
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007 2149

On the Analysis of the Bluetooth
Time Division Duplex Mechanism

Gil Zussman Member, IEEE, Adrian Segall Fellow, IEEE, and Uri Yechiali

Abstract— Efficient communication in Bluetooth networks re-
quires design of intra and inter-piconet scheduling algorithms,
and therefore, numerous algorithms have been proposed. How-
ever, due to complexities of the Bluetooth MAC, the performance
of these algorithms has been analyzed mostly via simulation.
We present analytic results regarding the exhaustive, gated, and
limited (pure round robin) scheduling algorithms in piconets
with bidirectional and unidirectional traffic. We show that a
piconet operated according to the limited scheduling algorithm is
equivalent to a 1–limited polling system and present exact results
regarding symmetric piconets with bidirectional traffic. Then,
the difficulties in analyzing the performance of the exhaustive
and gated algorithms in a piconet with bidirectional traffic are
demonstrated. In addition, we present exact analytic results for
piconets with unidirectional traffic. We show that, surprisingly, in
symmetrical piconets with only uplink traffic, the mean waiting
time is the same for the exhaustive and limited algorithms. This
observation results from the differences between piconets and tra-
ditional polling systems and can be extended for Time-Division-
Duplex systems with arbitrary packet lengths. Furthermore, we
show that the mean waiting time in a piconet with only uplink
traffic is significantly higher than its corresponding value in
a piconet with only downlink traffic. Finally, we numerically
compare the exact results to approximate results, presented in
the past.

Index Terms— Bluetooth, personal area networks (PANs), time
division duplex (TDD), medium access control (MAC), schedul-
ing, polling, queueing.

I. INTRODUCTION

B luetooth is a Personal Area Network (PAN) technology,
which enables devices to connect and communicate wire-

lessly via short-range ad-hoc networks [4]. The basic network
topology (referred to as a piconet) is a collection of slave
devices operating together with one master. A multihop ad-
hoc network of piconets in which some of the devices are
present in more than one piconet is referred to as a scatternet.
A device that is a member of more than one piconet (referred
to as a bridge) must schedule its presence in all the piconets
in which it is a member.

Manuscript received May 5, 2005; revised June 6, 2006; accepted Decem-
ber 28, 2006. The associate editor coordinating the review of this paper and
approving it for publication was K. K. Leung. Preliminary and partial versions
of this paper have been presented in the 1st IEEE Conference on Sensor and
Ad Hoc Communications and Networks (SECON’04) [31] and in the 8th

IFIP-TC6 Conference on Personal Wireless Communications (PWC’03) [30].
G. Zussman is with the Communications and Networking Research Group,

Massachusetts Institute of Technology, Cambridge, MA 02139 (e-mail:
gilz@mit.edu).

A. Segall is with the Department of Electrical Engineering, Technion–Israel
Institute of Technology, Haifa 32000, Israel (e-mail: segall@ee.technion.ac.il).

U. Yechiali is with the Department of Statistics and Operations Research,
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
(e-mail: uriy@post.tau.ac.il).

Digital Object Identifier 10.1109/TWC.2007.05152.

The master uses intra-piconet scheduling algorithms to
schedule the traffic within a piconet. Inter-piconet schedul-
ing algorithms are used to schedule the presence of the
bridges in different piconets. Numerous intra and inter-
piconet scheduling algorithms have been proposed (e.g.
[2],[6],[8],[10],[11],[28]).

Analytical performance evaluation of intra and inter-piconet
scheduling algorithms has great importance, since it may
provide insight on their design and optimization. However,
as mentioned in [6], due to the special characteristics of the
Bluetooth Medium Access Control (MAC) which is based
on Time-Division-Duplex (TDD), the performance of these
algorithms has been analyzed mostly via simulation. In this
paper we present overlooked connections between Bluetooth
piconets and polling systems1. We show that these connections
can be directly utilized in order to obtain analytic results
regarding the performance of the algorithms. We present
results regarding 3 different traffic patterns: bidirectional traf-
fic, unidirectional uplink traffic, and unidirectional downlink
traffic.

First, we focus on the limited (pure round robin) scheduling
algorithm in a piconet with bidirectional traffic and show that
a piconet operated according to this algorithm is equivalent to
a 1–limited polling system. The problem of computing exact
mean delays in general 1–limited polling systems has not
been resolved yet [13], but we derive exact analytic results
regarding intra-piconet waiting times in a symmetric piconet
with (the most commonly assumed) Poisson arrival process.
However, considering the exhaustive and gated scheduling
algorithms, we argue that when the traffic is bidirectional,
it seems that there is no closed form expression for the
Probability Generating Function (PGF) of the time (in slots)
to exhaust the two related queues, at a given slave and at
the master. Therefore, it seems that there is no closed form
expression for the waiting time in a piconet operated according
to these algorithms.

We show that a piconet with unidirectional uplink traffic
operated according to the exhaustive scheduling algorithm is
equivalent to a specific exhaustive polling system and derive
exact results regarding intra-piconet waiting times. We also
show that a piconet with unidirectional uplink traffic operated
according to the limited (pure round robin) scheduling algo-
rithm can be modeled as a 1–limited polling system.

Following this analysis, a surprising result is obtained: the
mean waiting times for the limited and exhaustive algorithms
are equal in a piconet with only uplink traffic, where all arrival

1A polling system consists of several queues served by a single server
according to a set of rules (polling scheme) [3, p. 195],[13],[26].

1536-1276/07$25.00 c© 2007 IEEE

2150 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

rates are statistically equal. Moreover, when such a piconet is
operated according to the gated algorithm, the mean waiting
time is higher than in the exhaustive or limited algorithms.2

We extend these observations by considering a general per-
packet polling system, which is a generalization of a piconet
with only uplink traffic. In such a system, the server (master)
incurs a polling overhead for each packet and some overhead
is incurred when a station announces to the server that it is
empty. This system differs from the traditional polling system
in which a switchover period is encountered only when the
server (master) shifts from one queue to another. We show that
the observations regarding the piconet also hold for the per-
packet polling system. An important specific case of the per-
packet polling system is an arbitrary Time-Division-Duplex
system, where the packets are not necessarily 1, 3, and 5 slots
long (as required in Bluetooth [4]). Such a system is important,
since the TDD mechanism will be used by other technologies,
such as 3.5G and 4G cellular systems [9].

Furthermore, we show that a piconet with only unidirec-
tional downlink traffic operated according to the exhaustive
scheduling algorithm is equivalent to an exhaustive polling
system with zero-switchover periods. A similar equivalence
holds for the gated and the limited algorithms. It is shown
that the mean waiting time in a piconet with only uplink
traffic is significantly higher than in a piconet with only
downlink traffic. Finally, although the analysis of the gated
and exhaustive algorithms in piconets with bidirectional traffic
seems infeasible, we show that the case in which some of the
traffic is only in the downlink and some of it is only in the
uplink can be analyzed.

We note that various aspects related to the performance
evaluation of Bluetooth scheduling algorithms have been re-
cently studied. For example, [22] presents results regarding
admission control in Bluetooth piconets, the performance of
TCP over Bluetooth, and the performance of inter-piconet
scheduling algorithms. In addition, [16],[20],[21], and [23]
recently presented approximate results regarding the perfor-
mance of various intra and inter-piconet scheduling regimes.
In Section VIII we numerically compare the exact results to
those presented in [20] and [21].

The main contributions of this paper are two-fold: (i)
exact results regarding the delay in Bluetooth piconets are
derived, and (ii) counterintuitive observation regarding the
delay in per-packet polling systems is provided. To the best
of our knowledge, the results presented in this paper are the
only available exact analytic results regarding the delay in
piconets.3 The results regarding the limited algorithm, which
have been presented in a preliminary version [30], have been
recently extended by Miorandi and Zanella for an asymmetric
arrival process [18] and for fading channels [17]. Similarly,
we argue that the rest of the results presented in this paper,
regarding specific scenarios (e.g. Poisson arrival process), can
be easily extended to different scenarios (e.g. batch arrivals)
by utilizing the vast amount of research regarding polling
systems.

2These observations may not necessarily hold when the arrival rates are
not statistically equal.

3We note that analytical results regarding the throughput of Bluetooth
piconets have been presented in [24].

Time (slots)

Slave N

Slave 2

Slave 1

Master

Fig. 1. An example of the TDD scheme in a Bluetooth piconet.

This paper is organized as follows. Section II gives a brief
introduction to the Bluetooth technology, while Section III
presents the model. In Section IV we analyze the scheduling
algorithms in a piconet with bidirectional traffic. Section V
analyzes the algorithms in piconets and general per-packet
polling systems with unidirectional uplink traffic. In Sec-
tion VI we analyze piconets with unidirectional downlink
traffic. Section VII briefly discusses the case in which the
traffic is either in the uplink or in the downlink. Section VIII
presents numerical results and Section IX summarizes the
main results.

II. BLUETOOTH TECHNOLOGY

In a piconet, one unit acts as a master and the others act
as slaves (a master can have up to 7 slaves). Bluetooth chan-
nels use a Frequency-Hop/Time-Division-Duplex (FH/TDD)
scheme in which the time is divided into 625–μsec intervals
called slots. The master-to-slave transmission starts in even-
numbered slots, while the slave-to-master transmission starts
in odd-numbered slots. Masters and slaves are allowed to send
1, 3, or 5–slot packets, which are transmitted in consecutive
slots. Packets can carry synchronous information (voice link)
or asynchronous information (data link).4 Information can only
be exchanged between a master and a slave.

A slave is allowed to start transmission in a given slot, if
the master has addressed it in the preceding slot. The master
addresses a slave by sending a data packet or, if it has no data
to send, a 1–slot POLL packet. The slave must respond by
sending a data packet or, if it has nothing to send, a 1–slot
NULL packet. We refer to the master-to-slave communication
as downlink and to the slave-to-master communication as
uplink. An example of the TDD scheme in a piconet with
N slaves is given in Fig. 1.

The master schedules the traffic in a piconet according to an
intra-piconet scheduling algorithm. We focus on the following
algorithms in which the master communicates with the slaves
according to a fixed cyclic order: (i) the Limited (Pure) Round
Robin algorithm in which at most a single packet is sent
in each direction (downlink or uplink) whenever a master-
slave queue pair is served, (ii) the Exhaustive Round Robin
algorithm in which the master does not switch to the next
master-slave queue pair until both the downlink and the uplink
queues are empty, and (iii) the Gated Round Robin algorithm
in which only the packets that are found in the uplink and
downlink queues when the master starts serving the queue
pair are transmitted.

4We concentrate on networks in which only data links are used.

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2151

III. THE MODEL

The number of slaves is denoted by N and we assume
that each node has an infinite buffer. We assume that the
packets are generated at the uplink and downlink queues
according to independent Poisson arrival processes. We denote
the arrival rate to the uplink queue at slave i by λi

u and the
downlink arrival rate into the master of packets intended for
slave i by λi

d. We note that in general, arrival processes in
real networks are not Poisson but rather compound Poisson
(i.e. batches of packets arrive according to a Poisson arrival
process). Therefore, throughout the paper we briefly point out
the additional steps that have to be taken in order to analyze
systems with a compound Poisson arrival process.

We mostly consider 3 different traffic patterns: bidirectional
traffic (i.e. there are links on which the traffic is bidirectional),
unidirectional uplink traffic, and unidirectional downlink traf-
fic. We will also consider the special case in which there is no
bidirectional traffic on any link but on each link the traffic is
either solely downlink or solely uplink. For each traffic pattern,
we consider one of the following packet generation scenarios:

• Symmetric piconet - The arrival rate to every active queue
is λ (packets/slot). We refer to active queues since, in
piconets with unidirectional downlink (uplink) traffic, the
uplink (downlink) queues are inactive.

• Asymmetric piconet - The arrival rates to the queues are
not necessarily the same (λi

u and λi
d can also be 0 for

some queues).

We assume that the master is the final destination of all
packets generated at the slaves. The probabilities of a packet
length being 1, 3, or 5 slots are p1, p3, and p5, respectively.5

The mean and second moment of the packet length are denoted
by L and L2. The waiting time is the time a packet waits in
the uplink or the downlink queue before it is served. The
mean waiting times (in slots) in the uplink queues under the
limited, exhaustive, and gated regimes are denoted by W

Lim
u ,

W
Ex
u , and W

G
u , respectively. Similarly, the mean waiting

times in the downlink queues under the different regimes are
denoted by W

Lim
d , W

Ex
d , and W

G
d . When we present results

for an asymmetric piconet operated according to the limited
algorithm, the mean waiting time in the uplink queue of slave
i is denoted by W

Lim
u (i) and the mean waiting time at the

master of packets intended to slave i is denoted by W
Lim
d (i).

Some of the scheduling algorithms proposed in the past (e.g.
[8]) assume that the master has some information regarding
the status of the slaves’ queues. However, obtaining such
information requires changing the Bluetooth specifications [4]
or using a proprietary algorithm in all the devices participating
in a piconet. Thus, we assume that the master does not have
any information about the state of the uplink queues. This
assumption complies with the assumptions made in several
previous analyses of intra-piconet scheduling algorithms (e.g.
[6],[16],[19],[20],[21],[23]).

5Although we assume that the packet lengths are randomly selected, in
practice, these lengths depend on the Segmentation and Reassembly (SAR)
of higher layer packets (see the discussion in [8]). The SAR policy can also
affect the arrival process (i.e. in practice, it is likely that batches of packets
will arrive simultaneously).

We note that whenever we refer to results regarding general
(non-Bluetooth) symmetric polling systems we follow the
notation of Takagi [26]. Namely, the mean and second moment
of the packet service times are denoted by b and b(2). The
mean and variance of the switchover times are denoted by r
and δ2.

IV. BIDIRECTIONAL TRAFFIC

In this section we consider the case in which the traffic on
the links is bidirectional. The case in which the traffic on each
link is either solely downlink or solely uplink will be treated
in Section VII.

A. Analysis of the Limited Algorithm

We first discuss a piconet in which all packets are 1 slot
long. We then analyze the case in which all packet types are
present. The former piconet type is discussed mainly because
it is a special case of the latter. In a symmetric piconet, in
which all packets are 1 slot long (i.e. p1 = 1), a single
slot is allocated to each downlink and uplink in every cycle.
Therefore, the piconet can be modeled as a TDMA system
[3, p. 194] with a cycle length of 2N slots. Every slot in the
cycle is allocated to one of the 2N downlinks and uplinks.
The computation of the delay in a TDMA system is based on
the analogy with the M/D/1 with vacations queue in which
the deterministic service times and vacation lengths are equal
to 2N [3, p. 194]. Accordingly, applying [3] eq. (3.58), where
the number of queues is 2N and the total arrival rate is 2Nλ,
we obtain the mean waiting time in the uplink and downlink
queues (in slots):

W
Lim
u = W

Lim
d =

N

1 − 2Nλ
. (1)

In a TDMA system, the queuing behavior of one user is
independent of the queuing behavior of other users. Thus,
analytic results can be obtained for an asymmetric piconet.
In this case every link can be independently analyzed as an
M/D/1 queue. Therefore, the waiting time in the uplink queue
of slave i (in slots) is again derived from eq. (3.58) in [3]:

W
Lim
u (i) =

2Nλi
u

2(1 − 2Nλi
u)

2N +
1
2
2N =

N

1 − 2Nλi
u

. (2)

A similar equation describes the mean waiting time of packets
arriving at the master and intended to slave i (W

Lim
d (i)). In

this case W
Lim
d (i) replaces W

Lim
u (i) and λi

d replaces λi
u.

We now consider a “standard” piconet operated in the
limited regime with 1, 3, and 5-slot packets. We show that
such a piconet can be modeled as a 1–limited polling system6

with 2N queues.
In a piconet operated according to the limited scheduling

algorithm, even if the master has nothing to send to a specific
slave, one slot is used during the downlink communication (by
the POLL packet). Similarly, even if the slave has nothing to
send, one slot must be used during the uplink communication
(by the NULL packet). In order to model the piconet as a

6In a 1–limited polling system, at each visit of the server to a queue only
the first packet (if any) in the queue is served. The server incurs a switchover
time when it shifts from one queue to another [3, p. 201],[13],[26].

2152 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

Time (slots)

Piconet

Slave 2 to Master

Master to Slave 2

Slave 1 to Master

Master to Slave 1

Equivalent Polling System

Queue 4

Time (slots)

Queue 2

Queue 3

Queue 1

Data Packet POLL Packet NULL Packet

Switchover Data Zero Slots Data

Fig. 2. An example of a piconet operated according to the limited algorithm
and of the equivalent polling system.

1–limited polling system we utilize the fact that data packets
are at least one slot long. Thus, when data packets are sent,
at least one slot must be used.

We define an equivalent 1–limited gated polling system7

with the following characteristics: (i) there are 2N customers
and a single server, (ii) the server serves the customers in a
fixed cyclic order, (iii) the server incurs a switchover time of
1 slot when it shifts from one customer to another, (iv) when
the server serves a customer, at most a single packet is served;
if at the beginning of the switchover the queue is empty, the
server completes the switchover and immediately switches to
the next customer, and (v) the packet service times are 0, 2,
and 4 slots.

This polling system is equivalent to a Bluetooth piconet op-
erated according to the limited scheduling algorithm. Namely,
for the same arrival process and packet length distribution (i.e.
the probability of the service time in the polling system being
(k−1) slots long is pk), the delay (time until the end of service)
in both systems is equal. This property is demonstrated in Fig.
2, which illustrates an example of the operation of a piconet
composed of a master and two slaves and of the equivalent
polling system. When the master starts transmitting to the first
slave it has a 3-slot data packet in the downlink queue. In the
equivalent system, this packet is represented by a 1 slot of
switchover and 2 slots of data. The first slave has nothing to
send, and therefore it responds with a NULL packet. One slot
of switchover represents this packet in the equivalent system.
Then, the master sends a 1-slot data packet to the second
slave. It is represented in the equivalent system by a 1 slot of
switchover and 0 slots of data. The rest of the transmissions
(including a POLL packet) can be seen in the figure.

In order to obtain the waiting time in a piconet, one has to
deduct the Bluetooth packet length (L) from the delay (time
until the end of service) in the equivalent polling system.
Alternatively, if one obtains the waiting time (the time until
the service starts) in the equivalent polling system, a single
slot has to be deducted in order to obtain the waiting time
in a Bluetooth piconet. This results from the fact that when
Bluetooth data packets are sent, some of the data is actually
sent during the “switchover” time, as it is defined in the

7It is referred to as the limited gated polling system, since only a message
that is found in the beginning of the switchover time is served.

equivalent polling system.
We now focus on symmetric systems in which the arrival

rates to all queues are equal. By applying the model for
a symmetric limited gated polling system described in [3,
p. 201], we can obtain the mean waiting time of a packet in
a queue. The service time of a k-slot (k = 1, 3, 5) data packet
is defined as k − 1 slots. Moreover, the waiting time in [3] is
defined as the time a packet waits until its service starts. Thus,
in order to obtain the mean waiting time in a piconet, one has
to deduct 1 slot from the expression for the waiting time in
[3], eq. (3.77). Accordingly, we apply [3] eq. (3.77), where
the number of queues is 2N , the total arrival rate is 2Nλ,
the switchover time is one slot with zero variance, the traffic
intensity is ρ = 2Nλ(L − 1), and the second moment of the
service time (denoted in [3] as X2) is 4p3 +16p5. Deducting
1 time unit (i.e. 1 slot), we obtain the mean waiting time in
the uplink and downlink queues:

W
Lim
u = W

Lim
d =

1 + N
[
1 + 2λ(p3 + 6p5 − 1)

]
1 − 2NλL

− 1 . (3)

Notice that in this system it must hold that 2NλL < 1. We
shall refer to 2NλL as the load in the bidirectional limited
system.

As a special case, consider a piconet in which only 1-slot
packets are used (i.e. p3 = p5 = 0). For such a piconet, (3)
reduces to (1), which represents the delay in a piconet with
1-slot packets. Moreover, the result given by (3) was verified
by two independent simulation models based on OPNET (for
more details regarding the design of the simulation models,
see [10] and [16]). For example, Fig. 3 compares the exact
mean waiting time (Wu) (computed according to (3)) to the
average waiting time computed by simulation8 in a piconet
with 4 slaves in which the probabilities of 1, 3, and 5-slot
packets are equal. For each load value, the results have been
computed after 230,000 slots using the model presented in
[10] or after 48,000 to 2,400,000 slots (depending on the load)
using the model presented in [16].

B. The Gated and Exhaustive Algorithms

Analyzing the performance of scheduling regimes such as
the gated and exhaustive in a piconet with bidirectional traffic
requires obtaining the PGF of the exchange time (in slots)
of a single master-slave queue pair (channel). This analysis
is significantly complicated by the TDD mechanism and the
use of POLL and NULL packets by the master and the
slaves. In order to demonstrate the difficulties in analyzing
the exhaustive algorithm, we discuss a less complicated case,
namely a single master-slave channel in a piconet, operated
according to the gated algorithm.

In the gated algorithm, only the packets that are found in
the uplink and downlink queues when the master starts serving
the master-slave queue pair are transmitted. If the number of
downlink packets exceeds the number of uplink packets, the
slave sends NULL packets as a response to some data packets.
On the other hand, if the number of uplink packets exceeds

8The simulation results computed by the model presented in [16] have been
obtained by Carlo Caimi from the University of Padova.

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

50

Load

W
ai

tin
g

T
im

e
(s

lo
ts

)

Derived Based on [10]
Derived Based on [16]
Eq. (3)

Fig. 3. The mean waiting time (calculated according to (3)) and the average
waiting time values computed by simulation in a piconet with 4 slaves in
which p1 = p3 = p5 = 1/3.

the number of downlink packets, the master sends some POLL
packets in order to allow the slave to reply with data packets.
We assume that at the end of the master-slave exchange, the
slave has to respond with a NULL packet to a POLL packet.

Let XG denote the total time (number of slots) required for
the exchange duration of a single master-slave channel in the
gated algorithm. The PGF and the mean of XG are denoted
by XG(x) and XG. For simplicity, we assume that all packets
are 1 slot long (p1 = 1) and that packets have accumulated in
both queues for some T slots before the gated service starts.
We define U and D as the number of packets accumulated in
the uplink and downlink queues, respectively, during T slots
(U, D ∼ Poisson (λT)).

Thus, given that p1 = 1, XG equals twice the maximum
of U and D plus 2 slots (the last POLL-NULL exchange).
Namely, it is a function of the maximum of two Pois-
son random variables. Accordingly, the PGF of the time to
serve a single master-slave channel is given by: XG(x) =
x2

∑∞
m=0 x2m Prob (max[U, D] = m) , where

Prob
(
max[U, D] = m

)
= 2 e−λT (λT)m

m!
(4)⎛

⎝m−1∑
j=0

e−λT (λT)j

j!

⎞
⎠ +

(
e−λT (λT)m

m!

)2

.

Unfortunately, it appears that in view of (4) there is no closed
form expression for XG(x) and consequently, it seems that
there is no closed form expression for the waiting time in
a piconet with bidirectional traffic operated according to the
gated algorithm. It is clear that the exact analysis of the
exhaustive algorithm is more involved.

The mean time to serve a single master-slave channel is
given by: XG = 2E (max [U, D]) + 2 . In order to bound
the value of XG, we observe that for a given λ > 0 and
U, D ∼ Poisson (λ): 1 < E(max[U, D])/λ < 2 . To illustrate
the behavior of this ratio, we have randomly generated 300,000
different values of U and D (for 17 various values of λ) and
computed the average value of max[U, D] and its ratio to λ.
The results are depicted in Fig. 4.

1

1.2

1.4

1.6

1.8

2

0.01 0.1 1 10 100 1000

R
at

io

λ

Fig. 4. The ratio of the average value of max [U, D] to λ.

Using these results, we shall now provide a simple expla-
nation for an observation made via simulation in [6] and [10].
According to [6] and [10], in piconets with bidirectional traffic
and high loads, the waiting time under the limited algorithm
is lower than under the exhaustive algorithm. Consider a sym-
metric piconet operated according to the exhaustive or gated
algorithm, with only 1–slot packets. According to the above
analysis, for an arrival rate of λ (packets/slot), a node will
have to transmit on average E(max[U, D]) packets per slot
(where U, D ∼ Poisson(λ)). Thus, the arrival rate λ should
be set such that 2NE(max[U, D]) < 1. Fig. 4 exhibits the
fact that E(max[U, D]) can approach 2λ. Hence, a necessary
condition for stability is λ < 1/(αN), where 2 < α < 4.
On the other hand, according to (1), when the same piconet
is operated according to the limited algorithm, a necessary
condition for stability is λ < 1/(2N). When λ approaches the
stability limit, the waiting time approaches infinity. Thus, in
a piconet using the exhaustive or gated algorithm, the waiting
time approaches infinity for lower values of λ than in a piconet
using the limited algorithm. Therefore, for high values of load
the waiting time in the limited piconet will be lower than in
the exhaustive or gated piconet.

V. UPLINK TRAFFIC

A. Analysis of the Exhaustive Algorithm

We first analyze a symmetric piconet with only uplink traffic
(i.e. a piconet in which, for all i: λi

u = λ > 0 and λi
d = 0).

We will then argue that an asymmetric piconet (in which the
arrival rates to the uplink queues are not necessarily equal)
can be analyzed in a similar manner. Since λi

d = 0 ∀i, when
the master communicates with a particular slave it sends
only POLL packets (one for each data packet). The slave
replies with data packets until its queue is empty. Then, it
sends a NULL packet which signals the end of the exhaustive
communication with that particular slave9.

In order to model the piconet as an exhaustive polling
system, we define the service time of a k–slot data packet
as (k + 1) slots which are composed of the k slots of data,
augmented by the following POLL packet. The switchover
time is defined as 2 slots, composed of the NULL packet

9The termination of the master-slave exchange with a POLL-NULL ex-
change results from the fact that the master has no information about the
slaves’ queues and complies with the assumptions made in previous analyses
of the exhaustive algorithm (e.g. [19],[20],[21]). Below, we will briefly discuss
an alternative system in which this POLL-NULL exchange is not required.

2154 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

Load

W
ai

tin
g

T
im

e
(s

lo
ts

)

p
1
 = 0.2, p

3
 = 0.6 − Simulation

p
1
 = 0.2, p

3
 = 0.6 − Exact

p
1
 = 1 − Simulation

p
1
 = 1 − Exact

Fig. 5. The exact mean waiting time (calculated according to (5)) and the
average waiting time values, computed by simulation, in piconets composed
of 7 slaves and with only uplink traffic, operated according to the exhaustive
algorithm.

ending the exchange with a particular slave and the POLL
packet starting the exchange with the next slave.

For a symmetric piconet, we apply the model for a symmet-
ric discrete-time exhaustive polling system described in [26,
p. 68]. Accordingly, we apply eq. (3.63b) in [26], where the
number of queues is N , the arrival process is Poisson with
intensity λ, the switchover time is two slots (r = 2) with zero
variance (δ2 = 0), the mean service time is b = L+1, and the
second moment of the service time is b(2) = 4p1+16p3+36p5.
By adding 0.5 slot, we obtain the mean waiting time10:

W
Ex
u =

N
[
1 + 4λ(p3 + 3p5)

]
1 − Nλ(L + 1)

. (5)

We shall refer to Nλ(L + 1) as the load in the uplink
exhaustive system.

In a piconet with a single slave (N = 1) there is no
difference between the exhaustive and the limited scheduling
algorithms. As a special case, consider a piconet with unidirec-
tional traffic of 1–slot packets (i.e. p1 = 1) operated according
to the limited algorithm. Its mean waiting time is given in (2).
It readily follows that for such a piconet (λi

u = λ, N = 1,
and p1 = 1) (5) and (2) coincide.

The result presented in (5) was also verified by a simulation
model based on OPNET (described in [10]). For example,
Fig. 5 compares the exact mean waiting time to the computed
(by simulation) average waiting time, in piconets with 7 slaves
in which (i) all packets are 1–slot long and (ii) p1 = 0.2,
p3 = 0.6, and p5 = 0.2. For each load value, the results have
been computed after 230,000 slots.

An asymmetric piconet with only uplink traffic (i.e. λi
d =

0 ∀i, and λi
u > 0 ∀i, not all necessarily equal) can be

analyzed in a similar manner to a symmetric piconet. Namely,
it can be modeled as an asymmetric exhaustive polling system
composed of N queues, with 2–slot switchover time and

10We add 0.5 slot, since we are interested in the waiting period from the
time of arrival, whereas in [26] the waiting time is counted from the end of
the slot in which a packet arrives. We note that using eq. (3.69) in [3, p. 200]
with the same parameters does not require adding 0.5 slot and yields the same
result.

with service time of (k + 1) slots for a k–slot data packet.
Accordingly, the mean waiting time in each uplink queue can
be obtained by any of the methods for analyzing exhaustive
polling systems described in [26] and [27]. Since some of
these methods require solving O(N2) equations and since
N ≤ 7, the computational complexity is negligible. We note
that results can be obtained even for the case in which the
probabilities of a packet length being 1, 3, or 5 slots vary
in different uplink queues. Finally, we emphasize that once
a piconet has been modeled as a polling system, a piconet
with batch arrivals can be analyzed by directly applying the
methods for the analysis of exhaustive polling systems with
a compound Poisson arrival process (see for example [26]).
Moreover, results can be obtained regarding even more general
arrival processes (such as correlated arrivals to the different
queues [14]) by directly applying the methods for analyzing
exhaustive polling systems with such arrival processes.

We note that one could devise a more efficient mechanism
in which the last POLL-NULL exchange can be avoided. For
example, an appropriate message signalling that the slave’s
queue is empty can be piggybacked in the trailer of last
data packet sent by a slave. Of course, implementing such a
mechanism may require slight modifications to the Bluetooth
specifications. Yet, it would be interesting to understand the
piconet performance under such a mechanism. Such a mod-
ification will reduce the number of POLL-NULL exchanges
and will probably reduce the waiting time incurred under the
exhaustive regime. However, even under the modified regime,
a POLL-NULL exchange will take place when the master
contacts a slave with an empty queue. On the contrary, when
it contacts a slave with a non-empty queue, only extended
service (that includes a poll packet for each data packet) will
take place.

Such an improved exhaustive scheduling algorithm can be
viewed as an exhaustive polling system with zero-switchover
periods in which, once the server switches into an empty
queue, a penalty (e.g. setup time) of two slots is paid. This
polling system has some similarities to State-Dependent (SD)
polling systems in which the server performs setup at a polled
queue only if it is not empty. Most of the previous work
regarding SD polling systems provided approximate analysis
(e.g. [1]), whereas recent work provided some exact results
(e.g. [7],[25]). Since the considered polling system differs
from SD polling systems, analyzing the performance of such
a general (not necessarily Bluetooth) system is an interesting
future research direction.

B. Analysis of the Gated Algorithm

A piconet with only uplink traffic operated according to the
gated algorithm is similar to a piconet operated according to
the exhaustive algorithm. The main difference is that a slave
replies to the master only with the data packets that were
present in the uplink queue at the moment it received the first
POLL packet from the master. In order to signal the end of the
gated communication, the slave sends a NULL packet. Since
we assume that the master and the slave do not exchange queue
status information, the last POLL-NULL exchange is required.
Yet, similarly to the discussion above, we note that by slightly

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2155

modifying the protocol this exchange could be avoided. This
will probably result in reduced waiting times.

The gated algorithm can be modeled as a gated polling
system in a similar manner to the modeling of the exhaustive
algorithm. Namely, we define the service time of a k–slot data
packet as (k+1) slots, and the switchover time as 2 slots. For a
symmetric piconet, we apply the model for a symmetric gated
polling system described in [26, p. 104] and use eq. (5.23) in
[26] to obtain the mean waiting time:

W
G
u =

N
[
1 + 4λ(p3 + 3p5)

]
1 − Nλ(L + 1)

+
2Nλ(L + 1)

1 − Nλ(L + 1)
. (6)

An asymmetric piconet with only uplink traffic can be
similarly analyzed by one of the methods described in [26]
and [27].

C. Analysis of the Limited Algorithm

We now show that a piconet with only uplink traffic oper-
ated according to the limited (pure round robin) scheduling
algorithm can be modeled as a 1–limited polling system. In
such a piconet the master continuously sends POLL packets
to the slaves. Even if the slave has nothing to send, one slot
must be used during the uplink communication (by the NULL
packet).

At first glance, it seems that such a piconet can be modeled
as a 1–limited polling system with N queues in a similar
manner to the modeling of a piconet with bidirectional traffic
as a 1–limited polling system with 2N queues (see Section
IV-A). Namely, the switchover time can be defined as 2 slots
that are composed of the POLL packet and the first slot of the
data packet or of the POLL-NULL exchange. As a result, the
service time of a k–slot packet should be defined as (k − 1)
slots. According to this modeling a packet that arrives to an
empty uplink queue during the first half of the switchover
time (i.e. during the transmission of the POLL packet) will
be served immediately after the switchover time. On the other
hand, a packet that arrives to an empty uplink queue during the
second half of the switchover time (i.e. during the transmission
of the NULL packet) will not be served immediately (as
opposed to the situation in a 1–limited polling system). Thus,
an alternative modeling is required.

We define the beginning of the switchover to a queue as
the instance in which the preceding slave starts transmitting
the last slot of a data packet or a NULL packet. A switchover
ends when the master completes the transmission of the POLL
packet intended to the slave (if at the end of the switchover
the queue is empty, the switchover to the next queue is
immediately started). We define the switchover time to each of
the queues as 2 slots. If the preceding slave sends a 3 or 5–slot
data packet, the 2 switchover slots are composed of the last slot
of the packet and the following POLL packet. Alternatively,
if the preceding slave sends a 1–slot data packet or a NULL
packet, the 2–slot switchover time is composed of the packet
sent by the preceding slave and the following POLL packet.

Consequently, when data packets are sent, some of the data
is actually sent during the “switchover” to the next queue.
Therefore, the service time of a k–slot data packet is defined

Slave 2 to Master

Master to Slave 2

Slave 1 to Master

Master to Slave 1

Piconet

Time (slots)
Data Packet POLL Packet NULL Packet

Queue 2

Time (slots)

Queue 1

Equivalent Polling System

SwitchoverData Zero Slots Data

Fig. 6. An example of a piconet with only uplink traffic operated according
to the limited algorithm and of the equivalent polling system.

as (k− 1) slots. Fig. 6 illustrates an example of the operation
of a piconet and of the equivalent polling system.

We now focus on symmetric systems with only uplink traffic
(i.e. λi

u = λ > 0 ∀i and λi
d = 0 ∀i) and apply the model for

a symmetric discrete-time 1–limited polling system described
in [26, p. 140]. We use [26] eq. (6.60), where the switchover
time is two slots (r = 2) with zero variance (δ2 = 0), the
mean service time is b = L − 1, and the second moment of
the service time is b(2) = 4p3 + 16p5. By adding 0.5 slot, we
obtain the mean waiting time (in slots):

W
Lim
u =

N
[
1 + 4λ(p3 + 3p5)

]
1 − Nλ(L + 1)

. (7)

As a special case, consider a symmetric piconet with
unidirectional uplink traffic of 1–slot packets (i.e. p1 = 1)
operated according to the limited algorithm. Its mean waiting
time has been derived in Section IV-A and it is given by (2).
It readily follows that for such a piconet (λi

u = λ and p1 = 1),
(7) coincides with (2). Moreover, the result presented in (7)
was also verified by a simulation model based on OPNET.

An asymmetric piconet with unidirectional uplink traffic can
be modeled as a 1–limited polling system with N queues in a
similar manner. Since there are no closed form results for the
latter case, approximation methods reviewed in [27] can be
used. Moreover, a piconet with batch arrivals can be analyzed
by applying the methods for the analysis of 1–limited polling
systems with a compound Poisson arrival process [27].

D. Equality of Mean Waiting Times

Eq. (5) and (7) lead to the following.
Corollary 1: The mean waiting time in a symmetric piconet

with only uplink traffic is the same for the exhaustive and for
the limited scheduling algorithms.

It is well known [26],[27] that in the classical symmetric
polling systems, where switchover time is incurred whenever
the server moves from one channel to the next, the mean
waiting time in the exhaustive regime is smaller than its
counterpart in the 1–limited regime. When the piconet is
operated according to the exhaustive algorithm, switchover
time is incurred at the end of a slave-master session. On
the other hand, in the limited algorithm, when two adjacent
slaves’ queues are non-empty, no real switchover time is

2156 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

incurred. Real switchover times are paid only when a slave
has nothing to transmit. Thus, the current limited procedure
is more efficient than the classical one and leads to the above
waiting time equality.

The mean waiting time in a piconet using the gated regime
(6) is higher than the corresponding value in piconets using
the exhaustive and limited algorithms. Again, this observation
differs from the situation in classical polling systems. Usually,
one can use the gated algorithm in order to provide some
fairness to the different queues, while maintaining relatively
low delay. It seems that in a symmetric piconet with unidirec-
tional traffic, the limited algorithm provides both the desirable
fairness and the lowest delay.

As mentioned in sections V-A and V-B, by slightly mod-
ifying the Bluetooth specifications one could devise more
efficient exhaustive and gated scheduling algorithms. Such
algorithms will probably result in reduced waiting times. The
exact derivation of these waiting times is a subject for further
research.

E. Generalization to Polling Systems

The result presented in Corollary 1 is counterintuitive to the
known results regarding the performance of traditional polling
systems. In addition, as mentioned in Section IV-B, [6] and
[10] observed via simulation that in piconets with bidirectional
traffic and high loads, the limited algorithm outperforms the
exhaustive algorithm. In this section we briefly explore the
differences between polling systems that generalize Bluetooth
piconets and the traditional polling systems. We focus on the
generalization of piconets with only uplink traffic. However,
the discussion also sheds light on piconets with bidirectional
traffic.

A traditional polling system can be defined as a per-station
polling system in which the server serves the stations in a
cyclic manner and a switchover period is encountered only
when the server shifts from one station to another. In contrast,
we define a per-packet polling system, which is a generaliza-
tion of a piconet with only uplink traffic. In such a system
the server pays a polling overhead for each packet (we will
denote this overhead by rp). In addition, some announcement
overhead is also incurred when a station announces to the
server that it has a packet to transmit or that it is empty
(we will denote this overhead by ra). For different scheduling
regimes, it is possible to define specific per-station polling
systems that are equivalent to the per-packet polling systems.
This can be done by using similar methodologies to those used
in sections V-A,V-B, and V-C.

Using such equivalences, we now extend the result pre-
sented in Corollary 1 regarding symmetric Bluetooth piconets
to symmetric (non-Bluetooth) per-packet polling systems. We
denote the mean and second moment of the packet service
time in the symmetric per-packet polling system by bpp and
b
(2)
pp . We assume that the two overheads mentioned above

(rp and ra) are constants. The service time in the 1–limited
per-station system (corresponding to the 1–limited per-packet
system) is the same as in the 1–limited per-packet system
(i.e. b = bpp and b(2) = b

(2)
pp). The switchover time in the

1–limited per-station system is r = rp + ra. However, in the

exhaustive per-station system (corresponding to the exhaustive
per-packet system), the service time is always r = rp+ra time
units longer than in the 1–limited per-station system. This
results from the fact that the per-station exhaustive service
time includes the polling and announcement overheads besides
the real per-packet service time. Hence, in the exhaustive per-
station system, the mean and second moment of the service
time are b + r and b(2) + 2rb + r2. The switchover time in
this system is also r.

Observation 1: The mean waiting times in symmetric 1–
limited and exhaustive per-packet polling systems, which have
the same service time distribution and the same constant
overheads (rp and ra), are equal.

Proof: Consider a symmetric per-packet polling system
with bpp, b

(2)
pp , rp, and ra (defined above). We apply [26,

eq. (6.19)] with service time b, second moment of service
time b(2), and switchover time r to get the waiting time
in the 1–limited per-station polling system, corresponding to
the 1–limited per-packet system. We apply [26, eq. (4.33b)]
with service time b + r, second moment of service time
b(2) +2rb+ r2, and switchover time r to get the waiting time
in the exhaustive per-station polling system, corresponding to
the exhaustive per-packet system. The obtained waiting times
are equal.

Similarly to the piconet case, it can also be shown that in
a symmetric per-packet polling system, the 1–limited regime
outperforms the gated regime (in terms of mean waiting
times). According to Observation 1, the result about the
equality of the mean waiting times in Bluetooth piconets op-
erated according to the exhaustive and the limited algorithms
(i.e. Corollary 1) is a special case of a result that holds in
symmetric per-packet polling systems. A more general special
case is of systems operated according to the TDD mechanism
in which the packets are not necessarily 1, 3, and 5 slots long
(as required in Bluetooth [4]).

We emphasize that the equality of the waiting times under
the exhaustive and limited regimes, as well as the fact that the
limited regime outperforms the gated regime, hold only for
symmetric traffic. These observations do not necessarily hold
when the traffic is asymmetric. Since in asymmetric systems
the service levels to the different stations may differ, the
scheduling regimes in asymmetric per-packet polling systems
cannot be directly compared through mean waiting times.
For such an asymmetric case, Levy et al. [15] presented a
sample path comparison that evaluates the efficiency of the
different per-station polling systems based on the total amount
of work found in the system in any time. They showed that
the exhaustive regime dominates the gated which dominates
the 1–limited.

We now consider per-packet polling systems. In these
systems there are arrival processes for which the amount of
work in the system under the 1–limited regime is lower than
that under the gated regime, whereas there are arrival processes
for which the amount of work under the gated regime is lower
than that under the 1–limited regime. Similar relations exist
between the exhaustive and 1–limited regimes. Hence, unlike
in the traditional polling systems, the gated and exhaustive
regimes do not strictly dominate the 1–limited regime. On the
other hand, the 1–limited regime does not strictly dominate

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2157

Data Packet POLL Packet

Time (slots)

S
4
 to M

M to S4

S3 to M

M to S3

M = Master S i = Slave i NULL Packet

S2 to M

M to S2

S1 to M

M to S1

Fig. 7. An example of the operation of the exhaustive algorithm in a piconet
with only downlink traffic.

the others. In general, the proof methodology of [15] cannot
be directly applied to identify dominance relations, since the
corresponding per-station polling systems differ from each
other in their service times. Yet, the results of [15] directly
imply that the exhaustive per-packet system dominates the
gated per-packet system. To conclude, the difference in the
dominance relations between per-packet and (traditional) per-
station polling systems stems from the operational differences
between these systems.

VI. DOWNLINK TRAFFIC

A. Analysis of the Exhaustive Algorithm

Consider a piconet with only downlink traffic operated
according to the exhaustive algorithm. In such a piconet traffic
flows only from the master to the slaves and the master has
complete information on the status of its downlink queues.
Thus, there is no reason to send a POLL packet in order to end
a master-slave exchange. Yet, in case all queues are empty, the
master regularly transmits POLL packets (and receives NULL
packets) until a data packet arrives to one of its downlink
queues.

We define the operation model of the piconet as follows.
The master serves the downlink queues in a fixed cyclic
order. When serving queue i, the master sends all data packets
present in the queue and the slave replies with a NULL packet
for each data packet. When the master empties queue i, it
immediately switches, in a cyclic manner to the next non-
empty downlink queue. In case all queues are empty, the
master sends a POLL packet to one of the slaves which replies
with a NULL packet. If by the end of the NULL packet
at least one of the queues becomes non-empty, the master
randomly selects one of the N queues and proceeds from there
in a cyclic manner until it finds a non-empty queue which is
immediately served.

Fig. 7 illustrates an example of the operation of such
a piconet. In this example, when the master empties the
downlink queue of packets intended to slave 1, the queue of
slave 2 is empty. When it empties the queue of slave 3, all the
queues are empty, and therefore, it sends POLL packets until
at least one packet arrives. In the described scenario, packets
arrive to queues 1 and 4 during the transmission of the NULL
packet by slave 2. The master randomly selects queue 4, serves
it, and continues to queue 1 in a cyclic manner.

The piconet can be modeled as a discrete time polling
system with zero-switchover periods [12]. In order to obtain
results for a discrete time exhaustive polling system with

zero-switchover periods, Levy and Kleinrock [12] define the
AZSOP (Almost Zero Switchover Period) polling system. In
that system it is assumed that the switchover period is nonzero
with probability p (p > 0) and zero with probability 1 − p.
Then, the system is analyzed as an exhaustive polling system
with mean switchover times defined as p and the variances of
switchover time defined as p(1 − p). It is shown that when
p → 0, the waiting time in the AZSOP system approaches the
waiting time in the zero-switchover period system.

We note that the continuous time polling system with zero-
switchover periods [26, p. 142] does not comply with the
operation model of a piconet, due to the following reason.
In the continuous time model it is assumed that if a packet
arrives while the server is idle, its service starts immediately.
On the other hand, in a piconet, if a packet arrives while a
POLL or a NULL packet is sent, it could be served only after
the transmission of the NULL packet.

In order to model the piconet as an AZSOP polling system,
we define a single slot in the AZSOP system as two slots in a
Bluetooth piconet. To this end, we define the service time of
a k–slot data packet in a Bluetooth piconet as (k +1)/2 slots
in the AZSOP system, which are composed of the k slots of
data, augmented by the following NULL packet. Thus, in the
corresponding AZSOP polling system, the service time of a 1–
slot Bluetooth packet is defined as 1 slot, for 3–slot Bluetooth
packet it is 2 slots, and for 5–slot Bluetooth packet it is 3 slots.
The switchover time in the AZSOP system is defined as 1 slot,
composed of POLL and NULL packets. As mentioned above,
the length of this period is 1 slot with probability p.

We now focus on symmetric systems (i.e. λi
d = λ > 0 ∀i

and λu = 0 ∀i). By applying the model for a discrete-
time exhaustive polling system described in [26] and using
the methodology described in [12], we can obtain the mean
waiting time. Accordingly, we apply [26] eq. (3.63b), where
the arrival process is Poisson with intensity 2λ, the switchover
time is r = p, the variance of the switchover time is δ2 =
p(1 − p), the mean service time is b = (L + 1)/2, and the
second moment of the service time is b(2) = p1 + 4p3 + 9p5.
Letting p → 0, adding 0.5 slot (since in [26] the waiting time is
counted from the end of the slot), and multiplying by 2 (since
the obtained result is the number of slots in the AZSOP system
and we are interested in waiting time measured in Bluetooth
slots), we obtain the mean waiting time (in Bluetooth slots):

W
Ex
d =

1 + 4Nλ(p3 + 3p5)
1 − Nλ(L + 1)

. (8)

A similar approach can be used for the analysis of asym-
metric piconets with only downlink traffic (i.e. λi

u = 0 ∀i, and
λi

d > 0 ∀i, not all necessarily equal). That is, it can be
modeled as an asymmetric AZSOP polling system operated
according to the exhaustive regime and composed of N
queues, with 1–slot switchover time and with service time
of (k + 1)/2 slots for a k–slot data packet. Accordingly, a
relatively good approximation of the waiting times in each
downlink queue can be computed by solving O(N3) equations
as described in [12, Section 3.6].

2158 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

B. Gated and Limited Algorithms

Symmetric piconets with only downlink traffic that are
operated according to the gated and limited algorithms can be
modeled as AZSOP polling systems similarly to the modeling
of the exhaustive algorithm. By applying the models for
discrete-time gated and 1–limited polling systems described in
[26] and using the methodology described in [12], we obtain
the mean waiting times for the two schemes. It turns out
that all 3 mean waiting times, for the exhaustive, gated, and
limited, are equal and given by (8).

C. Comparison

The fact that in a symmetric piconet with only downlink
traffic, the mean waiting time is the same for all algorithms is
expected. Such a result was obtained in [12] for a symmetric
discrete-time polling system with fixed service times and zero
switchover times. Similarly, it is well known [12],[26] that
the mean waiting time in symmetric continuous time polling
systems with zero switchover time is equal to the mean waiting
time in an M/G/1 system with the combined inputs of all
queues, regardless of the polling regime (exhaustive, gated, or
1–limited). Yet, it is interesting to compare the results obtained
for systems with only downlink traffic (i.e. (8)) to the results
for systems with only uplink traffic (i.e. (5), (6), and (7)). It
can be seen that

W
Lim
d = W

G
d = W

Ex
d = W

Ex
u − N − 1

1 − Nλ(L + 1)
, (9)

where it has been shown in Section V that

W
Ex
u = W

Lim
u = W

G
u − 2Nλ(L + 1)

1 − Nλ(L + 1)
. (10)

Moreover, for the special case in which the traffic is composed
of only 1–slot packets (i.e. p1 = 1), there is a significant dif-
ference between the values in only downlink and only uplink
piconets. Namely, W

Lim
u = W

Ex
u = NW

Lim
d = NW

Ex
d =

NW
G
d . The difference between the waiting times results from

the fact that in a system with only downlink traffic the master
has complete information regarding the queues. Therefore, in
such a system there is no need to waste POLL and NULL
packets on communicating with slaves having empty queues.

The above results can be useful for developing topology
construction algorithms for piconets and for scatternets (see
[28] for a review of these algorithms), that are able to utilize
information regarding the traffic statistics. When the traffic is
mostly unidirectional, allowing the node that generates most
of the traffic to be the master would significantly decrease the
delay.

VII. UPLINK AND DOWNLINK TRAFFIC

In section IV we discussed the case in which the traffic
on the links is bidirectional. In this section we briefly discuss
the case in which the traffic on each link is either downlink
or uplink traffic. In such a case the system can be analyzed
using a combination of the methods described above. We will
demonstrate the analysis of such a system operated according
to the exhaustive algorithm. The gated and limited algorithms
can be analyzed in a similar manner.

The piconet operates as follows. The master serves the
queues in a fixed cyclic order. When serving an uplink traffic
link, it sends POLL packets and receives data packets until
the service is terminated by a POLL-NULL exchange. When
serving a downlink traffic link, data packets are sent and
NULL packets are received as long as the queue is not empty.
If a downlink queue is empty, the master immediately switches
to the next non-empty downlink queue or to the next uplink
queue (i.e. no time is spent on an empty downlink queue).

This system can be modeled as an exhaustive polling
system, where the service time of a k-slot data packet is
defined as k + 1 slots (composed of the data packet and
the following POLL or NULL packet). The switchover times
between different queue types are as follows:

• Uplink queues – two slots which are composed of the
NULL packet ending the exchange and the POLL packet
starting the next exchange.

• Downlink queues – zero slots.
• An uplink queue and a downlink queue – a single slot

which is the NULL packet ending the exchange with the
uplink queue.

• A downlink queue and an uplink queue – a single slot
which is the POLL packet starting the exchange with the
uplink queue.

Since the system consists of at least one uplink queue, not
all the switchover times are zero. Therefore, results can be
obtained by any of the methods for analyzing asymmetric
exhaustive polling systems (see Section V-A).

VIII. NUMERICAL RESULTS

Approximate results regarding the performance of various
intra and inter-piconet scheduling algorithms have been pre-
sented in [16],[20],[21], and [23]. For example, the analysis
of the limited and the exhaustive algorithms in [20] is based
on modeling the piconet as an M/G/1 queue with vacations.
In addition, the analysis of the exhaustive algorithm in [20]
is based on the derivation of the PGF of the time to exhaust
a single master-slave queue pair. The results obtained in [20]
are approximate, since the analysis does not fully take into
account the complexities discussed in Section IV-B and since
the application of results from the M/G/1 queue with vacations
model to the piconet system neglects statistical dependencies
that exist in the piconet operation model (for more details see
[29] and [30]). In this section we compare our exact numerical
results to numerical results computed according to [20] and
[21]. We note that in [18] the approximate results of [16] have
already been compared to our exact results.

The model presented in Section III is a specific case of
the piconet model presented in [20]. Thus, Fig. 8, compares
the mean waiting time computed according to the analysis of
the limited regime in [20] to the mean waiting time computed
according to our model (i.e. according to (3)) when all packets
are 5 slots long. The waiting time (in slots) is depicted as
a function of the load in the bidirectional limited system
(2NλL) in symmetric piconets with 2 and 4 slaves. Similarly,
Fig. 9, compares the mean waiting time computed according to
the analysis of the exhaustive regime in [20] when λi

d = 0 ∀i
to the mean waiting time computed according to our analysis

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2159

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Load

W
ai

tin
g

T
im

e
(s

lo
ts

)

[20] N=2
eq. (3) N=2
[20] N=4
eq. (3) N=4

Fig. 8. The mean waiting time derived according to [20] and the exact mean
waiting time (computed according to (3)) in symmetric piconets operated
according to the limited algorithm in which all packets are 5 slots long (p5 =
1).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Load

W
at

in
g

T
im

e
(s

lo
ts

)

[20] p
1
 =1

eq. (5) p
1
 =1

[20] p
1
 = p

3
 = p

5
 = 1/3

eq. (5) p
1
 = p

3
 = p

5
 = 1/3

[20] p
5
 = 1

eq. (5) p
5
 = 1

Fig. 9. The mean waiting time derived according to [20] and the exact
mean waiting time (derived according to (5)) in symmetric piconets with only
uplink traffic, composed of 2 slaves, and operated according to the exhaustive
algorithm.

(i.e. according to (5)). The figure presents the waiting time
as a function of the load in the uplink exhaustive system
(Nλ(L + 1)) in symmetric piconets with 2 slaves.

In [21] the intra-piconet exhaustive scheduling algorithm
is analyzed in a somewhat different methodology than the
analysis described in [20]. In Fig. 10 we compare the exact
mean waiting time to the mean waiting time computed ac-
cording to [21], in symmetric piconets with only uplink traffic
(λi

u = λ, λi
d = 0 ∀i) in which the probabilities of 1, 3, and

5–slot packets are equal.
It is seen that in all cases shown, the results presented in

[20] underestimate the mean waiting time while those in [21]
either underestimate or overestimate the mean waiting time.
Thus, we conjecture that for complicated scenarios, deriving
approximate results, which are based on the relationship
between Bluetooth piconets and polling systems, will yield
significantly better approximations than those that are based
on M/G/1 queue with vacations.

IX. CONCLUSIONS

This work reveals overlooked connections between Blue-
tooth piconets and polling systems. These connections enable

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Load

W
ai

tin
g

T
im

e
(s

lo
ts

)

eq. (5) N=1
[21] N=1
eq. (5) N=2
[21] N=2
eq. (5) N=4
[21] N=4
eq. (5) N=7
[21] N=7

Fig. 10. The mean waiting time derived according to [21] and the exact
mean waiting time (derived according to (5)) in symmetric piconets with
only uplink traffic, operated according to the exhaustive algorithm, in which
p1 = p3 = p5 = 1/3.

us to obtain exact analytical results regarding the performance
of Bluetooth scheduling algorithms. The obtained results are
summarized in Table I. First, we have analyzed piconets with
bidirectional traffic. We have shown that a piconet operated
according to the limited scheduling algorithm is equivalent to a
1–limited polling system, and derived exact analytic results for
symmetric systems. The complications in analyzing the gated
scheduling algorithm in piconets with bidirectional traffic have
been described, indicating that the corresponding analysis of
the exhaustive regime is even more complex.

Then, we have analyzed piconets with unidirectional uplink
traffic. We obtained exact results for the symmetric limited,
gated, and exhaustive regimes, and showed that exact re-
sults can also be obtained for asymmetric piconets operated
according to the gated and exhaustive algorithms. We have
shown that in symmetric piconets with only uplink traffic,
the mean waiting times are the same for the limited and
exhaustive algorithms. In order to facilitate the explanation of
this phenomenon, we have defined per-packet polling systems
and generalized the results for these systems.

Furthermore, we have shown that a piconet with unidi-
rectional downlink traffic is equivalent to a polling system
with zero-switchover times. The mean waiting times in such
a piconet can be significantly lower than in piconets with only
uplink traffic. We also discussed piconets in which the traffic
on the links is either unidirectional uplink or unidirectional
downlink. Finally, we compared numerical results to approx-
imate results derived in the past.

The presented analysis can be extended in various directions
(e.g. batch arrivals, asymmetric arrival processes, retransmis-
sions) by applying various results regarding the performance
of polling systems (e.g. the extensions in [17] and [18] to
our preliminary results regarding the limited algorithm [30]).
In addition, a similar approach can be used to analyze the
performance of other centrally controlled wireless networks
[5].

The exact results presented in this paper can be utilized
in order to validate and evaluate simulation models and ap-
proximate analytic models. They also provide a few important
insights regarding the design and performance of Bluetooth

2160 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 6, JUNE 2007

TABLE I

THE TYPE OF ARRIVAL PROCESS (SYMMETRIC OR ASYMMETRIC) FOR WHICH EXACT RESULTS CAN BE OBTAINED UNDER DIFFERENT TRAFFIC PATTERNS

AND SCHEDULING ALGORITHMS (THE CASES IN WHICH GOOD APPROXIMATE RESULTS CAN BE OBTAINED ARE ALSO INDICATED).

bidirectional Unidirectional Unidirectional Unidirectional
Uplink Downlink Downlink or Uplink

Exhaustive — asymmetric symmetric (exact) and asymmetric (approximate) asymmetric

Gated — asymmetric symmetric (exact) and asymmetric (approximate) asymmetric

Limited symmetric symmetric symmetric symmetric

piconets and scatternets. For example, since the mean waiting
times are equal for the exhaustive and limited algorithms,
it seems that when the traffic is mostly unidirectional and
symmetric, the limited algorithm, which provides some degree
of fairness, is preferable. Moreover, topology construction
algorithms, that have some information regarding the traffic
statistics, can exploit the observation that when the traffic is
mostly unidirectional, allowing the node that generates most
of the traffic to be the master would significantly decrease the
delay. Finally, the effect of the packet length distribution on
the waiting time has been revealed.

Due to the inherent complexities in analyzing the gated and
exhaustive algorithms operating in a piconet, a future research
direction is to obtain a good (at least approximate) analysis of
such regimes. In addition, this work raises interesting ques-
tions regarding the performance of State-Dependent polling
systems in which setup time is required in empty queues.
Finally, it has been shown that due to the TDD mechanism,
algorithms that tend to optimize the performance of polling
systems are not necessarily optimal for piconets and for per-
packet polling systems. Therefore, a future research direction
is the development of scheduling algorithms that will optimize
the performance of the latter systems.

ACKNOWLEDGMENTS

This research was supported by a Marie Curie International
Fellowship within the 6th European Community Framework
Programme, by a grant from the Ministry of Science, Israel,
and by the Israel Science Foundation (Grant No. 148/03).

We thank Daniele Miorandi and Hanoch Levy for helpful
discussions and comments. We thank the reviewers for helpful
comments. The term per-packet polling system was suggested
by an anonymous reviewer.

REFERENCES

[1] E. Altman, H. Blanc, A. Khamisy, and U. Yechiali, “Gated-type polling
systems with walking and switch-in times,” Stoch. Models, vol. 10, pp.
741-763, 1994.

[2] S. Baatz, M. Frank, C. Kühl, P. Martini, and C. Scholz, “Bluetooth
scatternets: an enhanced adaptive scheduling scheme,” in Proc. IEEE
INFOCOM’02.

[3] D. P. Bertsekas and R. Gallager, Data Networks. Prentice-Hall Inc.,
1992.

[4] Bluetooth Special Interest Group, “Specification of the Bluetooth Sys-
tem – Version 2.0,” Nov. 2004.

[5] E. Biton, D. Sade, D. Shklarsky, M. Zussman, and G. Zussman,
“Challenge: CeTV and Ca-Fi - cellular and Wi-Fi over CATV,” in Proc.
ACM MOBICOM’05.

[6] A. Capone, M. Gerla, and R. Kapoor, “Efficient polling schemes for
Bluetooth picocells,” in Proc. IEEE ICC’01.

[7] R. B. Cooper, S.-C. Niu, and M. M. Srinivasan, “Setups in polling
models: does it make sense to set up if no work is waiting?” J. Appl.
Prob., vol. 36, pp. 585-592, 1999.

[8] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhancing
performance of asynchronous data traffic over the Bluetooth wireless
ad-hoc network,” in Proc. IEEE INFOCOM’01.

[9] R. Esmailzadeh, M. Nakagawa, and A. Jones, “TDD-CDMA for the
4th generation of wireless communications,” IEEE Wireless Commun.,
vol. 10, pp. 8–15, Aug. 2003.

[10] L. Har-Shai, R. Kofman, A. Segall, and G. Zussman, “Load adaptive
inter-piconet scheduling in small-scale Bluetooth scatternets,” IEEE
Commun. Mag., vol. 42, pp. 136–142, July 2004.

[11] R. Kapoor, A. Zanella, and M. Gerla, “A fair and traffic dependent
scheduling algorithm for Bluetooth scatternets,” ACM/Kluwer MONET,
vol. 9, pp. 9–20, Feb. 2004.

[12] H. Levy and L. Kleinrock, “Polling systems with zero switch-over
periods: a general method for analyzing the expected delay,” Perf. Eval.,
vol. 13, pp. 97–107, Oct. 1991.

[13] H. Levy and M. Sidi, “Polling systems: applications, modeling and
optimization,” IEEE Trans. Commun., vol. 38, pp. 1750-1760, Oct. 1990.

[14] H. Levy and M. Sidi, “Polling systems with simultaneous arrivals,” IEEE
Trans. Commun., vol. 39, pp. 823–827, June 1991.

[15] H. Levy, M. Sidi, and O. Boxma, “Dominance relations in polling
systems,” QUESTA, vol. 6, pp. 155–171, Apr. 1990.

[16] D. Miorandi, C. Caimi, and A. Zanella, “Performance characterization
of a Bluetooth piconet with multi-slot packets,” in Proc. WiOpt’03.

[17] D. Miorandi and A. Zanella, “Achievable rate regions for Bluetooth
piconets in fading channels,” in Proc. IEEE VTC’04 Spring.

[18] D. Miorandi, A. Zanella, and S. Merlin, “Mathematical analysis of the
packet delay statistics in Bluetooth piconets under round robin polling
regime,” Med. J. on Comp. Netw., vol. 2, pp. 48-55, Jan. 2006.

[19] D. Miorandi, A. Zanella, and G. L. Pierobon, “Performance evaluation
of Bluetooth polling schemes: an analytical approach,” ACM/Kluwer
MONET, vol. 9, pp. 63–72, Feb. 2004.

[20] J. Misic and V. B. Misic. “Modeling Bluetooth piconet performance,”
IEEE Commun. Lett., vol. 7, pp. 18-20, Jan. 2003.

[21] J. Misic and V. B. Misic, “Bridges of Bluetooth county: topologies,
scheduling, and performance,” IEEE J. Sel. Areas Commun., vol. 21,
pp. 240–258, Feb. 2003.

[22] J. Misic and V. B. Misic, Performance Modeling and Analysis of
Bluetooth Networks: Polling, Scheduling, and Traffic Control. Auerbach
Publications, 2006.

[23] V. B. Misic and J. Misic, “Performance of Bluetooth slave/slave bridge,”
Telecommun. Syst., vol. 22, pp. 221–239, Jan.–Apr. 2003.

[24] S. Sarkar, F. Anjum, and R. Jain, “Throughput optimal packet size
selection (TOPS) for Bluetooth networks,” in Proc. ITC-18, Sept. 2003.

[25] M. M. Srinivasan and M. P. Singh, “An efficient exact procedure for
the analysis of the state-dependent polling model,” IIE Trans., vol. 38,
pp. 153–158, Feb. 2006.

[26] H. Takagi, Analysis of Polling Systems. MIT Press, 1986.
[27] H. Takagi, “Queueing analysis of polling models: progress in 1990-

1994,” in Frontiers in Queueing (ed.: J. H. Dshalalow). CRC Press,
pp. 119–146, 1997.

[28] R. M. Whitaker, L. Hodge, and I. Chlamtac, “Bluetooth scatternet
formation: a survey,” Ad Hoc Networks, vol. 3, pp. 403-450, July 2005.

[29] G. Zussman, A. Segall, and U. Yechiali, “Bluetooth time di-
vision duplex–exact analysis as a polling system,” CCIT re-
port no. 414, Dept. of Electrical Engineering, Technion. Available
at http://www.comnet.technion.ac.il/˜gilz/pub files/ccit 414.pdf, Feb.
2003.

[30] G. Zussman, U. Yechiali, and A. Segall, “Exact probabilistic analysis
of the limited scheduling algorithm for symmetric Bluetooth piconets,”
in Proc. IFIP-TC6 PWC’03, LNCS vol. 2775 (eds.: M. Conti et al.),
pp. 276–290, Springer, Sept. 2003.

[31] G. Zussman, A. Segall, and U. Yechiali, “Bluetooth time division
duplex–analysis as a polling system,” in Proc. IEEE SECON’04,
pp. 547–556.

ZUSSMAN et al.: ON THE ANALYSIS OF THE BLUETOOTH TIME DIVISION DUPLEX MECHANISM 2161

Gil Zussman received the B.Sc. degree in Industrial
Engineering and Management and the B.A. degree
in Economics (both summa cum laude) from the
Technion - Israel Institute of Technology in 1995.
He received the M.Sc. degree (summa cum laude)
in Operations Research from Tel-Aviv University in
1999 and the Ph.D. degree in Electrical Engineering
from the Technion - Israel Institute of Technology
in 2004. Between 1995 and 1998, he served as an
engineer in the Israel Defense Forces. Since 2004 he
has been a Postdoctoral Associate in the Laboratory

for Information and Decision Systems and in the Communications and
Networking Research Group at MIT. His current research interests are in
the area of computer networks. In particular, he is interested in the design
and performance evaluation of protocols for wireless networks.

Dr. Zussman has been a member of the Technical Program Committees
of the WiOpt’06-07, IEEE INFOCOM’07, ACM Mobihoc’07, and ACM
Mobicom’07 conferences. He received the Knesset (Israeli Parliament) Award
for distinguished students, the Marie Curie Outgoing International Fellowship,
and the Fulbright Fellowship. He is also a recipient of the Best Student Paper
Award at the IFIP Networking 2002 conference, the IEEE Communications
Magazine Best Paper Award at the OPNETWORK 2002 conference, and the
Best Paper Award at the ACM SIGMETRICS’06 conference.

Adrian Segall received the B.Sc. and M.Sc. degrees
in Electrical Engineering from the Technion, Israel
Institute of Technology in 1965 and 1971, respec-
tively, and the Ph.D. degree in Electrical Engineering
with a minor in Statistics from Stanford University
in 1973. After serving active duty in the Israel
Defense Forces, he joined in 1968 the Scientific
Department of Israel’s Ministry of Defense. From
1973 to 1974 he was a Research Engineer at System
Control Inc., Palo Alto, CA and a Lecturer at
Stanford University. From 1974 to 1976 he was

an Assistant Professor of Electrical Engineering and Computer Science at
the Massachusetts Institute of Technology. From 1987 to 1998 he was
on the faculty of the Department of Computer Science at the Technion.
He is presently Benjamin Professor of Computer-Communication Networks
in the Department of Electrical Engineering, Technion, Israel Institute of
Technology. From 1982 to 1984 he was on leave with the IBM T.J.Watson
Research Center, Yorktown Heights, NY. He held visiting positions with IBM,
AT&T and Lucent Bell Labs. His current research interests are in the area of
optical networks, wireless, sensor and ad-hoc networks.

Dr. Segall is an IEEE Fellow and has served in the past as Editor for Com-
puter Communication Theory of the IEEE Transactions on Communications,
Editor for the IEEE Information Theory Society Newsletter, and Senior Editor
for the IEEE Journal on Selected Areas in Communications. He was selected
as an IEEE delegate to the 1975 IEEE-USSR Information Theory Workshop,
and is the recipient of the 1981 Miriam and Ray Klein Award for Outstanding
Research and of the 1990 Taub Award in Computer Science.

Uri Yechiali received his Ph.D. in Operations Re-
search from Columbia University, New York, in
1969, and was appointed an Assistant Professor at
NYU. He joined the Department of Statistics and
Operation Research of Tel Aviv University as a Se-
nior Lecturer in 1971 and promoted to Full Professor
in 1981. Over the years he has held visiting positions
in New York and Columbia Universities, INRIA
(France) and EURANDOM (The Netherlands). Pro-
fessor Yechiali serves on the editorial boards of
three international scientific journals and has given

numerous invited lectures at scientific meetings on various topics, mainly in
the areas of Queueing Theory, Performance Evaluation of Communication
Networks, and Reliability. During his academic career he has supervised 38
M.Sc. (with thesis) and 9 Ph.D. students, most of whom now hold prestigious
positions in leading academic institutions. Prof. Yechiali served as a consultant
to AT&T Bell Labs and to various Israeli companies and government
ministries, including BEZEQ and the Ministry of Defense, on problems related
to Teletraffic Analysis, Reliability issues, Statistics and Optimization. He has
published close to 100 research papers, mostly in the areas of Queueing
Theory, Performance Evaluation, Reliability and Operations Research, and
received various grants for joint research projects with European institutes.
Professor Yechiali served as the President of TIMS Israeli Chapter during
1976-1981 and as the President of ORSIS (Operations Research Society of
Israel) during 1983-1985. He held the position of Chairman of the Department
of Statistics and Operations Research in the School of Mathematical Sciences
of Tel Aviv University during 1981-1983 and during 1996-1999. In 2004
he received the ORSIS LIFE ACHIEVEMENT AWARD for his excellent
scientific achievements and broad activities in Operations Research.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

