IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

2013

Counting Triangles in Large
Graphs by Random Sampling

Bin Wu, Ke Yi, and Zhenguo Li

Abstract—The problem of counting triangles in graphs has been well studied in the literature. However, all existing algorithms, exact or
approximate, spend at least linear time in the size of the graph (except a recent theoretical result), which can be prohibitive on today’s
large graphs. Nevertheless, we observe that the ideas in many existing triangle counting algorithms can be coupled with random
sampling to yield potentially sublinear-time algorithms that return an approximation of the triangle count without looking at the whole
graph. This paper makes these random sampling algorithms more explicit, and presents an experimental and analytical comparison of
different approaches, identifying the best performers among a number of candidates.

Index Terms—Triangle counting, random sampling

1 INTRODUCTION

GRAPHS are a ubiquitous form to represent and model
complex relationships between entities in various fields,
including biochemistry, information systems, and social net-
works. Triangle is one of the most fundamental substructures
of a graph. In social network analysis, two fundamental meas-
urements, the clustering coefficient [1] and the triangle connectiv-
ity [2], are both derived from the number of triangles. Various
applications depend on triangle listing and counting, such as
uncovering hidden thematic structures [3], detecting Web
spam [4], and community detection [5].

The problems of both listing and counting (exactly or
approximately) all triangles in a given graph have been
extensively studied in the literature, from as early as a 1977
STOC paper [6] to the 2013 SIGMOD best paper [7]. How-
ever, all existing algorithms, exact or approximate, spend at
least linear time, visiting each vertex and edge of the graph
at least once (except a recent theoretical result [8]). The moti-
vation of our study is that sublinear time is actually possible
to obtain a good estimate of triangle count, and this is impor-
tant in a number of scenarios. First, as today’s graphs easily
contain billions of vertices and edges, even linear time can be
prohibitive. Second, as the number of triangles is often used
in analyzing some statistical properties of the graph, very
often we do not need an exact answer. An approximation
(say, within 10 percent of the true count) would be just as
good. Third, when the graph is dynamically changing (.e.,
insertion/deletion of vertices and edges), and we would like
to count the triangles periodically so as to monitor the
dynamics of the graph, using a linear-time algorithm to do

e B. Wu and K. Yi are with the Department of Computer Science and Engi-
neering, Hong Kong University of Science and Technology Clear Water
Bay, Hong Kong, China. E-mail: {bwuac, yike/@cse.ust .hk.

o Z.Liis with Huawei Noah's Ark Lab, Hong Kong, China.

E-mail: li.zhenguo@huawei.com.

Manuscript received 3 Apr. 2015; revised 16 Mar. 2016; accepted 10 Apr.
2016. Date of publication 20 Apr. 2016; date of current version 5 July 2016.
Recommended for acceptance by A. Gionis.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2016.2556663

the counting every time would be too expensive and com-
promises the timeliness of the monitoring.

Nevertheless, although prior work has not explicitly con-
sidered the sublinear-time triangle counting problem, we
observe that the ideas in many existing linear or super-lin-
ear algorithms can actually be coupled with random sam-
pling to make the algorithm potentially sublinear-time. In
this paper, we make this connection clearer, and more
importantly, provide a detailed analytical and experimental
comparison of different random sampling strategies to the
approximate triangle counting problem, identifying the best
performers among a number of candidates.

2 PRIOR WORK

We classify the existing algorithms into those that count the
number of triangles exactly and those that do so
approximately.

2.1 Exact Counting Algorithms

Most exact counting algorithms actually solve the listing
problem, i.e., they enumerate all the triangles in the graph,
thus obtain the triangle count as a by-product [6], [9], [10].
These algorithms run in O(n?) or O(m!?®) time. Here, n
denotes the number of vertices and m the number of edges.
This running time is optimal in the worst case since there
can be as many as O(n?) or O(m!?®) triangles in the graph.
There are also algorithms that count the triangles without
listing them by using matrix multiplication [6]. They have
running time O(n*37), which is better than the listing algo-
rithms but only if the graph is dense enough. There is an
extensive experimental study on the performance of these
exact counting and listing algorithms [10]. Recently, as the
graphs get even larger, it also has attracted a lot of interests
to extend the these algorithms to the external memory
model [7], [11], [12], [13], [14], [15] and the MapReduce
model [16], [17], [18], [19], [20].

2.2 Approximate Counting Algorithms

In view of the high running times of the exact counting algo-
rithms and the fact that an approximate count satisfies the

1041-4347 © 2016 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

2014

2 3

Fig. 1. An example graph.

need of most applications, faster approximation algorithms
have been sought for. The easiest method is to sample a
small subgraph from the whole graph, count the number of
triangles in the subgraph, and scale up the count. In particu-
lar, Doulion [21] forms the subgraph by sampling each edge
with probability p. Since each triangle in the original graph
appears in the sampled subgraph with probability p?, the
number of triangles in the subgraph is multiplied by 1/p? to
get an unbiased estimator of the true count. Flipping a coin
with probability p for each edge in the graph requires at
least a linear scan of the whole graph, so this is not a sublin-
ear-time algorithm, strictly speaking. Nevertheless, this can
be avoided by sampling the edges with (or without) replace-
ment. We describe this version of Doulion more explicitly in
Section 4.

Another sampling method proposed in the literature is
wedge sampling. A wedge is any length-2 path in the graph,
thus a triangle is formed when a wedge is closed. Assum-
ing that a wedge can be randomly sampled from the
graph, then a sublinear-time algorithm can be obtained
[22]. However, common graph representations (e.g., adja-
cency list or adjacency matrix) do not support wedge
sampling. To support this operation, the graph has to be
preprocessed in O(n) time, and the preprocessing needs
to be done again every time the graph has changed.

The problem has also received a lot of attention in the
streaming model [23], [24], [25], [26], [27], [28], [29], [30],
and all streaming algorithms return approximate triangle
counts (exact counting is known to be impossible in the
streaming model). Since any streaming algorithm makes at
least one pass over the whole input, they do not yield sub-
linear-time algorithms. Nevertheless, some of the streaming
algorithms, such as the one in [28], can be modified to run
in sublinear time, and we describe this modification in more
detail in Section 4.

Very recently, there have been some theoretical studies
on approximating the number of triangles in sublinear time
[8], [31]. However, those algorithms are far from practical,
according to our experimental evaluation.

Fig. 2. The adjacency list representation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

[1[2[3]4]5]6]7]s]

el

[2[6]1]7[3]2]s[4]3]8]5]

Fig. 3. The edge array representation.

3 PRELIMINARIES

Let G = (V, E) be a simple undirected graph with n vertices
and m edges. A triangle in G is a triple of 3 vertices (u, v, w)
such that {(u,v), (v,w), (uv,w)} C E. We denote by A(G) the
set of all triangles in G, and denote the triangle count as
T3 = |A(G)|. For any ve V, let N(v) ={ueV|(u,v) € E}
denote the neighbors of v. The degree of v is d(v) = |N(v)|. For
any vertex v € V, let A(v) be the number of triangles having
v as one of the vertices; similarly for any edge e € E, A(e)
denotes the number of triangles having e as one of the
edges. Note that for any e = (u,v), A(e) = [N(v) N N(u)|. We
assume that each vertex has a unique integer id.

Example. For the example graph in Fig. 1, we have
A(1) =0,A(8) =3 (triangles (7,8,5),(4,5,8) and (3,4,8)
have 8 as a vertex), A(5,8) =2 (triangles (5,7,8) and
(4,5,8) have (5, 8) as an edge).

We assume the adjacency list representation for the graph,
the most commonly used storage format for graphs. But
depending on whether the graph is static or dynamic, there
can be two different implementations. The first one is the
“textbook” method, which uses an array indexed by the verti-
ces. (This assumes that the vertices are numbered from 1 to n.
If the vertex id’s are arbitrary, another level of indirection is
needed to map the vertex id’s to numbers from 1 to n using a
hash table.) Each cell in the vertex array points to a linked list
that stores all the neighbors of that vertex. For example, the
adjacency list representation of the graph in Fig. 1 is shown
in Fig. 2. We assume that each neighbor list maintains the
size of the list, which is equal to the degree of the correspond-
ing vertex. Such a representation easily supports dynamic
changes to the graph, i.e., inserting or deleting an edge.

The other implementation simply concatenates all the
neighbor lists into one big array, which we call the edge
array. Each pointer in the vertex array now points to the first
neighbor of the corresponding vertex in the edge array
(Fig. 3). This implementation does not easily support
changes to the graph, but it is more compact. In particular,
since we no longer need the pointers inside each neighbor
list, the space usage is reduced to half (or 1/3 if doubly-
linked lists are used in the adjacency list representation).
Furthermore, for each vertex, all its neighbors are stored
consecutively in memory (or on disk), so traversal of its
neighbors is much more cache-efficient than in the adja-
cency list representation. Thus, this is the preferred storage
format for graphs which see no (or few) changes. Also note
that in this representation, we no longer need to store the
degree for each vertex v; explicitly, as it can be computed
from the starting address of N(v;) and that of N(v;1).

When it comes to random sampling algorithms, these
two representations allows different sampling strategies to
explore the graph. Both representations allow us to uni-
formly sample a vertex. After a vertex v is sampled, we can
retrieve all its neighbors in O(d(v)) time. The edge array

WU ETAL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING

representation also allows us to sample a neighbor of a spe-
cific vertex more efficiently, as well as sample an edge uni-
formly from the edge array. This turns out to be an
important operation that can lead to more accurate estima-
tion of the triangle count.

Finally, all algorithms presented in this paper report an
unbiased estimator of 73 with each sampling step. Then we
simply take the average of multiple estimators to improve
the accuracy. This immediately brings two benefits: (1) The
algorithm itself “knows” how well it has been doing: One
can use standard statistical formulas to estimate the stan-
dard deviation and confidence intervals of the result from
these estimates, and stop the algorithm when the accuracy
is good enough; (2) The algorithm is “embarrassingly paral-
lel”, and can be easily implemented in a parallel/distrib-
uted graph management system like Pregel [32] or
GraphLab [33].

4 ALGORITHMS

4.1 Subgraph Sampling

As mentioned in Section 2, Doulion [21] samples a subgraph
from G by picking every edge with probability p, counts the
number of triangles in the sampled subgraph, and then
scales up the count by a factor of 1/p*. It has been shown
[21] that this algorithm returns an unbiased estimator with
Ty ") 425" ")

variance where s is the number of pairs of

triangles that share a common edge.

This algorithm, as stated, is not a sublinear-time algo-
rithm as it flips a coin for every edge of the graph. Neverthe-
less, we can replace this coin-flip sampling by sampling
without replacement. More precisely, we randomly pick a
subset of k edges from all m edges to form the subgraph.
Note that the probability of a triangle appearing in the sub-
graph under this sampling method is p' = (})/ (%), so we
scale up the triangle count by 1/p’.

The variance of the estimator under this sampling
method is hard to compute exactly, because in sampling
without replacement, the edges are not independently
picked. But the leading term, 75 /p’ is still correct, which we
use as a good approximation of the actual variance.

This algorithm only works in the edge array model,
because it needs to sample the edges uniformly at random.

m
3

4.2 Vertex Sampling

The basic idea of vertex sampling roots from an exact triangle
counting algorithm called vertex iterator [6]. Recall that A(v)
is the number of triangles that contain vertex v. To count all
triangles, the vertex iterator algorithm simply counts A(v)
for each v, and adds them up. Since each triangle is counted
three times, the final sum is divided by 3 to obtain T3, i.e.,
T3 = %ZF)\(U)

To turn this idea into a sublinear-time algorithm, we ran-
domly sample a vertex v and compute A(v). Then we scale it
up by a factor of n/3, which will be an unbiased estimator
of T3. We do this multiple times, and take the average.

To compute A(v), we first build a hash table on N(v).
Then for each v; € N(v), we compute |N(v;) N N(v)| by
probing the hash table on N(v) with each u € N(v;). The
detailed algorithm (for one sampling step) is given in

2015

Algorithm 1. The algorithm returns ¢n/6 in the end because
each triangle having v as a vertex is counted twice when
summing up |N(v;) N N(v)| over all neighbors v; of v.

Algorithm 1. Vertex Sampling

t—0;
sample a vertex v uniformly from V;
build a hash table on N (v);
foreachv; € N(v) do

t—t+|N(w) NN(v)l;
report tn/6;

In practice, when N(v) and N(v;) are small enough, it is
actually faster to sort and merge them to compute
|N(v) N N(v;)| (.e., a “sort-merge join”), instead of using a
hash table (i.e., “hash join”). In our implementation, we use
the “hash join” method when the adjacency list is long
enough (>700), and use the “sort-merge join” method when
the lists are shorter. It should be clear that this algorithm
works in both the adjacency list and the edge array model.

4.2.1 Analysis

It is straightforward to see that the output is always an unbi-
ased estimator of 73: When v is chosen uniformly at random,

we have
1
DNCEE
veV n

Thus, nA(v)/3 is an unbiased estimator of 73.
The variance of the estimator is just the variance of A(v)
times n? /9. The variance of A(v) is

Var,[A(v)] = E,[A ()2] - w[(v)]2

The running time of the algorithm per sampling step is
(the big-Oh of)

+ Y d(w)

v; €N (v)

= > dw)

v; €N (v)

Since v is randomly chosen from all vertices, the expected
running time is

DIPIOED BTy

v v, eN(v)

Proposition 1. The vertex sampling algorithm returns an unbi-
ased estimator of T3 with variance § 3,)\(v)2 — T2 Its run-

ning time per sampling step is O(: Z d(v)?).

4.3 Edge Sampling

The edge sampling method is motivated by another exact tri-
angle counting algorithm called edge iterator [6]. It is based
on the observation that 73 is also equal to 13", A(e), where
A(e) is the number of triangles that have e as an edge. Thus,
if we uniformly randomly sample an edge e and compute
A(e), then 2 A\(e) will be an unbiased estimator of T3.

2016

It remains to describe how to sample an edge uniformly
from all edges of the graph. In the edge array, this can be
done by just randomly picking a location in the edge array.
Note that the edge array has size 2m and each edge appears
exactly twice in the array, so each edge is sampled with
probability 1/m. However, this only gives us one endpoint
of the edge (see Fig. 3). We could have required the edge
array to store both endpoints, but that doubles its size, los-
ing the benefit of compactness. The trick is to sample again.
More precisely, we first uniformly sample a location in the
edge array, getting a vertex u. Then we look up u in the ver-
tex array, and uniformly sample a neighbor of u at random,
denoted as v. From the vertex array, we can get the starting
and the ending position of u’s neighbor list in the edge
array, so uniformly sampling a neighbor of u is easy. Then
we return e = (u,v) as the sampled edge. It is easy to see
that this process will sample every e with probability 1/m:
For any edge e = (u, v), the probability that u is sampled in
the first step is d(u)/2m, then the probability that v is sam-
pled in the second step is 1/d(u), so u,v are sampled in this
order with probability 1/2m. The edge can also be obtained
if v is sampled first and u second, which also happens with
probability 1/2m. Thus the overall probability that e = (u, v)
is sampled is 1/m, as desired.

To compute A(e) = |N(v) N N(v)|, we similarly as before
do either a hash join or a sort-merge join depending on the
sizes of N(v) and N(u). The detailed algorithm is given in
Algorithm 2.

Algorithm 2. Edge Sampling (Edge Array Model)

sample a vertex v uniformly from the edge array;
sample a vertex v uniformly from N (u);

Ae) «— |[N(u) N N(v)|;

report A(e) - m/3;

4.3.1 Analysis

By the fact that > _, A(e) = 3T3, we can easily see that the
algorithm returns an unbiased estimator for 73. When e is
chosen uniformly at random, we have

=> Ae)

eckE

Thus, A(e) - m/3 is an unbiased estimator of T5.
The variance of the estimator is m?/9k - Var[\(e)], where

Var.[\(e)] = E.[Ae)2} —Ee[k(e)]2
= Z)\ — (3T3/m)’.

So the variance of the estimatoris 'y > . Ae)* — T2

The running time of the algorithm is O(d(u) + d(v)),
dominated by computing |N(u) N N(v)|. Since the edge
e = (u,v) is randomly chosen from all edges, the expected
running times is

S dw) +d() = 5 dlo)’

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

Proposition 2. The edge sampling algorithm in the edge array
model returns an unbiased estimator of T3 with variance

LD Ne)* = T3, Its running time per sampling step is
O3, d(v)).

4.3.2 Adaptation to the Adjacency List Model

In the adjacency list model, we cannot sample an edge uni-
formly. But we can still apply the same idea of edge sam-
pling, except that we need to take the non-uniformity of
sampling into account to remove the bias. The modified
algorithm is shown in Algorithm 3.

Algorithm 3. Edge Sampling (Adjacency List Model)

sample a vertex u uniformly from the vertex array;
sample a vertex v uniformly from N (u);
Ale) «— |[N(u) N N(v)|;

nd(u)d(v) .

report /\() 3(d(w) 1))’

4.3.3 Analysis

Let N(e) = % Its expectation is
E.[N(e)] = %Pr[e =e.

e*=(u,v)

Given the sampling process in the algorithm, a particular
edge e" = (u,v) is sampled if u is sampled in the first step
(which happens with probability 1/n) and v is sampled in
the second step (which happens with probability 1/d(u), or
the other around. So the probability that e* is sampled is
+ (@ + at)- Thus, the expectation is

EN(e)] =Y == =2,

So XN(e)-n/3isa unblased estimator of 7.
The variance of X (e) is

= E[A/(e)Q]
B Qd u)d) 973}

Note that the first sampling step takes O(1) time, but the
second step for sampling v takes O(d(u)) time as we have to
traverse the neighbor list of u. But this is dominated by the
time to compute |N(u)NN(v)|, which takes time
O(d(u) + d(v)). As edge e = (u, v) is sampled with probability

5 (g + i) the expected running time of this algorithm is

1 1 1
g(:w)(d(u) + d(v)) - (@ + @)

_ 1§ (d(w) +d(v))?
n Z d(u)d(v)

Var[X(e)] ~EN(e))?

Proposition 3. The edge sampling algorithm in the adjacency
list model returns an unbiased estimator of Ty with variance

n Me)2d(u)d(v
gzeeEM,

9 L . .
A0+ d(v) Ty . Its running time per sampling step is
0G X,

(d(u)+d(v))2)
d(u)d(v) /°

WU ETAL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING

4.4 Triangle Sampling

The triangle sampling method is based on a recent triangle
counting algorithm in the streaming model [28]. It can also
be considered as combining the MinHash [34] idea with
edge sampling: After sampling an edge e, instead of com-
puting |[N(u) N N(v)| exactly, we try to estimate it by ran-
domly sampling a vertex from N(u) and N(v) and checking
if it is inside N(u) N N(v).

We first sample an edge e = (u,v) uniformly as in the
edge sampling algorithm (edge array model). Then we uni-
formly sample a vertex neighboring to either u or v and
check whether it is also a neighbor of the other. More pre-
cisely, we generate a random number ¢ from 1 to
d(u) 4+ d(v). If 1 <i<d(u), we pick the ith neighbor of u
and check whether it is also a neighbor of v; if i > d(u), we
pick the (i — d(u))th neighbor of v and check whether it is
also a neighbor of w. If the answer is yes, we have found a
triangle (hence the name triangle sampling). Finally, proper
scaling has to be done to turn this into an unbiased estima-
tor of T5. Please see the details in Algorithm 4.

Algorithm 4. Triangle Sampling (Edge Array Model)

sample a vertex v uniformly from the edge array;
sample a vertex v uniformly from N (u);
generate a random number i from 1 to d(u) + d(v);
t—0;
if i < d(u) then
w « u’s ith neighbor;
ifwe N(v) thent «— 1;
else
w «— v's (i — d(u))th neighbor;
ifwe N(u) thent — 1;
report ¢ - (d(u) + d(v))m/6;

4.4.1 Analysis
Conditioned upon e = (u,v) being sampled, ¢t =1 with
probability
2IN(u) N N(v)| 2X(e)
d(u) +d(v) d(u)+d(v)’

and 0 otherwise.

Let X =1t (d(u) + d(v))/2. Since every edge e = (u,v) is
sampled with probability 1/m, we have

d(u) + d(v) 2X(e)
E[X] =
[X] ; 2 m(d(u) + d(v))
Ae
-3
eck
= 3T3/m.

Thus, X - m/3 is an unbiased estimator of 7.
The variance of X is

Var[X] = E[X?] — E[X]*
_ Z Ae)(d(u) +d(v)) 9TF

2m m?’

The running time of the algorithm is dominated by
checking whether w is in N(u) or N(v), which takes time
O(d(u)) or O(d(v)). We switch to the former case with

2017

probability d(v)/(d(u) + d(v)), and the latter with probabil-
ity d(u)/(d(u) +d(v)), so the expected running time is
O(4d)) “Since the edge is chosen uniformly at random,

d(u)+d(v)
the overall expected running time is O(L 3", d’fg)‘féz’z))

Proposition 4. The triangle sampling algorithm in the edge
array model returns an unbiased estimator of T3 with variance
my Ae)(d(u) + d(v)) — T3 Its running time per sampling

. d(u)d(v
step is O X i)

4.4.2 Adaptation to the Adjacency List Model

As with the edge sampling algorithm, we can similarly
adapt the triangle sampling algorithm to the adjacency list
model. Again we will not be able to sample an edge uni-
formly, but still an unbiased estimator of 73 can be obtained
if the sampling probability is properly accounted for. The
details are presented in the Algorithm 5.

Algorithm 5. Triangle Sampling

sample a vertex u uniformly from the vertex array;
sample a vertex v uniformly from N (u);
generate a random number ¢ from 1 to d(u) + d(v);
t—0;
if i > d(u) then
w — u’s ith neighbor;
ifwe N(v) thent — 1;
else
w < v's (i — d(u))th neighbor;
ifwe N(u) thent — 1;
report t - d(u)d(v)n/6;

4.4.3 Analysis
Conditioned upon e = (u,v) being sampled, we still have
t =1 with probability 2A(e)/(d(u)+ d(v)). However, the
probability that e = (u,v) is no longer 1/m, but (775 + ﬁb))
as we derived previously.

Let X = ¢ - d(u)d(v)/2. We have

du)d(v) 1/ 1 1
0= S ()
2X(e)
“d(u) + d(v)
)\(6) 3T;
= 27 ==
Thus, X - n/3 is an unbiased estimator of 7.
The variance of X is

Var[X] = E[X?] — E[X]?
_ Z d(u)d(v)A(e) B 9_T32

2 n?

Since in the adjacency list model, we can only scan the
neighbor list of u to get its ith neighbor in O(1) time, the
running time of the algorithm is O(d(u) + d(v)) for a given
edge e = (u, v). Thus, the expected running time of this algo-
rithm is the same as that of edge sampling in the adjacency
list model.

2018

Proposition 5. The triangle sampling algorithm returns an
unbiased estimator of T; with variance
25" Me)d(u)d(v) — T3 Its running time per sampling step

12

is O3 ity)

4.5 Wedge Sampling

The technique of wedge sampling is a new approach to

approximating the triangle count [22]. A wedge is any

length-2 path (u-v-w) in the graph. The observation is that if

a wedge is closed, i.e., there is also edge between v and w,

then it corresponds to a triangle. Thus, the number of trian-

gles is proportional to the fraction of closed wedges, which
can be approximated by random sampling.

However, to put this idea into practice, one needs to
know W, the total number of wedges, as well as a way to
sample one uniformly from all the W wedges. The two
graph representations do not support such an operation, so
an O(n)-time and preprocessing step is needed. So strictly
speaking, this is not a sublinear-time algorithm. Further-
more, the preprocessing step will result in an O(n)-size
array that needs to be kept for the sampling steps.

Note the number of wedges with v as the middle vertex is

(d(;)), soW=>" (d(é”)>, which can be computed in O(n)
time. To support uniformly sampling a wedge, we build
another array A where Afv] =57 <d(2“)) ,i.e., A[v] stores the

u=1

total number of wedges with u as the middle vertex for all
u < v. To sample a wedge, we generate a wedge index ¢ from
1 to W, and then do a binary search in the array A to locate
the vertex v that should serve as the middle vertex of the
wedge. After vis decided, we randomly pick two of its neigh-
bors to form the wedge. Then we check if the wedge is closed
or not, and scale it up so that it becomes an unbiased estima-
tor of T3. The detailed algorithm is shown in Algorithm 6.

Algorithm 6. Wedge Sampling

t—0;
sample a wedge (u, v, w) uniformly as described;
if d(u) < d(w) then
ifw e N(u) thent — 1;
else
if u € N(w) thent «— 1;
report t - W/3;

The algorithm works in both the edge array model and
the adjacency list model. The only difference is that in the
edge array model, after the middle vertex v has been
decided, the other two vertices can be chosen in O(1) time,
whereas in the adjacency list model, O(d(v)) time is needed.

4.5.1 Analysis

The probability that ¢ = 1 is 373 /W, since a triangle can be
found by closing one of three wedges, so ¢ - W /3 is an unbi-
ased estimator of T5.

The variance of the estimator ¢ is

Var[t] = E[¢*] — E[t]?
3Ty 973

W w2

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

TABLE 1
Summary of Datasets

Dataset n m T3

Amazon 3.34 x 10° 9.26 x 10° 6.67 x 10°
Youtube 1.13 x 108 2.99 x 10° 3.06 x 10°
LiveJournal(L]) 4.00 x 109 3.47 x 107 1.78 x 108
roadNet-CA 1.97 x 10° 2.77 x 106 1.21 x 10°
Skitter 1.70 x 106 1.11 x 107 2.88 x 107
USRD 2.39 x 107 2.89 x 107 4.39 x 10°
Twitter 3.06 x 107 5.98 x 108 1.87 x 1010
WebUK 6.23 x 107 9.39 x 10° 1.79 x 10"

n: the number of vertices, m: the number of edges, Ts: the number of triangles.

The binary search takes O(logn) time. To test whether
there is an edge between u and w, we scan the neighbor list
of the vertex with a smaller degree to check for the other
vertex, so the running time is O(min(d(u),d(w)). So, the
expected running time of this algorithm s
O(log 1 + 1 3= 4.0y (wnyer Min(d(u), d(w))). In the adjacency
list model, it becomes O(logn + 3",) (ou)er A(v) + min
(d(u), d(w))).

Proposition 6. The wedge sampling algorithm returns an unbi-

. . . WT: . .
ased estimator of Ty with variance —5* — Ts?. Its running time

is O(logn + 11 3,0 (vw)er Min(d(u), d(w))) in the edge
array model, and O(logn + 3",) (ow)er A(v) + min(d(w),
d(w))) in the adjacency list model. This algorithm needs an
O(n)-time preprocessing step and O(n) working space for the
sampling.

One may wonder if the preprocessing and the additional
array A can be avoided, by using non-uniform sampling
and compensating the non-uniformity, as we did previously
to adapt edge sampling and triangle sampling to the adja-
cency list model. However, an acute reader may quickly
realize that if we do so, wedge sampling will essentially
become triangle sampling.

5 [EXPERIMENTS

We have implemented all algorithms discussed in Section 4,
for both the edge array model and the adjacency list model.
This section describes our experimental setup, methodol-
ogy, and the results. Analysis of the results will be provided
in Section 6.

5.1 Setup

We have used a collection of real-world graphs, including
social networks, road networks, and autonomous systems
graphs, in our experimental study. A summary of these
datasets is given in Table 1. The first five datasets are
obtained from SNAP (http://snap.stanford.edu/). The
dataset USRD and WebUK are the same as in [12]. Twitter is
obtained from [35]. Amazon is crawled from Amazon, where
nodes represent products and edges indicate commonly co-
purchased products. LivefJournal is obtained from a free
online community (www.livejournal.com), where vertices
are members and an edge represents the friendship between
two members. USRD is the road network of United States
and roadNet-CA is a network of California, where vertices

http://snap.stanford.edu/
www.livejournal.com

WU ETAL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING

TABLE 2
Running Times of Exact Counting Algorithms

2019

TABLE 3
Loading Time of Datasets

Dataset Time (s) Dataset Time (s) Dataset Edge array model (ms) Adjacency list model (ms)
Amazon 1.1 LiveJournal(L]) 200 Amazon 331 455
Youtube 42 USRD 37 Youtube 505 1,079
roadNet-CA 55 Twitter 1,950 LiveJournal(L]) 3,528 10,764
Skitter 441 WebUK 2,102 roadNet-CA 593 1,778

Skitter 1,018 3,551

USRD 11,268 16,383
represent intersections and endpoints, and edges represent =~ Twitter 49,173 571,059

WebUK 122,351 1,349,232

the roads connecting these intersections or road endpoints.
WebUK is a webspam dataset, where vertices are pages and
edges are hyperlinks between pages. Twitter is an online
microblog where vertices are users and edges represents
users are followed by others.

All the experiments were performed under CentOS 5.10
(64 bits) on a machine that was running an Intel E5450 3 GHz
CPU (8 cores) with 16G main memory. All programs were
compiled with GNU g++ version 4.9.1 by using flag -03.

We adopt the most standard implementation for the two
graph representations. For each graph, the vertex id’s are
from 1 to n, which are stored as 32-bit integers. For the adja-
cency list model, the vertex array is implemented as a vec-
tor using STL, where each entry stores a pointer to a
neighbor list. Each neighbor list is implemented as a 1ist,
which is implemented as a doubly-linked list in STL. For
the edge array model, the edge array is a vector storing all
the neighbor lists in concatenation. The vertex array is a
vector where each entry stores the index of the first neigh-
bor of the corresponding vertex in the edge array. Note that
no pointers are needed in the edge array model. Since the
vertex id’s are 32-bit integers while pointers are 64-bit long,
the size of the edge array representation is roughly 1/5 of
that of the adjacency list representation for the same graph.

5.2 Methodology

Before running the algorithms, we pre-load the graph from
the data file to memory using one of the two representation
formats (i.e., loading time, shown separately in Table 3, is
not included in measuring the running time of the algo-
rithms). Note that some large graphs used in our experi-
ments do not fit in main memory; we simply rely on the
virtual memory system to handle this automatically.

Recall that all the algorithms run for multiple sampling
steps (except the subgraph sampling algorithm), with each
step returning an unbiased estimator of 73. We take the
average of these estimators, whose accuracy thus improves
as more steps are taken. More precisely, if the variance of
the estimator from one sampling step is o?, the variance
after k steps is o?/k. However, since different algorithms
have different per-step running time, it will not be a fair
comparison to use the same k for all algorithms; even for
the same algorithm, the per-step cost also varies from step
to step (it is a random variable). Thus, we adopt the follow-
ing scheme in order to have a fair comparison across differ-
ent algorithms: Suppose we run algorithm A on a particular
graph, and let z(¢) be the running average of the sampling
steps so far until time ¢. We calculate the error z(t) — 75 at
regular time intervals, say ¢t = 10 ms, 20 ms, Since one
run of the algorithm may have high fluctuation, we repeat
the process multiple times, and for each time stamp ¢, we

report the root mean square error (RMSE) of the algorithm
across multiple runs, namely,

RMSE(t) = ¢ i (@) - Ty)"

r

where 7(t) is the running average at time ¢ in the ith run,
and there are a total of » runs. In our experiments, we used
r =100 runs to get stable results. Furthermore, we report
the relative RMSE as a percentage of T3, so that results
across different data sets can be compared.

The reader is reminded that the RMSE is used to evaluate
and compare these algorithms. In actual application, we
cannot compute RMSE as we do not know 73. However,
since each sampling step of the algorithm returns an unbi-
ased estimator 73, o can be estimated as (from standard sta-
tistics theory)

_ 1 ¢ ,
o= EZ(%’*@Q,

J=1

where z; is the estimate returned from the jth sampling
step, and 7 =13"" | z;. When k is sufficiently large, 5//k
will be a reasonable estimate of the RMSE.

In order to see the benefits of sublinear-time algorithms,
we have also run the exact counting algorithm for each
graph. For graphs that fit in memory, we implement the Com-
pact Forward algorithm [9]. For larger graphs, we used the
external memory algorithm and code from [7]. The running
times of these exact counting algorithms are given in Table 2.

5.3 Results

From the experiments, we first observed that the subgraph
sampling algorithm is much worse than the other algo-
rithms, to the point that their results cannot be plotted in
the same figure. Instead, we indicate the result of the sub-
graph sampling algorithm in a box in each figure as a
(RMSE, running time) pair. For subgraph sampling, we
need to decide the sample size k before running the algo-
rithm. In our experiments, we tried various k so that the its
running time is on the same order as other algorithms, and
report that result for that particular value of k. It turns out
with this time constraint, the algorithm can sample no more
than 1 percent of the edges, which results in very poor esti-
mation quality. We note that in the original paper [21],
more than 10 percent of the edges had to be sampled in
order to get reasonable estimates, but that would make the
algorithm run much slower than the other algorithms. The
intuitive reason is that subgraph sampling is too general a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

2020
40 I
—6— Vertex Sampling
—8&— Edge Sampling
a5k B @ - Edge Sampling(Adjcacency List)
. —A— Triangle Sampling
A A - Triangle Sampling(Adjacency List)
~ —— Wedge Sampling
30+ - Wedge Sampling(Adjcacency List) H
AL
sr A N 1868%.64ms | -
i 20l
%]
=
i
15
10
5k
0 L L L L
0 5 10 15 20 25 30
Time(ms)
(a) Amazon
120 T T T
2075%,369ms
100 T
80 E
= a
E 60 .
%]
=
=
40
20 b
et s
0 L L ! N n
0 50 100 150 200 250 300
Time(ms)
(c) LiveJournal
150
A
219%,704ms
100
2
=
w
%]
=
o

50

300 400 500 600 700
Time(ms)

(e) Skitter

Fig. 4. Experimental results (on data sets that fit in main memory).

technique. It can in fact be used to approximately count the
number of any subgraph pattern, not just triangles. In doing
so, the algorithm “blindly” samples edges. On the other
hand, the other algorithms are tailored to finding triangles
more intelligently, thus leading to much better accuracy.

250
_107%,82Bms
x
2001 g
o .
A o,

150 . o |
S A
o A ‘o
4 .
s AL B
= o

0 100 200 300 400 500 600
Time(ms)

(b) Youtube

35 -
A
30}k 2582%,391ms | |
251
< 20
I~
w
(%2
=
o 15}
10F
5|
0 L L L L L
0 20 40 60 80 100 120
Time(ms)
(d) roadNet-CA
35 A
30k 3900%,1847ms | |

0 100 200 300 400 500 600 700 800
Time(ms)

(f) USRD

The detailed experimental results are plotted in Figs. 4
and 5, which show how the RMSE reduces over time for all
algorithms on each of the datasets. For the same algorithm,
we plot the results under the two different graph represen-
tation models in the same figure, so as to see the benefit of

WU ETAL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING

550 7

450 -

400

P

350

RMSE/T(%)

250 x
200+ .
150
100+ X]
x x X
50 b
o 3\9‘?‘%* S— — e e e
0 50 100 150 200 250
Time(s)
(a) Twitter
90 75
8o A 1
- 10%,2465
“a
70t v p
o
60 g ‘a 1

20

1o x 1
"X
x « N . . .
. P - . " - . N
0 20 40 60 80 100 120 140 160 180 200
Time(s)
(c) WebUK

Fig. 5. Experimental results (on data sets that do not fit in main memory).

using the more compact edge array model. The version for
the adjacency list model is shown in dashed lines, while the
one for the edge array model in solid lines. Note that the
vertex sampling algorithm is the same for both models, so
there is only one line for this algorithm.l Particularly, we
present two more figures: Figs. 5b and 5d to show the
details at twisted line part.

Note that since the wedge sampling algorithm needs
an O(n)-time preprocessing step, it has a “delayed start”
compared with other algorithms. Furthermore, it needs
extra O(n) working space to sample the wedges, while
the other algorithms only need space to hold the neigh-
bor list of the sampled vertex or edge.

5.4 Experimental Observations

From our experimental results on a variety of graphs, we
make the following observations.

1. Strictly speaking, the implementation of the vertex sampling algo-
rithm is still slightly different in the two models, as one uses list
while the other uses vector to store the neighbor lists, and traversing
a vector is slightly faster than in a 1ist. But the difference is very
small, hence neglected.

2021

=
£
w 10
[}
=
o
sl
sl
nn
oL
o s s s s s
0 50 100 150 200 250
Time(s)
(b) Twitter (only showing the competitive algorithms)
15
s
&
£
o
[}
=
o
051
o s s s s s s s s s
0 20 40 60 80 100 120 140 160 180 200

Time(s)

(d) WebUK (only showing the competitive algorithms)

1) For the same algorithm, the edge array model always
offers better performance than the adjacency list
model, and the difference can be large on some
graphs.

2) Edge sampling and wedge sampling are generally
the two best-performing algorithms, with quite sta-
ble performance across all data sets. Recall that, how-
ever, wedge sampling has a delayed start and needs
O(n) working space.

3) Vertex sampling and triangle sampling perform rea-
sonably well on some graphs, but could be a lot
worse on other graphs.

6 ANALYSIS

In this section, we try to substantiate the experimental
observations made above, through an analytical comparison
of these algorithms. The variances and running times of all
the algorithms are summarized in Table 4. We have omitted
the —T? term from all the variances, which is common to all
algorithms, and is insignificant compared with the leading
term. The expected running time per sampling step, strictly
speaking, should be in “big-Oh” notation. But since all the

2022

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

TABLE 4
Comparison of All Algorithms

Model Method Variance Expected running time per sampling step
Both Vertex sampling 23 A) is~, d(v)*
Edge sampling s~ Ae)’ L3 d(v)?
Edge array Triangle sampling ny.)\()(d(u) 4 d(v)) Ly~ ”J;’ l”
Wedge sampling TWTy 1087 + 15 2 (u0). () mln(d(u)7 d(w))
Ed li (e) (] (u)d(v) (d(u)+d(v
. . ge samp lng 9 ZF d(u)+d 1() rll E (1 u+(i (v)
Adjacency list Triangle sampling 152 Ale)d(u)d(v) 1 Z i
d(
Wedge sampling LW, Lo+ X oy)+ min(d() d(w)

The —T2 term is omitted from all the variances, which is common to all algorithms.

algorithms perform almost the same type of operations
(random sampling followed by hash join between neighbor
lists), the hidden constants are very close. Thus we drop the
big-Oh and consider these as reasonably good approxima-
tions of actual running times.

6.1 Variance After a Certain Amount of Time
Table 4 has listed, for each algorithm, the variance of
expected running time of a single sampling step. These,
however, do not yet tell us the actual performance of the
algorithms. What if an algorithm has a small variance per
sampling step but each sampling step takes more time? Ulti-
mately, what we care is the variance of the final estimator,
which is the average of all the sampling steps taken, after a
certain amount of time, say t. If each sampling step takes a
fixed amount of time 7', then we know that there must be
k = t/T sampling steps after time ¢, and the final variance is
simply the variance of one sampling step divided by k.
However, in our case T is a random variable, which means
that the number of sampling steps k is also a random vari-
able, and this introduces some complication.

Let X, be the estimator yielded in the ith sampling step.
The final estimator after time ¢ is thus %ZL X;. The follow-
ing lemma derives its variance.

Proposition 7. The variance of the estimator after time ¢ is
Var [% sk X] — Var[X,|E[T]/t.

Proof. Note that this is a sum of a random number of ran-
dom variables, so we cannot directly break it up as in
standard variance analysis. We will have to do a condi-
tioning on k, and then use the law of total variance:

|

Var %l_ile k|| + Var
= E[Var[X,]/k] + Var|[T3)
= Var[X|JE[T/t] +0

= Var[X,|E[T]/t.

=E

1 k
E{EZXL.

i=1

a

Proposition 7 has two implications. First, given the same
amount of time ¢, the performance of the algorithm is

determined by Var[X;]E[T]. So it is sufficient to use the term
Var[X,]E[T] for the comparison of different algorithms.
Second, it also gives us a condition of sublinearity. More
precisely, suppose we aim at a relative error of ¢, ie,
Var[X,|E[T]/t = (¢T3)?, then this means that ¢ = Var[X)]
E[T]/(eT3)*. By plugging in the Var[X;] and E[T] formulas
of various algorithms from Table 4, we can analyze their
running times for achieving an e-approximation for certain
classes of graphs. The algorithm can be considered as taking
sublinear time if t = o(n + m).

6.2 Sublinearity
Below, we give some examples on how to check the subli-
nearity of various algorithms for certain classes of graphs.
To start with, consider a complete graph, which has
m = n? edges and T3 = n® triangles (we again omit the big-
Oh for notational simplicity). Then the edge sampling algo-
rithm (which is the algorithm we advocate the most) in the
edge array model has running time

Var[X,|E[T]
(€T3)2

_ Do Me)? > d(v)? n*n?on-n? n

2216 2216 22

which is o(m +n) = o(n’

rithm as long as e > n /2,
On the other, vertex sampling is not a sublinear-time

algorithm on a complete graph, since its running time is

%). So it is a sublinear-time algo-

Var[X;]E[T]

LA et enen?
(ET3)2

£2n6 e2nb g2’

Next, consider a triangulation graph of constant degree,
which is a common type of sparse graphs with many trian-
gles. In a triangulation, we have m =n and T3 = n. For
edge sampling, we have

Var[X;]E[T)]
(eT3)*

S M S, dw)?

e2n?

n-1%2on-12 1

e2n? g2’

This is a very nice result as it indicates that its running time
is independentof the graph size, and is only determined by
the desired error level.

The vertex sampling on a planar triangulation graph can
do as well, since we similarly have

WU ET AL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING 2023
TABLE 5
Comparison of Var[X,|E[T]/(T3)? (¢ = 0.5)

Model Method Amazon Youtube LJ roadNet-CA Skitter USRD twitter WebUK
Both Vertex sampling ~ 4.12 x 10> 494 x 107 7.05x 105 391 x 10° 245 x 10° 212 x 10® 1.05 x 10° 6.58 x 107
Edgesampling 193 x 10> 721 x 10" 9.6 x 10*° 414 x 10> 7.08x 10° 5.01 x 10> 118 x 10° 1.15 x 10*
Edge array Triangle sampling 1.63 x 10> 7.53 x 10* 528 x 10° 6.14 x 10? 8.0 x 10* 509 x 10> 266 x 10° 636 x 10°
Wedge sampling 5.99 x 10° 278 x 10 391 x 10° 283 x 10° 470 x 10* 5.64 x 10° 149 x 10° 9.10 x 10°
)) Edgesampling ~ 1.08 x 10° 4.64 x 107 1.68 x 10° 9.88x 10> 724 x 10° 124 x 105 475 x 10° 1.29 x 106
Adjacency list Triangle sampling 3.30 x 10° 527 x 10 340 x 10° 334 x 10° 144 x 10° 392 x 10° 235x 10" 1.50 x 10°
Wedge sampling ~ 1.49 x 10* 755 x 10° 507 x 10* 339 x 10® 1.35x 107 6.13 x 10> 2.86 x 10° 1.40 x 10*

VarX\JE[T] _ Y, A0’ d(®)° _n-12-n-12 1
(€T3)2

e?n? gn? g%’

Actually, later we will prove a strong result that no mat-
ter what the graph is, edge sampling will always do at least
as well as vertex sampling (cf. Proposition 8).

In general, however, it is difficult to check sublinearity
for an arbitrary graph, and the analyses above rely on some
fairly strong properties of the class of graphs under investi-
gation. On the other hand, we have computed the term
Var[X,|E[T]/(eTs)? for the 8 real graphs used in our experi-
mental study (see Table 5) for the edge sampling algorithm,
which can serve as its empirical evidence of sublinearity for
typical real-world graphs.

6.3 Edge Array versus Adjacency List

Our first experimental observation was that, for the same
algorithm, the edge array model always offers better perfor-
mance than the adjacency list model. Practically, this is
because the edge array model is more compact. It uses
arrays to store the neighbor lists, which allows more cache-
efficient traversal of neighbors. On the other hand, the adja-
cency list model uses linked lists to store the neighbor lists,
which is less cache-efficient as it involves pointer-jumping
during traversal.

Below we also provide theoretical justification on why
the edge array model is better. As argued above, we can
compare Var[X;]E[T] for the same algorithm under the two
models. The comparison for the wedge sampling algorithm
is straightforward: Var[X;] is the same under the two mod-
els, while E[T7] is strictly larger in the adjacency list model.

The comparison for the edge sampling algorithm is more
subtle. In fact, there is no strict winner in all cases. Consider
the two extreme examples in Figs. 6 and 7.

From the analytical results in Table 4, we know that

Var[X]E[T] =3, Ae)? >, d(v)* in the edge array model,

Me)2d(u)d(v d(u)+d(v)? .
Var[x,|E[T] = 3, Aie 57 Weedl in

/\/\/

— 1

and the

\

Fig. 6. A graph that consists of a complete graph K, and n® single
edges.

adjacency list model (ignoring the common coefficient $). For
the graph in Fig. 6, Var[X,]E[T] = @(n") in the edge array
model while it is ®(n®) in the adjacency list mode. However,
for the graph in Fig. 7, Var[X1]E[T] = ©(n?) in the edge array
model while it is © (n?) in the adjacency list model.

The above two extreme examples imply that it is not pos-
sible to prove that one model is always better than the other.
Our experimental results, on the other hand, seem to have
suggested that the edge array model is better than the adja-
cency list model, meaning that real graphs are more similar
to Fig. 6 than to Fig. 7. Indeed, on the class of graphs we
have experimented with (social networks, relationship
between products), vertices tend to form small tightly con-
nected clusters, while bipartite graphs are rare. This in turn
means that more triangles tend to occur around high-degree
vertices (bipartite graphs exactly lack this property). If we
assume that for each edge e = (u,v), A(e) is proportional to
d(u) and d(v), then we can prove that the edge array model
is indeed better. Suppose d(u)/A(e) = d(v)/A(e) = c¢. Then
for the edge array model,

Var[X,JE[T] =Y " Me)* Y (d(u) + d(v))
~ed e Y Ae).

For the adjacency list model; we have
Var[Xj|E[T] ~ Z cAe)? Z l=cm Z Ae)®.
By Chebyshev’s sum inequality, we have

DoAY Ae) <m > Ae),

so Var[X;]E[T] is always smaller in the edge array model.

The triangle sampling algorithm can be similarly ana-
lyzed. Again, for the graph in Fig. 6, the edge array model is
better than the adjacency list model by an order of ®(n), but
is worse by an order of ®(n) for the graph in Fig. 7. Still,
with the assumption that A(e) is proportional to d(u) and
d(v), we can show that the edge array model is better.

Fig. 7. A graph that consists of a complete bipartite graph K, ,, and one
triangle.

2024

AV
DVAN

Fig. 8. Vertex sampling and triangle sampling.

Therefore, we can conclude that for all the algorithms,
the edge array model offers better performance than the
adjacency list model, for most real-world graphs where
more triangles tend to occur around high-degree vertices.
The edge array model is also a more compact and more
cache-efficient graph representation. Thus, we focus on the
edge array model for the rest of the analysis.

6.4 Edge Sampling

Our experimental results suggest that edge sampling is
always one of the best performing algorithms across all the
data sets, with no need for preprocessing and very little
working space. In this section, we will justify this claim
analytically.

6.4.1 Comparison with Vertex Sampling

From Table 4, the comparison between edge sampling and
vertex sampling in terms of Var[X;]|E[T] boils down to com-

paring >, Me)? and > A(v)®. We have the following fairly
strong result, which holds for all graphs.

Proposition 8. For any graph G, >", A(e)* < 3, A(v)*.
%Zue]\’(r})\(’U,,

Proof. First, observe that \(v) =

have
=23
- iz(

v

v). So we

Z)\uv)2

ueN (v

Z)\uu

ueN (v

+ Z A, v)A vw))

u#weN (v)

ObViOUSlY’ Z?)GV ZUEN(N))\(’LL, U)Q =2 ZeEE)\(6)2' The sec-
ondterm > , >°, e n) A, V)A(v, w) can be rewritten as

e=(u,v) peN (u)—{v} geEN (v)—

Ap,u) +

Please see Fig. 8. Any triangle counted in A(e = (u,v))
is also counted in some A(p,u) for some p € N(u) — {v},
SO D en(u—{op A) = Ale). Similarly, >° v Ag,
v) > A(e). Thus, the second term >, 37 e n) Alu, v)A
(v,w)} > 23", A?(e). The proof thus completes after com-
bining the two parts. O

Therefore, we conclude that edge sampling is better than
vertex sampling on any graph.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

Fig. 9. A graph that consists of n triangles sharing a single edge.

6.4.2 Comparison with Triangle Sampling

Unfortunately, it is not possible to show that edge sampling is
always better than triangle sampling. In fact, on the extreme
example in Fig. 9, Var[X; |E[T] = ©(n*) for edge sampling but
Var[X,]E[T] = ©(n?) for triangle sampling. This is actually
quite intuitive. This graph has one crucial edge that is shared
by all the triangles. Edge sampling has to sample that edge in
order to find any triangles, which happens with probability
O(1/n). On the other hand, the triangle sampling algorithm
can always find triangles no matter what vertex is sampled.

However, if we assume that the degrees of neighboring
vertices do not differ too much (within a constant factor),
we can indeed show that edge sampling is always better.
Under this assumption, the E[7] part of both algorithms are
roughly the same, both being 37, d(v)* = 3, d(u) + d(v).
For the Var[X] part, compared with edge sampling, triangle
sampling replaces one A(e) term with d(u) + d(v), which is
always greater than A(e). This actually partially explains
why triangle sampling performs much worse on the road
network graphs (roadNet-CA, USRD), which have rela-
tively few triangles, so A(e) is much smaller than
d(u) + d(v). On the other hand, when neighboring triangles
have very different degrees, such as the extreme example in
Fig. 9, triangle sampling can perform better. The real graph
Skitter also has similar properties, so triangle sampling per-
forms relatively better on it than on other graphs.

6.5 Wedge Sampling

The performance of wedge sampling is characterized by
parameters different from those for other algorithms, and
the formulas for Var[X;] and E[T] are also quite different
from others. Making things even worse, as wedge sampling
requires an O(n)-time preprocessing step, the Var[X,|E[T]
argument used earlier cannot be applied anymore. Thus,
unfortunately we cannot have a good analytical comparison
between this algorithm and the others. Experimentally, its
performance appears to be similar to that of edge sampling,
albeit with a delayed start due to the preprocessing. Fur-
thermore, it requires O(n) working space, while other algo-
rithms require very small working space.

6.6 A Recent Theoretical Result

Very recently, Eden et al. [8] gave an algorithm for approx1—
mating the number of triangles in O(poly(s~'logn)(n/ T1 Sy
min{m, m*?/T3})) time, which is sublinear when T3 > \/m.
Theoretically speaking, this result is much more elegant as
it only depends on T3 (other than the input size), whereas
the bounds of our algorithms are a lot messier. Still, this
result does not subsume ours. For example, on triangulation
graphs, we showed previously that edge sampling has run-
ning time O(1/¢?), while the Eden et al. bound is
O(poly(e~'log n)n?/3).

WU ETAL.: COUNTING TRIANGLES IN LARGE GRAPHS BY RANDOM SAMPLING

TABLE 6
Running Times of the Eden et al. Algorithm
Dataset Time (s) Dataset Time (s)
Amazon 39 LiveJournal(L]) 74
Youtube 140 USRD 3,448
roadNet-CA 183 Twitter 4,057
Skitter 55 WebUK > 259,200

We have also examined the practicality of the Eden et al.
algorithm. After carefully analyzing their algorithm, we
have derived the poly factor in the time complexity, and the
full running time is O(c~* log®n loglog n(n/Tgl/3 + min{m,
m3/?/T3})). On a typical graph, e.g., the Twitter data set,
which has (roughly) n =10",m = 10°, T3 = 10!°, with an
€ = 10 percent error, this running time is on the order of
10'2, which is actually much larger than the input size.

To check whether this large running time might have
been due to the slack in the analysis, we have also imple-
mented the algorithm (the “simpler” version as described in
[36]). Note that, besides listing all neighbors of a given ver-
tex, this algorithm also requires to check the existence of an
edge (u,v) for a given u and v, which is not supported
directly by the edge array or the edge list representation. So
we built hash tables on the neighbor list of every vertex (the
time to build the hash tables is not included in the reported
times). This roughly doubles the storage cost of the graph.
We set ¢ = 10 percent and ran the algorithm on the data
sets, and the running times are reported in Table 6. We see
that it is even slower than the exact counting algorithms, as
reported in Table 2. Therefore, we conclude that this algo-
rithm is of theoretical interests only.

7 CONCLUSION

In this paper, we have provided a detailed experimental
and analytical comparison of different approaches to the
approximate triangle counting problem by random sam-
pling. Our results suggest that edge sampling is a good can-
didate for a variety of graphs, with both experimental and
analytical evidence. Wedge sampling is also quite competi-
tive, if a delayed start is tolerable, although a good analyti-
cal understanding of its performance remains elusive.

A very interesting problem to be further investigated is
to see if there are better techniques on sampling from disk-
resident graph data. In this paper we have simply relied on
the virtual memory system to handle graphs that do not fit
in memory. This essentially means that upon a page fault,
the algorithm will go to disk and fetch the page contain-
ing the sampled vertex or edge, but will not utilize the rest
of the data on that page (unless some other data is luckily
sampled again). Ideally, sampling from disk-resident data
should be block-based. However, the problem is that data
from the same block may not be independent. In the worst
case, if the data within one block are highly correlated, then
using all data from the sampled block is the same as using
just one record from it. For a linear array, there has been
work on how to better exploit block-based sampling [37],
[38]. However, as graph data is much more complicated
than a linear array, the problem of block-based sampling on
graphs is more challenging but certainly very interesting.

2025

ACKNOWLEDGMENTS

This work is supported by HKRGC under grants GRF-
621413, GRF-16211614, GRF-16200415, and by Huawei
Research Fund.

REFERENCES

[1] D.]. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” Nature, vol. 393, no. 6684, pp. 440442, 1998.

[2] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,”
Social Netw., vol. 31, no. 2, pp. 155-163, 2009.

[3] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hid-
den thematic layers in the world wide web,” Proc. Nat. Academy
Sci., vol. 99, no. 9, pp. 5825-5829, 2002.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive
graphs,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2008, pp. 16-24.

[5] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips,
“Tolerating the community detection resolution limit with edge
weighting,” Phys. Rev. E, vol. 83, no. 5, p. 056119, 2011.

[6] A.Itai and M. Rodeh, “Finding a minimum circuit in a graph,” in
Proc. Annu. ACM Symp. Theory Comput., 1977, pp. 1-10.

[7]1 X.Hu, Y. Tao, and C.-W. Chung, “Massive graph triangulation,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 325-336.

[8] T. Eden, A. Levi, D. Ron, and C. Seshadhri, “Approximately
counting triangles in sublinear time,” in Proc. IEEE 56th Annu.
Symp. Found. Comput. Sci., 2015, pp. 614-633.

[9] M. Latapy, “Main-memory triangle computations for very large
(sparse (power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3,
pp. 458-473, 2008.

[10] T.Schank and D. Wagner, “Finding, counting and listing all trian-
gles in large graphs, an experimental study,” in Proc. 4th Int. Conf.
Exp. Efficient Algorithms, 2005, pp. 606-609.

[11] X. Hu, M. Qiao, and Y. Tao, “Join dependency testing, Loomis-
Whitney join, and triangle enumeration,” in Proc. 34th ACM Symp.
Principles Database Syst., 2015, pp. 291-301.

[12] S.Chu and J. Cheng, “Triangle listing in massive networks,” ACM
Trans. Knowl. Discovery Data, vol. 6, no. 4, p. 17, 2012.

[13] R. Dementiev, “Algorithm engineering for large data sets hard-
ware, software, algorithms,” Ph.D. thesis, Saarland Univ., Saar-
brucken, Germany, 2006.

[14] B. Menegola, “An external memory algorithm for listing tri-
angles,” Universidade Federal do Rio Grande do Sul, 2010.

[15] R.Pagh and F. Silvestri, “The input/output complexity of triangle
enumeration,” in Proc. 33rd ACM Symp. Principles Database Syst.,
2014, pp. 224-233.

[16] R.Pagh and C. E. Tsourakakis, “Colorful triangle counting and a
MapReduce implementation,” Inform. Process. Lett., vol. 112, no. 7,
pp. 277-281, 2012.

[17] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh, “MapReduce trian-
gle enumeration with guarantees,” in ACM Conf. Inf. Knowl. Man-
age., 2014, pp. 1739-1748.

[18] S.Suriand S. Vassilvitskii, “Counting triangles and the curse of the
lastreducer,” in Proc. Int. Conf. World Wide Web, 2011, pp. 607-614.

[19] J.-H. Yoon and S.-R. Kim, “Improved sampling for triangle count-
ing with MapReduce,” Convergence Hybrid Inform. Technol.,
vol. 6935, pp. 685-689, 2011.

[20] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman, “Upper
and lower bounds on the cost of a map-reduce computation,”
Proc. VLDB Endowment, vol. 6, no. 4, pp. 277-288, 2013.

[21] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos,
“Doulion: counting triangles in massive graphs with a coin,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009,
pp. 837-846.

[22] C. Seshadhri, A. Pinar, and T. G. Kolda, “Triadic measures on
graphs: the power of wedge sampling,” in Proc. SIAM Conf. Data
Mining, 2013, pp. 10-18.

[23] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis,
“Efficient triangle counting in large graphs via degree-based ver-
tex partitioning,” Internet Math., vol. 8, no. 1-2, pp. 161-185, 2012.

[24] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in
streaming algorithms, with an application to counting triangles in
graphs,” in Proc. Annu. ACM-SIAM Symp. Discrete Algorithm,
2002, pp. 623-632.

2026

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.8, AUGUST 2016

H. Jowhari and M. Ghodsi, “New streaming algorithms for count-
ing triangles in graphs,” in Proc. 11th Annu. Int. Conf. Comput.
Combinatorics, 2005, pp. 710-716.

L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela,
and C. Sohler, “Counting triangles in data streams,” in Proc. ACM
Symp. Principles Database Syst., 2006, pp. 253-262.

D. M. Kane, K. Mehlhorn, T. Sauerwald, and H. Sun, “Counting
arbitrary subgraphs in data streams,” in Proc. 39th Int. Colloquium
Conf. Automata, Languages, Program., 2012, pp. 598-609.

A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu,
“Counting and sampling triangles from a graph stream,” Proc.
VLDB Endowment, vol. 6, no. 14, pp. 1870-1881, 2013.

M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming
algorithm for triangle counting using the birthday paradox,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp- 589-597.

G. Cormode and H. Jowhari, “A second look at counting triangles
in graph streams,” Theoretical Comput. Sci., vol. 552, pp. 44-51,
2014.

M. Gonen, D. Ron, and Y. Shavitt, “Counting stars and other small
subgraphs in sublinear-time,” SIAM |. Discrete Math., vol. 25, no. 3,
pp- 1365-1411, 2011.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 135-146.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine
learning,” arXiv:1006.4990, 2010.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” in Proc. Annu. ACM
Symp. Theory Comput., 1998, pp. 327-336.

H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. Int. Conf. World Wide Web,
2010, pp. 591-600.

C. Seshadhri, “A simpler sublinear algorithm for approximating
the triangle count,” in arXiv:1505.01927, 2015.

S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of block-
level sampling in statistics estimation,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2004, pp. 287-298.

A. Andoni, P. Indyk, K. Onak, and R. Rubinfeld, “External
sampling,” in Proc. 36th Int. Colloquium Automata, Languages Pro-
gramming, 2009, pp. 83-94.

Bin Wu received the bachelor's degree from
Fudan University in 2012. He is currently working
toward the PhD degree in the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology.

Ke Yi received the BE degree from Tsinghua Uni-
versity and the PhD degree from Duke University,
in 2001 and 2006, respectively, both in computer
science. He is now an associate professor in the
Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Tech-
nology (HKUST). Before joining HKUST, he was
a researcher in the database department at
AT&T Labs. His research focus is on big data
algorithms and their applications in database sys-
tems.

Zhenguo Li received the BS and MS degrees
from the Department of Mathematics, Peking
University, in 2002 and 2005, respectively, and
the PhD degree from the Department of Informa-
tion Engineering, Chinese University of Hong
Kong, in 2008. He is currently a researcher in
Huawei Noahs Ark Lab at Hong Kong. He was an
associate research scientist in the Department of
Electrical Engineering, Columbia University. His
research interests include machine learning and
artificial intelligence.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

