
Columbia University, EE Technical Report #2011-11-11, Nov. 2011

A Note on Building an Internet Laboratory
Michael S. Kester

Dept. of Computer Science
Columbia University

msk2117@columbia.edu

Gil Zussman
Dept. of Electrical Engineering

Columbia University
gil@ee.columbia.edu

Abstract—The Networking Lab class, offered at Columbia
University, follows the series of detailed laboratory experiments
presented in Mastering Networks: An Internet Lab Manual by Jörg
Liebeherr and Magda El Zarki [8]. In order to conduct these
experiments, there is a need to construct and maintain an Internet
laboratory composed of routers, hubs, and Linux machines. Since
the students performing the experiments have root access to the
machines, we have encountered many misconfigurations that affect
the learning experience. Therefore, we have developed an efficient
process that allows setting up the lab quickly and that also
supports quick recovery from misconfigurations. In this note, we
present the process and the lessons learned during its development.

Index Terms—Internet laboratory, Mastering networks, deploy-
ment, maintenance, teaching, experiments.

I. INTRODUCTION

The Networking Lab class focuses on applying networking
concepts in a real network. It follows a series of detailed
laboratory experiments presented in Mastering Networks: An
Internet Lab Manual by Jörg Liebeherr and Magda El Zarki [8].
These experiments provide students hands-on experience that
allows them to gain a good understanding of some common
network protocols operation and design principles. In order to
conduct these experiments, there is a need to construct and
maintain an Internet laboratory composed of routers, hubs, and
Linux machines.

Since the students performing the experiments need root
access to the machines and the machines configurations change
throughout the semester, we found that the lab construction
process has to be repeated at the beginning of each semester.
Moreover, we have encountered many misconfigurations that
cannot be easily fixed during a lab session, thereby affecting the
students’ learning experience. There are a couple of alternatives
for resolving these issues, including using virtual machines
(VMs) [9] or live CDs [7]. We developed a third method that
allows quick lab setup and also supports quick recovery from
misconfigurations. This note briefly outlines the process and
the lessons learned during its development.

II. LAB CONSTRUCTION - MOTIVATION & OBJECTIVE

At the beginning of each semester, the teaching staff is re-
quired to prepare the networking lab machines for the incoming
class.1 During the semester, students need to have root access
in order to be able to exercise the functionality of real systems

1Most of this discussion is equally applicable to a rebuild performed each
semester as it is to building a new lab.

as described in the manual. Unfortunately, giving root access to
students tends to lead to misconfigurations. Hence, in addition
to the basic configuration, the setup process has been designed
such that students will not need to struggle with misconfigured
or unstable machines.

There are several options for configuring the lab in a way
which attempts to avoid major machine misconfigurations by
the students. In past semesters, we used VMs running on
top of the physical hardware. This in practice however was
suboptimal. The VMs did not always run identically to the
way they would run on bare hardware. Thus, when an exercise
was not working, students had difficulty determining if their
configuration was to blame or the VM itself. The students also
reported that the VMs were slow, unnecessarily lengthening the
experiments.

Working from a live CD would also protect against accidental
misconfiguration. However, there are three potential drawbacks
to using a CD: (i) Non-default packages must be installed on
each reboot. (ii) Students are unable to save a configuration
and return to it. (iii) Working from a live CD has performance
implications. Liebeherr and El Zarki solve the first issue by
providing a custom live CD on their website [7], [8]. The
second problem is only a concern for the longer labs; those
that are too long to complete in one sitting but not so long
that they need to be broken across assignments. The final point
can be overcome by using the copy2ram or a similar flag when
booting but this too forces a wait as each system must load the
full OS to RAM at each boot; on our hardware this is a non-
trivial period. The alternative of working from the CD itself is
even worse as the system must read from the CD to perform
even the most basic commands.

We chose to implement another option in which we multi-
boot the machines using identical partitions. If the students
break something fundamental, a single change to menu.lst
gives them a brand new machine. This saves the students and
the teaching staff from a potentially lengthy troubleshooting
exercise. Additionally, this approach allows separate sections
to avoid the problems created by another, and prevents a
later section from arriving at a machine that is already fully
configured.

Below, we describe the method we used to build such a
machine and to clone it to the rest of the lab. From our
experience, the overall process takes about 10 to 20 person-
hours (additional time should be reserved for complications
which may arise). If starting from scratch (i.e., having to

1

physically install the equipment and build the base image), 40
hours might be more typical.

III. THE BUILD

We use a simple method to roll out the new build which
relies only on basic Linux tools. We first section the disk into
multiple partitions. In our case we used only two, but given a
larger disk it might be advantageous to build four or more. We
intended the second partition to be used only for fail-over in
the event of a major problem during a lab session. However,
if desired, the relatively small footprint of the Linux operating
system could allow each student to be responsible for a set
machine and partition. We first build the machine on a single
partition, then use dd to copy it to the other partitions, and
finally use dd and netcat to roll the image out to all of the
other machines.

A. Build the Base Machine
Building the machine is fairly straightforward. We choose a

desktop distribution. Though many of the packages are super-
fluous, this allows students with less command line experience
the comfort of a GUI. The book is written for use with Red Hat
9.0 [5] or more recent. We use Fedora 13 [2], the desktop fork
of Red Hat, with little need for annotating the book instructions.
Other Red Hat derivatives like Mandriva or CentOS would also
likely work.

It is wise to keep the lab routers away from the general
campus infrastructure, thus, there are no Internet connections
in our lab. Therefore, either physical media or a temporary
connection is required. We believe that it is best for students to
use a modern and updated system. Hence, we suggest doing a
standard live CD install followed by an update. In our lab we
were able to use a netbook connected to the campus wireless
network as a gateway router. Next, we turn our attention to the
build itself.

Our machines have a single logical 36GB drive. We par-
titioned ours into two separate 15GB partitions for root and
the rest as swap. These are fairly generous partition sizes. We
could probably use 8GB root partitions and fit four on the
drives we have. However the disk is partitioned, it is important
that each of the other partitions is the same size or larger
than the original build partition or the clone will fail. Each of
the machines can share a single swap partition, and therefore,
we include only one. We do a basic installation of Fedora
13, which was current at the time of this writing. During
the installation there are options for including or removing
certain packages. Since we use these machines on an isolated
network, we can safely exclude a number of the suggested
packages. We remove games, email, and any sort of Internet
only package, for example chat clients. We also add Wireshark
and bind, which are definitely needed. Further, we added some
additional packages that are needed, or we thought may be
needed: brctl, dhcp, gbrctl, mrouted, mtools, named, nmap-
frontend, openssh, openswan, quagga, telnet-server, tftp, tftp-
server, ttcp, and xinetd. Once all the packages are installed,
updated, and a basic account is set up, we move on to the
cloning.

B. Copy the Build to the Remaining Partitions

We do a bit for bit copy of our build machine to the other
partitions together with a little clean up so that each of the
partitions work properly.

First we need to remove the persistent Ethernet names:

rm / e t c / udev / r u l e s . d /70− p e r s i s t e n t −n e t . r u l e s

This file is generally generated on each reboot, if it does not
exist. The purpose of this file is to ensure that udev chooses
the same name for a specific adapter across reboots. If we copy
this file during the cloning process, udev will see the Ethernet
cards on the clone as new hardware. This causes connectivity
issues. By removing the file now, before we clone the build,
we save ourselves from having to do delete the file on each
partition of each machine.

To ensure that we achieve a clean copy, we boot the machine
using a live CD. Here we can use just about any distribution
that provides a live CD as we rely only on coreutils and
BASH. We run:

dd i f =/ dev / sda1 | t e e >(dd o f = / dev / sda2) | \
t e e >(dd o f = / dev / sda3) | dd of = / dev / sda4

where ‘sda1’ is the partition that we built our machine on, and
‘sda2’ to ‘sda4’ are the empty partitions we want to clone our
drive to. These labels may vary depending on the hardware
used. In our case we had two partitions, and therefore, we use
only the first and last commands from this pipeline.

Once the system is copied, we need to make a couple
changes. We let the first partition remain the boot partition.
Fedora 13 uses legacy grub, and therefore, we only need
to worry about modifying /boot/grub/menu.lst on the boot
partition, generally the first partition. The remaining partitions
will just have unused menu.lst files.

We need to create and set a new UUID on the copied
partition(s) and add the appropriate lines to menu.lst. First,
we generate a UUID with uuidgen -t and then assign
the new UUID to the copied partition using tune2fs -U
/dev/sda2. This is repeated as necessary such that each
partition has a new UUID. Now that referable IDs have been
created, we copy one entry of menu.lst for each new partition
and change the UUID accordingly. It is also advisable to label
the title build1, build2, etc. such that each may be easily
identified from the grub menu at boot.

At this point, the system is able to boot the other partitions,
but only the first partition will be mounted. We need to update
fstab on each new partition. We can do this from any of the
boot systems by simply mounting each partition and changing
/etc/fstab to reflect the corresponding UUID.

Additionally, it is prudent to set grub timeout to 0, and
hide the menu so that the students are less likely to change
something they should not change. If we were assigning respon-
sibility for certain machines to specific students, we would want
to expand the labeling and increase the time-out. As described,
booting to a clean machine requires only a small change in
menu.lst, namely the “default” value.

2

(a) (b) (a) (b)

eth0 eth0 eth0 eth0
10.0.0.1/24 10.0.1.1/24 10.0.0.1/24 10.0.1.1/24

eth1 eth1 eth1 eth1
10.0.1.2/24 10.0.0.2/24 10.0.1.2/24 10.0.0.2/24

Fig. 1. Chaining the PCs together.

C. Copy the Disk Image to Additional Machines

Next, we clone our build to the other physical machines. We
use dd and netcat in a similar pipeline to the one previously
mentioned. Again, we will need to boot from a live CD. The
only requirement for this CD is that the distribution includes
both utilities. Also, to avoid burning several CDs, we choose
one that boots to RAM.

We used the live distribution of Fedora 13 as well as the
Debian derivative Knoppix [3]. In Fedora, press any key at
the count down. At the grub menu highlight “boot” and press
Tab. Replace ‘liveimg’ with ‘live ram’ and press Enter. In
Knoppix, we use ‘knoppix toram 2’ which boots Knoppix to
RAM at run level 2. Since we only need the command line,
there is no need to load the desktop environment.

We then push the build from one machine to the next in a
single large daisy chain. Since each machine has two Ethernet
ports we configure them as either:
(a) eth0 10.0.0.1/24

eth1 10.0.1.2/24
(b) eth0 10.0.1.1/24

eth1 10.0.0.2/24

Physically we wire each eth0 to the next machine’s eth1,
alternating Ethernet configurations between (a) and (b). One
station is shown in Fig. 1, but stations can also be chained one
to the next. All but the first and last machines will have both
Ethernet ports connected and each machine can ping the next
in line through eth0.

Now starting from the last machine in the chain we set up
a listener and a writer:

nc − l −p 10002 | dd of = / dev / sda

Then working backward along the chain, we alternate between:
(a) nc -l -p 10012 | of=/dev/sda | nc 10.0.0.2 10002
(b) nc -l -p 10002 | dd of=/dev/sda | nc 10.0.1.2 10012

Finally, having worked all the way back to the first machine in
the chain, we start the copy with:

dd i f =/ dev / sda | nc −q 3 1 0 . 0 . 0 . 2 10002

Here sda is the entire disk, not just a single partition. As
mentioned previously, the label sda may change depending on
hardware. Also note that the syntax of nc is a little different
depending on the distribution chosen. Netcat generally closes
the socket once the input stream closes. Namely, when dd
finishes reading the entire disk on the first machine. This is

true in the live CD version of Fedora 13. However, to achieve
the same behavior in Knoppix it was necessary to use the -q N
flag which is supposed to close the socket ‘N’ seconds after the
input stream reads EOF. We found that while Knoppix version
does close the socket when using the ‘q’ flag, it does not wait
N seconds but rather quits immediately which for our purposes
is adequate.

Given that a full disk copy across a 100Mbs link will take
some time, it is useful to setup and test a small file through the
chain before running the entire disk. We advise against using
Fedora, as it takes some time to load to RAM. Using Knoppix
we could chain all 20 computers in our environment relatively
quickly. Damn Small Linux [1] would be another option worth
trying, as would any of the other minimal distributions.

Now that the systems are rolled out we just need to change
the name in a couple places. Since the machine was built as
PC1 (or some other static name), we need to change it in each
of the clones. The name needs to be updated in two places:
/ e t c / h o s t s
/ e t c / s y s c o n f i g / ne twork

Once this is complete, repeat the renaming on each partition.
Each machine should now function as though it was built
individually, and each duplicate partition can be used as a fresh
machine if one becomes compromised.

D. Final Steps

Now that the systems are built, there are a few configuration
settings to check. Liebeherr and El Zarki provide scripts on their
site [8] to help automate the process. The server configurations
could also be done prior to cloning. In our case, the TAs did
the following four steps:

1) Enable telnet, tftp, and named within xinetd.
2) Disable SELinux.
3) Disable iptables.
4) Reset the routers to factory defaults.

These four steps could be done as a walk-through given to the
students to expose them to Linux features falling outside the
scope of this course, or the scripts can be run by the TAs before
the first students arrive. To enable telnet, tftp, and named, run
the following:
c h k c o n f i g t e l n e t on
c h k c o n f i g t f t p on
c h k c o n f i g named on

Similarly, one can disable iptables with
c h k c o n f i g i p t a b l e s o f f

SELinux has a configuration file located at /etc/selinux/config
which should be edited to include this line:
SELINUX= d i s a b l e d

Additionally, ensure the file “/etc/xinetd.d/telnet” includes the
line:
d i s a b l e = no

Following these changes, each machine should be rebooted.
Finally, the Cisco routers should be reset to factory defaults.

Since this involves Cisco commands that the students have yet

3

to learn, we suggest the TAs reset the routers at the same
time as the server builds. This snippet can be found on Cisco’s
website [6].

1) router# configure terminal
router(config)# config-register 0x2102
router(config)# end

2) router# write erase
3) router# reload

System configuration has been modified. Save? [yes/no]: n
Proceed with reload? [confirm]

Upon reboot, a brief configuration dialog must be completed
after which the router is ready for use.

IV. CONCLUSIONS

We presented a detailed method for building and configuring
the laboratory associated with a hands-on introductory course to
networking. From our experience, this method creates a setup
with quicker response time than provided by other methods
(virtual machines and live CDs). Moreover, it lets the students
focus on the lab experiments rather than on fixing misconfig-
urations that may have been caused by other students. Hence,
the proposed method improves the overall learning experience.

ACKNOWLEDGMENTS

We thank Tarun Sharma for his help with implementing and
testing the process. This work was supported in part by NSF
grant CNS-10-54856 and CIAN NSF ERC under grant EEC-
0812072.

REFERENCES

[1] DSL information. http://www.damnsmalllinux.org/, Nov. 2011.
[2] Fedora project homepage. http://fedoraproject.org, Nov. 2011.
[3] KNOPPIX - Live Linux filesystem on CD. http://www.knopper.net/

knoppix/index-en.html, Nov. 2011.
[4] netem — The Linux Foundation. http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem, Nov. 2011.
[5] redhat.com — The world’s open source leader. http://www.redhat.com,

Nov. 2011.
[6] Reset a Cisco router to factory default settings - Cisco Sys-

tems. http://www.cisco.com/en/US/products/sw/iosswrel/ps5187/products
tech note09186a00802017a1.shtml, Nov. 2011.

[7] J. Liebeherr. TCPIP-LAB.NET. http://www.tcpip-lab.net/, Nov. 2011.
[8] J. Liebeherr and M. El Zarki, Mastering networks: an Internet lab manual.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.
[9] J. Nieh and C. Vaill, “Experiences teaching operating systems using virtual

platforms and Linux,” ACM SIGCSE Bull., vol. 37, pp. 520–524, Feb. 2005.

4

