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Abstract

Previous efforts in hashing intend to preserve data vari-
ance or pairwise affinity, but neither is adequate in captur-
ing the manifold structures hidden in most visual data. In
this paper, we tackle this problem by reconstructing the lo-
cally linear structures of manifolds in the binary Hamming
space, which can be learned by locality-sensitive sparse
coding. We cast the problem as a joint minimization of
reconstruction error and quantization loss, and show that,
despite its NP-hardness, a local optimum can be obtained
efficiently via alternative optimization. Our method distin-
guishes itself from existing methods in its remarkable abil-
ity to extract the nearest neighbors of the query from the
same manifold, instead of from the ambient space. On ex-
tensive experiments on various image benchmarks, our re-
sults improve previous state-of-the-art by 28-74% typically,
and 627% on the Yale face data.

1. Introduction

Hashing is a powerful technique for efficient large-
scale retrieval. An effective hashing method is expected
to efficiently learn compact and similarity-preserving bi-
nary codes for representing images or documents in a large
database. How to improve hashing accuracy and efficiency
is a key issue and has attracted considerable attention.

The classical kd-tree [18] allows logarithmic query time,
but is known to scale poorly with data dimensionality. The
seminal locality sensitive hashing (LSH) [8] enables sub-
linear search time in high dimension, but usually requires
long hash codes. To generate compact codes, it is realized
that hash functions should be adapted to data distribution.
This leads to a variety of data-dependent methods, including
PCA-based hashing [20, 5], graph-based hashing [24, 13],
(semi-)supervised hashing [20, 12, 10, 15], and others [11,
7, 6], to name a few.

Based on the widely adopted manifold assumption that
semantically similar items tend to form a low-dimensional
manifold [16, 22], two major approaches are adopted in
data-dependent methods to reduce the dimensionality of
data such that it can be represented by more compact codes.
One is to perform principal component analysis (PCA) to
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Figure 1. Retrieval on Two-SwissRolls. Top 2% retrieved points
(red) with the query (blue) are shown. The proposed LLH is able
to retrieve the closest items in the same manifold as the query.

preserve data variance, such as PCAH [20] and ITQ [5],
which only works for linear manifolds. The other is to em-
ploy non-linear dimension reduction techniques to preserve
pairwise affinity, such as spectral hashing (SH) [24], anchor
graph hashing (AGH) [13], and inductive manifold hashing
(IMH-tSNE) [19].

While variance is a global property of data and pairwise
affinity is a first-order structure, neither of them is ade-
quate to capture the local geometric structures of manifolds
(e.g., the locally linear structure), which, however, contain
the most valuable information for nearest neighbor search.
The feature space of a large-scale database of multiple cate-
gories is usually cluttered with manifolds at different scales
and dimensionalities, which may not be well separated, and
sometimes even overlap. Items which are semantically sim-
ilar to the query, may not necessarily be the closest ones in
the ambient feature space, but the ones lying on the same
manifold. Preserving global properties or first-order struc-
tures while ignoring local, higher-order structures will de-
stroy the intrinsic data structures and result in unsatisfactory
performance (Fig. 1(b-d) & Fig. 2(c-e)).

In this paper, instead of preserving global properties,
we propose to preserve local geometric structures. Our
proposed method, called Locally Linear Hashing (LLH),
is able to identify nearest neighbors of the query from
the same manifold and demonstrates significantly better
retrieval quality than other hashing methods (Fig. 1(a) &
Fig. 2(b)). Our key contributions are:

• We capture the local linearity of manifolds using
locality-sensitive sparse coding, which favors the clos-
est items located in the same manifold as the query.
In contrast, most previous manifold learning methods,
such as Locally Linear Embedding (LLE) [17], simply
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Figure 2. Retrieval on Yale using 64-bit codes. The top 20 retrieved images are shown, with false positive highlighted in red. It demonstrates
the superb benefit of modeling the locally linear structures of data.

adopt k-nearest neighbors, which may include points
from other nearby manifolds.

• We preserve the learned locally linear structures in a
low-dimensional Hamming space through a joint min-
imization of the reconstruction error and the quanti-
zation loss. Despite its NP-hardness, we show that a
local optimum can be obtained efficiently by alternat-
ing optimization between optimal reconstruction and
quantization.

• We design an out-of-sample extension which is effec-
tive in handling new points not seen in the training set.
Our results improve the performances of the state-of-
the-art methods by 28-74% typically, and 627% on the
Yale face data.

We present our method LLH in Sec. 2. An extensive exper-
imental evaluation of LLH is provided in Sec. 3.

2. Locally Linear Hashing

Denote by F ⊂ R
D a feature space generated by an un-

known probability distribution P : RD → R+. In practice,
F may contain multiple non-linear manifolds with differ-
ent intrinsic dimensionality, and the number of manifolds
is unknown. Given a dataset X := {xi}

n
i=1 sampled i.i.d.

from P , our goal is to learn a mapping from F to a low-
dimensional Hamming space H := {±1}c such that the
manifold structures of F is optimally preserved in H (c is
manually specified).

Let M ⊂ F be a non-linear manifold of intrinsic di-
mension d ≪ D. By definition, M is a topological space
which is only locally Euclidean, i.e., neighborhood of each
feature point is homeomorphic to R

d. We can then make
the following observation.

Observation 1. Any point x ∈ M can be linearly spanned
by d+ 1 points in general position in its tangent space.

This simple observation tells us that a set of d+ 1 neighbor
points of x on M is sufficient to capture the locally lin-
ear structures of M around x. Therefore, to preserve the
manifold structures of M is to preserve such locally linear
structures. Based on this observation, our framework con-
sists of three major steps:

1) Capturing the locally linear structures of data. For
any x ∈ X , the locally linear structure at x is captured
by a set of its nearest neighbor points on the same mani-
fold that linearly span x, with the reconstruction weights.
We introduce a principled method to identify such neigh-
bors and compute the reconstruction weights simultane-
ously (Sec. 2.1).

2) Preserving locally linear structures in H. We propose
a new formulation which jointly minimizes the embedding
error and the quantization loss (Sec. 2.2).

3) Out-of-sample extension. We design an effective way
to generate binary codes for any unseen point q ∈ F but
q /∈ X (Sec. 2.3).

2.1. Capturing Locally Linear Structures

Given a data point x ∈ X , denote by M the mani-
fold where x lies on. Our goal is to find NM(x), a set
of neighbor points of x from M that is able to linearly
span x. Let NE(x) be a set of nearest neighbors of x

in the ambient space that can linearly span x. Normally
NE(x) 6= NM(x). Since in real-world data, manifolds may
be close to each other or even overlap, NE(x) is likely to
contain data points from other manifolds. However, if M
is sampled properly (under mild conditions), we can safely
assume NM(x) ⊂ NE(x). Then the problem becomes that
given NE(x), how to find its subset NM(x).

To this end, we introduce the Locally Linear Sparse Re-
construction (LLSR):

(LLSR) min
wi

λ‖s⊤i wi‖1 +
1

2
‖xi −

∑

j∈NE(xi)

wijxj‖
2

(1)

s.t.: w⊤
i 1 = 1, (2)

where wi = (wi1, . . . , win)
⊤, and wij = 0 if j /∈ NE(xi).

The first term is a sparse term that penalizes distant points
with si = (si1, . . . , sin)

⊤ such that sij is large if xj is far

from xi. Here we set sij =
‖xi−xj‖∑

j∈NE(xi)
‖xi−xj‖

. The second

term is a locally linear reconstruction term. Note that this is
a small problem with |NE(xi)| variables (the construction
of NE(xi) is discussed in Sec. 2.3), and can be solved with
typical sparse coding algorithms. In this paper, we use a



homotopy algorithm [2] since wi is expected to be highly
sparse.

The key idea of LLSR is to use ℓ1-norm to impose spar-
sity, and use weighting to favor closer points, while mini-
mizing the reconstruction cost. Based on Observation 1, the
sparsest linear reconstruction (i.e., the lowest-dimensional
reconstruction) of xi is given by its d + 1 neighbors from
the same manifold. Therefore, by imposing the weighted
sparsity constraint, the solution of LLSR is expected to find
NM(xi) (corresponding to the non-zero elements in wi),
i.e., neighbors on the same manifold rather than from the
ambient space. This distinguishes LLSR from LLC [21].
We also note that a similar idea was used for spectral clus-
tering in a recent work [3].

2.2. Preserving Locally Linear Structures

After learning the locally linear structures of data in the
sparse matrix W = [w1, . . . ,wn], our next goal is to opti-
mally reconstruct W in the Hamming space H. Specifically,
denoting by yi ∈ H the binary code for xi, we consider the
optimization problem:

min
y1,...,yn∈H

∑

i

‖yi −
∑

j

wijyj‖
2 = tr(Y ⊤MY ), (3)

where Y = [y1, . . . ,yn]
⊤, and M = (In −W )⊤(In −W )

is a sparse matrix. Minimizing the objective function, i.e.,
the reconstruction (embedding) error, is supposed to pre-
serve the locally linear structures optimally. Unfortunately,
this optimization problem is NP-hard due to the binary con-
straints yi ∈ H.

A natural idea to conquer this is to relax the binary con-
straints to find a continuous embedding, and then binarize
it. For example, one can use LLE [17] to obtain the contin-
uous embedding (with additional orthogonal constraints),
and then get binary codes by simple thresholding or other
quantization method [5]. Despite its simplicity, such a naı́ve
two-stage solution is likely to incur larger errors and result
in sub-optimal performance (shown later). Below we show
that it is possible to jointly minimize the embedding error
and the quantization loss.

Formally, we propose the optimization problem:

min
Y,R∈Rc×c,Z∈Rn×c

tr(Z⊤MZ) + η‖Y − ZR‖2F (4)

s.t.: Y ∈ {±1}n×c, R⊤R = Ic (5)

where the first term in Eq. (4) is the embedding error (as in
Eq. (3)), the second term is the quantization loss, and η ≥ 0
is a balancing parameter. Here, Z serves as a continuous
embedding, R is an orthogonal transformation that rotates
Z to align with the hypercube {±1}n×c as close as possible,
and Y is the desired binary embedding. Note that we do not
need to impose orthogonality constraints on Z, as opposed
to LLE1. This offers additional freedom to further minimize
the reconstruction error.

1The orthogonality constraints in LLE and many other manifold learn-
ing methods are imposed primarily for computational tractability, which
may impair hashing performance [20, 23].
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Figure 3. Behavior of the objective function Eq. (4) by the naı́ve
LLE+OPP and our LLBE.
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Figure 4. Averaged precision vs. #bits on (a) USPS and (b) CI-
FAR.

Although the problem is still NP-hard, its sub-problem
w.r.t. each of Y , R, and Z is convex. Therefore, we can
minimize it in an alternating procedure.

Fixing Z, optimize Y and R. This reduces to the
Orthogonal Procrustes Problem (OPP):

(OPP) min
Y,R

‖Y − ZR‖2F (6)

s.t.: Y ∈ {±1}n×c, R⊤R = Ic. (7)

A local optimum of OPP can be obtained by alternating
minimization between Y and R [25, 5].

Fixing Y and R, optimize Z. The second term can
be rewritten as:

‖Y − ZR‖2F = ‖Y ‖2F + ‖Z‖2F − 2tr(RY ⊤Z) (8)

= tr(Z⊤Z − 2RY ⊤Z) + const. (9)

Thus, under fixed Y and R, the optimization problem w.r.t.
Z becomes:

min
Z

tr(Z⊤(M + ηIn)Z − 2ηRY ⊤Z) (10)

= tr(Z⊤AZ − 2B⊤Z) (11)

where A := M+ηIn is a positive-definite matrix and B :=
ηY R⊤. This is a simple convex quadratic program, and can
be solved efficiently with the conjugate gradient method [4].

In our experiments, we initialize Z by LLE [17], and
then alternate between updating Y , R, and Z for several
iterations. The typical behavior of the objective value of
Eq. (4) is shown in Fig. 3, where our embedding method is



denoted as Locally Linear Binary Embedding (LLBE) and
the naı́ve two-stage algorithm is denoted as LLE+OPP. It
is shown that our algorithm converges after only a few al-
ternating iterations (we use 10 iterations for all the exper-
iments in Sec. 3), and achieves significantly smaller error.
Fig. 4 shows semantic retrieval accuracies on two datasets
(USPS and CIFAR, details are given later in Sec. 3), where
LLBE clearly outperforms the naive approach.

Remark. Some existing methods [24, 13] follow Laplacian
Eigenmaps (LE) [1] to optimize:

(LE) min
Z

∑

i,j

wij‖zi − zj‖
2 (12)

s.t. Z⊤Z = nIc, 1⊤Z = 0, (13)

where Z = [z1, . . . , zn]
⊤. The objective is to preserve data

affinity in H. However, its significant drawback is that, no
matter how accurately one can capture the locally linear
structures, LE may not be able to recover them in H. We
also experimentally compare our LLBE to LE+OPP with
the same W computed by LLSR. The results in Fig. 4 show
that our LLBE, or even the naı́ve LLE+OPP, outperforms
LE+OPP with significant gains.

2.3. OutofSample Extension

We have presented a model LLBE for computing binary
codes Y for the training data X := [x1, . . . ,xn], the next
question is how to generalize it for any query q /∈ X . One
idea is to train a set of binary classifiers as hash functions,
by using (X,Y ) as training data2, as does in the Self-Taught
(ST) method [26] where linear SVMs are trained. While
being generic, it ignores the important information of data
structures. Another idea is to follow AGH [13] and IMH-
tSNE [19] to use a weighted linear combination of the bi-
nary codes from q’s k-nearest anchor points. However, such
anchor points may come from different manifolds and the
weights used seem arbitrary. Here we propose an out-of-
sample extension method tailored to our LLBE model.

Recall that the locally linear structure at q is captured
by a set of its nearest neighbor points on the same manifold
with the associated reconstruction weights wq, which can
be obtained by solving LLSR. To optimally preserve such
structures in the Hamming space, the binary code yq for q
should minimize the reconstruction error:

min
yq∈H

‖yq − Y ⊤wq‖
2. (14)

Clearly its solution is yq = sign(Y ⊤wq), which is actually
a linear combination of codes of a small subset of the near-
est neighbors learned by LLSR, weighted by wq. It takes
only O(ct) time on average to compute, where t is the num-
ber of non-zero elements in wq, and is supposed to be the
number of intrinsic dimensionality of the manifold where q
belongs. Typically t ≪ n.

2Note each column of Y defines a binary classification problem of X .
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Figure 5. Out-of-sample extension on (a) USPS and (b) CIFAR.
Averaged precision vs. # of retrieved points using 32-bit codes.

The question now becomes to identify NE(q) so that
we can apply LLSR to obtain wq. Here we use an effi-
cient procedure to collect NE(q). We first randomly sam-
ple Xm := {xi}mi=1 (m ≤ n) data points from X , and then
apply K-means to group Xm into K clusters. Note that
this can be performed offline in the training stage. Given a
query q, we find its nearest cluster (i.e., the one q has the
smallest distance to its centroid) and use all the points in
the cluster as NE(q), which takes only O(KD) time. Then
we solve LLSR with NE(q) to compute wq, which takes
O(t3 + |NE(q)|) time on average with the homotopy al-
gorithm [2]. Using this procedure, wq can be obtained in
constant time, regardless of n. This idea can also be used to
efficiently collect NE(x) in the training stage, so K-means
only needs to be run once for training and querying.

We compare our out-of-sample extension method, called
Locally Linear Extension (LLX), with the ST method. As
shown in Fig. 5, LLX performs significantly better than ST.

2.4. Complexity

Out-of-sample coding. As discussed in Sec. 2.3, its time
complexity is O(KD+ct+t3+|NE(q)|) ≈ O(m), with K,
D, c, and t fixed (note that |NE(q)| ≈ m/K), which is con-
stant w.r.t. n. The space complexity is O((c+D)|NE(q)|+
KD) ≈ O(m), which is also constant w.r.t. n.

Training. For a large database of size n, we sample a subset
of size m for training (as discussed in Sec. 2.3) and compute
the binary codes for the remaining items using LLX. The
time complexity of K-means is linear in m. The bottleneck
for training is to solve LLBE which takes O(m2) for conju-
gate gradient method to update Z. The training time thus is
quadratic3 in m. To construct the entire database, we then
apply LLX to the remaining (n−m) data points which takes
O(nm) time. Note that training and database construction
are performed offline, and can be readily parallelized using
multiple CPUs. The space complexity for training is O(m).

3. Experiments

In this section, we experimentally compare our LLH to
the state-of-the-art hashing methods, including ITQ [5], SH

3In our experiments, it takes about 30 minutes for training on
MIRFLICKR-1M dataset.
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Figure 6. (a) Two-TrefoilKnots; (b) Averaged precision vs. #bits.
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Figure 7. (a) Two-SwissRolls; (b) Averaged precision vs. #bits.

[24], AGH [13], and IMH-tSNE [19], for semantic retrieval
tasks4. We also compared LLH to Product Quantization
with Random Rotation (PQ-RR) and ℓ2-scan for approxi-
mate nearest neighbor search [9]. Further, we evaluate LLH
using W trained by Eq. (1) without the sparse term, as in
LLE [17]. We denote it as LLH0.

We run previous methods using publicly available Mat-
lab codes provided by the authors with suggested param-
eters (if given) in their papers. For AGH and IMH-tSNE,
the numbers of anchor points and neighbor anchor points
are selected from [100, 500] and {2, 3, 5, 10, 20} by cross-
validation. For PQ-RR, the number of sub-spaces is set as
the best in {4, 8}. For our LLH, we set the number of K-
means clusters no larger than 256, and select λ and η from
{0.01, 0.05, 0.1, 0.5, 1.0}. We set m = 100K for datasets
larger than 100K, and m = n otherwise.

Following evaluation protocols used in previous hashing
methods (e.g., [5, 24]), we split each dataset into training
and query sets. The training set is used to train binary codes
and construct the database. We evaluate Hamming ranking
performance, i.e., retrieved images are sorted according to
their Hamming distances to the query. This is exhaustive but
is known to be fast enough in practice (228 times faster than
l2-scan in our experiments, see Sec. 3.5). Following [5],
we measure the retrieval performance using the averaged
precision of first 500 ranked images for each query5.

4Due to space limit, we put additional experimental results and further
comparisons against other methods including KMH [6], MDSH [23], SPH
[7], and KLSH [11] in the supplementary material.

5The only exception is Yale which only has 50+ images in each class.
We assign random rank to images having the same Hamming distance.

8 12 16 24 32 48 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# bits

pr
ec

is
io

n@
10

 

 

ITQ
PQ−RR
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(a)

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−RR
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(b)

Figure 8. Results on Yale; (a) Averaged precision vs. #bits; (b)
Precision vs. # of top retrieved images using 64-bit codes.

3.1. Results on Synthetic Datasets

To illustrate the basic behavior of our LLH, we first re-
port results on two synthetic datasets, Two-TrefoilKnots
(Fig. 6(a)) and Two-SwissRolls (Fig. 7(a)), each of which
consists of 4000 points, with 2000 in each manifold. In
Two-TrefoilKnots, the two manifolds are partially over-
lapped. For 15% of the data points, their 20 nearest
neighbors contain points from the other manifold. Two-
SwissRolls is even more challenging with the two mani-
folds stuck together. For each dataset, we first generate 3-d
points, and then embed them into R

100 by adding 97-d small
uniform noise. We randomly sample 1000 points as queries
and use the remaining 3000 points for training.

Fig. 6(b) shows the results on Two-TrefoilKnots, where
our LLH and LLH0 clearly outperform others and achieve
almost 100% precision for all the code lengths. The results
on Two-SwissRolls are shown in Fig. 7(b). In this dataset,
with high probability, the ambient neighborhood contains
points from different manifolds, so the performances of pre-
vious methods are severely degraded. In sharp contrast, our
LLH shows great performance and is significantly superior
to others. While LLH0 also outperforms others by a large
margin, it is much poorer than LLH. This suggests the ef-
fectiveness of LLSR in capturing the local manifold struc-
tures, and the effectiveness of our LLBE in preserving these
structures in the Hamming space.

3.2. Results on Face Images

We next evaluate our LLH on the Yale6 face image
dataset, which is popular for manifold learning [27, 3]. Yale
contains 2414 grayscale images of 38 subjects under 64 dif-
ferent illumination conditions. The number of images of
each subject ranges from 59 to 64. We resize all the images
to 36×30 and use their pixel values as feature vectors (thus
D = 1080). We randomly sample 200 query images and
use the remaining as the training set.

Fig. 8(a) shows the average precision on the top 10 re-
trieved images at code lengths from 8-bit to 64-bit. Our
LLH is consistently better than all the other methods at
each code length, and LLH0 is the second best. The gain of
LLH is huge, ranging from 199% to 627% over SH which

6http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Figure 9. Results on USPS; (a) Averaged precision vs. #bits; (b)
Precision vs. # of top retrieved images using 64-bit codes.
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Figure 10. Results on MNIST; (a) Averaged precision vs. #bits;
(b) Precision vs. # of top retrieved images using 64-bit codes.

is the best competitive one. These results demonstrate the
remarkable ability of LLH in extracting non-linear image
manifolds. Notably, our LLH with only 8-bit codes already
achieves higher accuracy than exhaustive l2-scan, and the
gain gets larger with more bits (from 24% to 114%). In con-
trast, AGH, ITQ, IMH-tSNE, and PQ-RR with 64-bit codes
remain inferior to l2-scan. Fig. 8(b) shows the results with
64-bit codes on varied retrieval points. Again, LLH outper-
forms all the other methods in all cases by a large margin.
The retrieval results can be visualized in Fig. 2.

3.3. Results on Handwritten Digits

We next test on two popular handwritten digits datasets,
USPS7 and MNIST8, which are frequently used to evaluate
hashing methods [13, 14]. USPS contains 11K images of
digits from “0” to “9” and MNIST has 70K. On USPS, we
randomly sample 1K queries and use the rest as the training
set. For MNIST, we use the 10K test images as the query
set and the other 60K as the training set. Each image in
USPS has 16 × 16 pixels, and each has 28 × 28 pixels in
MNIST, corresponding to D = 256 in USPS and D = 784
in MNIST.

Fig. 9(a) and Fig. 10(a) show the average precision for
varied code lengths on USPS and MNIST, respectively. Our
LLH is the best in most cases, and significantly better than
l2-scan (44% gain on USPS and 20% on MNIST with 64-
bit codes). AGH is the best competitive method on these

7http://www.cs.nyu.edu/˜roweis/data/usps_all.mat
8http://yann.lecun.com/exdb/mnist/
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Figure 11. Results on CIFAR; (a) Averaged precision vs. #bits;
(b) Precision vs. # of top retrieved images using 64-bit codes.
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Figure 12. Results on ImageNet-200K; (a) Averaged precision vs.
#bits; (b) Precision vs. # of top retrieved images using 64-bit
codes.

two datasets. Though AGH is slightly better than LLH on
MNIST when using very short codes (12- or 16-bit), it is
significantly worse with long codes. The performance of
AGH on USPS even drops with long codes (48- or 64-bit)
and is inferior to the other methods, while our LLH per-
forms best at all code lengths.

3.4. Results on Natural Images

Lastly, we report results on three natural image datasets,
CIFAR9, ImageNet-200K10, and MIRFLICKR-1M11. CI-
FAR contains 60K tiny images of 10 object classes. We
randomly sample 2K query images and use the rest for the
training set. Every image is represented by a 512-d GIST
feature vector. ImageNet-200K is a 200K subest of the
entire ImageNet dataset. We select the top 100 frequent
classes (synsets) with total 191050 images of various kinds
of objects such as animals, artifacts, and geological for-
mation. We randomly sampled 20 images from each class
to form the query set, which gives us 189050 training im-
ages and 2K query images. Following [9], each image is
represented by a 512-d VLAD. We first extract a 4096-d
VLAD and then use PCA to reduce the dimensionality to
512. MIRFLICKR-1M contains 1M images collected from
Flickr, without ground-truth semantic labels. We use this
dataset to evaluate qualitative results and computation time.

9http://www.cs.toronto.edu/˜kriz/cifar.html
10http://www.image-net.org/
11http://press.liacs.nl/mirflickr/

http://www.cs.nyu.edu/~ roweis/data/usps_all.mat
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/
http://press.liacs.nl/mirflickr/
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Figure 14. Computation time on MIRFLICKR-1M; (a) Averaged
binary code generation time per query vs. #bits; (b) Averaged
query time vs. the database size (from 50K to 1M).
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Figure 15. Averaged precision with the hash lookup protocol vs.
#bits. (a) Yale and (b) CIFAR.

Here each image is represented by a 960-d GIST color fea-
ture vector.

Fig. 11 shows the results on CIFAR, where our LLH con-
sistently outperforms all the other methods in all cases. The
second best is ITQ or AGH. Fig. 12 shows the results on
ImageNet-200K. Again, our LLH is the best, and LLH0

and ITQ follow. With 64-bit codes, ITQ is highly com-
petitive with LLH, but LLH yields higher precision values
when the number of retrieved images is less than or equal to
500 (Fig. 12(b)). Fig. 13 shows some qualitative results on
MIRFLICKR-1M, where LLH consistently retrieves more
semantically similar images than the other methods.

3.5. Analysis & Discussions

Computation Time. Fig. 14(a) shows the binary code gen-
eration time for an out-of-sample query, and Fig. 14(b)
shows the entire query time (i.e., binary code genera-
tion time + Hamming ranking time) on MIRFLICKR-1M
dataset. All results are obtained using MATLAB on a work-
station with 2.53 GHz Intel Xeon CPU and 64GB RAM. Al-
though our LLH is somewhat slower compared to the other
methods, it is still fast enough in practice, with less than 5
msec per query (Fig. 14(a)), and orders of magnitude faster
than l2-scan (Fig. 14(b)). For example, it takes LLH only
0.12 sec to perform querying on one million database using
64-bit codes, which is about 228 times faster than l2-scan
(26.3 sec). In our experiments, we also find that the binary
code generation time is independent of n and not sensitive
to K (see Fig. 17 in supplementary material).
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Figure 16. Parameter sensitivity on MNIST. (a) λ and (b) η.
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Figure 17. LLH vs. supervised methods. Results on (a) MNIST

and (b) CIFAR. The number within parentheses indicates # of se-
mantic labels used to train binary codes in supervised methods.

Lookup Search. We have evaluated retrieval performances
using Hamming ranking. Here we report results using hash
lookup, which implements a hash lookup table and runs
queries with it (e.g, [24, 13]). Fig. 15 shows the results
on Yale and CIFAR. We can see that LLH still outperforms
others by a very large margin on both datasets, which fur-
ther confirms the remarkable effectiveness of LLH.

Parameter Study. Now we evaluate the performance of
LLH with different settings of λ and η. The results on
MNIST are shown in Fig. 16. While their performances
are slightly different, the retrieval accuracies are still much
better than l2-scan in most cases. Also, LLH is quite sta-
ble w.r.t. K (see Fig. 17 in supplementary material). We
remark that similar results are observed on other datasets.

Comparison with Supervised Methods. While ours LLH
is unsupervised, there are quite a few supervised hash-
ing methods like Binary Reconstructive Embedding (BRE)
[10], Minimal Loss Hashing (MLH) [15], and Kernel-based
Supervised Hashing (KSH) [12]. It is interesting to see how
our unsupervised LLH compared to those supervised meth-
ods. The results on two datasets (MNIST and CIFAR) are
shown in Fig. 17, where our LLH still performs best on both
datasets. Among the three supervised methods, KSH is sig-
nificantly better than the other two. However, even we in-
crease the number of supervision labels for KSH from 1000
to 20000, KSH still cannot beat LLH at a single code length.
These results indicate that preserving locally linear struc-
trues is highly effective for semantic retrieval, and our LLH
successfully retains those structures in the Hamming space.



(c) ITQ (f) AGH(e) SH(b) LLH (g) IMH-tSNE(d) PQ-RR(a) query

Figure 13. Top retrieved images on MIRFLICKR-1M using 64-bit codes. Red border denotes false positive.

4. Conclusion

Finding items semantically similar to the query requires
extracting its nearest neighbors lying on the same manifold,
which is vital to retrieval but is a non-trivial problem. Our
new hashing method, Locally Linear Hashing (LLH), is de-
signed to tackle this problem through faithfully preserving
the locally linear manifold structures of high-dimensional
data in a low-dimensional Hamming space.

The locally linear manifold structures are first captured
using locality-sensitive sparse coding, and then recovered in
a low-dimensional Hamming space via a joint minimization
of the embedding error and the quantization loss. A non-
parametric method tailored to LLH is developed for out-of-
sample extension.

LLH outperforms state-of-the-art hashing methods with
very large performance gains on various types of visual
benchmarks, demonstrating its remarkable effectiveness,
scalability, and efficiency for large-scale retrieval.
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