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Abstract

This paper aims to introduce the robustness against noise
into the spectral clustering algorithm. First, we propose a
warping model to map the data into a new space on the
basis of regularization. During the warping, each point
spreads smoothly its spatial information to other points. Af-
ter the warping, empirical studies show that the clusters be-
come relatively compact and well separated, including the
noise cluster that is formed by the noise points. In this new
space, the number of clusters can be estimated by eigen-
value analysis. We further apply the spectral mapping to
the data to obtain a low-dimensional data representation.
Finally, the K-means algorithm is used to perform cluster-
ing. The proposed method is superior to previous spectral
clustering methods in that (i) it is robust against noise be-
cause the noise points are grouped into one new cluster; (ii)
the number of clusters and the parameters of the algorithm
are determined automatically. Experimental results on syn-
thetic and real data have demonstrated this superiority.

1. Introduction

Clustering is an important research topic in computer vi-
sion and machine learning. Many algorithms have been de-
veloped with different motivations. Recently, spectral clus-
tering has been proposed [9] [8] and attracted much atten-
tion [6], [15], [16], [1], [4], [17], [7]. In spectral clustering,
one makes use of the eigenvectors of the normalized graph
Laplacian to reveal the cluster structures of the data. Two
notable methods came from Shi and Malik [9] and Ng et
al. [8]. Impressively good results have been demonstrated
in spectral clustering and it is considered as a most promis-
ing clustering technique [14]. In addition, many theoretical
studies have been done on spectral clustering with relations
to random walks, normalized cut, matrix perturbation the-
ory, and diffusion map. However, several main issues re-
main to be solved in the framework of spectral clustering:
(i) how to choose the scaling parameter automatically; (ii)

how to find the number of clusters automatically; (iii) how
to be robust against noise, or furthermore, how to recognize
the noise so as to remove them; and (iv) how to incorporate
available side information to improve the clustering perfor-
mance.
Most recently, Zelnik-Manor and Perona [17] improved

Ng et al.’s spectral clustering algorithm by addressing the
first two issues. They used a local scale scheme to com-
pute the affinity matrix and exploited the structure of the
eigenvectors of the normalized graph Laplacian to infer the
number of clusters. This method works well on a noise-free
data set, but it has two main disadvantages. First, the esti-
mation of the number of clusters may get trapped into local
minima, giving wrong results. Second, it fails to obtain sat-
isfactory clustering results when significant noise is present
even with the correct number of clusters manually set.
In this paper, we focus on issues (ii) and (iii). Specif-

ically, we consider the problem of robust clustering where
the data may contain significant noise, and the number of
clusters is unknown. We also present a simple strategy to
determine the parameters including the scaling parameters
automatically.
Real-world data often contain noise. This poses chal-

lenges to the clustering community: (i) how to obtain cor-
rect clustering from noisy data; or further, (ii) how to obtain
correct clustering from noisy data and remove the noise.
While the former considers only data partition regardless of
the noise, the latter performs both clustering and denoising
simultaneously. In other words, the former outputs noisy
clusters and the latter gives noise-free clusters. Obviously,
the latter is more challenging and of more practical signif-
icance. Indeed, most of the existing clustering algorithms
including the spectral clustering often fail even in the for-
mer problem, let alone the latter, due to the difficulty that
the real data distribution is masked and distorted by noise.
In this paper, we consider the latter clustering problem,

and at the same time, determine the number of clusters and
the parameters of the algorithm automatically. Our work is
motivated by the transductive inference in [19], [20], and
[18] on semi-supervised learning and the work in [10] and



[21] on graph kernels, and built upon the spectral clustering
in [8]. We find that the main reason leading to the failure of
the spectral clustering on noisy data is that the block struc-
ture of the affinity matrix is destroyed by noise. So an intu-
itive and natural way to this tough clustering problem is to
reshape the noisy data set so that the block structure of the
new affinity matrix can be recovered, followed by the spec-
tral clustering. We propose a data warping model to map
the data into a new space, where the number of clusters is
estimated and then the spectral clustering is applied.

2. Spectral Clustering and Graph Kernels
In this section, we briefly review the spectral clustering

in [8] and the work in [10] and [21] on graph kernels. Let
G = (V,W ) be an undirected weighted graph with the set
of nodes V consisting of the given data points {xi ∈ Rd|i =
1, 2, · · · , n}, and W = [wij ]n×n a symmetric matrix with
wij being the weight (affinity) of the edge connecting nodes
xi and xj . Commonly, the affinities wij are chosen as

wij =

½
e−kxi−xjk

2/2σ2 i 6= j
0 i = j

, (1)

where σ is a scaling parameter. The graph Laplacian L of
G is defined as L = I −W , where I is the identity matrix,
and the normalized graph Laplacian L̄ of G is defined as

L̄ = D−1/2LD−1/2 = I −D−1/2WD−1/2, (2)

where D = [dij ]n×n is a diagonal matrix with dii =P
j wij . W is called the affinity matrix, and W̄ =

D−1/2WD−1/2 the normalized affinity matrix.
Let {(νi, λi)|i = 1, 2, · · · , n} be the eigensystem of L̄

where λ1 ≤ λ2 ≤ · · · ≤ λn. Let k be the number of clus-
ters and X = [ν1,ν2, · · · ,νk]. Each row of X = [νij ]n×k
is further normalized to have unit length, resulting in a
new matrix X̄ = [ν̄ij ]n×k with ν̄ij = νij/(

Pk
j=1 ν

2
ij)

1/2.
Then the low-dimensional data representation in [8] can be
viewed as a mapping

ϕL̄ : V −→ Rd, xi 7→ X̄(i, ·)T , (3)

where X̄(i, ·) denotes the ith row vector of X̄ . We call ϕL̄
the spectral mapping or spectral embedding with respect
to L̄. The spectral clustering then applies the K-means to
this representation. The success of the spectral clustering
is due to the fact that after the spectral mapping, the block
structure of the data is amplified to a great extent.
Let L2(V ) denote the Hilbert space of real-valued func-

tions f : V → R, which assigns a real value f(xi) to
a node xi ∈ V , endowed with the standard inner prod-
uct. A function f can also be represented as a vector
f = (f1, f2, · · · , fn)T where fi = f(xi), i = 1, 2, · · · , n.
The normalized graph Laplacian L̄ can be naturally viewed

as a linear operator L̄ : L2(V ) → L2(V ) with (L̄f)i =
fi −

P
j

wij√
diidjj

fj and

< f , L̄f >=
1

2

nX
i,j=1

wij(
fi√
dii
− fjp

djj
)2 ≥ 0, (4)

where the inequality holds because the entries of W are
non-negative. In (4), the semi-norm < f , L̄f > on L2(V )
induced by L̄ penalizes the large change of the function be-
tween two nodes linked with a large weight, implying that
it may serve as a smoothing regularizer.
The work in [10] and [21] generalizes L̄ to a family of

regularization operators:

L̄r =
nX
i=1

r(λi)νiν
T
i , (5)

where r(·) is a real-valued function and should be chosen
such that (i) r(·) is non-negative in [0, 2] since L̄r is required
to be positive semi-definite; (ii) r(·) is non-decreasing in
[0, 2] since rather uneven functions on the graph should be
penalized strongly.
LetKr = L̄−1r where L̄−1r denotes the inverse of L̄r if it

is non-singular or the pseudo-inverse of L̄r if it is singular.
ThenKr is exactly the reproducing kernel of a Hilbert space
consisting of all the images of the functions in L2(V ) under
the linear operator L̄r, endowed with the inner product
< f ,g >Kr :=< f , L̄rg >, f ,g ∈ L2(V ) [10]. Kr is called
a graph kernel with respect to r(·).
This construction of graph kernels includes some previ-

ously well-known kernels as special cases. For instance,
when r(λ) = 1 + t2λ, Kr = (I + t2L̄)−1, which is
the regularized Laplacian kernel [19]; when r(λ) = e

t2

2 λ,
Kr = e−

t2

2 L̄, which is the diffusion kernel [5]; when
r(λ) = (a − λ)−p with a > 2, Kr = (aI − L̄)p, which
is the p-step random walk kernel [2]. If r(λ) = λ, L̄r turns
out to be the normalized graph Laplacian L̄ andKr = L−1.
The algorithmic flows of the spectral clustering in [8]

is illustrated in Fig. 1 where it consists of modules 1, 2,
3, 7, and 8. Our work improves the spectral clustering by
removing the module 3 and introducing modules 4, 5, and 6,
which are presented in Sections 3, 4, and 5, respectively. In
module 4, a data warping model is proposed to map the data
into a new space where a new data graph is built (module 5)
and the number of clusters is estimated (module 6).

3. Data Warping
Given a data set of n points V = {x1,x2, · · · ,xn}, xi ∈

Rd, i = 1, 2, · · · , n, we want to learn a mapping f to map
V into Rn,

f : xi 7→ yi ∈ Rn, i = 1, 2, · · · , n, (6)
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Figure 1. The algorithmic flows of the spectral clustering in [8] and our algorithm. The spectral clustering consists of modules 1, 2, 3, 7,
and 8, while our algorithm comprises modules 1, 2, 4, 5, 6, 7, and 8.

such that each cluster of an arbitrary shape is mapped as
a relatively compact cluster, the noise points are mapped
also to form a relatively compact cluster, and different clus-
ters become well separated. For easy understanding, we
also consider yi and yj are connected with a weight that
equals wij , the weight of the edge connecting xi and xj in
G, i, j = 1, 2, · · · , n. To this end, we consider the follow-
ing regularization framework:

Ω(Y ) = kY − Ik2F + αtr(Y TK−1r Y ), (7)

where I is the identity matrix, k · kF denotes the Frobe-
nious norm of a matrix1, tr(·) denotes the trace of a ma-
trix, α is a positive regularization parameter controlling the
trade-off between the two terms, Kr is some graph kernel
as discussed in the last section,K−1r denotes the inverse of
Kr if it is non-singular or the pseudo-inverse of Kr if it is
singular, and Y = [y1,y2, · · · ,yn]T which is a representa-
tion of the data after the warping that we need to find. The
minimization of Ω(Y ) to obtain Y can be considered as a
transductive process, called the transductive warping:

Y ∗ = argmin
Y
Ω(Y ). (8)

Next we give insight into this regularization functional.
Let ei ∈ Rn be a vector with the ith entry being 1 and

0’s elsewhere, and zi be the ith column vector of Y . Then
(7) becomes

Ω(Y ) =
nX
i=1

¡kzi − eik2 + α < zi, L̄rzi >
¢
. (9)

Therefore, by the construction of L̄r as described in (5),
the second term in (7) actually acts as a regularizer that
encourages smoothness on the yi’s that are strongly con-
nected (i.e., connected with larger weights), which is ex-
plained as follows. In fact, zi = (y1i, y2i, · · · , yni)T con-
sists of the ith components (i.e., the ith coordinates in Rn)
of y1,y2, · · · ,yn. If the weight wkl between yk and yl is
large, yki and yli will be forced close to each other, which
is similar to the case in (4). In other words, zi should
not change too much between yki and yli if yk and yl are

1The Frobenious norm of a matrixQ = [qij ] is kQk2F =
P

ij q
2
ij .

strongly connected. In the ideal case, the points in the same
cluster in Rd are warped into a single point in Rn, and dif-
ferent clusters are warped into different points.
Based on (9), the transductive warping can be interpreted

in more detail as follows. First, xi is mapped to a vec-
tor yi = I(i, ·)T in Rn (see the first term in (7)), where
I(i, ·) denotes the ith row vector of the identity matrix I,
and I(i, ·)T , i = 1, · · · , n, form the canonical coordinate
system of Rn. Then the ith component of yi, which is ini-
tially 1, is spreading smoothly to the ith components of all
yj , j = 1, 2, · · · , n, j 6= i, which are initially 0’s. In this
sense, the two terms in (7) are called the fitting term and the
smoothness term, respectively. After the transductive warp-
ing, the second term ensures that the points sharing the same
cluster with the ith point will have relatively large and sim-
ilar values for their ith components, while other points will
have their ith components close to zero, for i = 1, 2, · · · , n.
Consequently, these clusters become compact and well sep-
arated from each other, and they are not close to the origin
in Rn compared with the noise cluster that is formed by the
noise points.
Due to randomly distributed nature of noise points inRd,

the majority of the edges connected to each noise point inG
are weak (i.e., the majority of the weights of these edges are
small). After the transductive warping, most of the coordi-
nates of a noise point in Rn are thus small, and the noise
points are close to the origin, forming a compact cluster.
We call it the noise cluster, and in contrast, we call other
clusters the ordinary clusters.
It is easy to show that the functional (7) is strictly convex,

implying that only one minimum exists. Now we find this
minimum in the following. Taking the derivative of Ω(Y )
with respect to Y and setting it to zero yields,

∂Ω(Y )

∂Y
= 2(Y − I) + 2αK−1r Y = 0, (10)

which results in (I + αK−1r )Y = I. Since I + αK−1r is
nonsingular, we have the minimum of Ω(Y ):

Y ∗ = (I + αK−1r )−1. (11)

Then, the transductive warping actually results in this map-
ping:

φKr : V → Rn, xi 7→ Ȳ ∗(i, ·)T , (12)



where Ȳ ∗ is a matrix obtained from Y ∗ by scaling linearly
the features in each dimension (i.e., each column of Y ∗)
onto [0, 1], and Ȳ ∗(i, ·) denotes the ith row vector of Ȳ ∗.
Comparing (12) and (3), we can see the difference between
φKr and ϕL̄. The spectral mapping maps xi to a space of
dimension equal to the number of clusters, while the trans-
ductive warping maps xi to a space of dimension equal to
the number of points in the data set. Unlike the former,
the latter does not need to know the number of clusters in
advance. Instead, this number of clusters is found in Rn,
which will be discussed in Section 5.

4. Spectral Embedding
Since a low-dimensional representation of data are im-

portant in many applications, we further employ the spec-
tral mapping to map the data from Rn to a low-dimensional
space of dimension equal to the number of the clusters (in-
cluding the noise cluster). Finding this number will be ad-
dressed in the next section. Assuming this number is known
and denoted by k, next we derive this spectral mapping.
Let L̂ be the normalized graph Laplacian correspond-

ing to the data after warping in Rn. Let {(μi, ξi) | i =
1, 2, · · · , n} be the eigensystem of L̂ where ξ1 ≤ ξ2 ≤
· · · ≤ ξn and F = [μ1,μ2, · · · ,μk]. Each row of F =
[μij ]n×k is normalized to have unit length, resulting in a
new matrix F̄ = [μ̄ij ]n×k with μ̄ij = μij/(

Pk
j=1 μ

2
ij)

1/2.
Then the spectral mapping with respect to L̂ is given by

ϕL̂ : V̂ −→ Rk, yi 7→ F̄ (i, ·)T , (13)

where F̄ (i, ·) denotes the ith row vector of F̄ .
By combining the transductive warping (12) and the

spectral mapping (13), we have the following tight trans-
ductive warping:

ΦKr , ϕL̂ ◦ φKr : S −→ V̂ −→ Rk

xi 7−→ yi 7−→ F̄ (i, ·)T . (14)

5. Finding the Number of Clusters

This section explores how to find the number of clusters
(including the noise cluster) from the data after warping.
We achieve this goal by analyzing the eigenvalues of the
normalized graph Laplacian L̂. First, we define two terms
in Definition 1.

Definition 1. An affinity matrixW = {wij} of a data set is
called ideal if (i) wij = 1, i 6= j, if point i and point j are
in the same cluster; (ii) wij = 0 if point i and point j are
in different clusters; and (iii) wii = 0. A normalized graph
Laplacian corresponding to an ideal affinity matrix is also
called ideal.

In what follows, we first consider the eigenvalue distri-
bution of an ideal normalized graph Laplacian, then extend
to the general case using the matrix perturbation theory. The
main result for the ideal case is stated in the following the-
orem.

Theorem 1. Let L̂ be an ideal normalized graph Lapla-
cian of a data set which consists of k clusters of size
n1, n2, · · · , nk, respectively. Then L̂ has eigenvalues
0, n1

n1−1 ,
n2

n2−1 , · · · , nk
nk−1 of algebraic multiplicities k, n1−

1, n2 − 1, · · · , nk − 1, respectively.
Before proving this theorem, we presents two lemmas.

Lemma 1. Let L̂ be the ideal normalized graph Laplacian
of a data set consisting of only one cluster of size m. Then
L̂ has eigenvalue 0, and eigenvalue m

m−1 of algebraic mul-
tiplicitym− 1.
Proof. Let W be the ideal affinity matrix of this data set.
Since there is only one cluster in it, by Definition 1, the ele-
ments ofW are all 1’s except the diagonal elements that are
0’s. So W can be expressed as W = E − I where E is a
matrix whose elements are all 1’s, and I is the identity ma-
trix. It can be shown that E has eigenvalue 0 of algebraic
multiplicity m − 1, and eigenvalue m. Therefore W has
eigenvalue −1 of algebraic multiplicity m − 1, and eigen-
valuem−1. Since L̂ = I−D−1/2WD−1/2 = I− 1

m−1W ,
L̂ has eigenvalue 0, and eigenvalue m

m−1 of algebraic mul-
tiplicitym− 1.
Lemma 2. Let L̂ be an ideal normalized graph Laplacian
of a data set consisting of k clusters of size n1, n2, · · · , nk
respectively and ordered in such a way that all the points
belonging to the first cluster appear first, all the points be-
longing to the second cluster appear second, etc. Then L̂
has eigenvalues 0, n1

n1−1 ,
n2

n2−1 , · · · , nk
nk−1 of multiplicities

k, n1 − 1, n2 − 1, · · · , nk − 1, respectively.
Proof. Note that L̂ is block diagonal

L̂ = diag[L̂1, L̂2, · · · , L̂k] (15)

whose ith block L̂i is the ideal normalized graph Laplacian
of cluster i. From Lemma 1, this lemma follows immedi-
ately from the fact that the eigenvalues of a block diagonal
matrix are simply the set of eigenvalues of the individual
blocks.

Proof of Theorem 1. Given a data set, clearly there exists a
permutation f to arrange the data in the same order as in
Lemma 2. Let L̂ and L̂0 be the normalized graph Lapla-
cians of the original and the one after the permutation, re-
spectively. Then from the group theory, L̂ and L̂0 are related
by

L̂0 = PL̂P−1 (16)



where P is the permutation matrix associated with the per-
mutation f2. So L̂ and L̂0 are similar and thus share the
same eigenvalues.

Three important observations on the eigenvalue distribu-
tion of an ideal normalized graph Laplacian can be obtained
from Theorem 1: (i) the smallest eigenvalue is 0 whose al-
gebraic multiplicity equals the number of clusters k, and the
(k+1)th smallest eigenvalue is strictly larger than 1; (ii) the
largest gap (strictly larger than 1) is located between the kth
and (k + 1)th smallest eigenvalues; (iii) the second largest
gap is much less than the largest one.
Generally, practical cases are different from this ideal

one. However, since the clusters after warping are relatively
compact and well separated, we can choose a suitable scal-
ing parameter β such that ŵij is close to 1 if yi and yj are
in the same cluster, ŵij is close to 0 if yi and yj are in
different clusters, and set ŵii = 0. In this sense, the prac-
tical normalized graph Laplacian L̂ can be considered as a
perturbation of an ideal normalized graph Laplacian. The
following theorem from the matrix perturbation theory en-
sures that the eigenvalues of L̂ remains close to the eigen-
values of the ideal normalized graph Laplacian as long as
the perturbation is sufficiently small [11].

Theorem 2. Let A and A0 be two real symmetric matrices
of size n × n with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and
λ01 ≤ λ02 ≤ · · · ≤ λ0n, respectively. Thenvuut nX

i=1

(λ0i − λi)2 ≤ kA0 −AkF , (17)

where k · kF is the Frobenius norm of a matrix.

According to these two theorems, it is expected that there
is a significant and largest gap between the kth and (k+1)th
smallest eigenvalues of L̂ provided that suitable parameters
including the scaling parameter β are selected. This is also
confirmed by our experiments in Section 7, where we de-
scribe a simple strategy to search for such parameters that
maximize this gap.
Based on the above discussion, we propose to estimate

the number of clusters k∗ by

k∗ = argmax
k
{λk+1(L̂)− λk(L̂)}, (18)

where λi(L̂) denotes the ith smallest eigenvalue of L̂.

2A permutation matrix is a (0, 1)-matrix that has exactly one entry 1
in each row and each column and 0’s elsewhere. Permutation matrices are
the matrix representation of permutations. A permutation matrix is always
invertible.

6. The Clustering Algorithm
Based on previous analysis, we develop an algorithm for

robust spectral clustering which is listed in Algorithm 1. In
step 3, we simply choose Kr = L̄−1 for all our experi-
ments reported in Section 7. Three parameters need to be
determined in this algorithm: the two scaling parameters σ
and β (steps 1 and 5), and the regularization parameter α
(step 4). A scheme for choosing them is presented in Sec-
tion 7. The main computation in Algorithm 1 is in steps
4 and 7, which involve taking the matrix inverse (see (11))
and the eigenvalue decomposition of L̂, respectively. So the
time complexity of Algorithm 1 is O(n3), the same as that
of the spectral clustering in [8].

Algorithm 1 Robust Spectral Clustering Algorithm
1: Construct the affinity matrix W = [wij ]n×n with

wij = exp(−kxi − xjk2/2σ2) if i 6= j and wii = 0.
2: Construct the diagonal matrix D whose (i, i)th entry
is the sum of the entries in W ’s ith row, and form the
normalized graph Laplacian L̄ = I −D−1/2WD−1/2.

3: Choose a graph kernelKr.
4: Compute the transductive warping φKr

.
5: Construct the affinity matrix Ŵ = [ŵij ]n×n with

ŵij = exp(−kφKr (xi) − φKr (xj)k2/2β2) if i 6= j
and ŵii = 0.

6: Construct the diagonal matrix D̂ whose (i, i)th entry
is the sum of the entries in Ŵ ’s ith row, and form the
normalized graph Laplacian L̂ = I − D̂−1/2ŴD̂−1/2.

7: Compute all the eigenvalues of L̂.
8: Find the number of clusters k by locating the largest
gap of the eigenvalues of L̂.

9: Compute the tight transductive warping Φ.
10: Perform clustering on {Φ(xi) | i = 1, 2, · · · , n} by the
K-means algorithm.

11: Assign the point xi to cluster j if Φ(xi) is in cluster j,
i = 1, 2, · · · , n.

7. Experimental Results
In this section, we compare the proposed robust spectral

clustering (RSC) algorithm with two closely related cluster-
ing algorithms, the spectral clustering (SC) algorithm in [8]
as well as the self-tuning spectral clustering (STSC) algo-
rithm in [17] on a number of synthetic and real data sets.

7.1. Performance Evaluation

To evaluate the performances of different algorithms, we
compare the clustering results with the ground true data la-
bels. We adopt the normalized mutual information (NMI)
as the performance measure since it is widely used for the
evaluation of clustering algorithms [12]. For two random



variableX andY, the NMI is defined as:

NMI(X,Y) =
I(X,Y)p
H(X)H(Y)

(19)

where I(X,Y) is the mutual information between X and
Y, and H(X) and H(Y) are the entropies of X and Y,
respectively. Note that 0 ≤ NMI(X,Y) ≤ 1 and
NMI(X,Y) = 1 whenX = Y.
Let {S1, S2, · · · , Sc} be the true classes of a data set

of size n, where c is the true number of clusters, and the
number of points in Si is |Si| = ni, i = 1, 2, · · · , c. Let
{S01, S02, · · · , S0k} be a clustering result of this data set pro-
duced by an algorithm, where |S0i| = n0i, and k is the ob-
tained number of clusters. Then the NMI of this clustering
result can be explicitly expressed as

NMI =

Pc
i=1

Pk
j=1 nij log

³
nnij
nin0j

´
q
(
Pc

i=1 ni log
ni
n )(

Pk
j=1 n

0
j log

n0j
n )

, (20)

where nij = |Si ∩ S0j |. The larger the NMI, the better the
clustering result. In the performance evaluation, we treat
the noise points as a new cluster.

7.2. Parameter Selection
Three parameters in the RSC need to be determined: the

two scaling parameters σ and β, and the regularization pa-
rameter α. According to the analysis in Section 5, a signifi-
cant gap can be expected among the eigenvalues of L̂. This
motivates us to choose σ, β, and α to maximize this gap.
Empirically, we find that the performance of the RSC is not
sensitive to α as long as it is large enough to ensure the suf-
ficiency of transduction. So we simply set it to 10000 for
all the experiments reported here.
Besides, it is a common experience that the scaling pa-

rameter has a significant impact on the performance in spec-
tral clustering. Although several schemes have been pro-
posed to address this problem [13], it is still difficult to find
a single one that can handle all types of cluster shapes and
sizes, especially when noise is present. Since the scaling pa-
rameter actually plays a role as an effective neighborhood
radius for each point in building the data graph, to max-
imize the gap among the eigenvalues of L̂, we choose σ
and β such that 2σ2 ∈ {16ā2, 8ā2, 4ā2, ā2, 14 ā2, 18 ā2 1

16 ā
2}

and 2β2 ∈ {16b̄2, 8b̄2, 4b̄2, b̄2, 14 b̄2, 18 b̄2 1
16 b̄

2}, respectively,
where ā (or b̄) is the average of the distances from each point
xi (or yi) to its kth nearest neighbor, and k is set to 10 in
the experiments, i.e.,

(σ∗, β∗) = argmax
σ,β

gL̂(σ, β), (21)

where gL̂(σ, β) is the largest gap between two successive
eigenvalues of L̂ corresponding to σ and β (the eigenvalues
are ordered non-decreasingly).
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Figure 2. Four data sets with the ground truth clusters denoted by
different markers. (a) Two Circles. (b) Face Contour. (c) Noisy
Two Circles. (d) Noisy Face Contour. The data sets in (c) and (d)
are formed by adding 30% uniformly distributed noise to the ones
in (a) and (b), respectively.

Table 1. Clustering results on the synthetic data measured by NMI.
Two
Circles

Face
Contour

Noisy Two
Circles

Noisy Face
Contour

RSC 1 1 0.9433 0.9785
SC 1 1 0.7419 0.6865
STSC 1 1 0.7238 0.6977

For the SC, two parameters need to be set: the scaling
parameter and the number of clusters. The number of clus-
ters is manually set to the correct number of clusters. For
the scaling parameter, we try a number of values and pick
the optimal one.

7.3. Clustering Results on Synthetic Data

We conduct experiments on four synthetic data sets de-
picted in Fig. 2. The first two (called Two Circles and Face
Contour) comprise of 254 and 266 points, and the latter
two (called Noisy Two Circles and Noisy Face Contour) are
formed by adding 30% uniformly distributed noise to the
formers, respectively. The quantitative results measured by
the NMI are summarized in Table 1. From Table 1, we can
see the three algorithms all give correct results for the two
noise-free data sets, while the RSC demonstrates a substan-
tial advantage over the SC and STSC on the two noisy sets.
The clustering results for the noisy sets can also be visual-
ized in Fig. 3. Note that although the STSC finds the correct
number of clusters (=4) on the Noisy Face Contour, it gives
unsatisfactory clustering result (see Fig. 3(f)).
To systematically test the sensitivities of different algo-

rithms against noise, we form a series of noisy data sets
by adding uniformly distributed noise of different levels
(5%, 10%, 20%, · · · , 100%) to the Two Circles. Three of
them are shown in Fig. 4. The numerical clustering results
on these noisy data sets are depicted in Fig. 5(a), where we
can see that the RSC is consistently superior to the SC and
STSC on all these noisy data sets.
Figs. 6(a) and (b) show the distance matrices of the Noisy

Two Circles (see Fig. 2(c)) before and after the warping,
respectively, where the data are ordered (according to the
ground truth cluster labels) in such a way that all the points
belonging to the first cluster appear first, all the points be-
longing to the second cluster appear second, etc., and the
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Figure 3. Clustering results on the synthetic data where different markers and colors denote different clusters. (a)(b) Results by the RSC.
(c)(d) Results by the SC. (e)(f) Results by the STSC.
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Figure 4. (a)(b)(c) Three noisy Two Circles formed by adding 5%,
50%, and 100% uniformly distributed noise to the Two Circles.
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Figure 5. (a) Clustering results on a series of noisy Two Circles.
(b) Clustering results on a series of noisy Iris.

noise points appear in the end. We can see from the dis-
tance matrix shown in Fig. 6(a) that the present noise sig-
nificantly destroys the block structure of the distance matrix
of the original data, while after the warping, the block struc-
ture of the distance matrix is recovered very well, meaning
that after the warping, different clusters (including the noise
cluster) in the new spaceRn become relatively compact and
well separated.
Fig. 6(c) shows the eigenvalues of L̂ for the Noisy Two

Circles corresponding to σ = 0.0173 and β = 2.4354
which are determined automatically. We can see that there
is a significant gap, and clearly the number of clusters is
identified as 3 according to (18).

7.4. Clustering Results on Real Data

In this section, we conduct experiments on the following
6 real data sets:

• Iris: from the UCI repository comprising 150 instances
of 3 clusters where each instance is described by 4 at-

σ = 0.017358
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Figure 6. (a) Distance matrix for the Noisy Two Circles. (b) Dis-
tance matrix for the Noisy Two Circles after the warping where the
scaling parameter σ is determined automatically. (c) The found
largest gap of the eigenvalues of L̂ for the Noisy Two Circles
where the scaling parameters σ and β are determined automati-
cally. The first 20 smallest eigenvalues are shown.

tributes.
• Noisy Iris: formed by adding 30% uniformly dis-
tributed noise to the Iris.

• Pendigit: a subset of Pen-Based Handwriting data set
from the UCI repository, comprising 2000 instances
of 10 clusters, where each instance is described by 16
attributes.

• USPS-01: a subset of digits 0 and 1 from the USPS
data set, comprising 1000 instances, 500 per digit,
where each instance is described by 256 attributes.

• Noisy USPS-01: formed by adding 160 instances from
digits 2–9, 20 per digit (treated as noise instances), to
the USPS-01.

• USPS-3568: a subset of digits 3, 5, 6, and 8 from
the USPS data set, comprising 2000 instances, 500 per
digit.

In the Noisy USPS-01 data set, each of digits 2–9 is with
only 20 instances, a very small fraction compared with 500
digit 0 and 500 digit 1. So it is reasonable that we consider
them as outliers (noise) in this data set.
The clustering results are summarized in Table 2. For

the Iris data set, both RSC and STSC identify 2 clusters,
because two of the three ground truth clusters touch each
other [3]. We set 3 as the number of clusters for the SC,
which results in a little larger NMI (0.8058) than the NMI
(0.7612) obtained by the RSC and STSC. If we also set 3 as
the number of clusters for the RSC and STSC, we will ob-
tain NMIs 0.8135 and 0.5799, respectively. For the Noisy
Iris, the RSC performs best although it identifies 3 clusters,



Table 2. Clustering results on the real data sets measured by NMI.
Iris Noisy Iris Pendigit USPS-01 Noisy USPS-01 USPS-3568

RSC 0.7612 0.7779 0.5899 1 1 0.8294
SC 0.8058 0.5759 0.4902 1 0.6234 0.7825
STSC 0.7612 0.5881 0.5107 1 0.7439 0.4869

still corresponding to a merging of two clusters. In this case,
the STSC finds only 2 clusters. For the Pendigit, the RSC
and STSC obtain respectively 12 and 9 clusters, different
from the true number of clusters 10. In this case, the RSC
performs a little better than the other two. All the three al-
gorithms give correct partitions of the USPS-01, while only
the RSC obtains correct results on Noisy USPS-01 where
the STSC identifies 2 clusters. Although the STSC finds 4
clusters on the USPS-3568, its performance is unsatisfac-
tory compared with those by the SC and RSC, where the
RSC identifies 5 clusters. From these results, we can see
that the proposed RSC gives comparable results on the data
sets Iris, Pendigt, USPS-01, and USPS-3568 but performs
much better on the noisy data sets, Noisy Iris and Noisy
USPS-01.
We also form a series of noisy data sets by

adding uniformly distributed noise of different levels
(5%, 10%, 20%, · · · , 100%) to the Iris. The results on these
noisy data sets are shown in Fig. 5(b). We can see that the
RSC consistently outperforms the SC and STSC on all these
noisy data sets.

8. Conclusions
We have developed a robust spectral clustering algorithm

to cluster a data set where the clusters may be of differ-
ent shapes and sizes, and noise, if present, is grouped into
one new cluster. Most of the existing clustering algorithms
including the spectral clustering often fail in this problem.
Our algorithm is motivated by the transductive inference in
semi-supervised learning and built upon the spectral clus-
tering. The number of clusters and the parameters of the al-
gorithm are estimated automatically. A data warping model
is proposed to map the data into a new space. After the
warping, each cluster becomes relatively compact and dif-
ferent clusters are well separated, including the noise clus-
ter that is formed by the noise points. In this space, the
number of clusters is estimated and the spectral clustering
algorithm is applied. Experimental results on four synthetic
data sets and six real data sets show that the proposed algo-
rithm significantly outperforms the spectral clustering and
the self-tuning spectral clustering on noisy data sets, and
gives comparable results on noise-free data sets.
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