
Columbia University, EE Technical Report #2011-12-15, December 2011

Non-cooperative Spectrum Access –

The Dedicated vs. Free Spectrum Choice
Krishna Jagannathan, Ishai Menache, Eytan Modiano, and Gil Zussman

Abstract

We consider a dynamic spectrum access system in which Secondary Users (SUs) choose to either

acquire dedicated spectrum or to use spectrum-holes (white spaces) which belong to Primary Users

(PUs). The trade-off incorporated in this decision is between immediate yet costly transmission and

free but delayed transmission (a consequence of both the possible appearance of PUs and sharing the

spectrum holes with multiple SUs). We first consider a system with a single PU band, in which the

SU decisions are fixed. Employing queueing-theoretic methods, we obtain explicit expressions for the

expected delays associated with using the PU band. Based on that, we then consider self-interested

SUs and study the interaction between them as a non-cooperative game. We prove the existence and

uniqueness of a symmetric Nash equilibrium, and characterize the equilibrium behavior explicitly. Using

our equilibrium results, we show how to maximize revenue from renting dedicated bands to SUs and

briefly discuss the extension of our model to multiple PUs. Finally, since spectrum sensing can be

resource–consuming, we characterize the gains provided by this capability.

I. INTRODUCTION

This paper focuses on theoretical problems stemming from the decision process of users that

can either participate in a Cognitive Radio Network (also known as Dynamic Spectrum Access

Network) as Secondary Users or pay for temporary usage of a dedicated band. A Cognitive

Radio (CR) was first defined by Mitola [2] as a radio that can adapt its transmitter parameters

to the environment in which it operates. It is based on the concept of Software Defined Radio
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Fig. 1. An example illustrating Secondary Users (SUs) utilizing white spaces (also known as spectrum holes) that are not used
by Primary Users (PUs).

(SDR) [3] that can alter parameters such as frequency band, transmission power, and modulation

scheme through changes in software. According to the Federal Communications Commission

(FCC), a large portion of the assigned spectrum is used only sporadically [4], [5]. Due to their

adaptability and capability to utilize the wireless spectrum opportunistically, CRs are key enablers

to efficient use of the spectrum. Hence, their potential has been recently identified by various

policy [4], [6], research [7], standardization [8], [9], and commercial organizations.

Under the basic model of CR networks [10], Secondary Users (SUs) can use white spaces

that are not used by the Primary Users (PUs) but must avoid interfering with active PUs (e.g.,

Fig. 1).1 For example, the PUs and SUs can be viewed as public safety and commercial users,

respectively, where the SUs must vacate the channel at very short notice. Another example is

of PUs being TV broadcasters and SUs being commercial cellular operators using available TV

bands [8]. Networks operating according to this model have distinct characteristics that pose

numerous challenging theoretical and practical problems, of which many remain to be solved,

despite extensive recent research (for a comprehensive review of previous work see [11], [12]).

Our work is motivated by a recent FCC ruling [6] that allows CR devices (SUs) to operate in

TV bands white spaces. In addition to spectrum-sensing capability, these devices may include

a geolocation capability and provisions to access a database that contains the PUs (e.g., TV

stations) expected channel use. Given the geolocation capability, spectrum sensing is required in

order to avoid interference to PU devices that are not registered in the database. The FCC will

also certify CR devices that do not include the geolocation and database access capabilities, and

rely solely on sensing.

The operation model described in [6] introduces a new set of theoretical problems at the

1PUs and SUs are also referred to as Licensed and Opportunistic Users, respectively.
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Fig. 2. An illustration of the decision process of the SUs and the arrival process of the PUs.

intersection of queueing theory, game theory, and control theory. In particular, we are interested

in noncooperative SUs that have a spectrum sensing capability and can sense the PU band (e.g.,

Wireless Internet Service Providers - WISPs). These SUs can rent a licensed dedicated band, for

a certain cost (we refer to such band as a dedicated band). Alternatively, they can use a band that

is originally allocated to a PU (we refer to it as a PU band), for free. We assume that the SUs are

service providers (i.e., they serve many users) that aggregate several connections/calls/packets

to jobs that can be served over each of these band types. We do not focus on specific packets

sent by specific users but rather on jobs that may be composed of several packets.

We study the decision process of the SUs which is illustrated in Fig. 2. An SU that has a job

to serve can choose to use either one of the PU bands, or a dedicated band. When an SU selects

a PU band, the band can be reclaimed by a PU and it is also shared with other SUs that selected

the same band. Hence, the decision process of the SUs is affected by the tradeoff between the

cost of acquiring a dedicated band and using a free PU band, which is prone to delays.

Our first step towards understanding the SU decision process is to consider a system with a

single PU band. For such a system, we first study the delay performance when the SU decisions

are fixed. To that end, we develop a queueing model based on a server with breakdowns [13]–

[15], where the PU band is the server and the return of the PU is modeled as a breakdown. We

assume that upon selection of the PU band, the SU joins a queue of SUs waiting to use that

band. This corresponds to a server with breakdowns model in which the arrival rates depend on

the server’s status. To the best of our knowledge, this particular queuing model has not been

rigorously considered in past literature.
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We note that since managing a queue requires centralized control (which may not be feasible

in a real system), a queue will most likely be replaced by a distributed MAC protocol (e.g.,

IEEE 802.22 [8]). In our analysis, we use the queue to represent the congestion effect incurred

when a few SUs wish to use the same PU band.2 We note that a number of recent works in

the area of cognitive radio used “virtual” queues as a plausible model to capture SU congestion

effects [19]–[21].

Based on the queueing analysis for fixed SU policies, we then study the SU decision process

in a system with a single PU band. We prove the existence and uniqueness of a symmetric Nash

equilibrium and fully characterize the equilibrium behavior for the SU decision strategies. Next,

we apply our Nash equilibrium analysis to show how to maximize the revenue from renting

dedicated bands to SUs that prefer not to use the PU band. Such information may be used by

a spectrum broker that provides dedicated bands for short periods of time.

A system with SUs and PUs was modeled in [19] using the priority queueing model. While for

a single PU band the two models are somewhat similar, we find the server-breakdown queueing

model more natural and more appropriate for the multi-band case. In particular, the system can

be modeled so that each PU band is a server prone to breakdowns (i.e., return of the PU) and

there are queues (or a single queue) of SUs that can be served by any of the available PU bands.

On the other hand, under the classical priority queueing model, there is a single queue of high

priority users (PUs) and each of them can be served by any of the servers (PU bands). This

does not comply with the operation model in which each PU has a dedicated band. Based on

this observation, we can extend the model to the case with multiple PU bands. We also point

out that the band pricing analysis extends to some special multi-band cases.

Finally, we study the effect of the spectrum sensing capability of the SUs, on their average

total cost (namely, the delay cost plus monetary cost). It is of theoretical interest to understand

the gain provided by spectrum sensing, since using this functionality (especially across multiple

bands) requires some additional resources. We show that in some cases removing the sensing

capabilities increases the SUs’ cost and in other cases it has no effect. Hence, the Braess’ paradox

[22] of classical game theory, wherein the addition of resources to a system can actually worsen

2Since we are primarily interested in gaining insight into the SU band selection dynamics and for the sake of exposition, we
do not focus on the contention for a channel (contention between similar users has been extensively studied [16]–[18]).
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the overall system performance, does not occur in our system. However, there are cases in which

the addition of a resource (sensing capability) does not improve the individual cost.

Unlike most of the previous work in the area of dynamic spectrum access, we utilize methods

developed for decision making and the corresponding equilibrium analysis in queueing systems

(see Haviv and Hassin [23] for a survey). Within that discipline, the novelty of the paper is in

the analysis of the unobservable queue case and in examining the consequences of the dedicated

band prices on the (non-cooperative) behavior of SUs and (for more details, see Section II).

For tractability, we assume that the inter-arrival times and the service times are exponentially

distributed. Relaxing some of these assumptions is a subject for future work.

To conclude, the main contribution of this paper is twofold. First, we develop a novel approach

for the analysis of a dynamic spectrum access system. It combines the tools of game theory and

queueing theory to provide insights into the SUs decision process as well as the spectrum

pricing mechanisms used by the spectrum broker. Second, motivated by dynamic spectrum

access systems, we provide novel results for the queueing theoretical problem of a server with

breakdowns in which the arrival rates depend on the server’s status.

This paper is organized as follows. In Section II we discuss related work and in Section III we

present the model. We study the equilibrium of the SUs interactions in Section IV. In Section

V we consider the problem of pricing the dedicated spectrum and briefly discuss the extension

to the multi-band case. Finally, we examine in Section VI whether the SUs benefit from their

sensing abilities. We conclude and discuss future research directions in Section VII.

II. RELATED WORK

The extensive previous work in the area of CR as well as Cognitive Radio Network architec-

tures, key enabling technologies, and recent developments have been summarized in a number

of special issues and review papers (e.g., [11], [12]). In this section, we briefly review previous

work which is most closely related to our model.

A practical MAC protocol (IEEE 802.22) that takes the CR characteristics into account has

been studied in [24]. [25]–[28] used techniques from the area of Partially Observable Markov

Decision Processes (POMDP) to model the behavior of PUs and SUs. Based on these techniques,

decentralized protocols have been proposed. In [29], probabilistic methods have been used to

evaluate the performance of PUs and SUs under different operation models. In [19]–[21], systems
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with SUs and PUs were modeled using priority queueing techniques. As mentioned above, we

find the server-breakdown model more appropriate for modeling such a system.

Several papers used game theoretical notions to compare the cooperative and non-cooperative

behavior of spectrum sensing and sharing [30]–[35]. In particular, [33] proposes a scheme in

which users exchange “price” signals, that indicate the negative effect of interference at the

receivers, [32], [34] deal with cases in which operators compete for customers, [35] studies a

dynamic spectrum leasing paradigm, and [30] proposes a distributed approach, where devices

negotiate local channel assignments aiming for a global optimum.

Unlike most of the previous work, we utilize methods developed for decision making in

queueing systems [23]. Following [36], [37], extensive effort has been dedicated in the past

decades to studying the effect of pricing on equilibrium performance. Our contribution is in

analyzing the effect of the dedicated band pricing on the (non-cooperative) behavior of SUs.

Recently, [38], [39] studied the decision process of customers who may join a server that can

go on vacation. Under that model, the server stops serving customers for some (stochastically

distributed) period, whenever it becomes idle. Our model, which corresponds to a server with

breakdowns, is significantly different as the “server” (band) may stop serving customers (SUs)

even when there are customers (SUs) waiting. In [40] decisions for the server with breakdowns

model under the observable queue case (i.e., customers observe the queue size when making

a decision) were studied. We, on the other hand, study the unobservable case which better

approximates a distributed MAC employed by the SUs.

III. THE MODEL

A. Preliminaries

We start by defining the model for a system with a single Primary User band and multiple

Secondary Users that may wish to share that band. Our baseline model consists of a single PU

who owns a spectrum band of some fixed bandwidth. The use of the PU band by the PU occurs

intermittently, in the form of sojourns. We assume that the PU sojourn times (i.e., the amount

of time that the PU uses its band at a stretch) are random and exponentially distributed with

mean 1/η. Moreover, the amount of time that elapses between the end of a sojourn, and the

commencement of the next sojourn is also exponential with parameter ξ, and is independent of

the sojourn times.
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The SUs arrive to the network according to a Poisson process with rate λ. Each SU requires

service for a random amount of time (exponential with parameter µ) in order to complete service.

These SU ‘job sizes’ are assumed to be independent of the SU arrivals, and of the PU sojourns.

Upon arrival, each SU has to make a spectrum decision. That is, it has to decide between

acquiring a dedicated band for a price, and using the PU band for free. If an SU chooses to

acquire a dedicated band, it pays a fixed price C̃.3 For simplicity, we assume that the dedicated

band and the PU band have the same bandwidth. Hence, the SU’s service times are exponential

with parameter µ in either case. If an SU chooses to use the PU band, it joins a virtual queue

of SUs who have chosen to use the PU band. This queue is used in order to model the delay

incurred when a few SUs wish to use the same PU band.4

The SUs can sense the PU band and learn whether the PU is present.5 Yet, the SU does not

know how many other SUs are presently attempting to use the PU band, and must make its

decision only on the basis of statistical information. This models the case in which SUs try to

ditributedly access a channel (e.g., by a MAC protocol) and are not centrally managed.

The average cost incurred by a secondary user consists of two components: (i) the price of

the dedicated band C̃, and (ii) an average delay cost. Let α be the delay cost per unit time (i.e.,

α represents the delay vs. monetary cost tradeoff of the SUs). The expected cost when acquiring

dedicated spectrum is thus given by

JB = C̃ +
α

µ
= C. (1)

We will refer to C̃ as the dedicated band price, and to C as the total dedicated band cost.

The expected cost of using the PU band consists purely of a delay cost. Specifically, it is given

by α times the expected delay faced by the SU. This expected delay depends on the presence

or absence of the PU, as discussed in the next section.

B. SU Strategies

Since the SUs can sense the presence or absence of the PU, they can compute the expected

delay cost conditioned on their sensing outcome. In particular, SUs which sense the PU to be

3We assume that there is no lack of dedicated bands, so that a user who is willing pay for a dedicated band can get it.
4In a real system, the contention for a channel may be realized by a distributed MAC protocol rather than by a queue.
5We assume that SUs can distinguish between a PU and an SU using, for example, the packet header or activity pattern.
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present see a different conditional delay, and can therefore adopt a different strategy from those

which sense the PU to be absent. In this work, we consider strategies that are described by a

pair of fractions (p, q), where p is the probability that an SU decides to use the PU band, given

that the PU is absent (thus, with probability 1− p it acquires dedicated spectrum), and q is the

probability that an SU decides to use the PU band, given that the PU is present (thus, with

probability 1− q it acquires dedicated spectrum).

C. Nash Equilibrium

The classic notion of a Nash equilibrium stands for an operating point (a collection of

strategies) where no user can improve its cost by unilaterally deviating from its current strategy.

We wish to characterize the equilibrium points for the simple class of strategies outlined above.

For a strategy (p, q), let TA(p, q) denote the conditional delay experienced by an SU that

arrives when the PU band is available and TO(p, q) be the conditional delay experienced by an

SU that arrives when the PU band is occupied.6 The corresponding delay costs are given by

JA(p, q) = αTA(p, q), and JO(p, q) = αTO(p, q).

In this paper, we will restrict attention to symmetric Nash equilibria, as a common solution

approach in the research of equilibrium behavior in queuing systems [23]. While asymmetric

equilibria may exist, their study remains beyond the scope of the present paper. It can be easily

seen that a pair (p, q) is a (symmetric) Nash equilibrium, if and only if one relation from each

of (2) and (3) holds.

(i)JA(p, q) ≤ C, & p = 1; (ii)JA(p, q) = C, & 0 < p < 1; (iii)JA(p, q) ≥ C, & p = 0 (2)

(i)JO(p, q) ≤ C,& q = 1; (ii)JO(p, q) = C, & 0 < q < 1; (iii)JO(p, q) ≥ C, & q = 0. (3)

To avoid a trivial solution, we make the following assumption throughout the paper.

Assumption 1: The total dedicated band cost satisfies the following inequalities: JA(0, 0) < C,

and JO(1, 1) > C.

Above, JA(0, 0) should be interpreted as the delay cost incurred, if a specific SU were to join

the cognitive queue when the PU is absent, given that no other SU chooses to join the queue.

6TA and TO depend on both p and q, since these delays are a function of the previous SU arrivals that have occurred.
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Fig. 3. Queue occupancy Markov process.

IV. EQUILIBRIUM ANALYSIS

We now analytically characterize equilibrium behavior of the SUs. As a building block, we

obtain in Section IV-A the conditional delay expressions TA and TO for a given strategy (p, q).

Using the delay analysis, we provide several basic properties of the equilibrium in Section IV-B.

These are then used in Section IV-C to fully characterize the equilibrium behavior.

A. Conditional Delays

We develop explicit formulas for the conditional delays TA and TO for given values of the

probabilities p and q. We view the arrival of a PU as a server breakdown. That is, when a

PU arrival occurs, the SU being served at that time is preempted, and service resumes after an

exponentially distributed interval of mean duration 1/η. Since the service time distribution of

the SUs is memoryless, the remaining service time of a preempted SU is still exponential with

parameter µ. While delay analysis of exponential servers under breakdown has been studied

extensively [13]–[15], our analysis is significantly more involved because the instantaneous

arrival rate of SUs to the queue is a function of the presence or absence of the PU.

Fig. 3 depicts the Markov process corresponding to the system evolution. In the chain, the

state i0 denotes the absence of a PU, and the presence of i SUs, where i = 0, 1, . . . , and i1

denotes the presence of a PU and i SUs. Note that the arrival process of SUs is Poisson of rate

pλ when the PU is present, and Poisson of rate qλ when the PU is not present. This follows

from the splitting property of Poisson processes. Further, SUs get served at rate µ when the PU

is not present, and do not get served when the PU is present.
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The steady state probability of a PU being absent can be easily shown to be η/(η + ξ). The

Markov process is positive recurrent if the average arrival rate is less than the average service

rate, i.e., (pηλ+ qξλ)/(η+ ξ) < µη/(η+ ξ). For simplicity, we assume that the system is stable

for all values of p and q, which implies λ < µη/(η + ξ). Under the above conditions, we next

obtain explicit formulas for TA and TO, which will be used for the equilibrium characterization.

Theorem 1: Let p and q be the probabilities of an SU committing to take the PU band, in

case that the PU band is available and in case that it is occupied, respectively. The respective

conditional delays are given by

TA(p, q) =
η + ξ

µη − ηpλ− qλξ

(
1 +

q2λ2ξ

µη2

)
(4)

and

TO(p, q) =
η + ξ + µ− (p− q)λ− pqλ2(η+ξ)

µη

µη − ηpλ− qλξ
. (5)

Proof: The proof follows through the following three steps. We first obtain the steady-state

probabilities for the Markov chain and then derive the conditional occupancy of SUs. Next, we

compute the average time spent at the ‘head of line’ of the queue by an SU. We combine the

above two steps by invoking an ‘Arrivals See Time Averages’ property in order to obtain the

required expressions.

Step 1: Steady-State Probabilities and conditional occupancy.

Let us first balance the rate of increase in the total number of SUs, with the rate of decrease.

This gives

pi+1,0µ = pλpi,0 + qλpi,1, i ≥ 0 (6)

Summing the above equation over all i ≥ 0, and noting the relations
∑

i≥0 pi,0 = η
η+ξ and

∑
i≥0 pi,0 =

ξ
η+ξ , we obtain

p0,0 =
η

η + ξ
(1− λ

µ
(p+ q

ξ

η
)).

Next, the following balance equations for the steady-state probabilities can be deduced from Fig.

3.

p0,1 =
ξ

η + qλ
p0,0
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p1,0 = p01
qλ

µ
+ p0,0

pλ

µ

pi,0(pλ+ µ+ ξ) = pi−1,0pλ+ pi+1,0pµ+ pi,1η, i ≥ 1 (7)

pi,1(qλ+ η) = pi−1,1qλ+ pi,0ξ, i ≥ 1 (8)

Since p0,0, p1,0 and p0,1 are now known, we can in principle recursively obtain all the steady state

probabilities using (7) and (8). However, in order to obtain closed form formulas, we treat (7,8)

as a system of linear coupled difference equations. We can eliminate pm,1 using the coupled

difference equations7 to yield a homogeneous third order difference equation as shown in (9)

for m ≥ 2.

pi+1,0µ(qλ+η)−pi0((pλ+µ+ξ)(qλ+η)+µqλ−ηξ)+pi−1,0(2pqλ
2+pλη+qλµ+ξqλ)−pi−2,0pqλ

2 = 0

(9)

Standard methods exist to solve such difference equations. In particular, pm,0 can be shown to

have the form

pm,0 = Aβm
+ +Bβm

− + Cβm
1 ,

where β+, β−, β1 are zeros of the characteristic polynomial corresponding to the difference

equation in (9). The characteristic polynomial is given by

x3µ(qλ+ η)− x2((pλ+ µ+ ξ)(qλ+ η) + µqλ− ηξ) + x(2pqλ2 + pλη + qλµ+ ξqλ)− pqλ2.

β1 = 1 is clearly a zero of the polynomial. The other two roots are given by

β± =
a±∆

2b
(10)

where ∆ =
√
a2 − 4bpλ, a = pλ+ η p

q + ξ + µ, and b = µ(qλ+η)
qλ . Then, pm,0 is given

pm,0 = (C+β
m−1
+ + C−β

m−1
− )p1,0, m ≥ 1. (11)

We can solve for C+ and C− by noting that C+ + C− = 1, and
∑∞

m=0 pm,0 =
η

η+ξ . This yields

7Write equation (7) with m− 1 replacing m, and call it (12a). Now subtract qλ times (12a) from qλ+ η times (7), and use
(8) to eliminate pm,1.



12

C+ =
b

∆

(
β+ − pqλ

pη + pqλ+ qξ

)
,

and

C− =
b

∆

(
pqλ

pη + pqλ+ qξ
− β−

)
.

Next, pm,1 can be solved for from (8) by substituting for pi,0 which are now known. This

yields (12).

pm,1 =
ξ

qλ+ η

(
qλ

qλ+ η

)m

p00 + p10

{
ξC−

β−(qλ+ η)− qλ

[
βm
− −

(
qλ

qλ+ η

)m]
+

ξC+

β+(qλ+ η)− qλ

[
βm
+ −

(
qλ

qλ+ η

)m]}
. (12)

Next, let us denote by NA (NO) the average SU occupancy when the PU is absent (present).

Thus,

NA =

(
1 +

ξ

η

) ∞∑

m=1

mpm0, (13)

NO =

(
1 +

η

ξ

) ∞∑

m=1

mpm1. (14)

Since the steady state probabilities in (13) and (14) are known, we can obtain NA and NO in

closed form, as shown in (15) and (16).

NA =

(
1 +

ξ

η

)
p10

[
C+

(1− β+)2
+

C−

(1− β−)2

]
, (15)

NO =

(
1 +

η

ξ

)(
p00ξ

qλ

η2
+

p10ξC−

(β−(qλ+ η)− qλ)

[
β−

(1− β−)2
− qλ

qλ+ η

η2

]
+

p10ξC+

(β+(qλ+ η)− qλ)

[
β+

(1− β+)2
− qλ

qλ+ η

η2

])
; (16)

Step 2: Head-of-line delay. Let τHoL denote the average time spent at the head of line of the

queue by an SU. This time has two components: the time for service, which is exponential with

mean 1/µ, plus the time for which the server is broken down (because of a PU arrival). Once
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an SU enters service, it completes service before being preempted by a PU with probability

µ/(µ+ ξ). If it is preempted by a PU, it stays at the head-of-line for a mean duration of 1/η,

after which the service is resumed. Since the distribution of the SU service time is memoryless,

the following recursion is straightforward:

τHoL =






1
µ+ξ w.p. µ

µ+ξ

1
µ+ξ +

1
η + τHoL w.p. ξ

µ+ξ

Thus, we get

τHoL =
1

µ

(
1 +

ξ

η

)
. (17)

Step 3: Conditional delays seen upon arrival.Let N̂O and N̂A respectively denote the average

queue occupancy seen by an SU, upon arriving to an occupied or available queue, respectively.

Since each packet spends an average duration of τHoL at the head-of-line, we have the following

relations for the conditional delays TA and TO:

TA = (1 + N̂A)τHoL (18)

TO =
1

η
+ (1 + N̂O)τHoL (19)

We comment that the average occupancy seen by an arriving SU need not, in general, equal

the time average occupancy seen by an external observer. However, we argue in the appendix that

the ‘Arrivals See Time Averages’ (ASTA) property holds, once we condition on the presence

or absence of the PU. Thus, NA = N̂A and NO = N̂O. As a result, the expressions for the

conditional delays read

TA = (1 +NA)τHoL, (20)

TO =
1

η
+ (1 +NO)τHoL, (21)

where NA, NO and τHoL are given in (15), (16), and (17) respectively. Substituting and simpli-

fying gives (4) and (5). !

As expected, the average delay experienced by an SU that arrives when the server is occupied

is strictly greater than that experienced by an SU that arrives when the server is available.
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Proposition 2: For any p, q we have TO(p, q) > TA(p, q).

Proof: From (20) and (21), the result would follow, if NO ≥ NA. Since the event of a PU

arrival is a memoryless event, it is clear that the average occupancy just before a PU arrival is

equal to NA. Thus, the average SU occupancy just after the PU arrival is also NA. Since the

SUs get no service after the PU arrival, the average SU occupancy when the PU is present (NO)

cannot be smaller than the occupancy just after the PU arrival. Thus, NO ≥ NA. !

B. Basic Equilibrium Properties

We prove in this subsection that the Nash equilibrium point exists and is unique. Along the

way, we describe additional properties of the equilibrium. We start by stating that an equilibrium

point always exists.

Proposition 3: There always exists a Nash equilibrium.

Proof: Let us consider three possible cost ranges, and show the existence of equilibrium in each

case: Case (i) JA(1, 0) ≤ C, J0(1, 0) ≥ C. Noting (2)–(3), (p, q) = (1, 0) is a Nash equilibrium

for this case. Case (ii) JA(1, 0) > C. Recall that JA(0, 0) < C by assumption. Then by continuity

of the delay function, it follows that there exists p < 1 such that JA(p, 0) = C (intermediate-

value theorem); furthermore, JO(p, 0) > C by Proposition 2. In view of (2)–(3), the last two

assertions immediately imply that (p, 0) is a Nash equilibrium. Case (iii) JO(1, 0) < C. Recall

that JO(1, 1) > C by assumption. Then by continuity of the delay function, it follows that there

exists q < 1 such that JO(1, q) = C; furthermore, JA(1, q) < C by Proposition 2. In view of

(2)–(3), the last two assertions immediately imply that (1, q) is a Nash equilibrium. Thus, there

always exists an equilibrium point. !

We next provide a basic characterization of the range of equilibrium probabilities.

Proposition 4: Suppose that the pair (p, q) is a Nash equilibrium. Then, (i) 0 < p < 1 =⇒

q = 0. (ii) 0 < q < 1 =⇒ p = 1.

Proof: Using (2), we see that the condition 0 < p < 1 implies C = JA(p, q). Next, proposition

2 implies JO(p, q) > JA(p, q) = C. Finally, using (3), we conclude that q = 0. Part (ii) also

follows along similar lines. !

Note that the above proposition, together with Assumption 1, imply that p > q in any

equilibrium, as might have been expected. By using this proposition, we can now establish

the uniqueness of the equilibrium point.
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Proposition 5: The Nash equilibrium point is unique.

Proof: The proofs follows from the following auxiliary lemma.

Lemma 1: Let (p1, q1) and (p2, q2) be two distinct Nash equilibria. Then, (i) p1 > p2 =⇒

q1 ≥ q2. (ii) q1 > q2 =⇒ p1 ≥ p2.

Proof: (i) Assume to get a contradiction that q2 > q1, hence, q2 > 0. If q2 = 1 then p2 = 1,

which cannot be an equilibrium by Assumption 1; otherwise, 0 < q2 < 1, which by Proposition

4(ii) suggests that p2 = 1, a contradiction. (ii) Assume by contradiction that p1 < p2, hence

p1 < 1. If p1 = 0 then q1 = 0, which cannot be an equilibrium by Assumption 1; otherwise,

0 < p1 < 1, which by Proposition 4(i) suggests that q1 = 0, a contradiction. !

It follows by the above lemma that if there exist two different equilibria (p1, q1), (p2, q2), then

(without loss of generality) (a) p1 > p2, q1 ≥ q2 or/and (b) p1 ≥ p2, q1 > q2. We can show that

both (a) and (b) lead to a contradiction. Indeed, (a) implies that C ≥ JA(p1, q1) > JA(p2, q2) ≥ C,

(where the first and third inequality follow from (2), and the second since the congestion in

equilibrium 1 is strictly higher than in equilibrium two), which is a contradiction. Similarly,

assuming (b), we obtain the following contradicting inequality C ≥ JO(p1, q1) > JO(p2, q2) ≥ C.

We conclude that we cannot have multiple equilibria, hence the Nash equilibrium is unique. !

C. Characterization of the Nash Equilibrium

Next, we characterize the equilibrium behavior of the SUs for a given cost C. Proposition 4,

together with assumption 1 implies that a Nash equilibrium pair (p, q) can only have one of the

following three forms: (a) (1, q), 0 < q < 1 (b) (1, 0), and (c) (p, 0), 0 < p < 1. In the following

theorem, we identify three ranges of the total dedicated band cost for which the above three

forms of equilibria are observed, and explicitly obtain the equilibrium probabilities as a function

of C.

Theorem 6: The equilibrium probabilities p and q can be characterized as a function of the

cost C as follows:

(i) If JO(1, 0) < C < JO(1, 1), the Nash equilibrium pair is (1, q(C)), where

q(C) =
µη
(
(ηC

α − 1)(µ− λ)− (η + ξ)
)

λ(Cα ηµξ + ηµ− λ(η + ξ))
, (22)

In words, a fraction q(C) of the users who arrive to find the free spectrum occupied, still join
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the queue, while all the users who find the free spectrum available, join the free spectrum.

(ii) If JA(1, 0) ≤ C ≤ JO(1, 0), the equilibrium pair is (1,0). That is, all SUs take the PU band

if available, and no SU takes the PU band if it is occupied.

(iii) If JA(0, 0) < C < JA(1, 0), the equilibrium pair is (p(C), 0), with

p(C) =
µ

λ
− α

1 + ξ
η

Cλ
(23)

In this case, a fraction p(C) of the users who find the server available join the free spectrum,

while all the users who arrive to find the server occupied acquire dedicated spectrum.

Proof: If C satisfies case (ii), we see that the equilibrium conditions (2,3) are satisfied with

p = 1 and q = 0. Next suppose that C satisfies case (i). Consider the function JO(1, q), q ∈ (0, 1)

which, as we might expect, is continuous and increasing in q. As a result, there exists a unique

0 < q(C) < 1 such that JO(1, q) = C. Indeed, this equation can be explicitly inverted to yield

q(C) in (22). Thus, the equilibrium condition (3) is satisfied with equality. Further, since q < 1,

proposition (4) implies p = 1, and it follows that (1, q(C) is an equilibrium pair. Case (iii)

follows along similar lines. !

Using the relation between C and C̃, (1), we can also obtain the equilibrium probabilities

in terms of the band price C̃. With some notation abuse, (1) and (22) together yield q(C̃) =

(KC̃ −L)/(AC̃ +B), with K = µη2(µ−λ)/α, L = µη(µ−λ+ ξ+λη/µ), A = λξηµ/α, and

B = ληξ + µλη− λ2(η+ ξ). Similarly, from (1) and (23), p(C̃) = µ
λ −α 1+ξ/η

(C̃+α/µ)λ
. Fig. 4 shows

a plot of the probabilities p and q as a function of the band price C̃ for a particular system.

V. REVENUE MAXIMIZING PRICING

Since the SU strategy depends on the cost of a dedicated band, a service provider may wish to

price the dedicated bands so as to maximize its revenue. We make here the assumption that the

dedicated spectrum is owned by a single provider (a monopoly), who may unilaterally adjust the

price C̃. The natural tradeoff the monopoly faces is between obtaining more revenue per customer

and attracting more customers to the dedicated spectrum by reducing the price per customer. In

Section V-A we provide full characterization of the single-band revenue maximizing price. In

Section V-B we discuss the extension of the analysis to the case where the monopolist owns

multiple bands.
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Fig. 4. Probability of committing to the PU band, as a function of the band price. The system parameters are µ = 10, λ =
7, η = 10, ξ = 2, and α = 4.

A. The Single-Band Case

Fig. 5 depicts the (equilibrium) total revenue as a function of the price C̃ for a given game

instance. Note that the obtained function is neither concave nor convex, which might indicate that

the optimal price can be solved for only numerically. However, we show below that the optimal

price can be obtained very efficiently, requiring the revenue comparison under a maximum of

only four alternatives, each of which given in a closed-form formula. This appealing result is

formalized in the next theorem.

Theorem 7: For any given set of system parameters, consider the following four band prices:

C̃∗
1 = 1

A

√
B(KB+AL)

K−A − B
A , (where K = µη2(µ−λ)/α, L = µη(µ−λ+ ξ+λη/µ), A = λξηµ/α

and B = ληξ + µλη − λ2(η + ξ)); C̃∗
2 = JO(1, 0) − α/µ; C̃∗

3 = α
√

η+ξ
µ(µη−λ(η+ξ)) − α/µ; and

C̃∗
4 = αξ/(µη). Define C̃∗

2 and C̃∗
4 to be candidate prices. Further, C̃∗

1 is a candidate price if

JO(1, 0) < C̃∗
1+α/µ < JO(1, 1), and C̃∗

3 is a candidate price if JA(0, 0) < C̃∗
3 +α/µ < JA(1, 0).

Then, the globally optimal pricing policy is an index policy, which compares the revenues

generated under each of the candidate prices, of which there are at most four.

The proof follows by separately considering each of the three cost subregions given in Theorem

6, as summarized in the next three lemmas.

Lemma 2: In the price range JO(1, 0) < C̃ + α/µ < JO(1, 1), the band price that maximizes

the average revenue earned from the dedicated spectrum is given by C̃∗
1 = 1

A

√
B(KB+AL)

K−A − B
A , as
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long as C̃∗
1 lies in the above range. If C̃∗

1 does not lie in the range of interest, then the revenue

generated is monotonically decreasing in the band price, and the optimal band price will be

given by the next proposition.

Proof: In this case, a fraction 1− q(C̃) of the users acquire dedicated spectrum when the PU

is present, while no SU acquires dedicated spectrum if the PU is absent. The average number of

customers who acquire spectrum in a unit time is thus equal to (1−q(C̃))λξ/(ξ+η). Since each

customer pays a monetary cost8 C̃, the rate of revenue generation is C̃(1 − q(C̃))λξ/(ξ + η).

Using basic Calculus, we can show that the rate of revenue generation is concave in C̃. The

stationary point of the concave function, which is given by C̃∗
1 , would be the optimal value for

this range of band price, if it lies in the said range. If not, it can be shown that the revenue rate

is monotone decreasing in the band price, and Lemma 3 would take over. !

Lemma 3: In the price range JA(1, 0) ≤ C̃ + α/µ ≤ JO(1, 0), the band price that maximizes

the average revenue earned is given by C̃∗
2 = JO(1, 0) − α/µ. In other words, it is optimal to

price the spectrum at the highest value that leads to the equilibrium pair (1,0).

Proof: In this case, all the users who sense an available server take the PU band while the users

who sense an occupied server acquire dedicated spectrum. Thus, it is clearly advantageous in

terms of revenue to choose the highest band price allowed, which is equal to JO(1, 0). !

Finally, we consider the optimal pricing corresponding to case (iii) of Theorem 6.

Lemma 4: In the cost range JA(0, 0) ≤ C̃ + α/µ < JA(1, 0), the pricing that maximizes the

average revenue earned from the dedicated spectrum is given by C̃∗
3 = α

√
η+ξ

µ(µη−λ(η+ξ)) − α/µ,

as long as C̃∗
3 lies in the said range. If not, the optimum band price is C̃∗

4 = JA(0, 0)− α/µ =

αξ/(µη).

Proof: In this range, the rate of revenue generation is given by C̃λ
(
1− ηp(C̃/(η + ξ))

)
,

which is easily shown to be concave in C̃. The rest of the proof is akin to Lemma 2. !

Once the local optimum prices are determined according to the above lemmas, we can find

the globally optimum price, by comparing the revenues under each locally optimum band price.

This concludes the proof of Theorem 7. !

Returning to the example in Fig. 5, we see that the global optimum band price for the given

game-instance is C̃∗
3 = 0.16.

8Since we are interested in the revenue generated, the delay cost α/µ is not considered.
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Fig. 5. An example of the revenue generated as a function of the band-price C̃ when the system parameters are µ = 10, λ =
4, η = 10, ξ = 1, and α = 4.
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Fig. 6. An example of the revenue as a function of the band-price C̃ for 3 PU bands (N = 3). The system parameters are:
µi = µ = 10,αi = α = 4, λ1 = 7, η1 = 10, ξ1 = 1,λ2 = 5, η2 = 10, ξ2 = 1,λ3 = 5, η3 = 6, and ξ3 = 1.

B. Multiple Primary-User Bands

In this section, we consider the problem of choosing between free and dedicated spectrum,

where several PU bands are available. Let N be the number of PUs in the system, each owning a

different band. We denote by ξi and ηi the sojourn parameters of the PU in the ith PU band. We

assume that each SU can sense only a small number of PU bands before making its spectrum

decision. The spectrum decision is (as before) between committing to one of the sensed PU

bands, based on the conditional delay estimates, or acquiring dedicated spectrum for a fixed
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unified price C̃.9

The study of the above model in its full generality (i.e., each SU may sense some subset of

the available PU bands) naturally becomes an extremely difficult problem, even if one settles for

numeric solutions. However, once additional assumptions are made, it may be possible to solve

for the equilibrium point (and related aspects), either explicitly or numerically. We consider in

this section a specific tractable scenario, and conclude by briefly mentioning an additional model

which is subject of on-going investigation.

We consider next a simplified case of limited-sensing abilities, where each SU can sense only

a single PU band before making its spectrum decision. This case is formally modeled as having

an heterogenous SU population of N types, where all SUs of the ith type sense the ith PU band

(i = 1, . . . , N). The arrival rate of each type i is denoted λi, and it is assumed that all i-type SUs

have the same service-time distribution (exponential with mean 1/µi, regardless whether they

commit to their sensed band or acquire dedicated spectrum) and the same delay cost coefficient

αi.

A Nash equilibrium for the above defined system is characterized by {(pi, qi)}Ni=1, where pi is

the probability that type i SUs commit to the ith band and qi is the probability that they acquire

dedicated spectrum. It can be easily seen that for a given price C̃, the equilibrium analysis

decouples and can be solved separately for each PU band, by using the analysis of the preceding

sections. Specifically, the conditional delays for each PU band can be derived using Theorem 1,

with η, ξ, and λ replaced by ηi, ξi, and λi. Then, the equilibrium probabilities (pi, qi) can be

obtained from Theorem 6.

The challenging issue which we next consider is how to set the optimal (revenue-maximizing)

price C̃. Once the equilibrium probabilities are known for each i, the total revenue obtained

from dedicated spectrum sales can be computed using the expression

R(C̃) =
N∑

i=1

λC̃
(1− pi)ηi + (1− qi)ξi

ηi + ξi
.

Fig. 7 depicts the total revenue R(C̃) as a function of the price C̃ for a specific problem instance

with three PU bands. The system parameters in this instance are: µi = µ = 10,αi = α = 4,λ1 =

9We assume that the SUs are risk-adversary, in the sense that they will not commit to a PU band which they have not sensed
(and most likely are not aware of the statistical properties thereof).
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Fig. 7. Revenue as a function of the band-price C̃ for N = 3 PU bands

7, η1 = 10, ξ1 = 1,λ2 = 5, η2 = 10, ξ2 = 1,λ3 = 5, η3 = 6, and ξ3 = 1. The optimal price is

seen to be C̃∗ = 0.88 monetary units. The equilibrium probabilities corresponding equilibrium

probabilities are given by (0.893, 0), (1, 0), and (1, 0) respectively. The figure demonstrates

that even for a relatively small N, there are numerous price ranges to be considered, and the

analytical optimization of band price is very cumbersome due to the intricate structure of the

curve. Nonetheless, as the associated optimization problem is over a scalar variable C̃, one

can always numerically solve for the optimal price in an efficient way, using standard search

techniques (see, e.g., [41]).

We conclude this section by briefly mentioning an additional relevant model of a system with

multiple PU bands. Assume that the number of PU bands N is relatively small and that each SU

can sense all bands prior to its decision. Without further assumptions, we need an exponential

number of probabilities to describe an equilibrium point, since there are 2N possible subsets of

PU bands that could be available at any time. It turns out that the state-space of this problem

can be simplified significantly under some symmetry assumptions.

Suppose that the parameters of the PU sojourns, ξ and η, are are equal in all the bands. This

assumption lends a certain symmetry to the problem. For instance the SU’s decision to acquire

dedicated spectrum only on how many PU bands are unoccupied and any instant, and not on

which specific bands are occupied. Further, because of the symmetry, the conditional delay seen

upon taking an occupied PU band is greater than the delay encountered at an available PU

band. This implies that SUs never commit to an occupied PU band when at least one PU band
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Fig. 8. Queue occupancy Markov process for N = 2 PU bands

is available. When k out of N PU bands are available, suppose that a fraction pk of the SUs

commit to the free spectrum, and the rest acquire dedicated spectrum. Further, suppose that the

SU that takes the free spectrum commits to one of the available PU bands with equal probability.

Under these assumptions, we can reduce the state-space of the SU occupancy to O(N). This

leads to a Markov chain with N + 1 parallel-branches for the conditional-delay expressions,

which can be simulated for obtaining steady state probabilities. These can in turn be used to

study the equilibrium behavior. The case N = 2, albeit cumbersome, can be dealt with in closed

form, along the lines of [14]. We note that for N > 2, there does not seem to be an analytic

method for obtaining the equilibrium point. Specifically, the SU occupancy at any given PU

band can be described in term of a Markov chain, which has N + 1 parallel branches, where

the kth branch corresponds to k − 1 PUs being present, k = 1, . . . , N + 1. Fig. 8 shows such a

Markov chain for N = 2 PU bands.

VI. THE EFFECT OF SENSING ON THE SU COST

In this section, we study the hypothetical case in which SUs do not have the ability to sense

the presence of PUs. In such a case, the SUs decide to use the free band or buy dedicated

spectrum based on statistical information alone. We compare the average total cost incurred by

an SU in this case, to the original scenario where SUs have sensing abilities. We remark that

this “no-sensing” case undermines an essential feature of cognitive radios, where the SUs are

not allowed to transmit when the PU is active. Nevertheless, since spectrum sensing can be
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resource–consuming (especially across multiple bands), it is of theoretical interest to understand

the gains provided by possessing this ability.

We start by characterizing the equilibrium behavior when the SUs do not have the ability to

sense the PU’s channel. Under this scenario, the SUs make a decision to use the PU band or to

acquire dedicated spectrum, based only on the unconditional average delay experienced at the

PU band. Let us first characterize this average delay under the β strategy (i.e., the strategy where

each SU independently chooses to use the PU’s band with probability β). First, we note that β is a

Nash equilibrium strategy iff one of the following three relations hold: (i)JNS(β) ≤ C, & β = 1;

(ii)JNS(β) = C, & 0 < β < 1; (iii)JNS(β) ≥ C, & β = 0. The average delay characterization

is the following.

Proposition 8: The expected delay experienced by a SU at the PU band under the β strategy

is given by

TNS(β) =
(ξ + η)2 + µξ

(ξ + η)[η(µ− βλ)− βλξ]
. (24)

Proof: The proof is based on a Markov-Chain analysis where we model the PU’s band as a server

with breakdowns, and the arrival of a PU corresponds to a server breakdown that interrupts the

service of the SU. When the PU departs, service to the SU resumes. The proof follows from

the delay results in [13] on exponential servers with breakdowns. !

Once the average delay is known, the delay cost is given by JNS(β) = αTNS(β). We are now

ready to ready to obtain the equilibrium point as a function of the total dedicated band cost C.
Theorem 9: The fraction of SUs that commit to the PU band at equilibrium is given as a

function of the cost C by

β(C) =






0 C < JNS(0)

µη
λ(η+ξ) −

α
Cλ

(
1 + µξ

(ξ+η)2

)
JNS(0) < C < JNS(1)

1 JNS(1) < C

(25)

Proof: For C < JNS(0) and C > JNS(1), the result follows directly from the equilibrium

conditions. For JNS(0) < C < JNS(1), the expression for β(C) follows by inverting the equation

C = αTNS(β) and using the expression in (24) for the delay TNS(β). !

It is easy to show that the above equilibrium point is unique for a given C.

We now compare two scenarios: either all the SUs sense the channel before making their

decision (the scenario considered in Section IV) or none of them is able to do so. In view of the
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non-cooperative user behavior, our main objective is to examine whether the sensing capabilities

improve the SUs’ overall performance. It is not immediately clear if the average costs incurred

by the SUs increase or decrease when sensing is possible. Indeed, in classical game-theory, it

is well-known that the addition of system “resources” (radios capable of sensing in our case)

sometimes increases the overall equilibrium cost. The celebrated Braess’ paradox is a classic

example [22], where the addition of a path might increase the congestion cost in a simple

transportation network. As we prove below, a Braess-like paradox does not occur for the single

PU band system. Nonetheless, depending on the problem parameters, having sensing capabilities

can lead to the same average cost as in the case where sensing is disabled. Specifically, we show

that for a certain range of dedicated spectrum cost, there is a strict advantage for the SUs in

possessing the sensing ability, while for another range of spectrum cost, there is nothing to be

gained (or lost) from sensing.

Let VS(C) and VNS(C) denote the total average cost paid by an SU, when the SUs are either

equipped or not equipped with sensing. Our main result is the following.

Theorem 10: (i) If C > JA(1, 0) then VNS(C) > VS(C). That is, for this range of band

price, there is a strict advantage for the SUs in being able to sense the presence of a PU.

(ii) If C < JA(1, 0) then VNS(C) = VS(C). That is, sensing ability does not lead to a cost

advantage, but neither to a disadvantage.

Proof: The proof follows by first obtaining explicit expressions for VS(C) (Lemma 5 below)

and VNS(C) (Lemma 6 below), which are straightforward to show.

Lemma 5: If the SUs posses the ability to sense the presence of a PU, the average cost per

unit time paid by the SUs is given by

VS(C) =






λ ξC+ηJA(1,q(C))
η+ξ JO(1, 0) < C < JO(1, 1)

λ ξC+ηJA(1,0)
η+ξ JA(1, 0) < C < JO(1, 0)

λC JA(0, 0) < C < JA(1, 0)

Proof: Follows along the same lines as Proposition 6, using the equilibrium characterization

in Theorem 6. !

Lemma 6: If the SUs lack the ability to sense the presence of a PU, the average cost per unit
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time paid by the SUs is given by

VNS(C) =





λJNS(1) JNS(1) < C < JO(1, 1)

λC JA(0, 0) < C < JNS(1)

Proof: If JNS(1) < C < JO(1, 1), then all the SUs take the PU band, and each of them pays

a delay cost JNS(1). On the other hand, if JA(0, 0) < C < JNS(1), the SUs are either divided

between two equally costly options, or they all take the dedicated spectrum. It easily follows

that the cost paid in either case is C per user. !

We are now ready to prove the theorem. Part (ii) follows immediately from Lemmas 5 and

6. Let us prove part (i) by dividing up the cost range. First consider JNS(1) < C < JO(1, 1).

Using Lemmas 5 and 6, we have

VNS(C) = JNS(1) =
ηJA(1, 1) + ξJO(1, 1)

η + ξ
>

ηJA(1, q(C)) + ξJO(1, q(C))

η + ξ
= VS(C),

where the last equality follows from JO(1, q(C)) = C. Second, for the range JO(1, 0) < C <

JNS(1), we have VNS(C) = λC = ηλC+ξλC
η+ξ > ηλJA(1,q(C))+ξλC

η+ξ = VS(C). Finally, for the range

JA(1, 0) < C < JO(1, 1), VNS(C) = λC = ηλC+ξλC
η+ξ > ηλJA(1,0)+ξλC

η+ξ = VS(C). !

Note that according to the theorem, there is never a strict cost disadvantage in possessing

the ability to sense, and hence there is no Braess’-like paradox. Yet, while there is a strict cost

improvement for the range C > JA(1, 0), there is no improvement for the range C < JA(1, 0).

VII. CONCLUDING REMARKS

In this paper, we considered the decision-making process of Secondary Users who have the

option of either acquiring dedicated spectrum or sharing free yet unreliable bands. We fully

characterized the resulting Nash equilibrium for the single-band case. We also demonstrated

how the equilibrium analysis can be exploited from the viewpoint of a monopoly who owns

dedicated spectrum and wishes to maximize revenue. Furthermore, we examined the effect of

the spectrum sensing ability on the resulting equilibrium.

Overall, this paper uses a novel paradigm to provide a first step towards a theoretical un-

derstanding of decision processes in dynamic spectrum access systems. Our study integrates

tools and ideas from queuing theory, game theory, and network economics. There are still many

problems and extensions that can be dealt with. For example, we plan to extend the model to
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account for other distributions beside the exponential distribution. Moreover, in future work, we

plan to incorporate into the model additional costs associated with using free spectrum, e.g., the

energy-consumption cost related to spectrum sensing. Overhead costs associated with renting

dedicated spectrum can be considered as well, such as the cost of communication during the

rent agreement, and congestion effects when dedicated spectrum is not widely available. For

multiple PU bands, one may consider SUs with partial sensing abilities (e.g., may sense only a

subset of the bands) and their effect on the performance. It is also of interest to analyze scenarios

in which the dedicated spectrum is owned by multiple providers that compete over the spectrum

market share (e.g., the model of [34]).

In this paper, we have considered basic decision-making of SUs, who choose between dedi-

cated or free spectrum upon arrival. It is also of interest to examine more sophisticated decision

sets and user types, for example, impatient SUs who purchase a dedicated band whenever their

waiting time for free spectrum exceeds some threshold. This would naturally require extending

the user model, perhaps by building on call-center research (see, e.g., [42]). Finally, as indicated

in the IEEE 802.22 standard, white spaces can be allocated either by employing MAC protocols

or through a spectrum broker, which divides the available bandwidth between the SUs. Studying

the former model requires encapsulating the analysis of distributed MAC protocols within our

framework. For the latter model, we plan to consider the case in which the broker allocates the

spectrum band to the SUs and also announces the congestion levels for potential SUs.
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APPENDIX

On the correctness of the ASTA property. We argue that conditioned upon a PU being

absent (or present), an arriving SU sees time average occupancies, i.e., that it sees the same

conditional distribution as an external observer. In other words, we will show that N A = N̂A

and NO = N̂O. We argue along the same lines as in [43]. Let us first condition on the PU being

present. For some small δ > 0, let A(t, t + δ) denote the event that a SU arrives in the time

interval (t, t+δ). As shown in [43], the ASTA property would hold conditioned on the PU being
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present if the following condition is satisfied.

P{A(t, t+ δ)|NO(t) = n} = P{A(t, t+ δ)}. (26)

Now, conditioned on the PU being present, the arrival process is Poisson with rate qλ, and

therefore arrival event A(t, t + δ) is independent of how many packets there are in the system.

Thus, (26) holds under in this case. A similar argument would prove that ASTA also holds

conditioned on the PU being absent.

In order to illuminate the situation further, we show that ASTA does not hold for an un-

conditional arrival. Consider an arbitrary arrival into the queue. It is not known whether the

PU is present or not. Suppose for the sake of easy argument that pλ is very small, qλ, and

µ are very large, and that η = ξ and both are very small compared to µ. In such a case, we

can deduce from (11) and (12) that large queue occupancies are likely when the PU is present

and small occupancies are typical when the PU is absent. Therefore, the conditional probability

P{A(t, t + δ)|N(t) = n} is actually dependent on n. For example, conditioned on a very large

occupancy, it is more likely that the PU is present, so that the probability of an arrival is closer

to qλδ, whereas, the unconditional probability of arrival is given by

P{A(t, t+ δ)} = δ
pλη + qλξ

η + ξ
.

Thus, P{A(t, t+ δ)|N(t) = n} &= P{A(t, t+ δ)}, and ASTA does not hold for an unconditional

arrival.


