

CAMED: Complexity Adaptive Motion Estimation & Mode Decision for H.264 Video

Yong Wang

Prof. Shih-Fu Chang

Digital Video and Multimedia (DVMM) Lab, Columbia University

- Complexity aware H.264 coding
- CAMED
 - Rate-Distortion-Complexity video coding
 - Complexity cost function
 - Complexity control
- Experiment results
- Conclusions & future work

H.264: Emerging Video Standard

More efficient motion prediction

- Variable block size motion compensation (as small as 4 x 4)
- Quarter pixel interpolation
- Multiple reference frames (up to 5)
- Decoupling of referencing order from display order
- Directional spatial prediction for intra coding
- SKIP/DIRECT Mode
- Improved coding efficiency
 - Small block-size transform (4 x 4 integer transform)
 - Lossless inverse transform
 - Context-based adaptive binary arithmetic coding (CABAC)
 - Switching P (SP) and switching I (SI) pictures

Complexity Issue In H.264

Much better quality, with much higher complexity

Complexity Aware H.264 Coding

- Important for mobile video solutions
- H.264: Emerging coding standard

 $C(\mathbf{P}) \leq C_T$

- Much higher quality
- Much higher complexity

• Complexity constrained video coding $\min D(\mathbf{P}),$ $s.t., R(\mathbf{P}) \le R_T, \mathbf{P} : QP, MV, Mode, ?$

Approaches for Comp. Reduction

- Hardware level
 - Hardware architecture (MMX, SIMD [Chen'04])
 - Low power chip (Advanced voltage scaling [ARM'03])
 - High capacity battery [GIT]

- Encoder complexity
 - Fast motion estimation (FME) [Li'05, Tourapis'03]
 - Fast mode decision (FMD) [Zhu'05, Peng'05]
 - Fast reference frame selection [Su'04]
 - Adaptive I-B-P GOP structure [Ray'04]
 - SAD (Sum of Absolute Difference) complexity modeling [He'04]

- Decoder complexity
 - Smart inverse DCT [Ortega'00]
 - Interpolation approximation [Wang'05]
 - Implementation optimization (buffer reusage, assembly coding)
 - Complexity Adaptive ME & MD (CAMED)

CAMED: Highlight

- Develop an encoding algorithm that achieves both high video quality and low decoding complexity
- Addressed the most significant module (Motion Compensation) in decoders, so that the complexity reduction is efficient.
- Nothing need to be done in decoders, and the extra cost in encoders is trivial
- Full standard compliant
- The proposed method can be a valuable complement for hardware-level and encoder-level solutions
- Very promising for mobile video applications.

$$\gamma_{MOTION} = \sqrt{\gamma_{MODE}}$$

Complexity Cost Function

Pixel-based interpolation operation

$$c_{P}(\mathbf{V}) = \begin{cases} 0 & \mathbf{V} \text{ is integer } MV \\ e_{6} & \mathbf{V} \text{ is subpixel } b,h \\ e_{6} + e_{2} & \mathbf{V} \text{ is subpixel } a,c,d,n \\ 2e_{6} + e_{2} & \mathbf{V} \text{ is subpixel } e,g,p,r \\ 7e_{6} & \mathbf{V} \text{ is subpixel } j \\ 7e_{6} + e_{2} & \mathbf{V} \text{ is subpixel } j,f,k,q \end{cases}$$

G	а	b	С	Η
d	е	f	g	
h	i	j	k	m
n	р	q	r	
Μ		S		Ν

• Can be further simplified counting 7-tap interpolations.

Complexity Cost Function (cont.)

Block-based interpolation operation

Mode	Integer	1 6-tap	2 6-tap	7 6-tap	
Skip/Direct	0	256	512	592	
16x16	0	256	512	592	
16x8	0	128	256	296	
8x16	0	128	256	296	
8x8	0	64	128	168	
8x4	0	32	64	84	
4x8	0	32	64	84	
4x4	0	16	32	52	
Intra	0	0	0	0	

Complexity Cost Function (cont.)

- Complexity benchmark
 - Real time AVC decoder in Dell Axim x50 PDA

Complexity Cost Function (cont.)

Modeling based on complexity benchmark

$$c(\mathbf{v}, M) = b_M^{-p} (n_{6,\mathbf{v}} c_6 + n_{2,\mathbf{v}} c_2 + c_l)$$

- Content-independent: the complexity is mainly decided by the arithmetic calculations
- Can be summarized into look-up table to reduce encoding cost
- Reflects the actual computing complexity, including not only interpolation, but also other cost rather than interpolation such as memory access and logic flow.

Complexity Control

- The procedure to adjust coding parameters so that the complexity level meets the target requirement.
 - Similar to rate control
 - Control parameter: Lagrange multiplier γ_{MOTION} , γ_{MODE}

Complexity Control (cont.)

- Use complexity buffer to simulate the complexity usage status on the decoder side
- Estimate of available resource, adjust the parameters, and avoid issues of buffer overflow or underflow

Experiment Setup

- Environment
 - Software: H.264 JM 8.2
 - Sequences: Akiyo, Foreman, Stefan, Mobile
 - Resolution: QCIF/CIF
 - Profile: Main/Baseline
 - Bit rate: 100kbps~1Mbps
 - Block mode: all on
 - Direct mode: temporal
 - Motion estimation search range: 32 pixels

Up to 60% 6-tap interpolation can be saved while keeping the video quality almost intact (quality difference less than 0.2dB)

Results: Complexity Benchmark

Dell Axim x50

Results: Compatibility w/ FME

Foreman	$PSNR(dB)^{\dagger}$	Encoding Saving ^¹	Decoding Saving [‡]
FS	36.024	0.00%	0.00%
CBFPS	-0.044	61.80%	17.39%
CAMED $\gamma_{MODE} = 10$	-0.147	0.00%	70.08%
$CBFPS + \gamma_{MODE} = 10$	-0.206	64.75%	74.28%
CAMED $\gamma_{MODE} = 50$	-0.312	0.00%	85.63%
$CBFPS + \gamma_{MODE} = 50$	-0.390	66.09%	86.49%

Results: Complexity Control

Target Complexity (6-tap Interpolation)		$5\mathrm{K}$	10K	20K	30K	$40 \mathrm{K}$
Foreman	Complexity control error $(\%)$	37.07	5.00	1.50	3.38	3.09
	Complexity saving $(\%)$	88.06	81.70	65.67	45.95	28.14
	Quality degradation (dB)	0.22	0.16	0.09	0.03	0.03
Stefan	Complexity control error $(\%)$	39.38	19.45	0.32	0.26	0.37
	Complexity saving $(\%)$	88.07	86.21	65.64	48.49	31.25
	Quality degradation (dB)	0.40	0.30	0.09	-0.03	0.06
Mobile	Complexity control error $(\%)$	114.97	7.48	0.65	1.34	4.73
	Complexity saving $(\%)$	81.89	81.89	66.08	50.13	35.79
	Quality degradation (dB)	0.40	0.40	0.17	0.14	0.06

CIF, 30fps, 100kbps

Conclusions & Future Work

- Proposed CAMED for complexity-efficient H.264 coding
- Applied rigorous R-D-C optimization framework
- Defined several complexity cost functions
- Proposed the algorithm of complexity control
- Performance Validated through extensive simulation experiment
- Future work
 - Theoretical analysis on the relationship between the complexity level and the control parameter (i.e., the Lagrange multiplier)
 - Considering hardware acceleration (such as MMX, SSE)
 - More efficient complexity modeling and complexity control

Prof. Shih-Fu Chang sfchang@ee.columbia.edu

> Yong Wang ywang@ee.columbia.edu

