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Abstract—As it is true for human perception that we gather
information from different sources in natural and multi-modality
forms, learning from multi-modalities has become an effective
scheme for various information retrieval problems. In this paper,
we propose a novel multi-modality fusion approach for video
search, where the search modalities are derived from a diverse
set of knowledge sources, such as text transcript from speech
recognition, low-level visual features from video frames, and high-
level semantic visual concepts from supervised learning. Since
the effectiveness of each search modality greatly depends on
specific user queries, prompt determination of the importance
of a modality to a user query is a critical issue in multi-modality
search. Our proposed approach, named concept-driven multi-
modality fusion (CDMF), explores a large set of predefined
semantic concepts for computing multi-modality fusion weights
in a novel way. Specifically, in CDMF, we decompose the query-
modality relationship into two components that are much easier
to compute: query-concept relatedness and concept-modality
relevancy. The former can be efficiently estimated online using
semantic and visual mapping techniques, while the latter can be
computed offline based on concept detection accuracy of each
modality. Such a decomposition facilitates the need of adaptive
learning of fusion weights for each user query on-the-fly, in con-
trast to the existing approaches which mostly adopted pre-defined
query classes and/or modality weights. Experimental results on
TRECVID 2005–2008 data sets validate the effectiveness of our
approach, which outperforms the existing multi-modality fusion
methods and achieves near-optimal performance (from oracle
fusion) for many test queries.

Index Terms — video search; multi-modality; concept-driven
fusion; semantic concept.

I. INTRODUCTION

ONE challenge of video search is the prediction of user
search intention. The intention is often expressed using

a short text description with several words, and/or a few
visual examples of images and videos. A successful search
system is therefore expected to adaptively formulate a search
strategy in multi-modality forms, and eventually return a set
of relevant video clips. Popularly used modalities include text
search, visual search, and concept search. Text search tries to
match the textual query words to video transcripts, while visual
search measures the similarity between visual query examples
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and target videos. In concept-based search, a large number
of semantic visual concept classifiers are constructed offline
for indexing the video content, and efficient search is enabled
by matching both textual and visual queries to the semantic
concepts (e.g., [1], among others). Under this multi-modality
search scenario, one key component of the strategy planning is
the dynamic assignment of fusion weights to different search
modalities according to a query.

In the literature, one popularly adopted search strategy
is query-class dependent fusion [2–6], where the key idea
is to map a user query into one of human-defined query
classes. It is assumed that the optimal fusion weights of
query classes are known and can be obtained through offline
learning from similar queries. Therefore, the task of multi-
modality fusion becomes to classify user query and then
apply the learnt fusion weights for query answering. This
strategy, nevertheless, encounters a number of practical and
theoretical challenges. First, the collection of training queries
is not a trivial process, and more importantly, the generation of
ground-truth for learning optimal weights of query classes is
an extremely time-consuming task. Second, it is unclear how
the query classes should be defined. Previous research efforts
in multimedia typically defined five to six query classes [2, 3]
to model possible queries in the domain of broadcast news
videos. It is difficult to evaluate how many human-defined
classes are considered enough to cover the space of all possible
user queries.

In this paper, we propose a novel query-adaptive fusion
strategy, by mapping a multi-modality query to the large
number of semantic concepts instead of a query-class, and
harness the selected concepts to determine the fusion weights
on-the-fly. In other words, the fusion problem is decomposed
into two major stages: reasoning query-concept relatedness,
and learning query-modality relevance through the selected
concepts. Figure 1 illustrates the flow of our proposed ap-
proach. Given a query which contains a short text description
and a few visual examples, query-to-concept mapping is firstly
conducted to infer the set of semantically and visually relevant
semantic concepts. In the example shown in Figure 1, concepts
such as “airplane” and “sky” are reasoned through the text
query, while concepts such as “flying objects” and “cloud”
are inferred from the visual examples. The selected concepts
are then mapped into a context graph, which is offline built
to characterize the co-occurrence relations among the entire
concept set. By further conducting random walk over the
graph, the interaction among the concepts is modeled, and thus
the relevancies of the concepts to the query can be refined.
For instance, the concept “airplane flying” is discovered in
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Fig. 1. Modality weight computation in CDMF. Given a user query “find shots of aircraft in sky” with a few image and video examples, relevant concepts
are firstly selected with semantic and visual mapping. The selected concepts are then refined using random walk over a context graph (cf. Section IV-B).
Finally, the refined concept set (query-concept correlation) is harnessed to infer query-modality relationship.

random walk and assigned with a relevance score of 0.93 to
the user query, since it frequently co-occurs with many of
the selected concepts during query-to-concept mapping. After
concept selection, in the second stage, the concept relevancies
are converted to fusion weights, through fuzzy transformation
with a relation matrix. The matrix outlines the association
between concepts and modalities, and can be offline learnt
from the concept detection accuracy from each modality. For
concept “airplane flying”, the matrix indicates visual search is
more reliable than text search. By considering the association
between query-concept and concept-modality, concepts, col-
lectively as a bridge to query-modality, are exploited to infer
fusion weights.

Due to the fact that our proposed fusion strategy is driven
by the semantic concepts, we name it as Concept-Driven
Multi-modality Fusion (CDMF). Compared to existing fusion
strategies, CDMF offers the following advantages:

• Generalizability: Concepts are easier to be identified and
defined than query classes. Using Large-Scale Concept
Ontology for Multimedia1 (LSCOM) [23] as an example,
there are 1000+ concepts being identified for broad-
cast video domain. Pair-wise combination of any two
among the 1000+ known concepts can already answer
half million queries arbitrarily generated. In Figure 1,
for instance, using two concepts “airplane” and “sky”,
the query “find shots of aircraft in sky” can be fairly
well interpreted. In contrast, predicting the query using
a human-defined query class (e.g., an Object-X class)
can provide only coarse estimation of search intention

1LSCOM is considered as the largest concept definition and annotation
collection. It includes manually judged labels for 1000+ visual concepts and
100+ queries over 61,901 video shots of multilingual broadcast news videos.

[2–4]. In general, the number of concepts can be much
more than that of the human-defined query classes, thus
offering greater capability to make the search process
more flexible and generic.

• Adaptivity: In CDMF, the fusion weights are computed
on-the-fly and adapted from query to query. This is
very different from other strategies such as query-class
dependent fusion where the weights, once trained, are
“fixed” for each query-class. In contrast, CDMF offers a
more flexible means in combining the search modalities
since the fusion weights are determined by the concepts
dynamically selected based on query specifications. Pre-
learning of “optimal” fusion weights for a query-class,
on the other hand, is practically difficult, especially if
the defined query class is too general such as the Object-
X query class. Under this scenario, using fixed fusion
weights for all queries routed to the class will limit the
search performance.

• Extensibility: Collecting concepts and their ground-truth
annotations for learning is in general more feasible than
manually collecting and annotating examples of training
queries. Indeed, there have been a number of large-
scale or web-scale concept detectors set made publicly
available. Examples include Columbia374 [7], VIREO-
374 [8], MediaMill [9], and NUS-WIDE [10]. Direct
utilization of these detection sets for predicting fusion
weights is feasible, especially when these detector sets
often come along with classifiers and their detection
result. In CDMF, the correlation among concept labels
is exploited for constructing a context graph, while
the detection performance is used to compute concept-
modality relevancy. Therefore, compared to query-class
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dependent fusion, CMDF requires less additional effort.
CDMF can be naturally extended to any new concept
and new modality made available, respectively, by adding
a new row and column to the relation matrix shown in
Figure 1.

One important contribution of this paper is the proposal of
using semantic concepts for multi-modality fusion. To the best
of our knowledge, this is the first work on harnessing semantic
concepts for computing query adaptive fusion weights. The
remainder of this paper is organized as follows. In Section II,
we review the existing works in multi-modality video search.
Section III introduces our query-to-concept mapping method,
and Section IV further refines the mapping by modeling query
context. Section V describes the proposed multi-modality
fusion strategy. The experimental results and performance
comparison are given in Section VI. Finally, Section VII
concludes this paper.

II. RELATED WORK

Multi-modality fusion has been a long standing issue for
effective video search. Most existing works linearly combined
different search modalities due to its simplicity and better gen-
eralizability. Based on weight computing strategy, we roughly
divide them into three main categories: heuristic fusion, query-
time fusion, and supervised query-class dependent fusion.

Heuristic fusion is a widely employed scheme. The fusion
weights are usually rule-based and predefined. For instance, in
[11], weights are empirically pre-determined for each modality
based on the types of query terms received. If only named
entities are found in a query, text search will be trusted
and thus given higher weights than other search modalities.
Similarly, if concept names are found in the query, concept-
based search will be given higher priority. For most other
cases, weights are equally set for all search modalities. Despite
of its simplicity, as demonstrated by [11], this scheme has
shown satisfactory performance on the TRECVID2 evaluation
[12].

Different from setting predefined weights, query-time fusion
dynamically decides fusion weights on-the-fly during query
time. In [13, 14], weights are directly derived for each query
based on the ranked lists returned from different search
modalities. The idea is based on the hypothesis that the
shape of a curve depicting the score distribution of a search
modality, will give clue to the applicability of the modality
to the query. Specifically, rapid change of retrieval scores in
the top part of a search ranking list indicates the ability of
a modality in distinguishing relevant search items from one
another. Conversely, gradual change in initial ranking gives
clue that most items are similar to each other and the modality
is incapable of making clear decision. Based on this intuition,
the approach in [14] derives the fusion weight of a modality
by computing the ratio of MAD (mean average distance)
between the top 5% retrieved items and the remaining 95%

2TRECVID (TREC Video Retrieval Evaluation) is an annual video retrieval
evaluation activity supported by US National Institute of Standards and
Technology. Each year a new dataset, as well as ground-truth annotation for a
couple of concepts and queries are provided for system evaluation of several
video retrieval tasks.

of items. This fusion scheme has also been demonstrated by
[15] and shown good search performance in recent TRECVID
evaluations.

Supervised query-class dependent fusion, different from the
previous two schemes, estimates fusion weights using training
examples [2–6]. A survey of recent advances along this direc-
tion can be found in [16]. First, a set of query classes is pre-
defined to categorize the types of possible queries that can be
input by users. Second, optimal fusion weights are computed
respectively for each query class by learning from a set of
example queries with ground-truth. During query time, a query
is routed to one of classes and the predicted “optimal” weights
are applied to fuse multiple search modalities. Due to the
consideration of query classes, this scheme is in general more
reliable than the linear fusion scheme. Nevertheless, it does
suffer from several limitations. Generalization, in practice, is
a problem since the number of pre-defined query classes is
limited and therefore it becomes difficult to characterize all
possible types of queries. Furthermore, learning of optimal
weights could be challenging especially when the training
queries are not representative enough for each query class.

To cope with the aforementioned issues, automatic dis-
covery of query classes from training examples is studied
in [4][6]. In [4], query classes are generated by clustering
training queries based on both query text relatedness and
search performance consistency of various modalities. In [5],
pLQA (probabilistic latent query analysis) is proposed for
class discovery – a user query is mapped into a mixture of
several query classes for search. In [6], the idea of online
query class generation is proposed. During query time, a query
class is formed dynamically through searching similar training
queries from database. Fusion weights are then determined
on-the-fly by learning from the set of similar queries. Never-
theless, despite either the query classes are defined manually
or automatically, these existing approaches are ineffective in
dealing with rare queries which are difficult to be categorized
to any class. In addition, they also rely on a large set of
pre-defined training queries, which are not easy to acquire
in practice.

In this paper, we address the problem of multi-modality
fusion using a concept-driven paradigm. Concept detection
performance with different features is utilized in our approach
to infer modality weights adaptively for each query. Compared
to existing modality weighting methods such as the query-class
dependent fusion, our approach is more flexible (and more
accurate, as will be validated in the experiments) to compute
the fusion weights.

Our approach involves techniques for query-to-concept
mapping and context modeling. In the literature, there have
been a number of approaches for query-to-concept mapping
[1, 17–20]. Most works are devoted to the semantic analysis
of text queries for measuring the relatedness between queries
and concepts. Mapping concepts using visual query examples
has also been investigated in [1, 18]. Our concept selection
method differs from these query-to-concept mapping tech-
niques mainly in that a random walk process is further imposed
to utilize concept relationship (context) for a globally more
consistent selection. The context, on the other hand, has been
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utilized in several existing works for a set of related issues in
multimedia search and indexing [29–34]. In [29], document-
level context is exploited for leveraging the recurrent patterns
among video stories to improve initial video search results
from text matching. In [31, 33, 34], statistical models of inter-
concept correlation are built for helping improve the quality
of concept-level video indexing. Different from these existing
works, context is exploited in our approach for better con-
cept selection, not for improving video indexing performance
[31, 33, 34] or reranking search results [29].

III. QUERY-TO-CONCEPT MAPPING

A. Semantic Mapping

Semantic mapping aims to find a set of concepts that
have the highest linguistic relatedness to the text queries.
To measure such relatedness, we adopt our previous work
in [17] by first building a semantic space (SS) and then
performing concept reasoning. SS is an orthogonal linear space
encapsulating the semantic relationship (mainly is-a relation)
among text words (query terms or concepts in our case). The
relationship is learnt from WordNet using an ontology-based
measure named WUP [21]. In SS, a concept or word, when
projected to this space, is represented as a vector. The semantic
similarity (the quantitative linguistic relatedness) between two
concepts Ci and Cj is measured with cosine similarity as:

Semantic(Ci, Cj) =
SCi · SCj

|SCi ||SCj |
(1)

where SCi and SCj are the feature vectors of Ci and Cj in
SS respectively. Different from conventional ontology-based
measures, SS is a computable space and provides a global
view of concepts in determining semantic relatedness between
concepts. For details, readers can refer to [17].

Denote Q = {q1, q2, . . .} as a text query, and V =
{C1, C2, ...} as a concept set. Through projecting the query
terms in Q into the SS, the relatedness between a text term
qi ∈ Q and a concept Ci ∈ V can be computed by Eqn (1).
By considering all the query terms and selecting one concept
with the highest relatedness for each term, we have

S =
∪

qi∈Q

argmax
Cj∈V

{Semantic(qi, Cj)} (2)

where S is the set of semantic concepts selected for
query answering, and Semantic(qi, Cj), simply denoted as
Semantic(Cj) in later discussions, is adopted as the semantic
similarity of concept Cj to query Q. In Eqn (2), the mapping
from words to concepts is performed on the basis of one-to-
one. In other words, the number of chosen concepts is at most
equal to the amount of words in Q, i.e., |S| ≤ |Q|. In addition,
we only consider nouns and gerunds of a query, assuming
that noun mostly indicates the name of place, thing or person,
and gerund describes an action or event (e.g., walking and
running).

B. Visual Mapping

Different from text-based semantic relatedness, visual map-
ping considers the selection of concepts by investigating
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Fig. 2. Illustration of signed Fisher ratio.

visual query examples. The intuition is that, by surveying the
presence (absence) of concepts in the positive (negative) query
examples, concepts are picked based on their prevalence and
discriminativeness. We adopt concept detectors to predict the
presence of concepts to visual queries. Given a query, a con-
cept is considered prevalent if its detector outputs consistently
high detection scores on most of the visual examples (i.e.,
positive examples to the query). In addition, we randomly
draw samples from testing set as pseudo-negative examples,
assuming that the majority of samples in the testing set are not
relevant to the query. A concept is thus considered discrimina-
tive if its detection scores exhibits distinguishable distributions
between positive and negative examples. Therefore, a concept
relevant to a query should be prevalent and discriminative.

Denote {ui+, σi+} as the mean and standard deviation of
prediction scores from a concept detector on the positive
examples. Similarly, {ui−, σi−} are those on the negative
training examples. We propose a signed Fisher ratio (SFR)
to measure the relevance of Ci to query as

V isual(Ci) = sign(ui+ − ui−) ·
(ui+ − ui−)

2

σ2
i+ + σ2

i−
(3)

where the sign function contrasts the prevalence of Ci in
positive and negative samples. Positive value will be assigned,
indicating the usefulness of Ci to visual query, if Ci receives
higher prediction scores on average in positive than in negative
samples. The discriminativeness of a concept is further deter-
mined by the second part of the equation, which is the original
formula of Fisher ratio, for measuring class separability. With
reference to Figure 2, SFR computes the relevance of a
concept by investigating the distribution of prediction scores
in positive (T+) and negative (T−) samples. The farther apart
the centers of the two Gaussian distributions are, the larger
the relevance of a concept is to a query. The wider the
distribution spreads out, the less trustful a concept is for its
fluctuating performance. By SFR, all concepts are eventually
ranked based on their relevance. We consider the top-k most
relevant concepts where the value of k is empirically set equal
to the number of concepts selected by semantic mapping. This
aims to prevent the case that the selected concepts by visual
mapping overwhelm those selected from semantic mapping.

The idea of SFR is similar to DBCS (Distribution-based
Concept Selection) recently proposed in [18]. One major
difference is that DBCS does not take into account the second
moment (or deviation) of distribution. This may result in
unreliable prediction due to the use of the randomly picked
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pseudo-negative samples. Consequently, DBCS is sensitive to
the selection of negative samples, and less stable if compared
to SFR.

IV. MODELING QUERY CONTEXT

The concepts inferred through semantic and visual map-
ping carry isolated pieces of signal, either semantically or
visually, and there is basically no interaction between them.
Nevertheless, concepts do not exist in isolation. For instance,
given a query “find shots of car and pedestrian”, the concepts
by semantic mapping may include car and crowd, while the
concepts by visual mapping may be composed of building,
road or even bridge and flag. How to utilize these concepts
by assigning appropriate weights to weigh their importance, in
general, can depend on the interaction among them. Concepts
such as car and road, crowd and building are contextually
related, and thus should play major roles in query answering.
For concepts bridge and flag, which may be wrongly selected
due to prediction error, could be assigned less weight if
knowing that their correlations with the other concepts are
weak. Furthermore, other concepts such as street and traffic
may be further selected if their co-occurrence relationship with
the initially selected concepts (e.g., car, road) is known a
priori.

In this section, context graph is built by offline learning the
context relationship among concepts. For a given query, the
two sets of concepts selected by semantic and visual mapping
are represented as nodes in the graph. By assigning initial
weights to the corresponding nodes, random walk is then
performed to iteratively propagate their weights across other
concepts (nodes) in the graph. The final set of concepts, along
with their refined weights after random walk, is utilized for
multi-modality fusion. For convenience, we term the selected
concepts by text queries as sMap concepts, and those selected
by visual query examples as vMap concepts.

A. Building Context Graph

Context graph, denoted as G, is an undirected graph with
concepts as nodes. To construct G, a context space is built to
model the contextual relationship among concepts. The space
is leant by firstly measuring the correlation (co-occurrence) in
ground-truth labels of the concepts through Pearson product
moment (PM). The pair-wise concept correlations are then
refined into globally consistent contextual similarity scores
based on our recent work [22]. In the context space, a concept
can be represented by a vector, where each entry is the PM
value to a reference concept (a basis of the space). Similar
to semantic space, context space is a linear space. Under this
space, contextual similarity between two concepts Ci and Cj

can be measured with

Context(Ci, Cj) =
VCi · VCj

|VCi ||VCj |
(4)

where VCi and VCj are the concept vectors of Ci and Cj

in the context space respectively. Different from PM which
measures correlation locally based on two concepts only, the
context space provides a global view of concept correlation,

Beach OceansBoat_ShipHarbors LakesRiverRowboat Waterscape_WaterfrontWaterwaysCanoe
RadarRaft

River_Bank
FreighterShip

Fig. 3. Water-related concepts: a partial view of the context graph. Edge width
indicates the strength of contextual relationship. Only edges with contextual
similarities larger than 0.3 are shown.

by also considering the contextual similarity of concepts with
respect to basis vectors forming the space. Reader can refer
to [22] for more details.

Using Eqn (4), concepts are organized to form the context
graph G, through establishing edges for any two concepts with
contextual similarities larger than zero. Edge weights are set
equal to corresponding similarities for modeling the contextual
closeness among concepts. Since the measure in Eqn (4) is
symmetric, G is an undirected graph. Figure 3 shows a partial
view of G constructed from LSCOM concepts [23]. It shows
how water related concepts in LSCOM are connected in G. For
instance, the concept boat ship has direct links with concepts
lakes, harbors, waterways, and indirect links to concepts such
as raft and ocean.

B. Random Walk

Given a context graph G of n nodes (or concepts), the
random walk process [24] is modeled as

W = {G, P, x(π)} (5)

where P = [pij ]n×n is the transition matrix, and xπ is a
column vector encapsulating the stationary probabilities of
the concepts at given state π. The transition probability pij
between two concepts Ci and Cj indicates the probability of
reaching Cj from Ci. We set pij as:

pij =
Context(Ci, Cj)∑

Ct∈V\Cj
Context(Ct, Cj)

(6)

which is the context similarity between Ci and Cj , normalized
by the sum of similarities from all concepts which are incident
to Cj .

The stationary probabilities in W are initialized based on
the set of sMap and vMap concepts selected by a given query.
Let Cj be a concept selected, the initial weight of Cj is set
according to Eqn (1) and Eqn (3) as following

x(0)(j) = max{Semantic(Cj), V isual(Cj)} (7)

For concepts neither semantically nor visually selected, their
weights are initialized to zero. During random walk, the
stationary probability of a concept Cj is iteratively updated.
At time instance k, the update can be expressed as

x(k)(j) = α
∑
i ̸=j

x(k−1)(i)pij + (1− α)x(0)(j) (8)
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width indicates the strength of concept relationship in the context space.

where α ∈ [0, 1] is a parameter to control the speed of
convergence. Eqn (8) has two components: one part is in-
formation fusion from neighboring concepts, and the other is
the initial probability. Therefore, α is also a parameter that
balances the contribution of the two parts. Eqn (8) can be
executed iteratively, until meeting the convergence condition
of |x(k+1) − x(k)| → 0.

The stationary probabilities of concepts eventually form a
vector P = [p1, . . . , pn], with pi indicating the relevance of
a concept Ci to the query. Note that the non-zero entries
in P include not only sMap and vMap concepts, but also
other concepts which are reached during the random walk.
Figure 4 illustrates an example for the query “find aircraft in
sky”. Two groups of concepts are selected by semantic and
visual mapping respectively. Their similarities with respect to
the query are mapped to the graph nodes as initial stationary
probability on the context graph, as shown in Figure 4(a).
After random walk, five more concepts are inferred, each
carrying different probabilities. Among them, the concept
airplane flying, which is strongly and consistently connected
to four other concepts, receives higher probability after a few
iterations. Erroneous concepts such as car and river, even
though may be contextually related to the query, are also
inferred but with much lower probabilities. In addition, the
original weights of concepts such as airplane and cloud are
boosted due to their strong contextual interaction with other
relevant concepts. On the contrary, the relevancy of concepts
such as vehicle and birds are reduced eventually due to their
weak interaction with the other concepts. In brief, grounding
on the context relationship provided by context graph and the
initial scores of concepts by query mapping, random walk
is effective in amending the relevance of concepts based on
information exchange and propagation.

V. CONCEPT-DRIVEN MULTI-MODALITY FUSION

While the selected concepts carry semantics of a query,
not all the concept detectors are reliable for video search. On

the other hand, different search modalities (expert) may work
well for different types of queries. In the following we first
detail the inference of modality weights for concepts, and then
present the formulation of concept driven fusion.

Let V = [C1, C2, . . . , Cn] as the order set with n concepts,
and M = [M1,M2, . . . ,Mm] as the order set with m
modalities. The fuzzy transformation TR from V to M can
be described as

TR : F (V) −→ F (M) (9)

where F denotes a fuzzy set. A fuzzy set F (S) can be simply
explained as a membership vector defined on a classical set
S, where each dimension of the vector indicates a degree of
membership (valued in the interval of [0, 1]) to corresponding
element in S. Therefore, F (V) indicates the relationship
of query Q to V , while F (M) indicates the usefulness of
each modality in M for Q. To model the fuzzy relationship,
a relation matrix R ∈ F (V ×M), which describes the
relationship between concepts and modalities, is defined as

R =


r11 r12 r13 . . . r1m

. . .

. . .
rn1 rn2 rn3 . . . rnm

 (10)

where rij specifies the retrievability of concept i using modal-
ity j. The relation matrix R can be estimated with training
or subjective pairwise evaluation. We adopt the first scheme
and the details will be discussed in the experiment section
(Section VI-C).

Combining with the set of concepts inferred from semantic
and visual mapping, Eqn (9) becomes,

TR(P) = P ◦ R ∈ F (M) (11)

where ◦ is a fuzzy composition operation. Given a query Q,
the transformation F (M) can be represented as a vector W =
[w1, . . . , wm] with wi specifying the weight (importance) of
the ith modality to Q. There are many implementations for
the composition operation. We adopt matrix multiplication for
simplicity. Therefore, Eqn (11) can be rewritten as:

W = [wj ]1×m = [

|V|∑
i=1

pi · rij ]1×m (12)

With Eqn (12), the idea of concept-driven multi-modality
fusion becomes intuitive. The importance of a modality Mj

is jointly determined by the relevancy pi of concept Ci and
rij which indicates the retrievability of concept Ci using
Mj . The significance of Mj towards a query Q, reflected
through wj of Eqn (12), is accumulated from all the selected
concepts. Eventually, the vector W is directly employed for
multi-modality fusion. While equations (11) and (12) are based
on linear fusion, the main novelty lies in how the weights are
derived based on the selection of suitable concepts for each
query and the computation of the concept-modality relation
matrix.

Compared to query-class dependent fusion, concept-driven
fusion offers two advantages. First, the relation matrix R in
Eqn (10) can be learned through reusing training samples
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Query-193: Find one or more smokestacks, chimneys, or 
cooling towers with smoke or vapors coming out 

Query-204: Find a street protest or parade

Query-216: Find a bridge

Fig. 5. Examples of textual and visual queries.

of the concepts (details in Section VI-C). This is much less
time-consuming than collecting and annotating a new set of
queries for training. Second, our matrix R can be trained
incrementally. When new search modality is available, only
an additional column of R needs to be added, without the
update of other entries in R. This is in contrast to query-class
dependent fusion, where the weights of all modalities need to
be re-computed from scratch for each update.

VI. EXPERIMENT

A. Dataset and Evaluation

We conduct experiments using four datasets: TV05, TV06,
TV07 and TV08, from TRECVID annual evaluations in years
2005 to 2008 respectively [12]. TV05 and TV06 are composed
of broadcast news videos in English, Chinese and Arabic.
There are 85 hours (45,765 shots) and 80 hours (79,484
shots) of testing videos in TV05 and TV06 respectively. TV07
and TV08 are Dutch videos from the Netherlands Institute
for Sound and Vision, containing mainly documentary videos
of 50 hours (18,142 shots) and 100 hours (33,726 shots)
respectively in the testing sets. Each dataset of TV05–TV07
comes along with 24 search queries, while TV08 contains
48 queries. The queries are given in multiple forms of texts,
images and/or video clips. Figure 5 shows a few example
queries3. Text queries are generally short with an average of
3.6 meaningful words (e.g., nouns and gerunds). Each text
query is also accompanied with 3.3 image examples and 2.1
video clips on average. We extract keyframes from each query
video clip and treat them equivalently as the query images. In
total, we have 15.4 images on average for each query.

In the experiments, the retrieved items (video shots) are
ranked according to their computed scores to the queries.

3Query IDs are defined by TRECVID, which are available at http://www-
nlpir.nist.gov/projects/tv2009/old.topics.features.txt.

(a)

(c)

Logos_Full_ScreenNetwork_LogoText_On_Artificial_Background
Ties Male_ReporterInterview_Sequences

Speaking_To_Camera
Male_Anchor

Computer_TV-screen
Studio

News_StudioComputer_Or_Television_ScreensFemale_Anchor
Commentator_Or_Studio_ExpertStudio_With_AnchorpersonArmed_Person

Ground_Combat
Military_PersonnelShooting

Street_Battle WeaponsArmored_VehiclesTanksMachine_GunsMilitaryRifles Soldiers
Exploding_OrdinanceExplosion_FireSmoke Windy

(b)

Ground_Vehicles RoadGround Transportation Factory
Smoke_Stack Observation_TowerTelevision_TowerTower

Oil_Drilling_SiteOil_Field
PipesCoal_PowerplantsPower_PlantProcessing_PlantUrban_ScenesBuildingUrban LifeOutdoor CrowdGroupFace

Fig. 6. A partial view of the context graph G. Edge width indicates concept
affinity. Only edges with contextual similarities larger than 0.3 are drawn.

Following the TRECVID evaluation, we use average precision
(AP) to evaluate the results of ranked lists on TV05-TV07 and
inferred average precision (InfAP) on TV08. AP approximates
the area under precision-recall curve, while InfAP estimates
the traditional AP when the testing data sets are partially
labeled [25]. To aggregate the performance over multiple
concepts, we use mean AP for TV05-TV07 and mean InfAP
(MAP) for TV08.

B. Construction of Context Graph

As introduced in Section IV-A, prior to the construction of
the context graph G, a context space is learnt by using LSCOM
(Large-Scale Concept Ontology for Multimedia) concepts
[23]. LSCOM includes 834 concepts and their annotations
on development dataset of TRECVID 2005. A total of 374
concepts, each has more than 10 positive training examples,
are selected for learning the context space [22]. With this
space, the context graph G is formed by connecting concepts
which are contextually related based on Eqn (4). Under this
formulation, all the 374 concepts are connected as a single
graph, and they are reachable to each other by traversing the
edges in G.

While all concepts are directly or indirectly connected,
by manual browsing we find that there are as high as 196
“clusters” of concepts in G. Concepts in each cluster are
basically tightly connected. Among these clusters, there are
192 small-size clusters each including only 1 to 4 concepts,
3 middle-size clusters each including 5 to 15 concepts, and a
large-size cluster containing a total of 93 concepts. Figure 6
shows three examples of the clusters in G. Concepts in a
small cluster normally belong to rare or specific concepts (e.g.,
network logo and text on artificial background), as shown in
Figure 6(a). Concepts in a median cluster are more general.
For instance, in Figure 6(b), industry-related concepts such
as power plant and oil drilling site are closely connected to
each other. The water-related cluster shown in Figure 3 is also
another example. The largest cluster found in G is shown
in Figure 6(c). This cluster includes mainly person-related
concepts, and can be roughly divided into four sub-clusters:
military affairs, ground transportation, news studio, and urban
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life related concepts. This cluster locates at the center of G
and directly connects to all other clusters.

The graph G models the context relationship among con-
cepts reasonably well, and mostly consistent with human
perception. Each cluster connects object, scene and/or action
related concepts, which frequently co-occur. For instance, re-
ferring to the sub-clusters on the left hand side of Figure 6(c),
the included concepts are soldiers, street battle, shooting and
smoke under the context of war. At the border of the cluster,
concepts such as armored vechicles are further connected
to ground transportation related concepts. Further away by
traversing the edges, clusters of concepts about news studio
are found, as shown on the right hand side of Figure 6(c).

C. Learning Concept-Modality Association

The proposed approach involves the learning of the relation
matrix R in Eqn (10). We estimate each entity rij in R
based on the retrievability of concept Ci using corresponding
search modality Mj . In our experiments, we consider three
modalities: text-only, visual-only, and concept-only search.
Detailed descriptions of the three modalities will be given in
the next section. To compute the retrievability of a modality
for a concept Ci, we treat the concept as a simulated query
by using concept name as text query and ten randomly chosen
positive samples as visual query examples. We then evaluate
search performance of this simulated query using the three
modalities over a validation set in TV05 (a subset of its
development set). The performance essentially indicates the
retrievability of Ci using different modalities, and therefore
can be used in matrix R. For example, the performances
for concept C51 (airport) are 0.0042, 0.4524, and 0.7743
respectively from text, visual, and concept search. Larger value
reflects higher search reliability of corresponding modality.
This score vector [0.0042, 0.4524, 0.7743] then becomes a
row ri in the matrix R. After computing simulated search
performances of all the 374 concepts, we have R ∈ R374×3

fully computed, which will be used throughout this paper.

D. Single Modality Search

This section compares search performance of text-only,
visual-only, and concept-only searches. In particular, we con-
trast the use of sMap and vMap concepts for search. The
aim is to verify the set of selected concepts, after undergone
context modeling, is effective in predicting search intention.
This will also in turn justify the validity of these concepts for
multi-modality fusion. The experimental setup of each single
modality search is as following:

• Text-only search is performed by matching the text
queries against the speech transcripts of the video shots.
The text search is implemented using the popularly
adopted Lemur system from CMU [26].

• Visual-only search considers the visual examples of the
queries. These examples include images and/or short
video clips. We adopt the supervised learning approach
in [27], by learning ten SVMs for each query. Visual
examples are used as the positive training samples for

TABLE I
SINGLE MODALITY SEARCH PERFORMANCE.

ConceptTV- Text Visual
sMap vMap svMap svMap-RW

05 .059 .010 .123 .065 .098 .128
06 .026 .016 .044 .021 .047 .048
07 .004 .038 .029 .020 .030 .039
08 .008 .035 .039 .020 .035 .046

all the SVMs. Another ten sets of pseudo-negative ex-
amples are randomly sampled from the dataset and used
separately for each SVM. The visual features for learning
SVMs are concept scores output by 374 concept detectors
from VIREO-374 [8]. In other words, each sample is
represented by a 374-d feature vector, where each element
is a probability indicating the confidence of detecting the
corresponding concept in the sample. Finally, with the
prediction outputs from the ten SVMs, we adopt average
fusion to combine the results for ranking the video shots,
and the ranked shots are used as visual-only search result.

• Concept-only search is performed by mapping text
queries and/or visual queries against the concepts de-
tected in video shots. Detection outputs of the selected
concepts are then linearly fused as concept-only search
result. The fusion weight is determined from the query-
to-concept mapping, i.e., Eqn (1) for semantic mapping,
Eqn (3) for visual mapping. Similar to visual-only search,
VIREO-374 is employed for concept detection. To eval-
uate the contributions of each component described in
this paper, here we conduct four runs of concept-only
search under different settings: 1) sMap only uses text
queries for concept selection; 2) vMap which uses visual
query examples only; 3) svMap takes a union of the
concepts selected by both sMap and vMap, and the
result is indeed an average fusion of those by sMap
and vMap; and 4) svMap-RW further applies random
walk to refine the concept set of svMap, and the final
stationary probabilities on concepts are used as fusion
weights. Throughout the experiments, the parameter α in
Eqn (8) is empirically set to 0.8.

Table I shows the performances of the single-modality runs
on the four TRECVID datasets. Among the three search
modalities, concept-only search exhibits the best performance.
This confirms the effectiveness of using semantic concept
detectors for video search, which was also observed in several
previous works [11, 15]. For the concept-based runs, we have
the following major observations. First, selecting concepts
based on text query alone (sMap) tends to be better than
that using visual query examples (vMap). This confirms the
power of textual queries in reflecting the query semantics, as
was also observed by several previous works [19, 32]. Second,
directly merging concepts selected by both sMap and vMap
(i.e., svMap) does not show clear performance gain, which
indicates that the concepts selected by vMap are indeed noisy.
However, this does not mean vMap is not useful at all. In
fact many concepts selected in vMap is complementary to
that from sMap – among the 120 test queries, only 9 of
them have overlap in concepts selected by both methods. The
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(b) Query-193: Find one or more smokestacks, chimneys, or cooling towers with smoke or vapor coming out
Smoke_StackTowerSmokeFoodFactoryObservation_TowerRailroadOverlaid_Text Factory

Observation_TowerTelevision_TowerTower
Oil_Drilling_SiteOil_Field

PipesPower_PlantSmoke_StackCoal_Powerplants Processing_Plant

(c) Query-204: Find a street protest or parade
StreetInterviewParadeCrowdPeople_MarchingParade

Parade
StreetPeople_MarchingOutdoorCrowd FuneralGroup RoadDaytime_OutdoorCelebration

concepts selectedby semantic mapping concepts selectedby visual mapping(d) Query-162: Find one or more people or a building
Business_PeopleBuildingMale_PersonCivilian

Business_PeoplePersonFace AdultMale_PersonCivilianBuildingUrban_Scenes UrbanOffice_Building
(a) Query-216: Find a bridge

Bridge
Daytime_Outdoor

BridgeRiverbankRoad_OverpassOutdoorHighway Road Daytime_OutdoorSkyGround_Vehicles

Fig. 7. Examples of query-to-concept mapping. The font size of a concept
name indicates its relevance score to the query. The edge width indicates
the strength of contextual relationship among concepts. Only edges with
contextual similarities larger than 0.3 are drawn.

usefulness of vMap is evidenced by further applying random
walk to refine the selection. We observed that the performance
of svMap-RW is higher than that of sMap-RW. This is due to
the fact that, in the random walk process, the importance of
relevant concepts is always boosted, while insignificant (noisy)
concepts, which reside in different clusters of the context graph
from the majority concepts, are either excluded or given much
lower weights.

We further analyze different runs of concept-only search
using four example queries, as shown in Figure 7. In 7(a),
semantic and visual mapping infer two sets of different con-
cepts respectively. By random walk, more concepts are mined
from context graph for fusion. In 7(b), semantic mapping
selects concepts such as smoke stack, tower and smoke which
are semantically related to text queries, while visual mapping
chooses concepts such as factory and observation tower which
are visually similar to the “chimneys” and “cooling towers”
appeared in the visual queries. By random walk, potentially
more useful concepts, but selected by neither semantic nor vi-
sual mapping, such as coal powerplants are further mined. On
the other hand, wrongly selected and insignificance concepts
such as food and overlaid text are “excluded” by assigning
lower weights (stationary probabilities) after random walk.
Similarly for the query in 7(c), the concept interview is
successfully excluded after random walk. Therefore, random
walk indeed plays an important role to alleviate the ambiguity
due to semantic and visual mapping. For instance, due to
out-of-vocabulary problem, the best match for the query term
vapor in 7(b) is the concept food by semantic mapping. The
concept overlaid text is always selected by visual mapping
due to the existence of text caption in visual queries. Random
walk is effective in pruning or assigning lower weights to
these concepts through modeling the contextual relationship
of selected concepts. Nevertheless, it is also worth noting that
the result of random walk is also somehow governed by the
connectivity in context graph. For example, in 7(d), though
both building and person related concepts are selected, the

person-related concepts are eventually assigned with higher
weights after random walk. This is simply because the person-
related concepts reside in the largest clusters of context graph
(see Figure 6(c)), and therefore results in higher weights
through mutual concept interaction. In our experiments, there
are around ten queries encountering this problem. In general,
this issue, which also involves the type and size of concept
vocabulary suitable for building a context graph that does not
bias any particular type of concepts, is not trivial and deserves
further studies.

E. Multi-modality Search

In this section, we conduct multi-modality search experi-
ments. We compare the performance of our approach, namely
CDMF, to heuristic fusion [11], linear oracle fusion, query-
time fusion [14], and query-class dependent oracle fusion. All
the approaches are tested using the three single modalities
(text, visual and svMap-RW) introduced in the previous
subsection. The settings of these approaches are as follows:

• Heuristic fusion (HF): heuristic linear fusion with pre-
defined weights for modalities is the simplest approach
for modality combination. We adopt the scheme in [11]
which empirically determines the weight of each modality
depending on nature of query terms. If only named
entities are found in a query, the weights are set as 0.6, 0.3
and 0.1 for text, visual and concept respectively. If only
the names of concept detectors are found, the weights are
set as 0.1, 0.3, 0.6 accordingly. If both named entities
and concept names are found, the weights become 0.35,
0.3 and 0.35. For any other cases, the weights for three
modalities are 0.33, 0.33 and 0.34. While the scheme
seems empirical, [11] has reported satisfactory search
performance on TV08 dataset.

• Linear oracle fusion (LF∗): To test the upper limit of
search performance using linear fusion, we perform or-
acle fusion by optimizing the fusion weights of each
individual query. The optimal weights are obtained using
Grid Search, and the best AP is then reported for each
query.

• Query time fusion (QT): Instead of employing the pre-
defined fusion weights as in HF, QT dynamically decides
the weights on-the-fly during query time. We employ the
approach in [14] which derives weights directly from
the ranked lists of different modalities. As introduced in
the related works, their idea is based on the hypothesis
that the shape of the curve of the score distribution
can imply the applicability of a modality to search. We
adopt the same implementation as in [14] to derive the
weight of a modality by computing the ratio of MAD
(mean average distance) between the top 5% retrieved
items and the remaining 95% items. The fusion scheme
has been demonstrated in [14][15] and shows excellent
performance in TRECVID 2007 and 2008 evaluations.

• Query-class dependent oracle fusion (QC∗): Different
from the previous three approaches, QC∗ predefines a
set of classes and maps a query to one of the classes
for fusion. The fusion weights, which are learned from
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Fig. 8. Performance comparison of different multi-modality fusion strategies on TV08 dataset. The InfAP (y-axis) is scaled with max-min normalization.
The query IDs are sorted in descending order according to the original (un-normalized) InfAP of LF ∗.

TABLE II
PERFORMANCE COMPARISON OF CDMF AND OTHER STATE-OF-THE-ART

MULTI-MODALITY FUSION STRATEGIES.

TV- HF LF ∗ QT QC∗ CDMF
05 .145 .179 .123 .167 .165
06 .056 .076 .055 .069 .071
07 .046 .065 .039 .056 .058
08 .048 .084 .059 .070 .074
∗ oracle fusion

training queries, are determined based on the character-
istics of a class. In the experiment, we classify the set
of queries into four classes: named entities (NE), person-
thing (PT), event (E) and place (P), based on the query
categorization provided by TRECVID [12]. Among the
120 queries being tested, 12 queries are assigned to class
NE, 107 to PT, 53 to E and 23 to P. For each class,
we use Grid Search again to find optimal weights which
maximize the MAP of queries belong to this class for
oracle fusion. If a query belongs to multiple classes, we
use the average of corresponding optimal weights. This
basically provides a clue to the upper limit performance
of the query-class dependent fusion method.

Table II compares the performances of the four approaches.
Except query-time fusion, all approaches show better search
performance than single modality search. Compared to heuris-
tic fusion (HF) and query time fusion (QT), CDMF exhibits
performance improvements ranging from 13.79% to 54.16%.
Even when compared to query-class dependent oracle fusions
(QC∗) and linear oracle fusion (LF ∗), CDMF slightly out-
performs QC∗ on TV06-TV08 while approaching the MAP
of LF ∗ on TV06 and TV07 datasets. Note that LF ∗ can be
treated as the upper limit of all the existing multi-modality
video search methods (including QT and QC∗) where the
modalities are linearly combined.

To further confirm the performance improvement, we con-
duct significance test on CDMF, QC∗, QT, HF and also the
uni-modality concept-only search, using randomization test
[28] suggested by TRECVID. The results at 0.05 significance
level are shown in Table III. Overall, CDMF is significantly

TABLE III
SIGNIFICANCE TEST AT 0.05 LEVEL (X ≫ Y INDICATES THAT X IS

SIGNIFICANTLY BETTER THAN Y ).

TV- Fusion Methods
05 CDMF, QC∗ ≫ HF ≫ Concept ≫ QT
06 CDMF, QC∗ ≫ HF, QT ≫ Concept
07 CDMF, QC∗ ≫ HF ≫ QT, Concept
08 CDMF ≫ QC∗ ≫ QT ≫ HF, Concept

better than QT, HF and concept-only search. There is no
performance difference between CDMF and QC∗ on TV05
and TV07 datasets, but significance difference is found on
TV06 and TV08 datasets.

Figure 8 shows the detailed performance of different ap-
proaches over the 48 queries on TV08. For the ease of
illustration, the InfAP (y-axis) is normalized so that LF ∗

which shows the upper limit performance is always at a value
of 1. We also sort the queries based on the oracle performance
from LF*. From left to right, the queries become more difficult
to answer. Among the 48 queries, compared to the methods
other than LF ∗, CDMF achieves the best performance for
29 queries, followed by QC∗ for 12 queries and QT for 6
queries. There are also 12 queries where the performance of
CDMF is almost the same to LF ∗. In addition, we also found
that CDMF performs consistently over queries at different
difficulty levels, achieving near-oracle performance for both
“easy” and “hard” (Figure 8 from left to right) queries.

Compared to HF, CDMF has the capability of dynamically
assigning appropriate weights to the search modalities for
fusion. For example, in Query-243 “find one or more people,
each looking into a microscope”, the selected concepts include
person, standing, and microscope. In concept-driven fusion,
three weights of 0.17, 0.19 and 0.64 are respectively assigned
to concept, visual and text modalities. The assignment of the
fusion weights can be intuitively explained as follows. Because
the selected concepts either have very few training examples
(e.g., microscope) or significantly vary from sample to sample
in appearance (e.g., standing), their detectors are not very
robust. Therefore, the concept-only modality is unreliable for
this query. Also, the limited number of visual query examples
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cannot adequately characterize the query intention. On the
other hand, the text-only modality works fairly well for this
query since the query term “microscope” is very descriptive
and suitable for text search. In contrast, HF assigns weights
of 0.60, 0.30, and 0.10 for this query, because the query term
“microscope” directly matches to a semantic concept. Since
detector reliability is not considered, this will not guarantee
satisfactory search performance.

Query-class dependent fusion (QC∗), even under oracle
setting, is found to be difficult to obtain optimal fusion weights
that are appropriate for all query members. In our experiments,
the fact that many queries are categorized as Person-Thing
(PT) has made the searching of optimal weights which suits
all the queries in PT class almost impossible. For instance,
while concept modality is found to be effective for a majority
of queries in PT which search for general object (e.g., person
or boat), the modality is incapable for queries looking for
specific objects under certain event (e.g., Query-255 “one
person getting out of or getting into a vehicle”). To further
confirm our observations, we conduct a clustering experiment
to group the queries according to their optimal fusion weights
(from LF∗). The aim is to see whether these queries form
any natural clusters where uniform cluster(class)-level fusion
weights can generate near-optimal performance. As expected,
no clear pattern has been observed. This again confirms the
need of using query-adaptive fusion methods such as CDMF.
Finally, Query time fusion (QT) seems to be more appropriate
for queries which favor text matching. In general, the rapid
change of scores at initial rank list is more easily observed
in text modality than other modalities. Thus, the weights
determined by QT are somewhat biased.

VII. CONCLUSION

We have presented an approach named CDMF that dynam-
ically leverages multiple modalities for video search, where
the modality weights are computed based on a novel concept-
modality relation matrix. We show that modality weights
can be accurately computed for each query on-the-fly, which
largely extends existing popular techniques that map a query
to one of a few categories with pre-computed weights.

Experimental results suggest that the semantic concepts not
only can be used in the concept-based search modality, but also
could be explored for determining the weights of the search
modalities. With our proposed approach, more suitable query
adaptive weights can be computed without requiring additional
training queries as in many existing methods.

Furthermore, our single modality search experiment reveals
another application perspective of utilizing the context infor-
mation (concept relationship), where a random walk process
is imposed over a context graph to produce better concept
selection for concept-based search. We have shown that this
process is helpful for suppressing irrelevant concepts, while
bringing into more relevant ones at the same time.

Although our approach does not produce excellent perfor-
mance for all the evaluated queries, the results are encouraging
for most of them. Compared to single modality search, the
results clearly show that video search using multi-modalities

is more effective, and suggest going beyond the popular query-
class-based fusion of the multiple search modalities.
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