference graph, denoted by
Cs = (Vs, Eg), it was shown in [10] that there is na > APPENDIX B
0,c > 0 such thata”M(Vs) = ce”. Considern > 8, with PROOF OFTHEOREM 3
n even. We label the nodes of ther_mg, Cn = .(V”’E”.)’ In Lemma A.4 it was shown by contradiction that every
using v, v, ...,v,. Then, the following are valid maximal .

ring fails SLoP forn > 8 andn even. The proof foiC,, =

independent sets (Va, En), n > 9 andn odd is based on a similar idea. First,

{v1,v3,05, .., Un—7,Vn—4,Vn_2} (5) the matrix of maximal independent sets for theing Cy =

{v1,03, Vs, ..., Un—7,Un—a,Vn_1} (6) (Va, Ey) is a characterized:

{v2,v4,06,. .., Un—6,Vn—a,Vn—2,0n} (1) 11 1110000 0 0 0]

{1)2,1)4,1)6,...,Un,670n74,’0n71} (8) 0000011 11100©0

{v2,v4,06, - -, Un—6,Vn—3,Vn-1} 9 111000000011

0O 001 1.1 11 00O0O00O0

{U2a V4,06, - - - ,Un—67Un—37Un} (10) M(Vg) — 1100 0000 1 1 10
From the requirement of” M(V;,) = ce’ under then-ring 001101100001
C, = (V,, E,,), we draw the following conclusions. Equations 100010011010
(5) and (6) implya,,_» = a,_1. Combining this fact with 011101000100
(7) and (8) yieldsa,, = 0. Finally, combining the fact that 100000011101 1]

an, = 0 with (9) and (10) providesy, ; = 0. Thus, it is ygjng the same node labeling described above, we study the
without loss of generality that we discard the two rows (g-quatioruTM(I@) = ceT. Columns 1 and 2 oM (Vs) imply

M(V;,) corresponding to nodes, 1, vy a7y = ag. Columns 2 and 3 implyy; = ag. Columns 3 and 4
We now claim that the remaining rows &f(V") provide imply a3 = a. Columns 4 and 6 implyy; = a». Columns

all the constraints corresponding to the— 2)-ring. Consider g 5nq 7 implyas = ag. Columns 7 and 8 implyy = a.
any independent set of thering containing node; and node ~ojumns 8 and 9 implyw, = as. Columns 9 and 11 imply
vn—1. Note that this configuration mimics tHe — 2)-ring by as = as. Thus, all valuesy; must be equal. But, note that
disallowing nodev,,—» to be active simultaneously with;.  ojumns 11 and 12 implyws + a7 = ag, which must give

Thus, all maximal independent sets of this type in thang as = 0, and consequentlyt; = 0 for all i. We conclude that
are maximal in then — 2) ring, and it can be easily seen thatyq 9-ring Cy fails SLoP.

all (n —2)-ring maximal independent sets containingyield  The remainder of the proof demonstrating that all ridgs
maximal independent sets in thering whenv,,; is active. for , > 9 with » odd fail SLoP follows identically to the

Further, consider any maximal independent set ofthég  oyen case considered in Lemma A.4, by reducing any such

containing nodey, and nodev,. Similar reasoning t0 above 556 1o the)-ring SLoP condition, which is not satisfied.
provides that all maximal independent sets in the- 2)-ring

containingus are represented under this configuration. Finally,
consider any maximal independent set of theng containing
nodeswvs, v, _2,v,. Again, it can be easily shown that all ) i
maximal independent sets in thie — 2)-ring containingus Let £ C Ey, with £ # (. Consider any/g € Jg, and
andw,_» are represented. This completes the characterizati#PpPose/r = (J2,e € Ey) for Q € Qp. Item 1 follows
of all maximal independent sets of the—2)-ring, since each because the set? can never be empty. Item 2 follows by the
independent set iff,,_» contains eithen; or v,, or contains definition of JQ. For Item 3, suppose that gragh; contains
both v3 and v,,_». Thus, it must be true that the matrix ofa directed cyclep;s — v — --- — vy — v1. Then since
maximal independent sets 6f, 5, M(V;,_»), is a submatrix Q € Qg, it must be true tha),, ; strictly decreases across

APPENDIXC
PROOF OFLEMMA 7

of that of C,,, M(V},). each edge in the cycle. This is clearly a contradiction. For
Sincea,—1 = a,, = 0, the existence ofx > 0 andc > 0 Item 4a, suppose vertices, v» are joined by a path of length
such thata”M(V;,) = ce® implies that L in G;, and there exists a shorter path betwegnu, in

T Gyn. Then there must exist an edgeon this shorter path
(a1, 0n—2)M(Vi2) = ce”. for which Q,(c); — @~ (c); €xceeds the corresponding value

Applying this reasoning inductively, if the SLoP condititor across edges in the path joining, v2 in G;. This violates

any n-ring havingn > 8 andn even is satisfied, then SLoPthatQ € Qf, which provides a contradiction. Item 4b follows
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similarly: suppose there exist two paths of lendthin G, Consider a regular tinfet > 0, at whichh(t) > 0. Assign

with every edge in the first path belonging@g. By definition, F = {c € Ex : 3j such thatz, ;(t) = h(t)} (11)

every edge in the first path must have equal valu@s,. ; — ' ©J ’

Q- (e),;- I this is not the case for the second path, then theded fore € Ey, assignJ. = argmax; zw( ). Note that

must exist some edge€ whose corresponding value exceedssmgQ (qij(t),3,7 € Vi), we haveJ £ (J.,e € Ey) €

that of the edges in the first path. This violates tiate Jz. Under the backpressure-based algorithm, it is simple to

Qg, which provides a contradiction. Iltem 5a follows by notinglemonstrate that no link activation outside&#f ; can have

that Q; ; = 0, which implies that the differential backlog ofan increasing valugi (). Thus we have,

commodity;j along at least one edge on the shortest path from .

v to j exceeds that of the edges along the path of lergth Z fs

originating atv. This contradicts the sat. Item 5b follows

similarly. Assuming an admissible arrival rate vector= (X; ;,4,j €
Vn), we have fore € E andj € J.,

SeSg, s

APPENDIX D Ze,j(t)
PROOF OFTHEOREM 6 = Ao(e)j — M(e)j — Z fs()(dy(e);(S) — dre)(S))

SESE, s
The proof of stability makes use of thfeuid limit tech- ©

nigue. We consider a countably infinite sequence of queueing” Z ¢s(do e, (S) = dr(e) 5(S))
systems, indexed by, subject to the same arrival process, S€S

A;i(t),i,5 €{1,...,n}, fort > 0. The queueing variables of Z fs (do(e),j(S) = dr(e),;(8S))
ther-th system are given b@; ;(t), A7 ;(t) = A; ;(t), U] ;(t) SeSk,s
for all 4,5 € {1,...,n}, and F§(¢) for all S € S. At time _ Q) _ ; }
t = 0, ther-th system is assumed to contain a total piackets s;g(bsuw(S) segg ; Fal0es®) 2
in queue. The following are the queue evolution propertfes o T
the r-th system: for someg¢ = (¢s,S € S) sgtlsfylnggbs 20 Y oses Ps < 1.
The following lemma provides a condition under which the
7@ AT () = U8, t>0 fluid differential backlogs are guaranteed torlmn-increasing
" - at any regular time.
(1) = Z dij s(t), t=0 Lemma D.1:Let t > 0 be a regular time at which(t) >
Ses 0. Let E C Ey satisfy (11) andJ. = argmax; z ;(t) for
Z Fg(t) = t, andFg is non-decreasing ¢ >0 eache € Ey. Suppose that the solutioht to the following
Ses optimization problem i9* < 0:

A7 (0)=0,U7,(0) =0, Vi,j, F5(0) =0,VS €S Maximize 8 (13)
We extend the queueing variables to the reals udifg = Subject to Z pusug, g ( Z vsug, ;(S) + e
Y([t]) for Y = Qf; A}, U;, F§. Now each of these Ses SesEJ
processes is scaled according 4p;(t) = Q7 ;(rt)/r. We eTp <1
obtain the scaled processes;, a; ;,u; ;, f5. As in [?], we i o
can infer the convergence with probability of the scaled Z psR;.8.; 20 4,j=1,...,n (14)
processes over some subsequence of system indicgs Ses
to a fluid limit (g; ;,a. j,u:;, fs) having the following key e'v=1 (15)
properties: s >0 VSeS

0s(t) = ass(t) ~ uis(t), 20 o e Es 1o

aij(t) = \ijt, t>0 Thenh(t) < 0. o _

Proof: Supposef* < 0. For an admissible arrival

u;;(t) = Z dij(S)fs(t), t>0 rate vectorA = (A ;,4,j € V), we have ), ; =

Ses . . ZSGS ¢Sd/i7j(S) >0, Where¢S > OVS, andzses ¢s < 1.

Zfs(t) = t, and fs is non-decreasing ¢ > 0 Furthermore}>s s,  fs(t) = 1 and fs(t) > 0VS. Thus,
Ses the vectors(¢s,S € S) and (fs(t),S € Sg,s) are feasible

a; ;(0) =0,u; ;(0) =0, Vi, j, fs(0)=0,¥VS e S as vectorsu, v respectively, in the linear program (13). The

solution#* < 0 in the optimization clearly implies that there
The convergence of each process is uniform on compact sgigst existe ¢ £ andj € .J, such that

for t > 0, and it easily follows that the limiting processes .

¢, ai, j,u; ;, fs are Lipschitz-continuous if, o). Z Psie,i(S) — Z fs(t)ue,;(S) < 0. (17)
Considerze ;(t) = qo(e),; (£) — @r(e),; (1), the fluid differen- Ses 8€8e,s

tial baCkll()gOf commodity; across the directed link Define  sx reguiar time is a point at which the system is differentabBy the

the functionh : [0, c0) — [0, 00) whereh(t) = maxe j ze ;(t).  Lipschitz continuity of the fluid limit, almost every time {0, co) is regular.
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By (12), equation (17) implies that. ;(t) < 0. Sincet is p
a regular timez. ;(t) = h(t), which providesh(t) < 0, as :
desired. [ |

It only remains to demonstrate that the multihop loc
pooling conditions (3)-(4) are sufficient for stability. &h
following lemma demonstrates this property by studying the
dual optimization problem to that in (13).

Lemma D.2:Consider graphG = (Vi, E), where E C
En. Thend satisfies SMLoP under commodity collectidne
Je if and only if the corresponding optimization problem (13 _
has solutiorg* < 0. fafor .

Proof: Suppose that the optimization (13) has solution Consider commodity € Ueep Je: o
6* < 0. This implies that there exists a dual solution and com- Case 1.Suppose that, = j. Then by the definition of/,
plementary slackness conditions hold. It is a simple egerciWe must havé: = 0. In this case, if edge € Ej; is selected for

érlig. 10. GraphG’/ of edges carrying commodity in the commodity
collection Jg.

block corresponding to service activations involving efiéint
commodities. We will consider each commodjty UecpJ.
in turn and determine the required assignment of the elesnent

to demonstrate that the dual problem to (13) is: service of commodity, link e sees a decrease in backpressure
of 1 commodityj packet, and no other of thelinks sees a
Minimize c¢; +co (18) change in backpressure, since the packet depatis &t any
Subject to a’ug ;(S) +87d(S) <1, VSeS other edge not in; is selected for service of commodify

packets tayg, no chénge in backpressure occurs for any of the
T [ links. Thus, the non-zero component of the block-diagonal
ea=1 matrix corresponding to commodityis an identity matrix. In
a,B,¢c1 >0 this case we assige. ; = 1 for all (e, j) wheree € E;. We
also assign3,, ; = 0 for all v.

Case 2Suppose thaty # j and that none of the outward-
Then the valuesy — o, 3 — 3, ¢ — ¢! satisfy the SMLoP fac!ng links termlnaFes at nodg In this case, if an outw_a.rd-

i . facing edgee € E; is selected for service of commodity
conditions, as desired. . . .
e, sees a service df units, each of the other outward facing

Conversely, suppose that the SMLoP conditions are sat; L . . ) i
isfied, with values(, 3,c) > 0, wherea # 0. Then, edges inE; sees a service df unit, and each of théinward

the point(a/(eTa), B, c, —c) is a feasible point in the dual facing edges sees a service-af units. Similarly, if an inward-

optimization problem (18). This feasible point has cosBy facing edge? € Ej IS selected for service of commc_)dmye
. L . . sees a service @funits, each of the other inward-facing edges
duality, this implies that the primal problem must attain a : . .
2 : In E; sees a service dfunit, and each of thé outward-facing
solution#* < 0, as desired. [ |

Combining Lemmas D.1 and D.2, we conlude that f{'o02 082 8 ST Eim, S LS 08 e
SMLoP is satisfied for anyF C FEy, with commodity y

collection J € g, then h(t) < 0 for any regular timet of 1 at all links facmgvo in _the same d|rect|or_1 as_and_a

. . . service of—1 at all links facingv, in the opposite direction
at which h(t) > 0. Noting thati(0) = 0, and applying [9, : :

to e. The non-zero component of the block-diagonal matrix

Lemma 1], Lemma D.1 allows us to conclude thét) = 0 for corresponding to commodity has the form
almost everyt > 0. This immediately implies thag; ;(¢) =0 P 9 Y '
for almost everyt > 0, which gives the rate stability of the
backpressure based algorithm. Thus the OMLoP conditions
are sufficient for stability, as desired.

aTU-E,J(S) > —ca, VS €SE,

Since the solution to (13) i#* < 0, the dual solution is
attained at the poinfa*, 8, cj, c3), whereci + ¢35 < 0.

I, e —en;
—er  ILi+ey

€L, —€r.1
) ) 19
—e;1 el ] ’ (19)

where I, is the identity matrix of sizep, and e, , is the
APPENDIXE p x ¢ matrix of ones. The separator in (19) separates the
PROOF OFLEMMA 9 activations inSg s (at left) from the remaining commodity
Consider a set of edgeB C Ex and the commodity j edge activations (at right). The rightmost two columns of
collectionJ = (J.,e € Ey) € Jg. Consider the commodity (19) may or may not exist and there may be multiple copies of
graphG; = (V, E;), whereE; = {e € E : j € J.}. By the either column. Also these columns can dominate other ioferi
definition of 7z, therecan notexist two oppositely directed service vectors. In this case, we set; = (2041)/(k+1+1)
edges(v,v'), (v, v) in E; for all j. GraphG; = (Vy, E;) is for eache € E; facing outwards fromy,, and setea ; =
a star having: > 0 edges facing outward fromy andl >0 (2k +1)/(k +1 + 1) for eache € E; facing inwards touy.
edges facing inwards to,, with & + 1 > 1, as depicted in It can be verified that fok,l > 0 with £ + [ > 1, the inner
Fig. 10. product ofa with the leftmost columns before the separator
For the proof, we will use the value= 1. Recall that only in (19) yields1, while the remaining nonzero columns result
a single edge in the star can ever be active at one time. Thilsyalues less than. We assign3, ; = 0 for all .
if we arrange in a matrix the backpressure service vectorsCase 3.Suppose one of thé outward-facing links ter-
corresponding to alB € S, the columns of the matrix can minates at nodeg. Through similar analysis as above, we
be arranged to yield a block diagonal matiiX, with each obtain the non-zero component of the block-diagonal matrix



corresponding to commodity as,
L +ewr ewn —ewr | ey1 —ep;
el,k’ 1 —el,l 1 —1 5 (20)
e i e1 Lig+e, | —e1 e

) )

[19]

[20]

wherek’ = k — 1. Note that (20) only differs from (19) in one (21]
column to the left of the separator, where thes replaced [

by a1. This corresponds to the edge whose destination is
We assigna. ; = 2 for each of the inward-facing links, and
a.; = (1 +2l)/k for each of the outward-facing links. In

this case, the inner product of with the firstk — 1 columns

of (20) yields1 + (1 + 21)/k, and the remaining columns
to the left of the separator yieltl. Since we seek the value
¢ =1, the valuesl + (1 + 21)/k are too high to satisfy (3).

Consequently, we assigl, ; = (1 + 21)/k for all vertices
v terminating thek outward-facing edges. Thus, activation of
any one of these edges leads to a contribution of@herm
in (3) of —(1421)/k, leading to satisfaction of (3) as desired.
For every commaodity not belonging taJ.cgJ. we assign
a.; =0 foralle, andg, ; = 0 for all v. The vectorso, B

are then guaranteed to satisfy SMLoP, as desired. Since this

holds for anyF € Ey, and anyJ € Jg, OMLOP is satisfied.

(1]

(2]

(3]
(4]

(5]
(6]
(7]

(8]

El
[10]

[11]
[12]
[13]

[14]
[15]

[16]

[17]

(18]
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