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ABSTRACT
A common obstacle in effective learning of visual concept
classifiers is the scarcity of positive training examples due to
expensive labeling cost. This paper explores the sampling
of weakly tagged web images for concept learning without
human assistance. In particular, ontology knowledge is in-
corporated for semantic pooling of positive examples from
ontologically neighboring concepts. This effectively widens
the coverage of the positive samples with visually more di-
versified content, which is important for learning a good con-
cept classifier. We experiment with two learning strategies:
aggregate and incremental. The former strategy re-trains
a new classifier by combining existing and newly collected
examples, while the latter updates the existing model using
the new samples incrementally. Extensive experiments on
NUS-WIDE and VOC 2010 datasets show very encouraging
results, even when comparing with classifiers learnt using
expert labeled training examples.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Measurement, Experimentation

Keywords
Visual concepts, training set construction, semantic pooling

1. INTRODUCTION
Acquiring a sufficiently large amount of positive training

examples is a key requirement for learning effective concept
classifiers. Ideally we should have a training set that max-
imizes two criteria: coverage and diversity. Coverage spec-
ifies the inclusiveness of samples in describing different se-
mantic facets of a concept. Diversity recounts the novelty
of samples in presenting the diverse visual appearance of a

∗Area chair: Lei Chen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’11, November 28–December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

semantic facet. Constructing a training set with good cov-
erage and diversity is often difficult in practice due to the
expensive cost in manual data sampling and labeling.

In recent few years, nevertheless, the proliferation of so-
cial media has made the low cost sampling and labeling of
training examples a feasible idea [7, 8]. Flickr website, for
example, has accumulated more than four billions of images
and receives thousands of new uploads per minute. This
repository alone already offers a tremendous pool of candi-
date images for the construction of training sets. However,
due to the fact that most images are weakly (noisily) tagged,
direct supplying these images for classifier learning without
data cleaning will result in poor performance. One straight-
forward way for dealing with this problem is by bootstrap
learning [7, 8]. In [8], an iterative framework that simulta-
neously learns classifiers and collects positive samples from
the Web was proposed. Starting from a classifier learnt from
a collection of expert labeled examples, iterative update of
the classifier model is performed by including new web im-
ages which are predicted as positive by the model itself. Al-
though the approach is expected to collect a clean and larger
training set, the newly added images may be homogeneous
and lack visual diversity. A similar idea of bootstrap learn-
ing was also proposed in [8], but interestingly, for collect-
ing negative training samples from the Web. The sampled
images are shown to be more suitable for concept learning
than those collected by random sampling, leading to better
classification performance. A variant of the bootstrapping
strategy is active learning [9], where human intervention is
required to iteratively provide manual labels to guide the
learning process towards a good concept classifier. In gen-
eral, bootstrap or active learning could suffer from high com-
putational cost. For instance, as indicated in [8], the overall
performance becomes stable after 50 rounds of learning, pre-
diction and sample selection. As a result, the scalability of
these learning strategies is in question especially for learning
a large set of concept classifiers.

A more efficient way of sampling training examples is to
rank the Web images according to their relevancy to a given
target concept, and then select the top ranked ones [4, 12].
In [4], visual clustering is carried out to characterize the set
of images as a cluster correlation network. Random walk is
then performed on the network to rank the image clusters.
Heuristics such as larger clusters are more relevant to the
target concepts and noisy samples have weak visual corre-
lation with other image clusters are adopted for relevancy
reranking. In [12], instead of exploiting visual similarity, se-
mantic field was proposed to predict the relevancy of tag lists



to target concepts by exploiting external knowledge such as
Wikipedia. The top-k ranked images are then used as posi-
tive examples for concept learning.
In this paper, different from [4, 7, 8, 12] which mainly

focused on filtering noisy Web search results for training set
construction, we address the issue of training sample en-
richment, which is important for learning a good concept
classifier with better generalization capability. Specifically,
a semantic pooling technique is proposed to enlarge the cov-
erage as well as to diversify the initial collection of sampled
images by propagating positive examples among semanti-
cally related concepts using ontology. Two kinds of learning:
aggregate and incremental learning, are then employed to
train better concept classifiers using new samples. Ontology
has been frequently adopted for boosting concept annotation
performance [1, 5]. The existing works, however, are on the
utilization of ontological relationship for concept label prop-
agation or noise removal. Our work is different in the way
that the ontology is employed to pool the freely obtained
Web images for boosting the concept learning performance
with a cleaner and more diverse training set.

2. SEMANTIC POOLING
Our proposed approach for collecting training examples

consists two components: 1) collect and filter examples for
each node in an ontological structure; and 2) hierarchical
pooling of training examples based on the ontology. We
elaborate each of the components below.

2.1 Positive Example Sampling
Given a concept node Cx, we first adopt a similar ap-

proach as [12] which considers tag-concept relevancy for train-
ing example acquisition. The probability of seeing a concept
Cx in an image with a tag list SF =< T1, T2, ..., Tn > is de-

fined as P (Cx|SF ) = P (SF |Cx)×P (Cx)
P (SF )

, where P (Cx) is a con-

stant for all the images under consideration when selecting
examples for Cx, and thus can be ignored. The computa-
tion of P (Cx|SF ) is not very stable since the probability of
the entire tag list P (SF ) is usually extremely small. Thus
we approximate P (SF |Cx) as P (SF ) × (

∑
i P (Ti|Cx)/n),

which combines the probabilities of observing SF as a whole
and seeing each tag of SF in images tagged with concept Cx.
With that, P (SF ) can be eliminated and P (Cx|SF ) can be
approximated as:

P (Cx|SF ) =

∑n
i=1 P (Ti|Cx)

n
(1)

where P (Ti|Cx) denotes the likelihood of observing a tag Ti

given a concept Cx, and n is the number of tags.
We employ two measures different from [12] for computing

Equation (1). The first measure is Flickr Context Similarity
(FCS), which was originally proposed in [6], for measuring
the visual co-occurrence between two words. For instance,
concept “car” is often tagged together with “road” in user
labeling. Although both concepts are not closely related
by ontological inference, their visual co-occurrence should
be high. FCS is defined as FCS(Ti, Cx) = e−NGD(Ti,Cx)/ρ,

whereNGD(Ti, Cx) =
max{log h(Ti),log h(Cx)}−log h(Ti,Cx)

logN−min{log h(Ti),log h(Cx)} , h(Ti)

is the number of Flickr images associated with tag Ti, and
h(Ti, Cx) is the number of images associated with both Ti

and Cx.
The second measure is based on ontological similarity.

For this, we adopt WUP [11], defined as WUP (Ti, Cx) =

2D(STi,Cx )

L(Ti,Cx)+2D(STi,Cx )
, where STi,Cx is the lowest common an-

cestor of Ti and Cx in WordNet. The function D returns
the depth of a concept, while the function L evaluates the
path length by traversing from Ti to Cx in WordNet.

Building1 231 2 1 2 11 2 11 …
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…
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Figure 1: A toy example for illustrating the seman-
tic pooling of training examples for concept “build-
ing”. Positive samples of child nodes are hierarchi-
cally pooled in a bottom-up manner. The percent-
age in the parentheses indicates the proportion of
examples to be propagated to the parent node, com-
puted by Equation (2). The numbered small color
boxes with various shapes represent images origi-
nally from different nodes, with rankings (indicated
by the numbers) computed by Equation (1).

Based on the Bayesian theorem, the conditional prob-
ability in Equation (1) can be computed as P (Ti|Cx) =
P (Ti, Cx)/P (Cx), where P (Cx) is ignored in our experi-
ments since it is a constant when selecting images for concept
Cx. Finally P (Ti, Cx) can be estimated by FCS(Ti, Cx) ×
WUP (Ti, Cx). With Equation (1), each image has a P (Cx|SF ),
based on which the top-k ones are selected as training sam-
ples for Cx.

2.2 Ontology-based Pooling
In ontologies like WordNet, child nodes are semantic sub-

sets of parent nodes. Take concept“building”as an example,
using the hyponymy relationship in WordNet, nodes under
“building” are organized in a sub-tree structure of 6 layers
and 268 child nodes. Intuitively, the coverage and diversity
of training examples for “building” can be greatly enhanced,
by also pooling the samples from the 268 child nodes. With
this intuition, we employ WordNet ontology as the ground
to propagate positive examples for concept learning.

According to WordNet hyponymy structure, as long as the
target concepts are not leaf-nodes, each of them can form a
multi-layer tree, with itself as the root node. Figure 1 shows
the top three levels of a tree with root node“building”. Sam-
ple pooling is performed on the tree structure in bottom-up
manner. Specifically, taking a tree with only two-layers as an
example, positive samples in the child nodes are propagated
in proportion to the root node. The proportion is decided
based on the popularity of the child node, which is mea-
sured based on the total number of images being returned
from Flickr. Formally, the percentage of training samples to
be propagated from a child node Ci to its parent node can
be computed by:

PCi =
fCi∑

Cj∈Li
fCj

(2)

where fCi is the number of Flickr images tagged with Ci,
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Figure 2: AP comparison on NUS-WIDE testing set

and Li represents a set of concept nodes on the same layer
with Ci in the tree.
The order of selecting samples for pooling is based on the

rank list evaluated by Equation (1). In other words, the first
image being picked up from a child node is always its top
ranked image. Images propagated into a parent node are
rescored by the following equation:

S(Ik) = (N − k)/N (3)

where Ik is the image ranked at the kth position among
training examples of the child node Ci, and N is the number
of images being propagated from Ci. After the bottom-up
propagation process, samples arriving at the root node C∗

are then aggregated with the original samples TC∗ in C∗ as

T̃C∗ ← TC∗ ∪ TC1 ∪ TC2 ∪ · · ·, where TCi denotes the set of
positive examples propagated from the child node Ci, and

T̃C∗ is the final set of examples for learning concept C∗. To
facilitate successive propagations into nodes on the upper

layers, the examples in T̃C∗ is then ranked by Equation (3),
which guarantees that all the top ranked examples of child

nodes will be distributed evenly in the ranked list of T̃C∗

and the orders are retained.
For a tree with more than two levels, similar procedure is

carried out recursively from the leaf nodes to the root con-
cept. Figure 1 gives a toy example to illustrate the procedure
of semantic pooling for concept “building”. The training set

T̃C∗ is enriched with diverse examples from the child nodes.

3. CONCEPT LEARNING
Based on the pool of freely sampled images by ontology,

we consider two scenarios for concept learning. Aggregate
learning re-trains a classifier using the collection of training
examples by semantic pooling. Incremental learning, on the
other hand, uses the newly collected samples from the child
nodes to update the existing models.
We adopt SVM for aggregate learning, and adaptive SVM

(A-SVM) [10] for incremental learning. A-SVM learns a
“delta function” ∆f(x) based on the new examples, and
adapts the original SVM model fa(x) as f(x) = fa(x) +
∆f(x) = fa(x) + WTϕ(x), where WT are the parameters
to be leant from new samples. A-SVM basically seeks for
additional support vectors learnt from newly arrival data to
adjust the original decision boundary of a classifier. It op-
timizes the trade-off that the new boundary should be close
to the original one, and meanwhile, can correctly classify the
new samples.

4. EXPERIMENT
We primarily use NUS-WIDE [2] which is a large-scale

Web image dataset for performance evaluation. The dataset
consists of 81 labeled concepts and we conduct experiments
on the testing set which contains 107,859 images. Using
WordNet, we construct 81 concept trees, with each of the
concepts as root node. For each tree, we further remove
the leaf nodes that have less than 1,000 images returned by
Flickr. Eventually, we consider 37 concepts, each with a tree
of depth more than two. Among the 37 concept trees, the
average depth is 4 and the average number of child nodes is
55. For instance, concept “building” has 127 nodes of depth
6, and “sports” has 101 nodes of depth 7.

We compare our approach semantic pooling (SP) with two
other approaches: 1) semantic field (SF) [12] based on the
description in Section 2.1, and 2) simple keyword match-
ing with query expansion (KW). In the experiments, SF
and KW respectively sample 2,000 pseudo positive exam-
ples from Flickr. To ensure fair comparison such that each
approach uses an equal number of training examples, SP
also samples 2,000 positive examples. The first 1,000 ex-
amples are from the root node, while the remaining 1,000
examples are pooled from the child nodes. All the three ap-
proaches use the same set of negative examples, 5,000 per
concept, randomly crawled from Flickr. Although there are
better ways of collecting negative samples [8], we use ran-
dom sampling for simplicity as our focus is on the collection
of better positive training samples. For concept learning, we
adopt the approach in [3] where three SVM models based
on bag-of-visual-words, color moment and wavelet textures
are trained respectively. Probability predictions from the
three SVM models are linearly fused. For SP, in addition to
training new SVM models using the newly pooled training
sets, we also attempt an incremental learning method based
on A-SVM [10]. Results from direct SVM training is indi-
cated by SP, while those from A-SVM is marked by SP-I.
Specifically, for SP-I, we use SVM classifiers learnt from SF
filtering (without pooling) as original/source models. The
models are updated by pooling 1,000 positive samples from
child nodes using semantic pooling, and another 1,000 neg-
ative examples randomly acquired from Flickr.

We employ Average Precision (AP) to measure the per-
formance of four different approaches. Figure 2 shows the
results. SP, with mean AP (MAP) of 0.1774, exhibits better
performance than SF (MAP=0.1655) and KW (MAP=0.1536).
Among the tested concepts, there are 26 out of 37 concepts



where SP shows higher AP than SF, and only 5 concepts
suffer from performance degradation after pooling (around
5%). The performance degradation for these concepts is
mostly due to different semantic interpretations between hu-
man labels and WordNet. For example, the ground-truth
labels in NUS-WIDE regard “panda” as a kind of “bear”,
while in WordNet, “panda” is not a child node of “bear”.
Also, “beach ball” and “tree house” are two child nodes of
“toy” in WordNet, but are rarely labeled as “toy” in NUS-
WIDE. From our observation, the coverage and diversity of
training examples for most concepts can be largely enhanced
by semantic pooling. Figure 3 shows an example for con-
cept “plane”. In 3(a), the sampled examples for root node
“plane” are mostly in close view and mixed with false posi-
tives. The samples from child nodes, as shown in 3(b), offer
a more diverse view in terms of visual and semantic aspects.
In addition, as the child node concepts are more specific,
the chance of sampling false positives is usually lower than
that for the parent concepts. As a result, the AP of con-
cept “plane” is significantly boosted to 0.2402 (by SP) from
0.1715 (by SF). SP-I also improves both SF and KW sig-
nificantly, with an MAP of 0.1744. Comparing SP-I to SP,
there is no clear winner between the two. SP-I is compu-
tationally more efficient, but is more sensitive to parameter
setting simply because it involves a few more parameters.

biplane

(a) training samples for “plane”

fighter aircraftmonoplane

(b) training samples for child nodes 

Figure 3: The automatically sampled training exam-
ples for “plane”and its child concepts. False positive
examples are marked with red boxes.

Comparing our SP result (MAP=0.1774) with the pub-
licly available VIREO-Web81∗ trained by expert labeled ex-
amples (MAP=0.2414) [12], there is still a performance gap.
This is not surprising because the NUS-WIDE dataset was
constructed two years ago by querying Flickr search en-
gine — images downloaded at the same time may be vi-
sually more similar, resulting in the same data distribution
(in feature space) between its official training and testing
sets. Thus, we believe the performance gap between SP and
VIREO-Web81 is partially due to the change of data char-
acteristics of our newly downloaded training images. To
verify this, we further conduct another experiment using
VOC 2010 dataset. VOC 2010 provides labels for 20 se-
mantic concepts. Among them, 8 concepts overlap with our
constructed concept trees and VIREO-Web81. Thus, we
evaluate the performance of the 8 concepts on the training
set of VOC 2010 which has 10,103 images. Table 1 lists
the experimental results. As shown in Table 1, the over-
all performance of SP (MAP=0.3284) is better than that of
VIREO-Web81 (MAP=0.3230). This verifies our suspicion
earlier that VIREO-Web81 is good on NUS-WIDE because

∗http://vireo.cs.cityu.edu.hk/vireoweb81/

Table 1: Performance comparison of 8 concepts on
VOC 2010 dataset.
Concept SP SP-I SF KW VIREO-Web81
aeroplane 0.6628 0.6760 0.5671 0.4498 0.6519
bird 0.2266 0.2132 0.1924 0.1833 0.2688
boat 0.3041 0.3144 0.2461 0.2462 0.3170
car 0.3864 0.4352 0.3949 0.3274 0.3607
cat 0.3712 0.3700 0.3384 0.3253 0.3504
cow 0.1527 0.1344 0.1630 0.1556 0.1480
dog 0.3040 0.3207 0.3060 0.2706 0.2740
horse 0.2194 0.2067 0.1482 0.1513 0.2133
MAP 0.3284 0.3338 0.2945 0.2637 0.3230

of data domain over-fitting. In other words, our proposed
approach SP is already able to produce training sets com-
parable to or even better than the expert labeled training
sets. In addition, similar to the results on NUS-WIDE, in
this experiment we also observe significant performance im-
provement from SP/SP-I over both SF and KW.

5. CONCLUSIONS
We have presented an ontology-based semantic pooling

approach to enrich the coverage and diversity of freely sam-
pled Web images for learning semantic concept detectors.
By semantic pooling, consistent performance improvement
is observed in our empirical studies on both NUS-WIDE and
VOC 2010 datasets. In addition, when discounting the fac-
tor due to data distribution shift, the performance of classi-
fication models learnt using semantic pooling is comparable
to that of detectors trained using expert labeled examples.
Currently, we consider only semantic-level ontology for pos-
itive sample pooling. Future extension includes the pooling
of positive and also negative examples by both semantic and
visual co-occurrence relationships.
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