
Meta-SGD: Learning to Learn Quickly
for Few Shot Learning

Zhenguo Li Fengwei Zhou Fei Chen Hang Li
Huawei Noah’s Ark Lab

{li.zhenguo, zhou.fengwei, chenfei100, hangli.hl}@huawei.com

Abstract

Few-shot learning is challenging for learning algorithms that learn each task in
isolation and from scratch. In contrast, meta-learning learns from many related
tasks a meta-learner that can learn a new task more accurate and faster with fewer
examples, where the choice of meta-learners is crucial. In this paper, we develop
an SGD-like, easily trainable meta-learner, called Meta-SGD, that can initialize
and adapt any differentiable learner in just one step. Compared to the popular
meta-learner LSTM, Meta-SGD is conceptually simple, easy to implement, and
can be learned efficiently. Compared to the latest meta-learner MAML, Meta-SGD
has a much higher capacity in learning to learn not just the learner initialization,
but also the learner update direction and learning rate, all in a single meta-learning
process. Meta-SGD shows highly competitive performance for few-shot learning
on regression and classification.

1 Introduction

The ability to learn and adapt rapidly from small data is essential to intelligence. However, our current
success of deep learning relies heavily on huge amounts of labeled data. It learns each task in isolation
from scratch, by fitting a deep neural network over data through extensive, incremental model updates
using stochastic gradient descent (SGD). Such an approach is data-hungry and time-consuming, thus
confronting fundamental challenges for problems with only a limited amount of data or in situations
that need to fast adapt to a changing environment. In contrast, humans can learn quickly from a few
examples by leveraging previous experience. Such capacity in data efficiency and fast adaptation,
once realized in machine learning, will greatly expand its utility in practice. This motivates a lot of
studies under the name of few-shot learning that aims to learn from only a few examples, which asks
for new approaches to machine learning [16, 19, 20].

Several existing ideas may be adapted for few-shot learning. In transfer learning, one often fine-tunes
a pre-trained model using target data [22], where it is challenging not to unlearn the previously
acquired knowledge. In multi-task learning, the target task is trained jointly with auxiliary ones to
distill inductive bias about the target problem [4]. It needs to decide what to share in the joint model.
In semi-supervised learning, one augments target data with massive unlabeled data to leverage a
holistic distribution of the data [25]. Strong assumptions are required for this method to work. While
these methods can alleviate data scarcity to some extend, the way previous knowledge is used appears
to be ad hoc. A principled approach to leveraging previous knowledge is in need.

Meta-learning offers a new perspective to machine learning, by lifting the learning level from
data to tasks [3, 21, 23]. In meta-learning, a learner for a specific task is learned by a learning
algorithm called meta-learner, which is learned on a bunch of similar tasks to maximize the combined
generalization power of the learners of all tasks. The learning occurs at two levels and in different
time-scales. Gradual learning is performed across tasks, which learns a meta-learner to carry out rapid
learning within each task, whose feedback is used to adjust the learning strategy of the meta-learner.
Interestingly, the learning process can continue forever, thus enabling life-long learning, and at any

ar
X

iv
:1

70
7.

09
83

5v
1

 [
cs

.L
G

]
 3

1
Ju

l 2
01

7

Figure 1: Illustrating the two-level learning process of Meta-SGD. Gradual learning is performed
across tasks at the meta-space (θ,α) that learns the meta-learner. Rapid learning is carried out by the
meta-learner in the learner space θ that learns task-specific learners.

moment, the meta-learner can be applied to learn a learner for any new task. Such a two-tiered
learning to learn strategy for meta-learning has been applied successfully to few-shot learning on
classification [9, 18, 20, 24], regression [9, 20], and reinforcement learning [9, 17].

The key in meta-learning is in the design of meta-learners to be learned. A meta-learner is a trainable
learning algorithm that can train a learner, influence its behavior, or itself function as a learner.
Meta-learners developed so far include recurrent models [20], metrics [24], or optimizers [2, 9, 18].
A recurrent model such as Long Short-Term Memory (LSTM) [11] processes data sequentially and
figures out its own learning strategy from scratch in the course [20]. Such meta-learners are versatile
but less comprehensible, with applications in classification [20], regression [20], and reinforcement
learning [6]. A metric influences a learner by modifying distances between examples. Such meta-
learners are more suitable for non-parametric learners such as the k-nearest neighbors algorithm or
its variants [14, 24]. Meta-learners above do not learn an explicit learner, which is typically done
by an optimizer such as SGD. This suggests that optimizers, if trainable, can serve as meta-learners.
The meta-learner perspective of optimizers opens the possibility of learned optimizers, used to be
hand-designed.

Recently, it is shown that LSTM can be adapted to update models such as Convolutional Neural
Network (CNN) iteratively like SGD [2, 18], where both initialization and update strategy are learned
via meta-learning, thus called Meta-LSTM in what follows. This should be in contrast to SGD
where the initialization and learning rates are usually set empirically. While Meta-LSTM shows
promising results on few-shot learning [18] or as a generic optimizer [2], it is rather difficult to train,
which limits its practical value. Indeed, in Meta-LSTM, each parameter of the learner is updated
independently in each step. In this paper, we develop a new optimizer that is very easy to train. Our
proposed meta-learner acts like SGD, thus called Meta-SGD (Figure 1), but the initialization, update
direction, and learning rates are learned via meta-learning, like Meta-LSTM. Besides easier to train
than Meta-LSTM, Meta-SGD also learns much faster than Meta-LSTM and other meta-learners. It
can learn effectively from a few examples even in one step. Experimental results on regression and
classification show that Meta-SGD is highly competitive on few-show learning.

2 Related Work

Few-shot learning can be addressed with generative models [7, 8, 15]. One notable work is by Lake
et al. [16], which uses probabilistic programs to represent concepts of handwritten characters. It
exploits the specific knowledge of how pen strokes are composed to produce characters. This work
shows how knowledge of related concepts can ease learning of new concepts from even one example,
using learning to learn.

A more general approach to few-shot learning is by meta-learning, which trains a meta-learner from
many related tasks to direct the learning of a learner for a new task, without relying on ad hoc
knowledge about the problem. The appeal of meta-learning lies in its human-like learning process

2

and its huge potential in practice [23]. The key issue in meta-learning is in the development of high-
capacity but trainable meta-learners. Vinyals et al. [24] propose using metrics as meta-learners for
non-parametric learners such as k-nearest neighbor classifier or its variants. Importantly, it suggests
to match training and testing conditions in learning to learn, which works well for few-shot learning
and is widely adopted afterwards. Note that a metric does not really train a learner, but influences its
behavior by modifying pairwise distances between examples. As such, metric meta-learners mainly
work for non-parametric learners.

Early studies show that recurrent neural networks (RNN) can model adaptive optimization algo-
rithms [5, 26]. This suggests the potential of recurrent models as meta-learners. Interestingly,
Hochreiter et al. [12] found that LSTM performs best as meta-learner among various architectures
of RNNs. Andrychowicz et al. [2] formulate LSTM as a generic, SGD-like optimizer which shows
promising results compared to widely used hand-designed optimization algorithms. In [2], the LSTM
cell state is used to model the parameters of the learner (e.g., CNN), and the variation of the cell
state corresponds to model update (like gradient descent) of the learner. Ravi and Larochelle [18]
extend [2] for few-shot learning, where both initialization and update strategy are learned. However,
using LSTM as meta-learner to learn a learner such as CNN incurs prohibitively high complexity. In
practice, each parameter of the learner is updated independently in each step, which may significantly
limit its potential. Santoro et al. [20] adapts a memory-augmented LSTM [10] for few-shot learning,
where the learning strategy is figured out on its own as the LSTM rolls out. Finn et al. [9] use SGD
as meta-learner, where only initialization is learned. Despite its simplicity, it works well in practice.

3 Meta-SGD

3.1 Meta-Learner

How can a meta-learner Mφ initialize and adapt a learner fθ rapidly for a new task from a few
examples T = {(xi,yi)}? One standard way is to update the learner iteratively from random
initialization using gradient descent:

θt = θt−1−α∇LT (θt−1), (1)

where LT (θ) is the empirical loss LT (θ) = 1
|T |

∑
(x,y)∈T `(fθ(x),y) with some loss function `,

∇LT (θ) is the gradient of LT (θ), and α denotes the learning rate that is often set manually.

With only a few examples, it is non-trivial to decide how to initialize and when to stop the learning
process to avoid overfitting. While gradient may be a good direction for data fitting, it remains unclear
whether that leads to overfitting or better generalization under the low-shot regime. This also makes
it tricky to choose the learning rate. While many ideas may apply for regularization, it may remain
challenging to balance between the induced prior and the fitting of a few examples. What in need is a
principled approach to few-shot learning that allows to determine all learning factors in a way that
maximizes generalization power rather than data fitting. Another important aspect regards the speed
of learning: can we learn within a couple of iterations? Besides an interesting topic on its own [16],
this will enable many emerging applications such as self-driving cars and autonomous robots that
require to learn and react in a fast changing environment,

The idea of learning to learn appears to be promising for few-shot learning. Instead of hand-designing
a learning algorithm for the task of interest, it learns from many related tasks how to learn, which
may include how to initialize and update a learner, among others, by training a meta-learner to do
the learning. The key here is in developing a high-capacity yet trainable meta-learner. While other
meta-learners are possible, here we consider meta-learners in the form of optimizers, given their
generality and huge success in machine learning. Specifically, we aim to learn an optimizer for
few-shot learning.

There are three key ingredients to define an optimizer: initialization, update direction, and learning
rate. The initialization is often set randomly, the update direction often follows gradient or some
variant (e.g., conjugate gradient), and the learning rate is usually set to be small, or decayed over
iterations. While such rules of thumb work well with a huge amount of labeled data, they are unlikely
reliable for few-shot learning. In this paper, we present a meta-learning approach that automatically
determines all the ingredients of an optimizer in an end-to-end manner.

3

Meta-SGD

train(Ti) test(Ti)

{Ltest(Ti)(✓
0
i)}(✓,↵)

✓
↵

update (✓,↵)

✓0
i

batch 1

Meta-SGD

train(Ti) test(Ti)

{Ltest(Ti)(✓
0
i)}(✓,↵)

✓
↵

✓0
i

Meta-SGD

train(Ti) test(Ti)

{Ltest(Ti)(✓
0
i)}(✓,↵)

✓
↵

✓0
i

update (✓,↵)

batch 2 batch n

Figure 2: Meta-training process of Meta-SGD.

Mathematically, we propose the following meta-learner composed of an initialization term and an
adaptation term:

θ′ = θ −α ◦ ∇LT (θ), (2)

where θ and α are (meta-)parameters of the meta-learner to be learned, and ◦ denotes element-wise
product. Specifically, θ represents the state of a learner that can be used to initialize the learner for
any new task, and α is a vector of the same size as θ that decides both the update direction and
learning rate. The adaptation term α ◦ ∇LT (θ) is a vector whose direction represents the update
direction and whose length represents the learning rate. Since the direction of α ◦∇LT (θ) is usually
different from that of the gradient ∇LT (θ), it implies that the meta-learner does not follow the
gradient direction to update the learner, as does by SGD. Interestingly, given α, the adaptation is
indeed fully determined by the gradient, like SGD.

In summary, given a few examples T = {(xi,yi)} for a few-shot learning problem, our meta-
learner first initializes the learner with θ and then adapts it to θ′ in just one step, in a new direction
α ◦ ∇LT (θ) different from the gradient ∇LT (θ) and using a learning rate implicitly implemented
in α ◦ ∇LT (θ). As our meta-learner also relies on the gradient as in SGD but it is learned via
meta-learning rather than being hand-designed like SGD, we call it Meta-SGD.

3.2 Meta-training

In this section, we discuss how to train the meta-learner. We aim to train the meta-learner to perform
well on many related tasks. For this purpose, assume there is a distribution p(T) over the related task
space, from which we can randomly sample tasks. A task T consists of a set of training data denoted
as train(T) and a set of testing data denoted as test(T). The labels of the testing examples in the
testing set are also known. Our objective is to maximize the expected generalization power of the
meta-learner on the task space. Specifically, given a task T sampled from p(T), the meta-learner
learns the learner based on the training set train(T), but the generalization loss is measured on the
testing set test(T). Our goal is to train the meta-learner to minimize the expected generalization loss.

Mathematically, the learning of our meta-learner is formulated as the optimization problem as follows:

min
θ,α

ET ∼p(T)[Ltest(T)(θ
′)] = ET ∼p(T)[Ltest(T)(θ −α ◦ ∇Ltrain(T)(θ))]. (3)

It is easy to show that our objective function is differentiable with respect to both θ and α, which
allows to use SGD to solve the above optimization problem efficiently, as shown in Algorithm 1 and
illustrated in Figure 2.

3.3 Related Meta-Learners

Let us compare Meta-SGD with other meta-learners in the form of optimizer. MAML [9] uses
the original SGD as meta-learner, but the initialization is learned via meta-learning. In contrast,
Meta-SGD also learns the update direction and the learning rate, and may has a higher capacity.
Meta-LSTM [18] relies on LSTM to learn all initialization, update direction, and learning rate,
like Meta-SGD, but it incurs a much higher complexity than Meta-SGD. In practice, it learns each
parameter of the learner independently at each step, which may limit its potential.

4

Algorithm 1: Training Meta-SGD

Input: task distribution p(T), learning rate β
Output: θ,α
1: Initialize θ,α;
2: while not done do
3: Sample batch of tasks Ti ∼ p(T);
4: for all Ti do
5: Ltrain(Ti)(θ)←

1
|train(Ti)|

∑
(x,y)∈train(Ti)

`(fθ(x),y);

6: θ′
i ← θ−α ◦∇Ltrain(Ti)(θ);

7: Ltest(Ti)(θ
′
i)← 1

|test(Ti)|
∑

(x,y)∈test(Ti)
`(fθ′

i
(x),y);

8: end
9: (θ,α)← (θ,α)− β∇(θ,α)

∑
Ti
Ltest(Ti)(θ

′
i);

10: end

4 Experimental Results

We evaluate the proposed meta-learner Meta-SGD on various regression and classification tasks. We
also compare its performance with the state-of-the-art results reported in previous work. Our results
show that Meta-SGD can learn very quickly from a few examples with only one-step adaptation. All
experiments are run on Tensorflow [1].

4.1 Regression

In this experiment, we evaluate Meta-SGD on K-shot regression, and compare it with MAML [9],
a state-of-the-art meta-learner. The target function is a sine curve y(x) = A sin(ωx + b), where
amplitudeA, frequency ω, and phase b follow the uniform distribution on intervals [0.1, 5.0], [0.8, 1.2],
and [0, π], respectively. The input range is restricted to the interval [−5.0, 5.0]. TheK-shot regression
task is to estimate the underlying sine curve from only K examples.

For meta-training, each task consists of K ∈ {5, 10, 20} training examples and 10 testing examples
with inputs randomly chosen from [−5.0, 5.0]. The prediction loss is measured by the mean squared
error (MSE). For the regressor, we follow [9] to use a small neural network consisting of an input
layer of size 1, followed by 2 hidden layers of size 40 with ReLU nonlinearities, and then an output
layer of size 1. All weight matrices use truncated normal initialization with mean 0 and standard
deviation 0.01, and all bias vectors are initialized by 0. For Meta-SGD, all entries in α have the same
initial value randomly chosen from [0.005, 0.1]. For MAML, a fixed learning rate α = 0.01 is used
following [9]. Both meta-learners use one-step adaptation and are trained for 60000 iterations with
meta batch-size of 4 tasks.

For performance evaluation (meta-testing), we randomly sample 100 sine curves. For each curve,
we sample K examples for training with inputs randomly chosen from [−5.0, 5.0], and another 100
examples for testing with inputs evenly distributed on [−5.0, 5.0]. We repeat this procedure 100
times and take the average of MSE. The results averaged over the sampled 100 sine curves with 95%
confidence intervals are summarized in Table 1.

From Table 1, it is clear that Meta-SGD performs consistently better than MAML on all cases with a
wide margin, showing that Meta-SGD may have a higher capacity than MAML by learning all the
initialization, update direction, and learning rate simultaneously, rather than just the initialization as
in MAML. By learning all ingredients of an optimizer across many related tasks, Meta-SGD well
captures the problem structure and is able to describe a learner with very few examples. In contrast,
MAML regards the learning rate α as a hyper-parameter and just follow the gradient of empirical
loss to learn the learner, which may greatly limit its capacity. Indeed, if we change the learning rate
α from 0.01 to 0.1, and re-train MAML via 5-shot meta-training, the prediction losses for 5-shot,
10-shot, and 20-shot meta-testing increase to 1.77± 0.30, 1.37± 0.23, and 1.15± 0.20, respectively.

Figure 3 shows how the meta-learners perform on a random 5-shot regression task. From Figure 3
(left), compared to MAML, Meta-SGD can adapt more quickly to the shape of the sine curve after
just one step update with only 5 examples, even when these examples are all in one half of the
input range. This shows that Meta-SGD well captures the meta-level information across all tasks.

5

Table 1: Meta-SGD vs MAML on few-shot regression

Meta-training Models 5-shot testing 10-shot testing 20-shot testing

5-shot training MAML 1.13± 0.18 0.85 ± 0.14 0.71± 0.12
Meta-SGD 0.90± 0.16 0.63± 0.12 0.50± 0.10

10-shot training MAML 1.17± 0.16 0.77 ± 0.11 0.56± 0.08
Meta-SGD 0.88± 0.14 0.53± 0.09 0.35± 0.06

20-shot training MAML 1.29± 0.20 0.76 ± 0.12 0.48± 0.08
Meta-SGD 1.01± 0.17 0.54± 0.08 0.31± 0.05

4 2 0 2 4

4

2

0

2

4

6 Ground Truth
MAML
Meta-SGD

4 2 0 2 4

4

2

0

2

4

6 Ground Truth
10-shot
20-shot
40-shot

Figure 3: Left: Meta-SGD vs MAML on a random 5-shot regression task. Both initialization (dotted)
and result after one-step adaptation (solid) are shown. Right: Meta-SGD (10-shot meta-training)
performs better with more training examples in meta-testing.

Moreover, it continues to improve with additional training examples during meta-tesing, as shown
in Figure 3 (right). While the performance of MAML also gets better with more training examples,
the regression results of Meta-SGD are still better than those of MAML (Table 1). This shows that
our learned optimization strategy is better than gradient descent even when applied to solve the tasks
with large training data.

4.2 Classification

In this experiment, we evaluate Meta-SGD on few-shot classification using two benchmark datasets
Omniglot and miniImagenet.

Omniglot. The Omniglot dataset [15] consists of 1623 characters from 50 alphabets. Each character
contains 20 instances drawn by different individuals. We randomly select 1200 characters for
meta-training, and use the remaining characters for meta-testing. We consider 5-way and 20-way
classification for both 1 shot and 5 shots.

MiniImagenet. The miniImagenet dataset consists of 60000 color images from 100 classes, each
with 600 images. The data is divided into three disjoint subsets: 64 classes for meta-training, 16
classes for meta-validation, and 20 classes for meta-testing [18]. We consider 5-way classification for
both 1 shot and 5 shots.

We train the model using the following procedure proposed by [24]. For an N -way K-shot classifica-
tion task, we first sample N classes from the meta-training dataset, and then in each class sample K
images for training and 15 other images for testing the learner. We update the meta-learner once for
each batch of tasks. After meta-training, we test our model with unseen classes from the meta-testing
dataset. Following [9], in our model we use a convolution architecture with 4 modules, where each
module consists of 3× 3 convolutions, followed by batch normalization [13], a ReLU nonlinearity,
and 2× 2 max-pooling. For Omniglot, the images are downsampled to 28× 28, and we use 64 filters
and add an additional fully-connected layer with dimensionality 32 after the convolution modules.
For MiniImagenet, the images are downsampled to 84× 84, and we use 32 filters in the convolution
modules.

6

We train and evaluate our model Meta-SGD that adapts the learner in one step. In each iteration of
meta-training, Meta-SGD is updated with one batch of tasks. We follow [9] for batch size settings.
For Omniglot, the batch size is set to 32 and 16 for 5-way and 20-way classification, respectively.
For MiniImagenet, the batch size is set to 4 and 2 for 5-way 1-shot and 5-way 5-shot classification,
respectively. We add a regularization term to the objective function. All models are trained for 60000
iterations.

Table 2: Classification accuracies on Omniglot
5-way Accuracy 20-way Accuracy

1-shot 5-shot 1-shot 5-shot
Siamese Nets 97.3% 98.4% 88.2% 97.0%
Matching Nets 98.1% 98.9% 93.8% 98.5%
MAML 98.7± 0.4% 99.9± 0.1% 95.8± 0.3% 98.9± 0.2%
Meta-SGD 99.53± 0.26% 99.93± 0.09% 95.93± 0.38% 98.97± 0.19%

Table 3: Classification accuracies on MiniImagenet
5-way Accuracy

1-shot 5-shot
Matching Nets 43.56± 0.84% 55.31± 0.73%
Meta-LSTM 43.44± 0.77% 60.60± 0.71%
MAML 48.70± 1.84% 63.11± 0.92%
Meta-SGD 50.47± 1.87% 64.03± 0.94%

Experimental results of Meta-SGD are summarized in Table 2 and Table 3, together with results of
other state-of-the-art models reported in previous work [9]. These models include Siamese Nets [14],
Matching Nets [24], Meta-LSTM [18] and MAML [9]. The results represent mean accuracies with
95% confidence intervals over tasks.

For Omniglot, our model Meta-SGD is slightly better than the state-of-the-art models on all classifi-
cation tasks. In our experiments we noted that for 5-shot classification tasks, the model performs
better when it is trained with 1-shot tasks during meta-training than trained with 5-shot tasks. This
phenomenon was observed in both 5-way and 20-way classification. The 5-shot (meta-testing) results
of Meta-SGD in Table 2 are obtained via 1-shot meta-training.

For MiniImagenet, Meta-SGD outperforms all other models. Note that Meta-SGD learns the learner
in just one step, making it faster to train the model and to adapt to new tasks, while still improving
accuracies. In comparison, previous models often update the learner using SGD with multiple
gradient steps or using LSTM with multiple iterations. We also run experiments on MAML where the
learner is updated with 1 gradient step for both meta-training and meta-testing, the mean accuracies
of which are 44.40% and 61.11% for 1-shot and 5-shot classification, respectively. This performance
is worse than MAML with multiple gradient steps. These results show the capacity of Meta-SGD in
terms of learning speed and performance for few-shot classification.

5 Conclusions

We developed Meta-SGD, a new, easily trainable meta-learner that can learn faster and more accurate
than existing meta-learners for few-shot learning. We learn all ingredients of an optimizer including
initialization, update direction, and learning rate via meta-learning, resulting in a meta-learner with a
higher capacity compared to other meta-learners in the form of optimizer. Interestingly, Meta-SGD
can learn a learner quickly from a few examples even in just one step, with new state-of-the-art results
on few-shot regression and classification. We hope to draw more attention towards data-efficient
learning algorithms that can adapt smoothly in a fast changing environment, which is critical to many
emerging applications of artificial intelligence including self-driving cars and autonomous robots.

7

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, and
Nando de Freitas. Learning to learn by gradient descent by gradient descent. In NIPS, 2016.

[3] Y Bengio, S Bengio, and J Cloutier. Learning a synaptic learning rule. In Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on, volume 2, pages 969–vol. IEEE, 1991.

[4] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer, 1998.

[5] N. E. Cotter and P. R. Conwell. Fixed-weight networks can learn. In IJCNN, June 1990.

[6] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[7] Li Fei-Fei, Rob Fergus, and Pietro Perona. A bayesian approach to unsupervised one-shot learning of
object categories. In ICCV. IEEE, 2003.

[8] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4), 2006.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. arXiv preprint arXiv:1703.03400, 2017.

[10] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

[12] Sepp Hochreiter, A Younger, and Peter Conwell. Learning to learn using gradient descent. ICANN, 2001.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[14] Gregory Koch. Siamese neural networks for one-shot image recognition. PhD thesis, University of Toronto,
2015.

[15] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum. One shot learning of
simple visual concepts. In CogSci, volume 172, 2011.

[16] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266), 2015.

[17] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-learning with temporal convolu-
tions. arXiv preprint arXiv:1707.03141, 2017.

[18] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, volume 1,
2017.

[19] Danilo Rezende, Ivo Danihelka, Karol Gregor, Daan Wierstra, et al. One-shot generalization in deep
generative models. In International Conference on Machine Learning, pages 1521–1529, 2016.

[20] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning
with memory-augmented neural networks. In ICML, 2016.

[21] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn: The
meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.

[22] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-the-shelf:
an astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pages 806–813, 2014.

[23] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

[24] Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan Wierstra. Matching networks for one shot
learning. In NIPS, 2016.

[25] Xiao-Ming Wu, Zhenguo Li, Anthony M So, John Wright, and Shih-Fu Chang. Learning with partially
absorbing random walks. In Advances in Neural Information Processing Systems, pages 3077–3085, 2012.

[26] A Steven Younger, Peter R Conwell, and Neil E Cotter. Fixed-weight on-line learning. IEEE Transactions
on Neural Networks, 10(2), 1999.

8

	1 Introduction
	2 Related Work
	3 Meta-SGD
	3.1 Meta-Learner
	3.2 Meta-training
	3.3 Related Meta-Learners

	4 Experimental Results
	4.1 Regression
	4.2 Classification

	5 Conclusions

