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Modeling Scene and Object Contexts for Human
Action Retrieval with Few Examples
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Abstract—The use of context knowledge is critical for under-
standing human actions, which typically occur under particular
scene settings with certain object interactions. For instance,
driving car usually happens outdoors, and kissing involves two
people moving toward each other. In this paper, we investigate
the problem of context modeling for human action retrieval.
We first identify ten simple object-level action atoms relevant
to many human actions, e.g., people getting closer. With the
action atoms and several background scene classes, we show that
action retrieval can be improved through modeling action-scene-
object dependency. An algorithm inspired by the popular semi-
supervised learning paradigm is introduced for this purpose. One
important contribution of this paper is to show that modeling the
dependencies among actions, objects, and scenes can be efficiently
achieved with very few examples. Such a solution has tremendous
potential in practice as it is often expensive to acquire large sets
of training data. Experiments were performed on the challenging
Hollywood2 dataset containing 89 movies. The results validate the
effectiveness of our approach, achieving a mean average precision
of 26% with just ten examples per action.

Index Terms—Action retrieval, context modeling, object and
scene recognition, very few examples.

I. Introduction

HUMAN ACTION recognition is one of the most chal-
lenging problems in video analysis due to significant

appearance variations of human bodies, background clutter,
and occlusion. Although impressive results have been reported
from evaluations on datasets collected from controlled envi-
ronments, such as KTH [1] and Weizmann [2], much less
efforts have been made to solve the more difficult problem
of recognizing actions in realistic videos from unconstrained
environments [3]–[5]. Furthermore, most existing methods
require large sets of labeled training samples, which are
difficult and expensive to acquire in practice.

In this paper, we are interested in the problem of finding
realistic human actions based on a limited number of exam-
ples, with a focus on modeling contextual cues associated with
the actions. Human actions are defined by their appearances
with certain motion characteristics, and generally occur under
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particular scene settings. For example, as shown in Fig. 1,
action kissing contains two people with a shrinking distance
between them. The action-scene-object dependency provides
rich contextual information for understanding human actions.
Most previous approaches, however, handled actions, scenes,
and objects separately without considering their relationship
[3], [6]. Our intuition is that once the contextual cues (objects
and scenes) are learned a priori, they can be utilized to make
the action retrieval more effective. We, therefore, explore such
contexts in this paper, aiming at modeling arbitrary realistic
human actions rapidly from just a few examples, instead of
relying on sophisticated models learned from hundreds or
even thousands of labeled samples for only a limited set of
predefined action categories.

We first identify a set of object-level action atoms that
can be automatically detected based on the recent progress
in object detection [Fig. 1(a)]. These object-level atoms in-
clude both single object and multiple objects with certain
interactions. With the action atoms and a few background
scene classes that are relevant to many human actions, we
introduce an efficient algorithm to capture the underlying
action-object-scene dependency. The algorithm, which couples
the advantages of both maximum margin learning and semi-
supervised learning, allows us to utilize the large amount of
readily available unlabeled data. The contextual dependency
information is then harnessed for finding similar actions from
new video data.

Our main contribution in this paper is to show that, by
tailoring popular ideas from machine learning, action-scene-
object dependency can be modeled from very few examples,
and the contextual cues from both object detection and scene
categorization could be effectively harnessed for human action
retrieval. To the best of our knowledge, this is the first work on
efficient modeling of action context using limited examples.
Our evaluation on the challenging Hollywood2 dataset shows
that our method accurately models the action context, produc-
ing competitive performance compared to the state of the art
using a domain-specific context prediction method based on
textual mining in movie scripts.

II. Related Work

Human action recognition has been an important research
topic in video analysis and computer vision with a vast
amount of applications, such as video search, robotics, and
surveillance. Focuses of existing works ranged from feature
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Fig. 1. Proposed approach models both object interactions and background
scenes for retrieving human actions such as kissing shown in the above video
clip. We first detect objects such as (a) Person on the video sequence using
state-of-the-art object detectors and (b) classify video scenes using several
pre-trained models. With a few labeled action video clips, our approach is
able to identify the contextual dependencies of the action kissing to object
interactions such as people getting closer, and scenes such as Bedroom. The
contextual dependency information is then utilized for finding kissing in new
videos.

representation [3], [4], [7]–[11] to recognition model [1], [12],
[13]. All the works in [7]–[9] are on the design of spatial-
temporal features, while more recent research in [3], [4], [10],
and [11] focuses on higher level event representation. In this
paper, we use the popular bag-of-features framework which
describes actions by histograms of quantized local features
[3], [8]. We adopt local features extracted from both 2-D video
frames [scale-invariant feature transform (SIFT) [14]] and 3-D
sequences (spatial-temporal interest points [7]).

Extensive research has been devoted to modeling context
for visual recognition. Torralba et al. [15] introduced a frame-
work for context modeling based on the correlation between
overall statistics of low-level image features and objects in the
images. Several recent research works along this line adopted
context for understanding objects and scenes in static images,
e.g., [16] and [17], among others. In [16], the co-occurrence
information of objects and scenes was utilized by Robinovich
et al. for object recognition using a conditional random field
framework. Similarly, Russell et al. [17] used scene matching
and incorporated object spatial priors in object recognition.

Context has also been explored in several recent works for
human action recognition [5], [10], [18]–[22]. Gupta et al. [18]
employed a Bayesian network to model human–object inter-
actions for action understanding. Wu et al. [19] investigated
contexts from radio-frequency identification-tagged objects for
kitchen activity recognition. Tran et al. [20] used Markov
logic networks (MLN) to impose common sense rules for
action recognition in a parking lot. MLN was also applied in
[13] for recognizing objects based on human activity context
in home environment. Most of these papers [13], [18]–[20],
however, only considered video data collected from controlled
or very specific environments. Our paper is more similar
in spirit to [5], [10], [21], and [22] where contexts were
exploited for recognizing actions from realistic video data. Sun
et al. [10] modeled action context in a feature representation
that is designed to capture the proximity of local keypoint
tracks. In [5], Marszałek et al. exploited scene context for

action recognition in movies. Action-scene relations were
automatically discovered from video-aligned textual scripts.
In [21], context from generic object detectors was applied for
realistic action recognition. Responses of the object detectors
are quantized into low-dimensional video descriptors which
are used as input to supervised action learning. In [22], object
and human pose contexts are modeled for detecting activities
containing human–object interactions. Unlike [5], [10], [21],
and [22], however, we model both scene and object contexts
for action retrieval with limited examples, instead of relying on
large sets of fully labeled training data. An algorithm derived
from semi-supervised learning is introduced for this purpose
to model the action context.

Recognizing visual categories from a limited amount of
data has been investigated in [11] and [23]. Fei-Fei et al.
[23] proposed a Bayesian formulation for learning object
categories from very few images. In [11], Seo et al. proposed
to use features based on space-time locally adaptive regression
kernels for detecting human actions based on a single example.
Our approach is related to [23] in the sense that we also try
to utilize models learned previously. However, in our case,
both background scene and object-interaction contexts, not
pre-trained object category models, are explored for retrieving
human actions.

III. Modeling Actions with Context

Our goal is to model multiple contextual cues for action
retrieval from few examples. Fig. 2 overviews the entire
framework, which contains four major components. Given
a few action examples, the first component automatically
mines a number of negative examples. Notice that this step
is important under the retrieval scenario where only a few
positive samples are given. After that the second component
extracts scene-level and object-level contextual cues using
existing models/classifiers. With the contextual cues from the
positive/negative examples, the third component models the
action-scene-object relationship, which is finally utilized in
the last component to discover similar actions from new data.
In the following, we describe each of the components in detail.

A. Video Representation and Negative Sample Selection

We now briefly introduce video feature representations and
the method for automatically collecting negative samples. We
follow several existing works [3], [5], [21] to use the bag-of-
features framework. Local features are extracted from both 2-D
video frames and 3-D video sequence. For the 2-D features, we
use Harris-Laplace detector [24] and SIFT descriptor [14]. The
3-D spatial-temporal interest points are extracted based on the
work of Laptev et al. [3], [7]. Histograms of gradient (HoG)
and histograms of optical flow (HoF) are applied to describe
the 3-D interest points [3], and the descriptors by HoG and
HoF are concatenated into a final descriptor (HoG–HoF; 144
dimensions). For both SIFT and HoG–HoF, we sample a set
of 600 000 descriptors, and use k-means clustering to generate
a codebook of 4000 visual words. Visual codebooks of similar
size have been shown to produce good results for a wide range
of human action datasets in recent works [3], [5], [25]. With
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Fig. 2. Overview of our context-based action retrieval framework. Given a few example video clips of an action (standing up), we first automatically
mine a number of pseudo-negative samples (Section III-A). We then extract object and scene contexts (Section III-B) and predict their relationships to the
action (Section III-C). The learned action-scene-object relationship is finally utilized to incorporate multiple contextual cues for discovering similar actions
(Section III-D).

the codebooks, each video clip can be represented by two
4000-D histograms of visual words through soft-quantization
[26] of the local descriptors. Since the videos are of different
length, the visual word histograms are l1-normalized.

As the aim is to retrieve actions from limited examples,
our framework only requests positive action examples and
automatically collects negative samples from unlabeled video
data. To this end, we apply a popular semi-supervised learning
algorithm called local and global consistency (LGC) [27].
LGC propagates the given positive examples to the unlabeled
data based on manifold structure of all the samples in feature
space (HoG–HoF is adopted). The unlabeled samples can then
be ranked according to their scores after the propagation,
and we randomly pick pseudo-negative samples that are far
away from the positive ones. One main advantage of semi-
supervised learning is that it utilizes the large amount of
readily available unlabeled data. Semi-supervised learning has
shown excellent performances in many applications especially
when the number of examples (labels) is small, which perfectly
fits the aim of this paper. Notice that we avoid using the movie
script mining method in [3] to collect labeled samples, as it
is particularly designed for movies and may not be applied
for other types of action videos. While in the experiments the
Hollywood2 dataset is adopted for the ease of performance
evaluation, we do not want to limit our approach to any
particular type of data.

B. Obtaining Action Context

1) Scene Recognition: Background scene setting is an
important source of context for understanding human actions.
We adopt ten scene classes defined in [5] [see Fig. 1(b) for
class names], and the scene models are learned using one-
against-all strategy by support vector machines (SVM). We

use the popular χ2 Gaussian kernel. The effectiveness of this
kernel has been validated in many visual recognition tasks.
To combine the two bag-of-features representations based on
SIFT and HoG–HoF, we train separate classifiers and simply
average their probability predictions. From our evaluation, our
scene models perform very similar to that in [5].

2) Object-Level Action Atoms: Besides the background
scene, another useful contextual cue is the types of objects
and their interactions in action videos. We, therefore, employ
a state-of-the-art generic object detector [28], with models
trained for locating Person, Car, and Chair. Since our aim is
to learn human actions, Person is obviously the most important
object of interest, while other objects such as Car and Chair
are helpful for identifying actions involving object interactions
(e.g., person getting out of car and standing up). Object
detectors other than the three can be easily deployed in our
framework without any significant modification.

The output of the detectors is a set of object bounding
boxes over static video frames. Since temporal information
is not considered during detection, the results are not always
consistent across nearby frames—there are many false alarms
and miss-detections. To alleviate the effect of this issue, we
track the detected objects based on their spatial locations
and bounding box sizes (bounding box overlap must exceed
40%), and discard the isolated detections without any tracked
association within a temporal window. The window size is
empirically set as 15 frames (0.5 s).

Based on the detection, here we define ten object-level
action atoms, including single object, multiple objects, as well
as object interactions (with varying spatial distances along
time). Fig. 3 gives an exemplar for each of the atoms. We
expect that knowing the presence of these atoms, though
noisy, will be helpful for recognizing human actions (e.g.,
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Fig. 3. Object-level action atoms. The first five indicate object presence
and/or count, and the rest describes object interactions.

person-person-closer for action kissing). To characterize the
object interactions, we compute average spatial distance be-
tween different types of detected objects (or among all de-
tected people for person-person-closer). The average distance
is compared to that in the next successive frame in order
to evaluate the object proximity changes. Since the detection
of an atom from a single frame can be noisy, we evaluate
the presence of each atom based on overall statistics on the
entire frame sequence. Specifically, the probability that an
atom occurs in a video is estimated based on the percentage of
frames where the atom is detected (e.g., the percentage of the
frames containing two detected people for atom two people).

C. Estimating Action-Scene-Object Relationship

In this section, we introduce an algorithm to estimate
the action-scene-object dependency from limited samples.
Inspired by the popularity of semi-supervised classification
and recent works on semi-supervised ensemble learning [29],
[30], we consider both labeled and unlabeled data for modeling
the action context. Different from the LGC method [27], our
goal here is to reveal how scene and object contexts correlate
with human actions, not to propagate labels for classifica-
tion/retrieval. We describe the details of this algorithm below.

Let X be a training dataset of n samples, both labeled
and unlabeled, and F be an n × m prediction matrix of
the contextual cues (i.e., scene classes or object atoms) over
the n training samples. m is the number of contextual cues.
Given an action, denote P as a positive training sample set
(the given examples), and N as a set of negative samples
[(P ∪ N ) ⊂ X ]. N can be automatically collected based on
the method introduced earlier. In the scenario considered in
this paper, the cardinality of P , i.e., the number of positive
labeled samples, should be much smaller than n.

Our aim is to derive a set of coefficients based on which
the linear combination of the columns in F (contextual cues)
satisfies two conditions. First, it can well distinguish samples
from P and N . Second, it should produce similar scores if
two samples are close or on the same manifold in context
feature space (Rm). A linear model is applied here due to its
better generalization capability especially when the amount

of training data is limited [31]. More formally, we define an
action inference function as follows:

r : X → R (1)

where r(x), x ∈ X , is the context-based inference score (from
the linear combination of contextual cues) for sample x.

To satisfy the first condition, the inference scores of the
positive samples should be higher than those of the negative
ones, that is

r(xi) > r(xj) ⇐⇒ i ∈ P, j ∈ N . (2)

Based on the above analysis, we assume r can be obtained by
linearly combining the columns of F , that is

[r(x1), ..., r(xn)]� = Fc (3)

where c denotes the coefficient vector. Note that r(xi) = c�fi,
where f�

i is the ith row vector of F , i.e., the predictions of
the contextual cues on sample xi. Now the aim is to obtain a
c that best satisfies the inequality defined in (2), which can be
rewritten as

c�fi − c�fj ≥ 1, i ∈ P, j ∈ N . (4)

In other words, we want the inference score of a positive
sample to be higher than that of any negative sample by a
hard margin 1. Note that the margin can be arbitrary positive
number, as it only corresponds to a scaling factor of c. It is
possible that no c can meet all the constraints in (4). We,
therefore, add a non-negative slack variable to each constraint
as follows:

c�fi − c�fj ≥ 1 − ξij

ξij ≥ 0, i ∈ P, j ∈ N . (5)

On the contrary, if two samples are close or on the same
manifold structure in the context feature space, it is expected
that their inference scores are similar. This condition is gener-
ally referred to as the smoothness property, which is popularly
used in many semi-supervised learning approaches. It can be
measured by

S(r) � 1

2

∑

i,j

wij(r(xi) − r(xj))2 (6)

where wij is the similarity between any two samples (both
labeled and unlabeled) xi and xj . In our case, we take

wij = exp−�‖fi−fj‖2
(7)

where � > 0 is a scaling factor. Clearly, the smaller of S(r),
the smoother of the inference function r.

Plugging (3) into (6), S(r) can be expressed as

S(r) =
1

2
c�Lc (8)

where L =
∑

i,j wij(fi − fj)(fi − fj)�. Taking a maximum
margin approach, we now formulate the entire problem as the
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optimization process as follows:

min
c,ξij

1

2
c�c + α

∑

i,j

ξij +
β

2
c�Lc

s.t.c�fi − c�fj ≥ 1 − ξij,

ξij ≥ 0, i ∈ P, j ∈ N (9)

where the first term is the reciprocal of the maximum margin,
the second term is the fitting error of separating the positive
and negative samples, and the last term is the smoothness
constraint. α and β are two nonnegative parameters that trade
off the margin, the fitting error, and the smoothness. This is
a strictly convex quadratic function in c and ξijs, and all the
constraints are linear. Therefore, it can be optimally solved by
quadratic programming. Since the number of labeled samples
is small in our problem, the optimal coefficients c̃ can be
efficiently computed.

Up to this point, we can determine the relationship of
an arbitrary action to the scene and object contexts. It is
worthwhile to note a fundamental difference between this
algorithm and the linear SVMs [32]—a smoothness term is
added here to utilize the large volume of readily available
unlabeled data, which is important as the smoothness property
in semi-supervised learning has been known to be suitable for
learning from limited labeled samples.

D. Incorporating Multiple Contextual Cues

We now turn to the problem of how to use the learned
coefficients c̃ for action discovery from new video data. Since
our aim in the previous section was to optimize the coefficients
of linearly fusing multiple contextual cues, given an action
a, linear combination based on its optimal coefficients c̃a

becomes a natural solution as follows:

q̃a(x) = qa(x) + λr(x)

= qa(x) + λc̃�
a fx (10)

where x is a test sample and fx is the prediction scores of the
contextual cues on x; qa(x) is baseline action prediction score
based on direct comparison from the raw visual features (e.g.,
HoG–HoF); q̃a(x) is the refined prediction after incorporating
the contextual cues; λ is a context weight parameter. The
baseline prediction qa(x) can be obtained via either supervised
learning or semi-supervised learning, which will be elaborated
in the experiments.

IV. Experiments

In this section, we test our approach on the challenging
Hollywood2 dataset [5], where the training and test sets
contain 823 and 884 movie video clips, respectively (about
500k frames in total). Scene models are trained on a separate
training set in Hollywood2, which is different from the action
training/test data. We report performance over 12 actions de-
fined in [5] with varying (small) amounts of action examples.
Note that our approach is designed to handle arbitrary human
actions with just a few examples. We experiment with the
12 actions since ground-truth action annotation is needed for

performance evaluation. Results are measured using average
precision over the entire test set, and mean average precision
(mAP) is used to aggregate performance of multiple actions.

In the following, we first evaluate our algorithm on esti-
mating action-scene-object relationship and compare it with
existing alternatives. We then show the combination of context
with baseline predictions using the raw visual features.

A. Retrieval Performance by Contextual Cues

The goal of this experiment is to show how well the
contextual cues alone can perform for action recognition. To
this end, we set the baseline prediction qa(x) in (10) as 0.
Given a few positive samples, we first automatically collect
an equivalent number of negative samples using the method
introduced in Section III-A. Throughout the experiments, the
two parameters α and β in (9) are both set as 10. Our
evaluations indicate that the results are not sensitive to these
parameters as long as relatively large values are used, to ensure
that the learned coefficients (c̃) fit well to the labeled data and
produce smooth action inference scores [r(x)] in the context
feature space.

Fig. 4(a) shows the mAP performances with different
numbers of examples per action. For each method and each
example number, we plot mean performance over ten runs with
randomly selected examples. We see that both scene and object
contexts perform significantly better than the prior (chance)
even with just a single label. This confirms that the contextual
cues are useful for human action retrieval. In general, scene
context shows higher performance than object context. This is
probably due to the fact that the object detections are noisy.
Table I further shows the per-action performance when ten
examples are used for each action. All the actions substantially
benefit from both types of context. Only using the scene
context, we obtain fairly good performance for several actions,
such as person driving car and running. From investigating
the learned coefficients, we observe close relatedness of scene
classes Car Interior and Road to the actions person driving
car and running, respectively. On the contrary, the object
context works better than scene context for a few actions,
e.g., people shaking hands, which tightly correlates to person-
person-closer and three-or-more-people as indicated by the
learned coefficients.

1) Comparison to the State of the Arts: We compare
our approach with the two strategies for context-based ac-
tion recognition proposed in [5]: 1) SVM learning, and
2) movie script-mining. The first strategy treats predictions
of the contextual cues (fx) as a video feature vector, on
which an SVM classifier can be trained for each action.
Since the SVM learning is fully supervised, this strategy
requires a large number of labeled training samples in order to
obtain satisfactory performance. In contrast, the script-mining
method estimates action context based on the co-occurrence
of action and scene names in textual movie scripts, which
does not require labeled data. For this method, we use the
conditional probabilities p(action|scene) from [5]1 to replace
the coefficients in c̃. Since only action-scene relationship is

1Available at http://pascal.inrialpes.fr/hollywood2.
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Fig. 4. (a) Action retrieval performance using contextual cues alone. With only ten examples per action, our context modeling approach produces mAPs of
19.8% (scene) and 13.5% (object), compared to the mean prior of 9.2% (chance). (b) Comparison of baseline retrieval performance using raw visual features
from semi-supervised learning (LGCraw) and support vector machines (SVMraw). (c) Combining our context-based retrieval with the LGCraw baseline.

Fig. 5. Comparison of different context-based action retrieval methods. Both our approach (blue bars) and the SVM-based method (green bars) use ten
examples per action. Our approach performs much better than the fully supervised SVM learning. More interestingly, with just ten labels, it already shows
slightly better performance than the movie script-mining method from [5] (red bars), which is a domain-specific method and not suitable for other data
domains. See Section IV-A1 for more explanations.

available from [5], we use the scene context alone in this
experiment.

Fig. 5 compares the results of our approach and the other
two strategies. Our approach significantly outperforms the
SVM learning method. This again confirms that the proposed
algorithm incorporated ideas from semi-supervised learning is
more suitable to model action context when the number of
examples is small. Using just ten labels per action, we obtain
slightly better performance (mAP=19.8%) than the script-
mining method (mAP=19.6%)—this shows an important merit
of our approach, since the latter is designed particularly for
movie videos and, therefore, the mined contexts may be too
domain-specific to be applied for data from other domains
(e.g., consumer videos on the Internet). The ability of rapid
context modeling with few examples enables the possibility of
learning arbitrary actions from other data genres, which is of
broad interest in many practical applications.

Our context modeling algorithm is very efficient—on a
regular personal computer with a 3 GHz central processing
unit, it requires 10–20 s to compute the optimal coefficients
for each action, depending on the number of examples used.

B. Combining Context with Baseline Visual Matching

We now turn to the problem of combining context-based
retrieval with the baseline predictions qa(x) from direct com-

TABLE I

Context-Only Performance for Each of the Evaluated

Actions (Ten Examples)

Scene Object Chance
AnswerPhone 0.094 0.077 0.072

DriveCar 0.755 0.274 0.115
Eat 0.173 0.073 0.037

FightPerson 0.117 0.114 0.079
GetOutCar 0.093 0.113 0.065
HandShake 0.069 0.124 0.051
HugPerson 0.115 0.078 0.075

Kiss 0.183 0.121 0.117
Run 0.330 0.175 0.160

SitDown 0.166 0.179 0.122
SitUp 0.076 0.059 0.042

StandUp 0.206 0.179 0.165

parison of the raw visual features. We consider two ways for
computing qa(x).

1) SVMraw: SVM learning based on the raw visual features
using the χ2 Gaussian kernel, as has been used in [3],
[5] and [21].

2) LGCraw: Semi-supervised learning by the LGC method
[27] which propagates labels to the unlabeled test data.
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Fig. 6. Precision-recall curves and example frames of two actions for which the context cues significantly improve retrieval performance. (a) Driving car,
where the scene context (e.g., Car Interior) is particularly helpful. (b) Shaking hands, which benefits more from the object context. Scene and object detection
results are shown on the two example frames, respectively.

For LGCraw, we can reuse its result from the process of
collecting negative samples (see Section III-A). We only use
the HoG–HoF feature, since the 2-D SIFT features do not
contribute much for action recognition as was also observed
in [5].

We first compare the two baseline methods SVMraw and
LGCraw with varying numbers of examples. Results are
visualized in Fig. 4(b). As expected, LGCraw shows better
performance when the number of examples is small. This can
be explained by the fact that semi-supervised learning ensures
the smoothness of prediction scores according to the manifold
structure of sample distribution in the HoG–HoF feature space,
where the large amount of unlabeled samples is utilized.

We also evaluate the performance gain when combining
predictions from the contextual cues and the LGCraw baseline.
For the context weight λ, we empirically set it to 0.1. Smaller
λ is preferred since context serves as auxiliary information
for improving the baseline visual matching. Fig. 4(c) gives
the results. We see the scene context contributes significantly
at most of the example numbers. The object context, on the
contrary, further provides less but consistent improvements.
Combining context and the baseline raw feature matching, we
obtain an mAP of 26% when only ten examples are used. We
consider this as a good achievement, compared to the results
(mAP 30–40%) reported in [5] and [21], where hundreds of
training samples are used. When similar amount of examples
are in use, we also observed better performance close to 40%,
which is out of the scope of this paper, however. Again, note
that [5] used movie script-mining to compute the action-scene
relationship, while our approach is more generic and can be
applied to any type of data.

Fig. 6 further shows precision–recall curves and visual
exemplars of two actions that benefit from the use of the scene
and object contexts, respectively.

V. Conclusion

We have presented a framework for human action retrieval
based on very few examples, which has tremendous potential
in many practical applications. An algorithm based on the
popular semi-supervised learning paradigm was introduced
to model action-scene-object dependency from limited exam-
ples. Our experimental results showed that, with the learned
dependency information, both object and background scene
contexts are useful for action retrieval. Particularly, using
just a few examples per action, our approach outperformed

an existing domain-specific method based on movie script
mining. Further, coupling the context-based action prediction
with baseline learning from raw visual features, substantial
performance gains are observed.

Currently, the performance gain from object context is
smaller than that from scene context due to noisy detection.
Therefore, an interesting future work is to evaluate how
detection accuracy of the contextual cues, particularly the
object context, affects the action retrieval performance. This
may provide useful insights in understanding “how good is
object detection good enough for significantly helping real-
world video retrieval applications.”
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